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ABSTRACT

This work is focused on the investigation of the mechanical dysfunction and airway clearance efficiency (or lack thereof)
of the respiratory system by a quantitative analysis of mucus motion. We perform three-dimensional numerical simulations
of the mucus and the ciliated cells present at lung walls (epithelium). In this preliminary work we consider a simplified
configuration where the fluid is assumed to be Newtonian, the air/mucus interface is flat, and density and viscosity are
constant. We formulate equations describing the simplified configuration, which are also relevant in the general context,
and solve this system numerically to obtain mucus motion over a full cilia cycle. The stability condition of the explicit
time integrators for the set of equations is prohibitively restrictive on the size of the integration time step. In order to
begin development of effective numerical strategies for this problem we construct a one-dimensional model equation that
contains the numerical challenges of a more general system. We study performance of several implicit and exponential
time integrators using the model equation and use the results of the comparison to outline promising strategies for building
efficient time integrators for a more complex system.

1. INTRODUCTION

Inhaled particles are removed from the respiratory tract by the mechanism of mucociliary clearance. The main
assumption of mucociliary transport is that cilia of respiratory tract beat in a coordinated manner within the
periciliary fluid underneath a layer of viscoelastic mucus gel. Inhaled airborne contaminants such as dust,
micro-organisms, allergens or cellular debris are trapped in the mucus gel lining the conducting airways and
then propelled out to be swallowed or expectorated.

Purkinje and Valentin first discovered the ciliary movement in the mammalian respiratory and reproductive
tracts in 1834. This discovery was substantiated a year later when Sharpey indicated that mucus propulsion
in the nose and trachea was associated with ciliary beating. Following this publication much information was
gathered on ciliary movement although little of this data related to the respiratory tract. A 1928 literature review
by Gray [8] stimulated work which led to the proposal by Lucas and Douglas [13] that cilia were bathed in a
water-like fluid (the periciliary fluid) and with their tips sticking out into the mucus layer floating on the surface.
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Figure 1: Typical configuration of mucus, ciliated and goblet cells near lung walls.

Although many advances in the knowledge of ciliary activity have followed this hypothesis, little attention was
given to the respiratory tract. This was due in no small part to the abundance of cilia and flagella on more
accessible surfaces. Fortunately, respiratory mucociliary clearance has been studied more extensively in recent
years and most of what has been learned with other species appeared to apply.

Mucus is a visco-elastic fluid secreted by the respiratory epithelium that protects tracheo-bronchial tree
mucosa from dehydration and traps inhaled particles (allergens, carcinogens, dust, micro-organisms, and inflam-
matory debris). It flows from either tracheo-bronchial tree or upper airways toward the pharynx, where it is
swallowed (or expectorated).

A strong and effective mucus mobility is necessary to provide sufficient airway clearance and to ensure
healthy behavior of the respiratory system. Stagnation or deficiency of mucus can cause pathogens to proliferate
or to slip through pulmonary membrane. Respiratory diseases like cystic fibrosis (or mucoviscidosis), cilio-toxic
affections (chronic bronchitis, virus and/or infections) or lung cancer can directly impact mucus motion by
altering its viscosity, rheology, thickness, geometry, epithelium vibration features (cilia motion) or respiration
cycle alterations. The present study aims at understanding the underlying mechanisms of these diseases.

In Section 2. physics and spatial scales of mucus layer and cilia are described and the parameters used for
the numerical simulations of cilia motion and fluid dynamics are provided. Governing equations and numeri-
cal schemes are given in Section 3. and results are presented in section 4.. It is demonstrated that due to the
microfluidics context development of an efficient numerical time integrator is key to performing computation
over full cilium cycles even for a simplified configuration. In order to begin construction of an effective numeri-
cal algorithm for a more complex system in Section 5. we study performance of several implicit and exponential
time integrators on a relevant one-dimensional model problem and use the results of the comparison to outline
promising strategies for development of an efficient method for general system.

