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Abstract

Let G be a simple undirected graph. A broadcast on G is a function f : V (G) → N such
that f(v) ≤ eG(v) holds for every vertex v of G, where eG(v) denotes the eccentricity of v in G,
that is, the maximum distance from v to any other vertex of G. The cost of f is the value
cost(f) =

∑
v∈V (G) f(v). A broadcast f on G is independent if for every two distinct vertices u

and v in G, dG(u, v) > max{f(u), f(v)}, where dG(u, v) denotes the distance between u and v in G.
The broadcast independence number of G is then defined as the maximum cost of an independent
broadcast on G.

A caterpillar is a tree such that, after the removal of all leaf vertices, the remaining graph is
a non-empty path. A lobster is a tree such that, after the removal of all leaf vertices, the re-
maining graph is a caterpillar. In [M. Ahmane, I. Bouchemakh and E. Sopena. On the Broadcast
Independence Number of Caterpillars. Discrete Applied Mathematics, in press (2018)], we studied
independent broadcasts of caterpillars. In this paper, carrying on with this line of research, we con-
sider independent broadcasts of lobsters and give an explicit formula for the broadcast independence
number of a family of lobsters called locally uniform 2-lobsters.

Keywords: Independence; Broadcast independence; Lobster.
MSC 2010: 05C12, 05C69.

1 Introduction

All the graphs we consider in this paper are simple and loopless undirected graphs. We denote by
V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively.

For any two vertices u and v of G, the distance dG(u, v) between u and v in G is the length
(number of edges) of a shortest path joining u and v. The eccentricity eG(v) of a vertex v in G
is the maximum distance from v to any other vertex of G. The minimum eccentricity in G is the
radius rad(G) of G, while the maximum eccentricity in G is the diameter diam(G) of G.

A function f : V (G) → {0, . . . ,diam(G)} is a broadcast on G if for every vertex v of G,
f(v) ≤ eG(v). The value f(v) is called the f -value of v. Given a broadcast f on G, an f -broadcast
vertex is a vertex v with f(v) > 0. The set of all f -broadcast vertices is denoted V +

f . If u ∈ V +
f

is a broadcast vertex, v ∈ V (G) and dG(u, v) ≤ f(u), we say that u f -dominates v. In particular,
every f -broadcast vertex f -dominates itself. The cost cost(f) of a broadcast f on G is given by

cost(f) =
∑

v∈V (G)

f(v) =
∑

v∈V +

f

f(v).
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A broadcast f on G is a dominating broadcast if every vertex of G is f -dominated by some
vertex of V +

f . The minimum cost of a dominating broadcast on G is the broadcast domination
number of G, denoted γb(G). A broadcast f on G is an independent broadcast if every f -broadcast
vertex is f -dominated only by itself. The maximum cost of an independent broadcast on G is the
broadcast independence number of G, denoted βb(G). An independent broadcast on G with cost β
is an independent β-broadcast. An independent βb(G)-broadcast on G is an optimal independent
broadcast. Note here that any optimal independent broadcast is necessarily a dominating broadcast.

The notions of broadcast domination and broadcast independence were introduced by D.J. Erwin
in his Ph.D. thesis [18] under the name of cost domination and cost independence, respectively.
During the last decade, broadcast domination has been investigated by several authors (see e.g. [3,
4, 8–10, 12–17, 19–21, 23–31]), while independent broadcast domination has attracted much less
attention (see [2, 11]), until the recent work of Bessy and Rautenbach. In [6], these authors prove
that βb(G) ≤ 4α(G) for every graph G, where α(G) denotes the independence number of G, that
is, the maximum cardinality of an independent set in G. In [6], they prove that βb(G) < 2α(G)
whenever G has girth at least 6 and minimum degree at least 3, or girth at least 4 and minimum
degree at least 5. Answering questions posed in [22] and [17], they prove in [5] that deciding whether
βb(G) ≥ k for a given planar graph with maximum degree four and a given positive integer k is an
NP-complete problem, and, using an approach based on dynamic programming, they prove that
determining the value of βb(T ) for a tree T of order n can be done in time O(n9).

Our goal, initiated in [2], is to give explicit formulas for βb(T ), whenever T belongs to some
particular subclass of trees, that can be computed in (hopefully) linear time. Recall that a caterpillar
is a tree such that deleting all its pendent vertices leaves a simple path, called the spine of the
caterpillar. A lobster is then a tree such that deleting all its pendent vertices leaves a caterpillar.
The spine of such a lobster is the spine of the so-obtained caterpillar. A vertex belonging to the
spine of a caterpillar, or of a lobster, is called a spine-vertex and an internal spine-vertex if it is not
an end vertex of the spine. The length of a lobster L is the length (number of edges) of its spine.

Note that if L is a lobster of length 0, then the unique spine-vertex of L must be of degree at
least 2, since otherwise, deleting all leaves of L would leave a single edge, which is not a caterpillar.
Hence, diam(L) = k + 4 for every lobster L of length k.

In [2], we gave an explicit formula for the broadcast independence number of caterpillars having
no two consecutive internal spine vertices of degree 2. The aim of this paper is to pursue the study
of independent broadcasts of trees by considering the case of locally uniform 2-lobsters.

Let G be a graph and A ⊂ V (G), |A| ≥ 2, be a set of pairwise antipodal vertices in G, that is, at
distance diam(G) from each other. The function f defined by f(u) = diam(G)− 1 for every vertex
u ∈ A, and f(v) = 0 for every vertex v 6∈ A, is clearly an independent |A|(diam(G) − 1)-broadcast
on G.

