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Abstract. This work is investigating a mechanical dysfunction of human lungs: Mucociliary
clearance. The goal is to understand how diseases like cystic fibrosis impact mucus motion
(by altering mucus viscosity, cilia vibrations, respiration cycle...) and to identify stagnation
situations where pathogens proliferate. Strategies for computation of mucus flow around an
epithelium ciliated cell are presented. Governing equations are proposed to take into account
this complex geometry in motion in the surrounding highly viscous fluid. The characteristic
Reynolds number of the flow is very small and mucus is modelled by Stokes problem with both
variable viscosity and density. Epithelium displacement is taken into account using a penal-
ization method. As density and viscosity follow a convection equation, these assumptions lead
to an elliptic/hyperbolic coupling and non-linear equations. Numerical implementations are
discussed to get a fast, robust and accurate algorithm in three dimension based on fast elliptic
solvers and Lagrangian methods.
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1 INTRODUCTION

In the lung a mucus film is covering the bronchial wall. It plays a role of barrier and traps
inhaled dust, pollution chemicals and pathogen agents breathed. The mucus film is always
moving from distal to proximal airways: it flows until ascending trachea to the commissure
of larynx where it is swallowed in the gastrointestinal tract. This phenomenon is called mu-
cociliary clearance and is absolutely necessary to avoid bacterial proliferation and infections of
bronchial wall. Epithelium cells are covering bronchial walls and their cilia of about 6 to 10
µm long are beating at frequencies from 4 to 20 Hz to propel mucus film.

If mucus film is too thin and not viscous enough lung wall remains vulnerable to pathogens.
Paradoxically if it is too viscous and too thick cilia are not able to propel it and stagnation
regimes are observed: pathogens are proliferating and injuring lung. This overload of mucus in
airways is notably a consequence of diseases like cistik fibrosis [9, 10]. Mucociliary clearance is
based on a well balance of several physiological parameters of the lung which are very difficult
to quantify since in vivo observations are very limited [10].

Mucus film is composed of two different fluids: mucus which is a highly viscous gel and
periciliary fluid (PCF) which is hydrated and less viscous. The interface between both these
fluids is not clearly identifiable since they are miscible (both composed of water) but flow pa-
rameters such as density and viscosity are strongly varying from PCF to mucus gel.

In this microfluidics context and with such viscosities (close to water’s for PCF and increas-
ing for mucus) Reynolds number is very small and diffusion is dominating advection so Navier
Stokes equation are simplifying into Stokes problem. Classical Stokes problem is linear but
variable viscosity is inducing a non-linearity since diffusion term does not reduce to a Laplacian.
Stokeslet method based on fundamental kernel solution has been widely used for computation
of Stokes problem around cilia [15] but this method needs to inverse linear systems to compute
source forces, the support of fundamental Stokeslets based on Green function is wide so com-
putation are very costly if they are used in an iterative process to add non-linearity. Moreover
methods based on fundamental functions are complicated to implement with periodic bound-
ary conditions since Green function support can overlap over several periods inducing wide
summations. In the same way full discretisation of Stokes problem using finite elements, finite
volumes or finite differences will impose the use of a very large matrix due to 3D computations,
it is very long to assemble and resulting linear system is badly conditioned and does not enable
to threat straightly the non-linearity.

In this context Stokes problem with spacial varying viscosity and incompressibility condition
is coupled with a rheological law stating viscosity straightly depends on mass fraction [4]. This
mass fraction is solution of an advection-diffusion equation where advection field is solution of
Stokes flow.

Stokes conservation of momentum and incompressibility are solved using an iterative algo-
rithm based on a projection method [11], an explicit treatment of non-linearity and a penal-
ization method [2] for solid/fluid interaction. This enables to use fast 3D solvers. Numeri-
cal resolution of advection-diffusion is based on a splitting algorithm and hybrid particle/grid
method [6, 7, 13] to avoid CFL restrictive condition and to guarantee good mass conservation.

In a first part modelling equations are presented and numerical strategies to solve the result-
ing coupled problem are discussed. Then an application is presented for computations of mucus
flow around a single cilium and around a simplified cell described as an array of nine cilia and
efficiency of mucociliary clearance is discussed.
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2 EQUATIONS AND RESOLUTION ALGORITHM

This part is focusing on 3D equations used to model interactions of fluid-solid in a highly
viscous regime with a variable viscosity and their numerical resolution. Fluid velocity will be
denoted u = (ux, uy, uz). It is discretised on an Eulerian grid and Q is the computation box.
Inside a solid is evolving with time and B(t) denotes solid domain such that fluid domain reads
Q \B(t).