2. PROBLEM SETUP

The main objective of this work is to model and simulate motion of mucus in lungs. The tracheobronchial tree
can be divided into three regions:

e the upper tree (generations 1 to 6)

e the small bronchi (generations 7 to 17)

e the acinus (generations 18 to 23)
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Figure 2: Polymer structure of a cilium (left picture, courtesy of M. R. Villareal), cilia cluster over an epithelium
cell (middle picture), and cilia details in straight state (right picture, in vitro culture, from [22]). Bar is 2um.

where generations count the number of bronchiole divisions already occurred, the first generation being the
trachea. Here we are only interested in modeling the flow in the generations 4 to 7, where the air has been
warmed in the previous bronchi and the flow can be considered isothermal. Details on flows in other generations
can be found in [14].

Lung walls are composed of epithelium cells and goblet cells (there are about four times more epithelium
cells than goblet cells). The goblet cells release mucin proteins which hydrate the fluid whereas epithelium
cells are composed of cilia which are oscillating to assure mucus transport. Thereby the domain geometry is
complex and fast moving. Both solid deformations and fluid motion have to be taken into account. It will be
assumed that the fluid is not deforming the solid, such approach is called one way fluid-structure interaction (in
contrast with the one way / two ways interaction when structure is driving the fluid and fluid is deforming the
structure).

In this part of the lung the flow has three phases and its general characteristics are presented on figure 1.
The air flow is assumed to be a Poiseuille and two other fluid layers have to be distinguished. The first one is
directly in contact with lung wall: this pericilial fluid is hydrated (the mucin protein produced by the goblet
cells is hydrophilic and it carries water from other phase) so that it can be considered Newtonian with a low
viscosity. The second mucus flow phase is located in the middle, between the Newtonian layer and the air.
There mucus is dehydrated and is non-Newtonian. To model the respiration cycle, the Poiseuille air flow is
assumed to be oscillating periodically at the frequency of the respiration cycle (0.2 — 0.25H 2). The lung

walls are covered with both epithelium and goblet cells. This work is focused on studying the flow around one
epithelium cell and the surrounding area, including cilia which is sometimes called motile. The motile cilia are
usually present in large numbers on a cell’s surface and beat in coordinated waves. Motile cilia can be found
in the bronchial tree - figure 2 - where they sweep mucus and dirt out of the lungs. In female mammals, the
beating of cilia in the Fallopian tubes moves the ovum from the ovary to the uterus. The role played by those
cilia is not really well understood particularly as the driving mechanisms for the flow which is the subject of
this research.

2.1 Epithelium and cilia desription

The beat cycle of respiratory cilia is composed of three phases: rest, recovery, and effective stroke. At rest, the
cilium lies parallel to the bronchus wall pointing in the direction of mucus flow. The resting period separates
effective stroke that is mostly planar with an arc of about 110 degrees and recovery stroke, during which cilia
sweep backward remaining close to the epithelium and immersed in the periciliary fluid (without contact with
the mucus layer). For the moment, to simplify the description, two cilia states are distinguished: a rest state and
a straight state (figure 2).

A cilium is a tube which has a constant radius. Here we model a group of cilia by a succession of constant
radius spheres separated by a constant distance. If the cilia is straight all the sphere centers are aligned (note
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Symbol Description Value  Units
H, Cilium height 7 um
R, Cilium radius 0.3 wm
N, Number of cilia per cell 4orl6 -
N Number of spheres per cilium 25 -

« Angle between z = 0 plane and straight cilium 110  Degree
d; Distance between two cilia center 4R, wm
L, Length of the epithelium cell div/N.  um
L, Edges length of the simulation box 12 um
Ny Number of space steps in direction x 32 -
Ny Number of space steps in direction y 32 -
n, Number of space steps in direction z 32 -
Tprop Propulsion time (from rest to straight) 17 ms
Thet Return time (from straight to rest) 34 ms
Jtot Cilia oscillation frequency 20 H:z

Table 1: Values and description of the different parameters of the model.

that a straight cilium is not obviously vertical and it usually forms an angle with the lung wall at 110°). Random
process is used to provide a set of cilia at rest. A stiffening mechanism based on angle between three successive
spheres along the cilium is provided in order to mimic the cilium beating cycle (see [5] for more details).