Observation 1 (Dunbar et al. [17]) For every graph G of order at least 2 and every set A ⊂
V (G), |A| ≥ 2, of pairwise antipodal vertices in G, βb(G) ≥ |A|(diam(G)− 1) ≥ 2(diam(G)− 1).

In this paper, we determine the broadcast independence number of locally uniform 2-lobsters.
The paper is organised as follows. We introduce in the next section the main definitions and a few
preliminary results. We then consider in Section 3 the case of locally uniform 2-lobsters and prove
our main result, which gives an explicit formula for the broadcast independence number of such
lobsters. We then propose some concluding remarks in Section 4.

2 Preliminaries

Let G be a graph and H be a subgraph of G. Since dH(u, v) ≥ dG(u, v) for every two vertices u, v ∈
V (H), every independent broadcast f on G satisfying f(u) ≤ eH(u) for every vertex u ∈ V (H) is
an independent broadcast on H. Hence we have:
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Observation 2 If H is a subgraph of G and f is an independent broadcast on G satisfying f(u) ≤
eH(u) for every vertex u ∈ V (H), then the restriction fH of f to V (H) is an independent broadcast
on H.

For any independent broadcast f on a graph G, and any subgraph H of G, we denote by f∗(H)
the f -value of H defined as

f∗(H) =
∑

v∈V (H)

f(v).

Observe that f∗(G) = cost(f).

The following lemma shows that, for any graph G of order at least 3, if v is a vertex of G
having at least one pendent neighbour, then no independent broadcast f on G with f(v) > 0 can
be optimal.

Lemma 3 Let G be a graph of order at least 3 and v be a vertex of G having a pendent neighbour u.
If f is an independent broadcast on G with f(v) > 0, then there exists an independent broadcast f ′

on G with cost(f ′) > cost(f).

Proof. The mapping f ′ defined by f ′(u) = f(v) + 1, f ′(v) = 0 and f ′(w) = f(w) for every vertex
w ∈ V (G) \ {u, v} is clearly an independent broadcast on G with cost(f ′) > cost(f). �

The following lemma was given in [2]. However, we include its proof here for the sake of
completeness.

Lemma 4 Let T be a tree of order at least 3, and T ′ be a subtree of T of order at least 2, with
root r. Let f be an optimal independent broadcast on T . If r is an f -broadcast vertex, then T ′

contains at least one other f -broadcast vertex. In particular, this implies that if T ′ is a subtree of
height h, that is, eT ′(r) = h, then f(r) < h.

Proof. Suppose to the contrary that f(r) > 0 and f(u) = 0 for every vertex u ∈ V (T ′) \ {r}. Let
t′ = eT ′(r) and t′ = eT−(T ′−r)(r).

If f(r) < t′, the independent broadcast f ′ given by f ′(v) = f(r) for some vertex v in T ′ with
dT ′(r, v) = t′ and f ′(u) = f(u) for every vertex u ∈ V ′(T )\{v} is such that cost(f ′) = cost(f)+f(r),
contradicting the optimality of f .

If f(r) ≥ t′, then r is the unique f -broadcast vertex, which implies cost(f) < 2(diam(T ) − 1),
again contradicting the optimality of f by Observation 1.

Hence t′ > f(r) ≥ t′. Let now v be any neighbour of r in T ′. Since t′ > f(r) ≥ t′, we have
eT (v) = eT (r) + 1 = t′ + 1 > f(r) + 1. The function f ′ defined by f ′(r) = 0, f ′(v) = f(r) + 1 and
f ′(u) = f(u) for every vertex u ∈ V (T ) \ {r, v} is therefore an independent broadcast on T with
cost(f ′) = cost(f) + 1, contradicting the optimality of f .

This completes the proof. �

In order to formally define locally uniform lobsters, and then locally uniform 2-lobsters, we
introduce some notation.

Notation 5 (S1, S2) A tree T rooted at a vertex r is of type S1 if every leaf of T is at distance 1
from r, which means that T is a star with center r. A tree T rooted at a vertex r is of type S2 if
every leaf of T is at distance 2 from r.

Let L be a lobster with spine v0 . . . vk, k ≥ 0. The subtree of vi, 0 ≤ i ≤ k, denoted Si, is
the maximal subtree of L rooted at vi that contains no spine-vertex except vi. A spine-subtree of
L is a subtree of some vi, 0 ≤ i ≤ k. A branch of a spine-subtree Si is a maximal subtree of Si

containing vi and exactly one neighbour of vi. Therefore, if vi has degree d in Si, then Si has d
distinct branches.

A locally uniform lobster is then defined as follows.
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Figure 1: A sample locally uniform 2-lobster.

Definition 6 (Locally uniform lobster) A lobster L is locally uniform if every spine-subtree of
L is of type either S1 or S2. In other words, all branches of any spine-vertex have the same depth.

The following observation directly follows from this definition.

Observation 7 If L is a locally uniform lobster with spine v0 . . . vk, k ≥ 0, then both spine-subtrees
S0 and Sk are of type S2.

Indeed, if S0 or Sk is of type S1, then v0 or vk is a leaf of the caterpillar obtained by deleting
all leaves of L, which implies that v0 . . . vk is not the spine of L, a contradiction.

Observe that Lemma 4 implies in particular the following result for locally uniform lobsters.