In the highly viscous regime Navier-Stokes equations are reduced to Stokes problem which
is quasi-static. The interaction with an immersed solid in this flow is taken into account with a
penalization method [2]. Let introduce u(t) the velocity of solid body at instant t and χ(t) the
characteristic function of solid domain B(t).

Then coupled equation system for Stokes flow with advection-diffusion of mass fraction α,
variable viscosity defined as a function of α and penalization is:

∂tα + u · ∇α− η∆α = 0 in Q (1)
µ(x, t) = φ(α(x, t)) in Q (2)

−div (τ) +∇p+
χ(t)

ε
(u− ū) = f in Q (3)

divu = 0 in Q (4)
u(x, t) = ϑ(x, t) on ∂Q (5)

∂α(x, t)

∂n
= 0 on ∂Q (6)

With α the mass fraction, η the mass diffusion, φ the rheological law, u the fluid velocity, p
the pressure, µ the viscosity, τ(u) = 2µD(u) = µ

(
∇u+∇uT

)
the strain rate tensor and ε a

small penalization parameter.
Numerical resolution of the coupled problem is fully described in [5] and summarised in

following section.
This equation system implies µ is defined as a function of mass fraction through rheological

function φ. Thus viscosity is solution of a similar equation as α but with an extra term:

∂tµ+ u · ∇µ− η∆µ = −η φ
′′(α)

φ′(α)2
‖∇µ‖22 in Q (7)

Then if φ′′ = 0, µ and α are solutions of the same equation with identical homogen Neumann
boundary conditions since ∂µ

∂n
= ∇µ ·n = φ′(α)∇α ·n = 0. If α is following a purely advection

equation η = 0 so µ and α are also following the same advection equation even if φ′′ 6= 0. This
is the case of classical Navier-Stokes continuity equation when ρ is advected.

2.1 Stokes momentum equation with constant viscosity

In this section let consider Stokes problem: equations (3)-(4)-(5) assuming constant viscosity
µ (variable viscosity is considered at the end of this section), solid velocity u(t) and character-
istic functions χ(t) are known. Under this assumptions div (τ) = µ∆u.

To satisfy incompressibility equation a projection method based on Chorin and Temam al-
gorithm was adapted. It consists in solving first equation (3) without pressure gradient and
with boundary conditions (5): this is an Helmholtz equation and it is computed using Mudpack
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solver [1]. Then a projector ζ is computed as solution of a Laplace equation with Fishpack
solver [16, 17]. These solvers do not need any matrix assembling which is very costly for 3D
simulations. Finally previous velocity is corrected. As reported in [11] this projection method
is generating spurious velocity on the boundary and corrected velocity does not verify equa-
tion (5) anymore. For quasi static flows this error can be very large instead of unsteady flows
where projection is often chosen incremental. Moreover for unsteady flows panel methods can
be used [14], it consists in solving integrals equations on a neighbourhood of the boundary scal-
ing as

√
2µδt/ρ, it leads to very fast computations as long as this layer is small. For quasi static

viscous flows the Green kernel support fills the whole domain inducing very long convolutions.
Spurious velocity can be cancelled using implicit boundary conditions instead of (5) by de-

ducting in this equation what is adding in the correction. This implicit correction has also to be
performed for the penalization term to ensure u = u after correction.

The complete fixed-point algorithm is presented with subscript k.

0. Initialise algorithm with ∇ζk = 0, k = 0.

1. Solve Helmholtz problem (8) with modified boundary conditions (9) and denote u∗k+1 the
result.

− µ∆u∗k+1 +
χ(t)

ε
(u∗k+1 +∇ζk − ū) = f in Q (8)

u∗k+1(x, t) = ϑ(x, t) +∇ζk on ∂Q (9)

2. Compute a new projector ζk+1 as solution of Laplace problem (10)-(11).

−∆ζk+1 = −divu∗k+1 in Q (10)
∂ζk+1

∂n
= u∗k+1 · n on ∂Q (11)

3. Correct intermediate velocity u∗ as uk+1 = u∗k+1 −∇ζk+1.

4. Check convergence of the algorithm by controlling for example ‖uk+1 − uk‖ ≤ ε and
‖uk+1|∂Q − ϑ‖ ≤ ε and if it is not reached go to step 1 and increment k .