Two characteristic cilium positions have to be distinguished: straight (when all cilia are standing up) and
resting (when cilia are fading like a wilted bunch of flowers). Cilium motion can be divided into two steps:
o Starting from straight configuration, cilia are moving for about 7..; = 34ms until they reach the resting
position.
e The second step is when cilia are recovering their straight state. It is quicker than the previous step and
lasts about T}, = 17ms. It is this last motion that supposedly propels the mucus.
Thus one full motion cycle last for approximately 73, = 51ms which means that cilia are oscillating at a
frequency fio; = 19.6H z. All of the parameters cited in this section are summarized in table 1.

2.2 Mucus description and properties

From a macroscopic point of view mucus is a non-Newtonian thixotropic gel [12]. Its behaviour has to be
distinguished from both solids and liquids by its response to shear stress :

e Under low shear mucus behaves like an elastic solid and regains shape over time;

e Under high shear mucus behaves like a viscous liquid and eventually deforms irreversibly.
The dynamic viscoelastic properties of mucus are constantly regulated to ensure an efficient clearance and to
maintain sufficient adhesive strength to be retained on the epithelial surface despite external shearing forces
(swallowing, gravity, surface tension, ... ).

From a microscopic point of view mucus consists of mucins, DNA, lipids, ions, proteins, cells and cellular
debris, water [11]. .. The biochemical regulation of these various constituents is complex and highly interdepen-
dent. A failure in any component can affect the physical properties of mucus and cause disease. Modifications
in the rheological properties of mucus may greatly affect its ability to function as a selective barrier and the
bronchi’s first line of defense against infection. If mucus becomes too thick (in severe bronchitis for example
the viscosity can be 100,000 times water’s) patients experience great difficulty in mucus clearance. Such con-
dition results in bacterial overgrowth and secondary infections can appear. On the other hand if viscosity is
significantly lower the bronchi wall is underprotected and risk of infection increases.

4 © SHF 2010



Proceedings of the 2™ European Conference on Microfluidics - Microfluidics 2010 - Toulouse, December 8-10, 2010

There are two major mechanisms for clearing mucus from the tracheo-bronchial tree: by ciliary action (the
primary mechanism) and by coughing when cilia fail or are overloaded. Methods for studying experimentally
mucociliary clearance range from in vitro direct observation to in vivo tracer methods (using inhaled radio-
labelled particles). Cough clearance can be studied in mechanical models with the use of appropriate tracers.

3. GOVERNING EQUATIONS
3.1 General governing equations

Fluid equations are derived from conservation laws; conservation of mass and conservation of momentum, i.e.
the Newton’s second law, give :
Op + div (pu) =0 (D

O (pu) + div (pu ® u) — dive(u) = f )

In these equations p € R is the fluid density, u € R? the velocity, o is the stress tensor and f contains the
external forces applied to the fluid (in this model there is only gravity: f = pg). o depends on fluid pressure
p € R, the dynamic viscosity is © € R and the deformation rate tensor D(u) is given by

o(u) = 2pF(D(u)) — pld 3)

where

D(u) = = (Vu+VauT). 4)

| =

In this section the model derived is generic and few assumption are made: fluid is considered to be non-
Newtonian and incompressible, viscosity and density are non-constant. The incompressibility condition usually
leads to the equation dive = 0. This relation is valid for non constant density fluids [3], and for certain non
isothermal fluids [4] and reactive flows [19].