Corollary 8 If L is a locally uniform lobster with spine v0 . . . vk, k ≥ 0, and f is an optimal
independent broadcast on L, then the two following conditions hold.

1. If v is a vertex having a pendent neighbour, then f(v) = 0.

2. For every i, 0 ≤ i ≤ k, f(vi) = 0 if Si is of type S1, and f(vi) ≤ 1 if Si is of type S2.

Moreover, the following lemma says that for every optimal independent broadcast on a locally
uniform lobster with spine v0 . . . vk, k ≥ 0, both the spine-subtrees S0 and Sk contain an f -broadcast
vertex.

Lemma 9 If L is a locally uniform lobster with spine v0 . . . vk, k ≥ 0, and f is an optimal inde-
pendent broadcast on L, then f∗(S0) > 0 and f∗(Sk) > 0.

Proof. It is enough to prove the result for S0. Assume to the contrary that f∗(S0) = 0, and let v
be a vertex of L that f -dominates the leaves of S0. Since f∗(S0) = 0, we necessarily have f(v) ≥ 4
which implies that v is unique. By Corollary 8, v must be a leaf of L. Let ℓ be any leaf of S0.

Let S denote the spine-subtree containing v. If S is of type S1 and f(v)+dL(ℓ, v) > diam(L)+1,
or S is of type S2 and f(v) + dL(ℓ, v) > diam(L) + 3, then v is the unique f -broadcast vertex of L,
which contradicts the optimality of f by Observation 1. We now define the mapping f ′ on V (L)
given by f ′(u) = f(u) for every vertex u /∈ {v, ℓ}, f ′(v) = 0, and f ′(ℓ) = f(v) + dL(ℓ, v) − 2. The
mapping f ′ is clearly an independent broadcast on L and, since dL(v, ℓ) ≥ 4, we get cost(f ′) >
cost(f), contradicting the optimality of f . �

We now define 2-lobsters and locally uniform 2-lobsters.

Definition 10 (2-lobster) A lobster L is a 2-lobster if every spine-subtree of L has at least two
branches.

Definition 11 (Locally uniform 2-lobster) A locally uniform 2-lobster is a 2-lobster which is
locally uniform (see Figure 1).

Due to their special structure, we can improve the lower bound on the broadcast independence
number of locally uniform 2-lobsters of length k ≥ 1.
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Observation 12 For every locally uniform 2-lobster L of length k ≥ 1,

βb(L) ≥ 2(k − 1) + 12 = 2(diam(L)− 1) + 4.

To see that, consider the function f on V (L) defined as follows. For each branch of S0 and Sk,
pick one leaf and set its f -broadcast value to 3, and, for each branch of every Si, 1 ≤ i ≤ k − 1, if
k > 1, pick one leaf and set its f -broadcast value to 1. The mapping f is clearly an independent
broadcast on L and, since both S0 and Sk are of type S2 and every spine-subtree of L has at least
two branches, we get cost(f) = 2(k − 1) + 12.

3 Independent broadcasts of locally uniform 2-lobsters

In this section we determine the broadcast independence number of locally uniform 2-lobsters.
Recall that by Observation 12, βb(L) > 2(diam(L) − 1) for every locally uniform 2-lobster L of
length k ≥ 1 (the special case of locally uniform 2-lobsters of length 0 will be considered separately,
in Lemma 21).

We first introduce some notation and define different types of spine-subtrees in Subsection 3.1.
We then define the value β∗(L) for every locally uniform 2-lobster L in Subsection 3.2, prove that
every such lobster L admits an independent β∗(L)-broadcast in Subsection 3.3 and that it cannot
admit any independent broadcast with cost strictly greater than β∗(L) in Subsection 3.4. This
allows us to finally state our main result in Subsection 3.5.

3.1 Different types of spine-subtrees

Let L be a locally uniform 2-lobster with spine v0 . . . vk, k ≥ 0. Two spine-subtrees Si and Si+1,
0 ≤ i ≤ k − 1, are called neighbouring spine-subtrees. Moreover, we say that Si precedes Si+1,
and that Si+1 follows Si. A sequence of p spine-subtrees, p ≥ 2, is a sequence of consecutive
spine-subtrees of the form Si . . . Si+p−1 for some i, 0 ≤ i ≤ k − p+ 1.

We will say that two independent broadcasts f1 and f2 on a locally uniform 2-lobster L are
similar if their values on each spine-subtree of L are equal, that is, f∗

1 (Si) = f∗
2 (Si) for every i,

0 ≤ i ≤ k. Observe that any two similar independent broadcasts have the same cost.
A 1-leaf of L is a pendent vertex of L adjacent to a spine-vertex. A pendent vertex which is not

a 1-leaf is a 2-leaf (recall that every pendent vertex is at distance at most 2 from a spine-vertex).
An only-leaf is a leaf whose neighbour has only one leaf neighbour. Therefore, an only-leaf in a
locally uniform 2-lobster is necessarily a 2-leaf, and is then called a 2-only-leaf. Two leaves having
the same neighbour are said to be sister-leaves.

Notation 13 (λ1, λ2, λ
∗
2) For every i, 0 ≤ i ≤ k, we denote by λ1(Si), λ2(Si) and λ∗

2(Si), the
number of 1-leaves, of 2-leaves, and of 2-only-leaves of Si, respectively. Moreover, we extend these
three functions to the whole lobster L, by letting

λ1(L) =

i=k∑

i=0

λ1(Si), λ2(L) =

i=k∑

i=0

λ2(Si), and λ∗
2(L) =

i=k∑

i=0

λ∗
2(Si).