5. The velocity field solution of Stokes problem with penalization is u = uk+1.

2.2 Variable viscosity

If viscosity is not homogen with respect to space, there is a non linear term to had to momen-
tum equation since div (τ) = µ∆u+

(
∇u+∇uT

)
∇µ+µ∇divu = µ∆u+

(
∇u+∇uT

)
∇µ

using incompressibility. This rewriting enables to use the previous 5-steps algorithm by com-
puting the linear part µ∆u without any change and the non linear part is threaten explicitly in
right hand side. Thus equation (8) simply has to be replaced by equation (12)

− µ∆u∗k+1∇µ+
χ

ε
(u∗k+1 −∇ζk − ū) = f + 2D(u∗k) in Q (12)

This is a minor change in the algorithm and it adds another criterion in the fix point. Fur-
thermore convergence of this criterion has been observed to be converging faster than criterion
presented before so this change does not imply larger computations. See [5] for details of resid-
uals and convergence rates.
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2.3 Advection-diffusion of mass fraction

Let now consider the advection-diffusion equation for mass fraction. In this equation ad-
vection is more important than diffusion but no term can be neglected. An operator splitting is
introduced to compute independently advection and diffusion. This splitting strategy enables
to recover at least first order accuracy and it can be increased using various sub-steps strate-
gies [3, 7, 13].

The complete system is the following with u the fluid velocity field which is solution of
Stokes problem and computed with the algorithm described before.

∂tα + u · ∇α− η∆α = 0 in Q (13)
∂α(t, x)

∂n
= 0 on ∂Q (14)

α(0, x) = α0(x) in Q (15)

Splitting strategy consists in separating this problem in two easier problems. The first one is
a purely advection problem and the second one is a purely diffusive problem.

∂tα
c + u · ∇αc = 0 in Q (16)
αc(0, x) = αc0(x) in Q (17)

∂tα
d − η∆αd = 0 in Q (18)
∂αd(t, x)

∂n
= 0 on ∂Q (19)

αd(0, x) = αd0(x) in Q (20)

Then calling Ac(t) the operator associated to equation (16) such that αc(t) = Ac(t)αc0 and
Ad(t) the operator associated to equation (18)-(19) such that αd(t) = Ad(t)αd0 ; the splitting
strategy consists in discretising time over several time steps as tn = nδt and to state α(δt) =
Ad(δt)Ac(δt)α0 and recursively α(tn) = (Ad(δt)Ac(δt))nα0.

Then discretisation of operators Ac and Ad can be discussed independently. Advection is
computed using a Particle-in-Cell method and is solved explicitly. The diffusion is also com-
puted explicitly because the small value of η does not impose very restrictive CFL conditions.

2.3.1 Particle-in-Cell method for advection

This section is focusing on the numerical strategy for solving equation system (16)-(17). Hy-
brid grid-particle algorithm introduced in [6, 7] is well adapted for transport equations because
it transforms a partial differential equation into a set of ordinary differential equations. So that
the associated CFL stability condition vanishes and it is possible to perform much larger time
steps. No boundary condition is required for solving this equation it is implicitly defined by
velocity field u.

To do so a Lagrangian discretisation of computation domain is performed on a set of K
particles of volume vk located at position ξk and holding a mass fraction αk such that α is
defined as a measure solution :
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α(t) =
K∑
k=1

αk(t)δξk(t)vk (21)

Equation set (16)-(17) can be rewritten as :

dξk
dt

= u(ξk(t), t) (22)

dαk
dt

= 0 and
dvk
dt

= 0 (23)

Particles volume stays constant because the advection flow u is a divergence free velocity
field as a solution of Stokes equation. The right hand side of first equation is obtained computing
the solution of Stokes quasi-static problem using µ as a function of α. As there is no CFL, large
time steps can be performed and explicit methods are stable, thus assumptions made in previous
section for computation of u are holding.