Since div (pu ® u) = pu (divu) + p(u- V) u + (u - Vp) u the conservation of momentum equation can
be rewritten as:
w (O +u-Vp+ p(divu)) + p (Oru + (v - V) u) —dive(u) = f. (5)

Using the mass conservation one finally obtains the Navier-Stokes equation in its standard form except for
the diffusion term:
p (O + (u-V)u) —dive(u) = f. (6)

Another convection equation for y has to be added since it can be variable with respect to both time and
space :

Op+u-Vu=0 (7

This equation might be replaced by a law p : p — u(p) in the future, which is equivalent to the convection
equation when this law is linear.

3.2 Simplified model

In order to be able to determine the effects of cilia motion we consider a simplified model for the fluid. Indeed,
we consider a Newtonian mucus, that is to say F = Id or F(D) = D, of constant density p = 103 kg-m~3 and
constant viscosity ;4 = 1 (which is usually in the range 1 — 15Pa-s). Due to a very low value of the Reynolds
number Re ~ 10~% convection can be neglected [7] even when the boundaries are moving fast.

Moreover, we also assume that air-mucus interface is flat so the computational box only contains only

mucus. Consequently surface tension does not have to be computed since the interface is not present in the
equations.
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Let @ the the computational box, and B(t) the region inside the cilium. The fluid domain is then denoted
Q(t) = Q \ B(t), and the cilium/fluid interface is denoted I'(¢) = JB(t). Given the assumptions above we
obtain the Stokes equations with a complex moving geometry :

0 1
8—7: - ;diva(u) = g and divu = 0 in Q(t), with u = 0 on I'(¢) (8)

In order to handle the moving geometry, a penalization method (see [1] for instance) is applied to equa-
tion 8 : if u denotes the velocity inside the cilium, and x p(;) denotes the characteristic function of cilia (its
value is 1 inside cilia and O otherwise), then the penalized equation is given by

0 1

a—? - ;diva(u) =g-— @(u —u) and divu = 01in Q )
where divo(u) = vAu + Vp and v = u/p is the kinematic viscosity. In practice, ¢ is chosen as 0t/ K with K
in the range 1 — 10.

A standard finite-difference schemes with pressure-velocity description inspired by the MAC algorithm has

been implemented [5]. Backward Euler (implicit) method is employed for time integration: due to implicitness
linear systems must be solved every time step. An explicit scheme would require a time step size of ¢ < 10713
due to stability restrictions. Since our goal is to run computations over a full cilium cycle of 0.05 seconds,
implicit schemes allow to increase this time step up to 10~ — 10~# without any stability or accuracy problems.
However, the matrix that has to be inverted each time iteration is badly conditioned. A GMRES algorithm [18]
has been used to solve this linear system, which has allowed to perform a sufficient number of time iterations,
as shown in section 4..
In order to improve the technique for solving such linear systems, a comparison between a few modern time
integrators (adapted to such a complex shape of matrix) are provided in section 5.. Furthermore, future work
will involve construction of characteristic methods for convection equation [17, 15] with variable density and/or
viscosity fluids and improved particle schemes for diffusion computation [16].

4. RESULTS AND CHALLENGE

In the first numerical experiment we simulate four cilia. The results of the simulation are shown in figure 3.
At the beginning of the simulation (first subplot) the cilia are straight and their motion is creating a velocity-
norm-bubble around them. At the top there is a vortex like hollow in the velocity-bubble; as cilia tend to form
a bunch when they are resting a depression is forming in the middle of the cell and it is creating this hollow in
the velocity isosurface. Later in the simulation cilia are moving and the bubble is becoming larger and larger
until it divides itself into four bubbles (one per cilium). Each velocity-bubble is then propagating and diffusing
around its cilium. At the end of this subcycle velocity of the cilia is decreasing along with each velocity-bubble.