Let vi be a spine-vertex of L with t non-spine neighbours, denoted w1
i , . . . , w

t
i . For every j,

1 ≤ j ≤ t, the branch Bj
i of vi is the maximal spine-subtree of Si, rooted at vi, containing the edge

viw
j
i but no edge viw

j′

i with j′ 6= j. We then define two types of branches.

Notation 14 (H1, H2, α1, α2, α
∗
2) A branch is of type H1 if it does not contain any 2-leaf, and

of type H2 if it does not contain any 1-leaf. For every spine-subtree Si, 0 ≤ i ≤ k, we denote by
α1(Si) and α2(Si) the number of branches of Si of type H1 and of type H2, respectively. Moreover,
we denote by α∗

2(Si) the number of branches of Si of type H2 having at most two 2-leaves.
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Since all branches of any spine-subtree of a locally uniform 2-lobster are of the same type, we
get α1(Si) ≥ 2, α2(Si) = α∗

2(Si) = 0, if Si is of type S1, and α1(Si) = 0, α2(Si) ≥ 2, α∗
2(Si) ≥ 0, if

Si is of type S2.

Notation 15 (bi) For every i, 0 ≤ i ≤ k, we denote by bi the number of branches of the spine-
subtree Si.

Observe that bi = degL(vi)− 2 if 1 ≤ i ≤ k − 1, and bi = degL(vi)− 1 if i ∈ {0, k}.
In order to define various types of spine-subtrees, we will use the following notation.

Notation 16 (Operators on types of spine-subtrees) Let X , Y and Z be any types of spine-
subtrees. We then define the following types.

• X .
A spine-subtree S is of type X if S is not of type X .

• X |Y.
A spine-subtree S is of type X|Y if S is of type X or Y.

• X .Y, XY.
A sequence of two spine-subtrees SS′ is of type X .Y, or simply XY, if S is of type X and S′

is of type Y.

• X [P1, . . . , Pp].
For any properties P1, . . . , Pp, p ≥ 1, a spine-subtree S is of type X [P1, . . . , Pp] if S is a
spine-subtree of type X satisfying properties P1, . . . , Pp. For instance, a spine-subtree S is of
type S2[λ2 ≥ 5, α∗

2 ≤ 3] if S is a spine-subtree of type S2 with at least five leaves, having at
most three branches with at most two leaves. Similarly, a branch of type Y[P1, . . . , Pp] is a
branch of type Y satisfying properties P1, . . . , Pp. For instance, a branch of type H2[λ2 = 3]
is a branch of type H2 having three 2-leaves.

• 〈X 〉Y, Y〈Z〉, 〈X 〉Y〈Z〉.
A spine-subtree S is of type 〈X 〉Y (resp. Y〈Z〉) if S is a spine-subtree of type Y and the
spine-subtree S′ preceding S (resp. following S) is of type X (resp. Z). A spine-subtree S is
then of type 〈X 〉Y〈Z〉 if S is of type 〈X 〉Y and of type Y〈Z〉.

• ∅.
Slightly abusing the notation, we use the symbol ∅ to denote an “empty spine-subtree”, so
that, for instance, a spine-subtree S is of type 〈∅〉Y = (resp. Y〈∅〉), if S = S0 (resp. S = Sk)
and S is of type Y.

• {X1 . . .Xp}
+, {X1 . . .Xp}

∗.
For any types of spine-subtrees X1, . . . ,Xp, p ≥ 1, a sequence of spine-subtrees Si, . . . , Si+pj,
0 ≤ i ≤ k − pj, 0 ≤ j ≤ ⌊k−i

p
⌋, is of type {X1 . . .Xp}

+, if every spine-subtree Sℓ, i ≤
ℓ ≤ i + pj is of type Xℓ−i+1 (mod p), and none of the sequences Si−p, . . . , Si, . . . , Si+pj and
Si, . . . , Si+pj, . . . , Si+pj+p is of type {X1 . . .Xp}

+ (the sequence is thus maximal). Moreover,
we will denote by {X1 . . .Xp}

∗ the type ∅|{X1 . . .Xp}
+.

Our aim now is twofold. We will first construct, for any locally uniform 2-lobster L, an inde-
pendent broadcast f∗ on L with cost(f∗) = β∗(L), for some value β∗(L), and then prove that the
value β∗(L) is the optimal cost of an independent broadcast on L.

The independent broadcast f∗ will be constructed in four steps, that is, we will construct a
sequence of independent broadcasts f1, . . . , f4, with cost(fi) ≤ cost(fi+1) for every i, 1 ≤ i ≤ 3,
and then set f∗ = f4. Each step will consist in modifying the broadcast values of some vertices,
according to the type of the spine-subtree, or of the sequence of spine-subtrees, they belong to.

We now introduce the specific types of spine-subtrees, or types of sequences of spine-subtrees,
that will be used. All these types are illustrated in Figure 2 (do not consider the depicted broadcast
values yet, they will be discussed later, in Claim 23).
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1 1 1 1 1 1

(a) Type A

S1 1 1 1 1 S1

(b) Type B

1 1 1

(c) Type Ca

3 0 1 1 1 1 1 1

(d) Type Cb

S2 3 0 S2

(e) Type Cc

3 0 3 0 1 1 1 1 1 1

(f) Type D

Figure 2: Spine-subtrees of given special types.

Definition 17 (A, B, Ca, Cb, Cc, C, D)
We define the following types of spine-subtrees.