This hybrid method implies transfer between grid and particles. It is performed using an in-
terpolation kernel Λε constructed with Monaghan’s kernel M ′

4 [12]. This kernel has very good
properties: it preserves firsts three moments of distributions, it is twice continuously differen-
tiable (except in zero), it is symmetric and has a short compact support so that computations are
becoming faster. Moreover this kernel has a spline like property

∑
k∈ZM

′
4(x + j) = 1 which

is ensuring good conservation. For example after particle transport, α can be recovered on the
grid with the convolution:

Λε ∗ α(x) =
k=K∑
k=1

Λε(x− ξk)αkvk (24)

where convolution kernel is defined as the following rescaling, tensorialized on the three
variables of space: Λε(x) = 1

ε3
M ′⊗3

4 (x/ε).
Hybrid grid-particle methods convergence and consistence order is discussed in [6, 7, 13]

in the context of unsteady Navier-Stokes equations solved with vortex method. This work
is adapting such methods for Stokes-transport coupling, with velocity given as a solution of
Stokes problem.

2.3.2 Mass diffusion

Computation of mass diffusion (18)-(19)-(20) is also performed explicitly, using classical
second order finite difference stencil. As η is small the corresponding CFL condition is not
restricting time steps. The boundary condition (19) ensures no mass is diffused outside of the
domain.

The full algorithm using Runge Kutta 2 discretisation for transport equation leads to second
order convergence rates with respect to both time and space. The use of M ′

4 interpolation
kernel is guaranteeing a good conservation of mass. Convergence, consistence, conservation
and computation cost for our global problem are discussed with more details in [5].
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3 BIOLOGICAL FLOW IN THE LUNGS

In this section simulations of a mucus film flow around an epithelium cell are presented. In
the human lung mucus plays a barrier role which protects bronchial walls from inhaled dust
and pathogen agents. Mucus is a highly viscous gel essentially composed of water, polymers
and proteins. Among these proteins mucin play an important role: they are hydrophilic proteins
released by goblet cells situated on bronchial walls so the film is hydrated at bottom whereas
lung air flow is dehydrating the top of the film so it is less viscous at the bottom (where viscosity
is very closed to water) than at the top (where it can be 10 to 10000 times more viscous with
pathologies such as cystic fibrosis) [9]. In fact two fluid layers are constituting the film: close to
bronchial wall this low viscous fluid is called periciliary fluid and mucus gel is above. Never-
theless both fluids are miscible and the interface is not identifiable and a variable viscosity with
potentially large gradients is relevant to model this fluid.

Ciliated epithelium cells are located on the bronchial wall. Their cilia are immersed in mucus
and beating at frequencies from 4 to 20Hz. One cilium is 6 to 10 micrometers long with a radius
of 100 to 500 manometers. A global displacement of a few centimetres per minute of mucus
film has been observed [18]. So the characteristic Reynolds number of this flow is about 10−4

close to the wall and it is decreasing as viscosity is increasing.
Thus such Reynolds numbers are inducing the use of Stokes problem with variable viscosity

transported by the flow and the use of algorithm described in previous sections is relevant.
Interaction between cilia and fluid is taken into account using penalization so only the influence
of solid on fluid is considered. This is so called a one-way solid-fluid interaction.

3.1 Cilia motion

Polymerisation of cilia is generated using a 1D partial differential equation posed along a
parametrised curve of 3D space. Cilia are composed of a skeleton of nanotubes: there is usually
a central pair of tubes surrounded by nine other pairs which are forming the cilia skeleton. Inside
chemical reactions are responsible of polymerisation. Here the parametrised curve is describ-
ing the central skeleton of cilia and polymerisation effects are modelled by another advection
equation which mimics very well cilia beating.

Let call P (l, t) the curve position describing cilium at time t at a length l from cilium basis
with P :]0, 1[−→ R3. L is the derivative of P with respect to l and a transport equation is posed
on L:

∂L

∂t
+ v(t)

∂L

∂l
= 0 (25)

Boundary conditions of this equation are naturally induced by the physics of the prob-
lem : P (0, t) = 0 ensures that cilia basis is not moving as it is built in bronchial wall and
L(0, t) = ∂P

∂t
= g(t) is generating an oscillating motion. This combination of boundary con-

ditions induces that P (1, t) is free to evolve. Stability of this problem is guaranteed by the
positivity of transport field v.

Unconditionally stable Euler implicit method is used for temporal discretisation and back-
ward finite difference schemes are used to discretize spatial derivatives since v is positive.