In figure 3 the second subcycle is presented with the same isosurface value. In the second part of this figure
it can be observed that the beginning of the resting to straight position cycle is faster and each cilium also has
its proper velocity-norm bubble. However, this time the velocity-bubbles are not dragged but propelled by the
cilia until they form a bigger bubble in the middle of the cell. This bubble dissipates when cilia become close
enough and stop moving. The simulation involving sixteen cilia, displayed in figure 5, shows the velocity field
without isolated bubbles as cilia are closer to one another.

As the main interest of this work is to learn about the mucus displacement, especially at the air interface,
figure 5 shows the = velocity components at the location z = L, /2 at different times. When looking at the
average velocity at the surface displayed in the right panel of figure 5 we notice that average displacement of
the mucus surface over one cilia cycle is close to zero. The phenomenon is present even if there is no symmetry
in the cilia motion : in the present case, the first part of the cycle (straight to rest, 2/3 of the cycle) is driven by
random motion, while the second part (rest to straight, that is to say the stroke par, 1/3 of the cycle) is driven
by stiffening motion.

Consequently, non-reversibility of the flows, that is to say good mucociliary clearance, is to be explained by
another mechanism not yet investigated in our models. Possible explanation of non-reversibility requires the full
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Figure 3: Velocity isosurfaces at level 5 x 10, colored by the streamwise componant of velocity, at nine
different times during the cycle from straight to rest (left pictures) and nine from rest to straight (right pictures).
The simulation involves 32 mesh points in each direction, 4 cilia and 25 spheres per cilium. Computational
domain is 12um in each direction.

Figure 4: Same legend as figure 3 but for 16 cilia.

study of non-Newtonian and variable viscosity features of the mucus, the shape of the air-mucus interface, cell
synchronization, and possibly other features of the system. Another possibility explaining the non-reversibility
would be a poor efficiency of the beating sequence. Indeed, other beating cycles than the one presented here.
Nevertheless, the one used presently is quite close to reality (2/3 at rest, 1/3 at stroke with final angle at 110°),
except for the random motion from stroke to rest.

In order to be able to simulate such significantly more complex systems over the time interval of interest
we need to develop more efficient time integrators and improve computational performance by both allowing
larger time steps (many orders of magnitude above standard CFL conditions) and reducing the computational
cost of each time step. In the next section we study performance of several implicit and exponential integrators
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Figure 5: Profiles of the streamwise velocity component at the upper face of the cube (left picture), which
can be as the mucus film top velocity, at six different times of the cilium cycle. Right pictures show the average
velocity in streamwise (top right picture) and crosswise (bottom right picture) directions. Computational domain
is 12um in each direction.

on a one-dimensional equation that models numerical difficulties associated with a more complex system. These
preliminary results point to promising strategies for constructing efficient time integrators for this system 3..
5. NUMERICAL STUDY OF TIME INTEGRATORS

In order to develop an effective time integration strategy for our system we study a one-dimensional model
problem containing essential features of the equations. The velocity of the flow u(z, t) is defined on an interval
x € Q= [~L/2,L/2] and integrated for times t € [0, T], with L = 21077,

The cilium is represented by a moving interval B(¢) whose boundaries are X (t) + L/16 with
X (t) = Lsin(2nt/T},)/4

and a period of oscillation 7), = 20Hz. The model equation describing the velocity u(z, t) for z € , is given
by equation 9, for which the one dimensional formulation is :

ou Pu 1 B
o0 Y2 T 2XBO (u —u(t)), (10)

with periodic boundary conditions, where

Vo) = {1, z € B(t)

0, otherwise
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and

L
a(t) = ;7 cos(2mt/T})
p

is the prescribed velocity of the interval B(t).

The parameter ¢ in the equation (10) is chosen based on the time-step as ¢ = 6¢/8 and a = 1073 is
the diffusion coefficient as described above in section 3.. The interval X represents a small portion of the
mucus/cilia domain so periodic boundary conditions are imposed on u(x, t).