• A = S2[α
∗
2 = 0, α2 ≥ 2].

A spine-subtree of type A is a spine-subtree of type S2 with at least two branches of type H2,
all of them having at least three leaves.

• B = 〈S1〉 S1[λ1 = 2] | S1[λ1 = 2] 〈S1〉.
A spine-subtree of type B is a spine-subtree of type S1 with two leaves, having at least one
neighbouring spine-subtree of type S1.

• Ca = S1[λ1 ≥ 3].
A spine-subtree of type Ca is a spine-subtree of type S1 with at least three leaves.

• Cb = S2[α
∗
2 = 1, α2 ≥ 2].

A spine-subtree of type Cb is a spine-subtree of type S2 having at least two branches of type
H2 with exactly one of them having at most two leaves.

• Cc = 〈S2〉 S1[λ1 = 2] 〈S2〉.
A spine-subtree of type Cc is a spine-subtree of type S1 with two leaves having two neighbouring
spine-subtrees of type S2.

• C = Ca | Cb | Cc.

• D = S2[α
∗
2 ≥ 2].

A spine-subtree of type D is a spine-subtree of type S2 with at least two branches having at
most two leaves.

The following observation directly follows from the previous definition, considering the neigh-
bouring requirements, and will be useful later.

Observation 18 A spine-subtree of type B or Ca cannot have a spine-subtree of type Cc as a
neighbouring spine-subtree.

We now claim that the set of types {A,B, Ca, Cb, Cc,D} induces a partition of the spine-subtrees
of any locally uniform 2-lobster (with possibly empty parts).
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Proposition 19 Let T = {A,B, Ca, Cb, Cc,D}, and L be any locally uniform 2-lobster. Every spine-
subtree of L belongs to exactly one type in T .

Proof. Clearly, the types in T are pairwise disjoint, that is, no spine-subtree of L can belong to
two types from this set (see Figure 2).

We now prove that every spine-subtree of a locally uniform 2-lobster belongs to exactly one type
in this set. Indeed, consider any such spine-subtree S.

1. If S is of type S1, then either S has at least three leaves (type Ca), or two leaves and a
neighbouring spine-subtree of type S1 (type B), or two leaves and no neighbouring spine-
subtree of type S1 (type Cc).

2. Suppose now that S is of type S2. Since S has at least two branches, we get that either each
of these branches have at least three leaves (type A), or S has exactly one branch with at
most two leaves (type Cb), or S has at least two branches with at most two leaves (type D).

This completes the proof. �

3.2 Definition of β∗(L)

We are now able to define the value β∗(L) for any locally uniform 2-lobster L, which will be proven
to be the optimal cost of an independent broadcast on L. The value β∗(L) will be expressed as
a formula involving the number of 1-leaves, 2-leaves and 2-only-leaves, and the number of spine-
subtrees, or sequences of spine-subtrees, of types defined in the previous subsection, appearing in
L.

Finally, recall that λ1(L), λ2(L) and λ∗
2(L) denote the number of 1-leaves, of 2-leaves and of

2-only-leaves in L, respectively. We are now able to define β∗(L).

Definition 20 (β∗(L)) Let L be a locally uniform 2-lobster. We then let

β∗(L) = ν1(L) + ν2(L) + ν3(L) + ν4(L),

where

• ν1(L) = λ1(L) + λ2(L) + λ∗
2(L) is the total number of leaves in L, where each 2-only-leaf is

counted twice.

• ν2(L) is the number of branches in L with at most two 2-leaves, that belong to a spine-subtree
of type S2 (that is, of depth 2).

• ν3(L) is the number of spine-subtrees of type Cc in L.

• ν4(L) is the sum, taken over all sequences of spine-subtrees S in L of type

〈Cc.(∅|A|B|Ca)〉 A.{(C|A).A}∗ 〈(∅|A|B|Ca).Cc〉,

of the value
ℓ(S) + 1

2
−#Cb,Cc(S),

where ℓ(S) denotes the number of spine-subtrees in S, and #Cb,Cc(S) the number of spine-
subtrees of type Cb or Cc in S.

3.3 Lower bound

We will now prove that every locally uniform 2-lobster admits an independent broadcast f with
cost(f) = β∗(L). We consider the case of locally uniform 2-lobsters of length 0 separately.

Lemma 21 If L is a locally uniform 2-lobster of length k = 0, then there exists an independent
broadcast f on L with cost(f) = β∗(L), thus implying βb(L) ≥ β∗(L).
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Proof. Recall that since k = 0, L = S0 is necessarily of type S2 (Observation 7) and has at least
two branches, so that diam(L) = 4. We construct an independent broadcast f on L as follows, by
considering each branch separately. Let B be any branch of L. If B has at most two leaves, then
we set f(ℓ) = 3 for one leaf ℓ of B, and f(ℓ′) = 0 for every sister-leaf ℓ′ of ℓ, if any. If B has at
least three leaves, then we set f(ℓ) = 1 for every leaf ℓ of B. Finally, if S0 is of type A, then we set
f(v0) = 1 (in that case, ν4(L) = 1).

We then have cost(f) = ν1(L) + ν2(L) + ν4(L), and thus, since ν3(L) = 0, cost(f) = β∗(L). �

Lemma 22 Every locally uniform 2-lobster L of length k ≥ 1 admits an independent broadcast f
with cost(f) = β∗(L), thus implying βb(L) ≥ β∗(L).