Problem is solved with unknown L and cilia is rebuilt at each time t with the relation (26).
This model is not preserving the total length of cilium which can be recovered easily by for-
mula (27): it allows elastic deformation of the parametrised curve.
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P (l, t) =
∫ l

0
L(λ, t)dλ (26)

Ltot =
∫ 1

0
‖∂P
∂l
‖2dl =

∫ 1

0
‖L(l, t)‖2dl (27)

An illustration of the resulting cilia motion is presented on figure 1. It is asynchronous such
that cilia is not following the same path in recovery: going from right to left in blue (backward
assuming trachea is in the positive x direction which is supposed to be the direction of net
transport) than when it is in stroke in red (from left to right).

Figure 1: Trajectory followed by cilia motion. In blue are printed different instant when cilia is going from right
to left (recovery), in red when it is coming back from left to right (stroke).

In the following simulation, motion of mucus is computed around one epithelium cell assum-
ing periodic boundary conditions with respect to x and y directions. This states identical cells
are located on the Oxy plane, beating in a coordinate manner. The curvature of the bronchial
wall is neglected as computations are focusing on very small characteristic sizes. So that bottom
plane of computation box is identified to bronchial wall inducing a no slip boundary conditions.
At the top of the computation box mucus is authorised to displace in tangential direction: it is
done using homogen Dirichlet boundary condition for uz and Neumann boundary condition for
both other components.

3.2 Simulation of mucus propulsion around a single cilium

A preliminary simulation of mucus flow around a single cilia is now presented. The different
physical parameters used are synthesised in the following table. α is initialised as a linear
function of the distance to bronchial wall while µ is a logistic function of α. Thus it has small
gradients close to bottom and top of computation box while these gradients are more important
in the region passing from periciliary fluid to mucus gel: region where cilia tips are passing
during effective stroke and not during recovery. Simulation is performed over three beating
periods and average velocity of film surface is under interest here to quantify efficiency of
mucociliary clearance.

Beating frequency is 4 Hz and each period is discretised by 50 time steps. These large time
steps are inducing a large advection CFL number with a maximal value of 15. This means if
a Lagrangian discretisation had not been used at least fifteen times smaller time steps would
have been needed to get a stable resolution. In fact the only constraining CFL here comes from
explicit diffusion which is smaller than 1

6
(3D CFL bound) due to small η value. So all these

computations are stable with good conservation.
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Computation box volume 20× 20× 10 µm3

Cilia length 7 µm
Cilia radius 200 nm

Initial mass fraction α0(x, y, z) = z − zmin
Rheological law φ(α) = µref

(
1 + 10

1+exp(−(α−6)/2)

)
Mass diffusion η = 3× 10−13 m2 s−1 = 0.3 µm2 s−1

Reference viscosity µref = 10−3 Pa s
Cilia beating period 0.25 s

Table 1: Simulation parameters for cilia beating

t=0.005 s t=0.075 s

t=0.175 s t=0.275 s

t=0.625 s t=0.75 s

Figure 2: Beating along three periods of one cilium in a variable viscosity mucus at different times. Grey surface
is a viscosity isosurface of level 4× 10−3 Pa · s−1. At initialisation fluid is ten times more viscous at the surface
(viscosity only depends on α(z)) with strong gradients localised around cilia tips during recovery (with logistic
function). Velocity norm is plotted on planes x = 0 µm, y = 20 µm, z = 0 µm (bronchial wall), and z = 10 µm
(biofilm surface). Figures show velocity is more intense during effective stroke (when cilia beat from left to right,
from distal to proximal airways) than during recovery (from right to left). Coupling between Stokes and advection-
diffusion equation generates strong non-linear effects. Resolution presented is 256× 256× 128. Legend is using
micrometers as length unit.

On figure 3 the magnitude of surface velocity x component (direction from distal to proximal
airways) is plotted (dash line). During recovery velocity is negative whereas it is positive during
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effective stroke but magnitude is more important during stroke due to asymmetric beating and
viscosity gradients. Thus average velocity over the cycle is globally positive which means
mucociliary clearance is effective. Parameters were chosen according to an healthy mucus and
results of 2.63 cm · s−1 is compatible with medical observations [18].

Figure 2 is presenting some snapshots at six different times of simulation. In grey an isosur-
face of viscosity is displayed and magnitude of velocity norm is presented on four computation
box surfaces. At the beginning of simulation viscosity is stratified with respect to a logistic
function of z and is then mixed with cilium beating. Mucociliary clearance appears efficient on
this pictures as the furrow created by cilium in the isosurface is globally moving forward even
if it is doing round trips.