To simplify our analysis the diffusion operator is discretized using second-order finite differences on NV
nodes. Note that the spectrum of the Jacobian of the equation (10) lies on the negative real line and can be
calculated from the spectrum of the diffusion operator via shifting it to the left by 1/¢. The presence of a wide
spectrum of frequencies in the equation causes the problem to be stiff. Therefore special care must be taken in
constructing a time integrator for the system.

Since ¢ is determined via establishing a time interval ¢ over which the model equation accurately repre-
sents the physical process, and the integration time interval 7" is typically very long compared to this time scale,
it is desirable to use the same value §t for time stepping in the numerical integrator. However, explicit methods
are bound by stability restrictions that require the time step size to be many orders of magnitude smaller than
ot. This yields using explicit integrators computationally infeasible and forces us to resort to other numerical
methods. Specifically, we study performance of implicit and exponential integrators whose stability properties
are significantly better then those of explicit methods.

We need to investigate how the structure of the problem can be exploited to construct an efficient integrator.
Therefore we begin our study by comparing the performance of several implicit and exponential methods.
Anticipating a more complicated system we employ a splitting technique for all of these methods, i.e. the
position and velocity of the interval B(t) is assumed to be constant over each time step ¢, = to + ndt, the
system is then integrated over the time interval [¢,,, t,,11] and coordinates of B(t) are updated for the next time
step.

Implicit methods are usually algorithms of choice for stiff problems, we solve discretized in space system
using Implicit Euler (IE), Crank-Nicolson (CN) and second-order backward-differentiation formula (BDF2)
methods. If the linear system of ODEs we need to solve is written as

dU

— =FU)=AU+b

7 (U) = AU +

Ulty) = Uy, U,be RN, AecRNN (11)

all of these implicit schemes can be represented by an equation
Uni1 = (I —y0tA)TIStF(U,) + W, (12)

where parameter vy and vector W, are defined for each of the methods.

A more recent development in numerical methods for stiff ODEs is construction of exponential integrators
[9]. In case of general nonlinear system many exponential integrators can be constructed, but for the linear
equation (11) all these methods are reduced to an exponential Euler method

Un+1 =U,+¢1 (5tA>F(Un), (13)
where 1 (z) = (e — 1)z~ %

Since the Jacobian matrix of the more complex three-dimensional model is expected to be non-symmetric
and stiff, the solution of the linear system resulting from implicitness or the evaluation of an exponential-type
function of a Jacobian will constitute the primary computational cost of an implicit or an exponential time
integrator. A usual method of choice to evaluate a product of an inverse or an exponential of a large matrix
with a vector is a Krylov projection based algorithm. Thus we test implicit methods coupled with a GMRES
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Figure 6: Solution u(z, t) to the equation (10) at ¢ = 0.1 with 6t = 10~%.

Average performance data per time step
N =300 Implicit Euler-Krylov | BDF2-Krylov | Crank-Nicolson-Krylov | Exp-Pade | Exp-Krylov
Error 7.08E-07 6.43E-07 2.83E-06 1.90E-9 1.90E-9
CPU time 5.46E-01 5.45E-01 5.45E-01 6.65E-01 4.86E-01
Krylov iterations 264 264 264 n/a 267

Table 2: Comparative performance of implicit and exponential integrators for the 1D model problem (10).

algorithm for solving the linear systems and an exponential-Krylov integrator. Since our test problem is small
we validate the accuracy of the solution by computing the inverse and the exponential using computationally
intensive but reliable methods such as direct solvers for the linear systems and high-order Pade approximations
for the exponential.

Figure (10) displays the solution u(z,t) at ¢ = 0.1 with §¢ = 10~* computed using exponential-Krylov
methods. Since the velocity of the interval B(t) is known and should match the velocity of the flow at the
interface we use the difference between the flow velocity at the point closest to the endpoint of the oscillating
interval B(t) and its velocity as a measure of the error. The tolerance for the Krylov iteration is set artificially
high at 10713, this is done across the methods to obtain fair comparisons. Table 5. lists the averages per time
step of the infinity norm of the absolute error, the CPU time and, if applicable, the number of Krylov iterations
per time step for all the methods.