Proof. We will construct a sequence of four independent broadcasts f1, . . . , f4 on L, step by step,
such that cost(f4) = β∗(L). Each independent broadcast fi, 2 ≤ i ≤ 4, is obtained by possibly
modifying the independent broadcast fi−1, and is such that cost(fi) ≥ cost(fi−1). Moreover, for
each independent broadcast fi, 1 ≤ i ≤ 3, we will have fi(vj) = 0 for every spine-vertex vj,
0 ≤ j ≤ k, while we may have f4(vj) = 1.

These modifications are illustrated in Figures 3, where dashed edges represent optional edges.
These figures should help the reader to see that each mapping fi is a valid independent broadcast
on L.

Step 1. Let f1 be the mapping defined by f1(u) = 2 if u is an only-leaf, f1(u) = 1 if u is a leaf
which is not an only-leaf and f1(u) = 0 otherwise (see Figure 3(a)).

Clearly, f1 is an independent broadcast on L with

cost(f1) = λ1(L) + λ2(L) + λ∗
2(L) = ν1(L).

Step 2. We modify f1 as follows, to obtain f2. For every branch Bj
i of type H2[λ2 ≤ 2], 0 ≤ i ≤ k,

1 ≤ j ≤ si, such that Si is a spine-subtree of type S2, we let f2(ℓ) = 3 for one leaf ℓ of Bj
i , and

f2(ℓ
′) = 0 for the sister-leaf ℓ′ of ℓ, if any (see Figure 3(b)).
Again, f2 is an independent broadcast on L with

cost(f2) = cost(f1) + ν2(L).

Step 3. We modify f2 as follows, to obtain f3. For every spine-subtree S of type Cc, we let f3(ℓ) = 3
for one leaf ℓ of S, and f3(ℓ

′) = 0 for the sister-leaf ℓ′ of ℓ, if any (see Figure 3(c)). Note here that
setting f3(ℓ) = 3 is allowed, since L does not contain any vertex x with f3(x) > 0 at distance at
most 3 from the leaves of S, and f3(ℓ

′′) ≤ 3 for every 2-leaf ℓ′′ of L.
Again, f3 is an independent broadcast on L, and, since the broadcast value of every considered

spine-subtree S has been increased by 1, we have

cost(f3) = cost(f2) + ν3(L).

Before describing the last step, we prove a claim on the f3-values and introduce some terminol-
ogy.

Claim 23 After step 3, the f3-values of the vertices of L, depending on the type of the spine-subtree
they belong to, are those values depicted in Figure 2.
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2 1 1

1 1 1

2 2 2 1 1 1 1 1

1 1 1 1

2 2

(a) The independent broadcast f1 on a sample locally uniform 2-lobster

2 1 1 1 1 1

−→

3 3 0 1 1 1

(b) From f1 to f2

1 1S2 S2
−→

3 0S2 S2

(c) From f2 to f3

1 1 1 1 1 1

3 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

−→

1

1 1 1 1 1 1

1 1

1

1 1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1

1 1 1 1

(d) From f3 to f4, for a sequence of type 〈∅〉A.Cc.A.A.A〈B.B〉 (cost increases by 2)

Figure 3: Proof of Lemma 22: from f1 to f4.
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Proof. Let S be any spine-subtree of L. If S is of type S1, then either S has at least three leaves
(type Ca), or two leaves and a neighbouring spine-subtree of type S1 (type B), and has thus not
been modified in steps 2 or 3 in both cases, or two leaves and no neighbouring spine-subtree of type
S1 (type Cc), and has thus been modified in step 3. In all these cases, the f3-values of the vertices
in S are those values depicted in Figure 2(b), (c) or (e).

Suppose now that S is of type S2. In that case, either each of these branches have at least three
leaves (type A), and has thus not been modified in steps 2 or 3, or S has exactly one branch with
at most two leaves (type Cb), or S has at least two branches with at most two leaves (type D), and
has thus been modified in step 2. In all these cases, the f3-values of the vertices in S are those
values depicted in Figure 2(a), (d) or (f).

This completes the proof of the claim. �

A spine-subtree S exceeds by e, for some integer e ≥ 1, if S contains a 1-leaf with broadcast
value e+ 1, or a 2-leaf with broadcast value e+ 2. Therefore, if a spine-subtree Si, 0 ≤ i ≤ k, of a
locally uniform 2-lobster L exceeds by e ≥ 1, then none of the spine vertices vi−e, . . . , vi, . . . , vi+e

can be a broadcast vertex.
We can then partition the set T = {A,B, Ca, Cb, Cc,D} in three parts E0, E1 and E2, corresponding

to the types of spine-subtrees exceeding by 0, 1 and 2, respectively, after Step 3 (as given in
Claim 23). In order to be complete, we will also say that the “empty subtree”, of type ∅, does not
exceed. Therefore, we have

E0 = {∅,A,B, Ca}, E1 = {Cb,D} and E2 = {Cc}.

Moreover, we denote by Ei the complement of Ei for every i, 0 ≤ i ≤ 2, that is, Ei = (T ∪ {∅}) \ Ei.
Let S be a spine-subtree of type A. By increasing S by one, we mean giving the broadcast

value 1 to the root of S (observe that only leaves of S are f3-broadcast vertices, and that f3(ℓ) = 1
for every such leaf ℓ).