3.3 Simulation of mucus propulsion around a simplified epithelium ciliated cell

The cell used for this simulation is composed of nine cilia organised as a 3 by 3 pattern.
Cilia radius remains 200 nm and a distance of 1 µm is separating two adjacent cilia. Simulation
parameters are identical as for previous simulation (see table 1). Remark about CFL condition
of previous section remains valid here as velocity generated by nine cilia is more important than
for one cilium.

Figure 3: Average velocity ux on the surface of biofilm for two configurations: a single cilium (dash line) and nine
cilia (solid).

Figure 3 is also presenting average surface velocity on film surface for this 9 cilia simulation
(solid line). Velocity magnitude is more important than in the case of a single cilium. But
as magnitude is more important for both recovery (negative velocity) and stroke (positive) the
average velocity over four periods is only 5% greater than for a single cilium: 2.74 cm ·min−1.
More cilia are generating a more important mucus motion inducing a more effective mucociliary
clearance.

Figure 4 is presenting snapshots of the nine cilia simulation at same instants as figure 2. One
clearly sees velocity generated by this cell is much more important than with single cilium.
As cilia motion is governed by a 1D PDE computations of cilia motion and velocity ū are
negligible. Thus computations for a nine cilia cell are not greater than for a single cilium.
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t=0.005 s t=0.075 s

t=0.175 s t=0.275 s

t=0.625 s t=0.75 s

Figure 4: Beating along three periods of a 9 cilia epithelium cell in a variable viscosity mucus at different times.
Grey surface is a viscosity isosurface of level 4×10−3 Pa · s−1. At initialisation fluid is ten times more viscous at
the surface (viscosity only depends on α(z)) with strong gradients localised around cilia tips during recovery (with
logistics function). Velocity norm is plotted on planes x = 0 µm, y = 20 µm, z = 0 µm (bronchial wall), and
z = 10 µm (biofilm surface). Figures show velocity is more intense during effective stroke (when cilia beat from
left to right, from distal to proximal airways) than during recovery (from right to left). Coupling between Stokes
and advection-diffusion equation generates strong non-linear effects. Resolution presented is 256 × 256 × 128.
Legend is using micrometers as length unit.

4 CONCLUSIONS

A coupled equation system has been proposed to model a highly 3D viscous flow with a
variable viscosity and a one-way fluid-solid interaction. It consists in the classical linear Stokes
problem with a penalization term but variable viscosity is inducing a non linearity. An iterative
process based on solving Helmholtz and Laplace problems has been developed to consider
this non linearity and the incompressibility condition without assembling matrix and solving
linear systems. Coupling between velocity and viscosity is assumed with an advection diffusion
equation of mass fraction α where advection is dominating. Viscosity is directly depending
on this mass fraction such that µ = φ(α). A splitting strategy is used to solve separately
effects of advection and diffusion. Advection is computed with a Lagrangian method which
enables to transform PDEs into a set of ODEs so that no CFL condition is constraining time
steps. As convection is dominating, diffusion is computed with an explicit straightforward
algorithm which remains stable and not constraining time steps. These numerical strategies
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allow to perform simulations with a fine spatial discretisation (here up to 5123) over large time
scales on a single CPU.

This algorithm is particularly adapted to compute mucus flow in the human lung at an ep-
ithelium cell scale. In fact microfluidics dimensions of the flow are inducing the use of Stokes
flow and complexity of mucus film composition can be modelled with a variable viscosity flow
depending of mass fraction. Motion of cilia is computed with a 1D advection equation posed
along a parametrised curve. Adapted boundary conditions are generating oscillations and ad-
vection field (which is not velocity generated by Stokes flow) is approximating polymerisation.
Simulations have been presented for a single cilium and for a cell composed of nine cilia over
several beating periods and the global displacement of film surface shows that mucus is flowing
in the direction of trachea at rates compatible with biological observations. This phenomena is
so called mucociliary clearance.

In the future the model will be completed to consider the non Newtonian characteristic of
mucus gel which is both viscoelastic and shear-thinning. It means more non linearities have to
be introduced in the conservation of momentum equation of Stokes problem. These modifica-
tions should not improve computation cost since fixed-point algorithm is still multi-criterion.
Finally this model will be intensely used to underline dominating mechanism of mucociliary
clearance and lack of propelling considering lung pathologies as cystic fibrosis disease and
aerosol therapy.
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