The following conclusions can be drawn from the performance comparison. The presence of the corners in
the solution at the interface between the flow and the oscillating interval B(t) significantly influences all of the
integration methods. Specifically, as is well known the Crank-Nicolson scheme contains oscillations when the
solution is not smooth. Thus the error of the CN scheme is the largest among the methods. More importantly,
the Krylov iteration is also affected by the lack of smoothness in the solution, i.e. the number of Krylov vectors
needed to achieve the prescribed accuracy is very high for all of the methods (this remains true as the number
of spatial grid points [V is varied). In general, the convergence of the Krylov iteration to approximate a product
of a matrix function with a vector f(A)v depends on the structure of A, the function f(z) and the vector v.
For smooth solutions exponential functions, e.g. f(z) = ¢1(2) require fewer Krylov iterations compared to the
rational function f(z) = 1/(1 — 2), thatis to say f(z) = (I — z) ! when applied to matrix [21]. However, for
this problem the lack of smoothness results in the structure of A and the vector v becoming the most important
factors for the convergence of Krylov iteration. The presence of large amplitude high frequencies in the solution
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requires a large portion of the spectrum of A to be resolved before an accurate solution can be computed. This
realization directs us to seek non-Krylov based methods or to regularize the model to design an effective time
integration scheme for the general model.

Another observation that can be made from Table 5. is the higher accuracy of the exponential integrators
compared to the implicit methods. This is explained by the fact that exponential integrators approximate the
solution directly while the implicit methods approximate the exact solution by a rational function. At the same
time the CPU time required by either implicit or exponential methods is comparable (surely, the execution time
depends on the implementation, but these preliminary results serve as a good guideline). Thus we conclude
that constructing a non-Krylov based exponential integrator for the general system could be the most efficient
way to solve the general system. Using contour integration to evaluate the exponential function ¢4 (z) [10, 2]
could provide a more efficient algorithm. To summarize, our preliminary results helped to better understand
the numerical difficulties associated with solving the system and revealed promising directions in constructing
efficient time integrators for this problem. We plan to pursue these directions in the future.

6. CONCLUSIONS AND FUTURE WORK

We have built a set of model equations in order to be able to numerically study the interactions between ciliated
cells and their surrounding mucus film in human lungs. The relevant spatial scales have been described with
characteristic lengths ranging between 100nm for cilium diameter to 10um for mucus film thickness.

We have focused our efforts on the geometric aspects in the present work and a simple model for the fluid
has been considered : Newtonian nature has been assumed for mucus, the air-mucus interface is taken to be flat,
and the density and viscosity are set to be constant in space. It has been shown in previous works that air-mucus
coupling cannot be responsible for mucus transport under normal conditions. The preliminary results obtained
with this simplified configuration indicate that there is no significant non-reversibility of mucus displacement
in this case, so the main mechanism of mucus motion is still unclear.

We have also investigated challenges associated with solving the model equations numerically. We found
explicit integrators to be too inefficient due to their poor stability properties and used implicit Euler method to
carry out the calculations. In addition, we have studied performance of several implicit and exponential integra-
tors on a model system and found that the exponential integrators can be more accurate then implicit methods.
Our comparisons shed light on the numerical properties of the system and suggested that time integrators which
couple exponential propagation with contour integration-based evaluation of exponential functions can poten-
tially offer significant computational advantages in modeling mucus motility. We plan to pursue construction
of such integrators in the future. We will use progress in increasing computational efficiency of the numeri-
cal methods to simulate more complex models of mucus motion and to conduct more detailed studies of the
mechanisms of mucociliary clearance in lungs.
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