Let now S be a spine-subtree of type Cb or Cc. By decreasing S by one, we mean the following:

• If S is of type Cb, then we give the broadcast value 2 to one leaf of the (unique) branch of
type H2[λ2 ≤ 2], and the broadcast value 0 to its sister-leaf, if any (by Claim 23, f3(ℓ) = 3
for one leaf ℓ of S, and f3(ℓ

′) = 0 for the sister-leaf ℓ′ of ℓ, if any).

• If S is of type Cc, then we give the broadcast value 1 to each of the two leaves of S (by
Claim 23, f3(ℓ) = 3 for one leaf ℓ of S, and f3(ℓ

′) = 0 for the sister-leaf ℓ′ of ℓ).

Observe that after having being decreased by one, a spine-subtree of type Cb or Cc does no longer
exceed.

We are now able to describe the fourth step of the proof. The key idea of this last step is to
increase by one some spine-subtrees of type A, and decrease by one some spine-subtrees of type
Cb or Cc, provided that this results in a strict increasing of the cost of the current independent
broadcast on L.

Step 4. Wemodify f3 as follows, to obtain f4. For every sequence of spine-subtreesA0X1A1 . . . XpAp,
p ≥ 0, of type

T4 = 〈E2.E0〉 A.{(C|A).A}∗ 〈E0.E2〉,

we decrease by one each spine-subtree Xi of type Cb or Cc, 1 ≤ i ≤ p, and increase by one each
spine-subtree Aj , 0 ≤ j ≤ p (see Figure 3(d)). Note that this can be done since none of the spine-
subtrees Xi, 1 ≤ i ≤ p, exceeds and no spine-subtree outside the sequence can prevent us from
doing so on the extremal spine-subtrees A0 and Ap.

The broadcast value of the whole sequence is thus increased by p + 1, minus the number of
spine-subtrees of type Cb or Cc. Since the number of spine-subtrees of type Cb or Cc is at most p,
this broadcast value always increases. Therefore, doing the above modification for every sequence
of spine-subtrees of type T4, the so-obtained independent broadcast f4 satisfies

cost(f4) = cost(f3) + ν4(L).
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We finally get cost(f4) = β∗(L), as required. This completes the proof. �

3.4 Upper bound

We first prove that, for every locally uniform 2-lobster L, we can choose an optimal independent
broadcast on L that satisfies some given properties.

The next lemma shows that if f is an optimal independent broadcast on a locally uniform 2-
lobster L of length k ≥ 1, then there exists an optimal independent broadcast f̃ on L such that the
f̃ -values of the vertices in the spine-subtrees S0 and Sk are at most 3.

Lemma 24 If L is a locally uniform 2-lobster of length k ≥ 1, and f is an optimal independent
broadcast on L, then there exists an optimal independent broadcast f̃ on L such that f̃(ℓ) ≤ 3 for
every leaf ℓ of S0 and Sk.

Proof. Recall first that, by Observation 7, both spine-subtrees S0 and Sk must be of type S2. Also
note that, by symmetry, it is enough to prove the result for S0. If S0 has at least two broadcast
leaves, then the broadcast value of each of them is at most 3, since every two such leaves are at
distance at most 4 from each other. We thus only need to consider the case when S0 has a unique
broadcast leaf. Moreover, we can assume that the broadcast value of this leaf is at least 7, since
otherwise, by setting the broadcast value of any two leaves at distance 4 from each other to 3, we
would get either a broadcast satisfying the requirement of the lemma, or a contradiction with the
optimality of the broadcast. Therefore, we get that the result holds if k ≤ 3 since, in that case,
diam(L) ≤ 7, which implies f(v) ≤ 6 for every vertex v of L since f is maximal.

The proof now is by contradiction. Let L be a counter-example to the lemma, of length k ≥ 4,
and f be an optimal independent broadcast on L which minimizes the value of f(ℓ) = α, where ℓ
is the (unique) f -broadcast leaf of S0. We thus have α ≥ 7.

Observe that at least one vertex at distance α+ 1 from ℓ must be an f -broadcast vertex, since
otherwise we could increase the value of f(ℓ) by 1, contradicting the optimality of f . Let x denote
any such vertex. The spine-subtrees S1, . . . , Sα−4 do not contain any f -broadcast vertex (since
every such vertex is f -dominated by ℓ), and x is either a 2-leaf of Sα−3, a 1-leaf of Sα−2, or the
spine-vertex vα−1.

We consider four cases, depending on whether these vertices are f -broadcast vertices or not.
For each of these cases, we assume that none of the previous cases occurs.

1. vα−1 is an f -broadcast vertex.
In this case, by Corollary 8, we know that f(x) = 1. Consider the spine-subtree Sα−3. If
Sα−3 is of type S1, then all its vertices are f -dominated by ℓ, and the mapping g defined by
g(ℓ) = α−1, g(ℓα−3) = 2 for one leaf ℓα−3 of Sα−3 and g(v) = f(v) for every other vertex v of
L is clearly an independent broadcast on L with cost(g) = cost(f)−1+2 = cost(f)+1, which
contradicts the optimality of f (see Figure 4(a)). Now, if Sα−3 is of type S2, then f(ℓα−3) ≤ 3
for every leaf ℓα−3 of Sα−3. Therefore, the mapping g defined by g(ℓ) = α−2, g(ℓα−4) = 2 for
one leaf ℓα−4 of Sα−4 and g(v) = f(v) for every other vertex v of L is clearly an independent
broadcast on L, with cost(g) = cost(f)− 2+2 = cost(f), which contradicts the minimality of
α (see Figure 4(b), where Sα−4 is supposed to be of type S1, the case Sα−4 of type S2 being
similar). Therefore, vα−1 cannot be an f -broadcast vertex.

2. Both a 2-leaf ℓα−3 of Sα−3 and a 1-leaf ℓα−2 of Sα−2 are f -broadcast vertices.
In this case, we necessarily have f(ℓα−3) ≤ 3 and f(ℓα−2) ≤ 3. Therefore, the mapping g
defined by g(ℓ) = α − 2, g(ℓα−4) = 3 for one leaf ℓα−4 of Sα−4 and g(v) = f(v) for every
other vertex v of L is clearly an independent broadcast on L with cost(g) = cost(f)− 2+3 =
cost(f) + 1, which contradicts the optimality of f (see Figure 4(c), where again Sα−4 is
supposed to be of type S1, the case Sα−4 of type S2 being similar).
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S0 Sα−3 Sα−2

0 ≤ 1

1

α

−→

S0 Sα−3 Sα−2

2 ≤ 1

1

α− 1

(a) Case 1, Sα−2 is of type S1

S0 Sα−4 Sα−3 Sα−2

0 ≤ 1

1

α ≤ 3

−→

S0 Sα−4 Sα−3 Sα−2

2 ≤ 1

1

α− 2 ≤ 3

(b) Case 1, Sα−2 is of type S2

S0 Sα−4 Sα−3 Sα−2

0 ≤ 3

α ≤ 3

−→

S0 Sα−4 Sα−3 Sα−2

3 ≤ 3

α− 2 ≤ 3

(c) Case 2

Figure 4: Independent broadcasts for the proof of Lemma 24, case 1 and case 2 (only one branch per
spine-subtree is depicted).
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S0 Sα−3 Sα−2

0 1

α

−→

S0 Sα−3 Sα−2

2 1

α− 1

(a) Case 3, β = 1

S0 S1 Sα−3 Sα−2

0 0 2 ≤ β < α

α

−→

S0 S1 Sα−3 Sα−2

2 2 2

3

(b) Case 3, 2 ≤ β < α

S0 S1 Sα−3 Sα−2 Sα−1

0 0 α 0

α

−→

S0 S1 Sα−3 Sα−2 Sα−1

2 2 2 2

3

(c) Case 3, β = α and ℓα−1 is f -dominated only by ℓα−2

S0 S1 Sα−2 Sα−1 S2α−3

0 α 0 α

α

−→

S0 S1 Sα−3 Sα−2 S2α−3

2 2 2 α− 1

3

(d) Case 3, β = α and ℓα−1 is f -dominated by ℓα−2 and x = ℓ2α−3

Figure 5: Independent broadcasts for the proof of Lemma 24, case 3 (only one branch per spine-subtree
is depicted).
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3. A 1-leaf ℓα−2 of Sα−2 is an f -broadcast vertex.
We let β = f(ℓα−2). We necessarily have β ≤ α. If β = 1, the mapping g defined by
g(ℓ) = α − 1, g(ℓα−3) = 2 for one leaf ℓα−3 of Sα−3 and g(v) = f(v) for every other vertex v
of L, is clearly an independent broadcast on L with cost(g) = cost(f) + 1, which contradicts
the optimality of f (see Figure 5(a), where Sα−3 is supposed to be of type S1, the case Sα−3

of type S2 being similar).

Suppose now β ≥ 2 and let gα−2 be the mapping defined by gα−2(ℓ) = 3, gα−2(ℓj) = 2 for
one leaf ℓj of each spine-subtree Sj, 1 ≤ j ≤ α− 3, gα−2(ℓα−2) = 2 and g(v) = f(v) for every
other vertex v of L. The mapping gα−2 is clearly an independent broadcast on L, with

cost(gα−2) = cost(f)− α− β + 3 + 2(α − 2) = cost(f) + (α− β)− 1

(see Figure 5(b), where S1, . . . , Sα−3 are supposed to be of type S1, all other cases being
similar). Therefore, the mapping gα−2 contradicts either the optimality of f or the minimality
of α if β < α.

We can thus assume β = α. Suppose first that the spine-subtree Sα−1 contains a leaf ℓα−1

which is f -dominated only by ℓα−2. (Observe that this is in particular the case if Sα−1 is
of type S2.) In that case, we consider the mapping gα−1 whose definition is similar to the
above definition of gα−2, by simply replacing α− 2 by α− 1. The mapping gα−1 is clearly an
independent broadcast on L, with

cost(gα−1) = cost(f)− 2α+ 3 + 2(α − 1) = cost(f) + 1,

which contradicts the optimality of f (see Figure 5(c), where S1, . . . , Sα−3 and Sα−1 are
supposed to be of type S1, all other cases being similar).

Therefore, Sα−1 is of type S1 and each of its 1-leaves is f -dominated by ℓα−2 and (at least)
one other vertex x. Moreover, we necessarily have f(x) = f(ℓα−2) = α ≥ 7, which implies the
uniqueness of x, since a 2-leaf of S2α−4 and a 1-leaf of S2α−3 are at distance 4 from each other,
and v2α−2 cannot be an f -broadcast vertex by Corollary 8. We then consider the mapping
g′α−1 defined by g′α−1(x) = α− 1 and g′α−1(v) = gα−1(v) for every other vertex v of L. Again,
the mapping g′α−1 is clearly an independent broadcast on L, with

cost(g′α−1) = cost(gα−1)− 1 = cost(f),

which contradicts the minimality of α (see Figure 5(d), where x is a 1-leaf of S2α−3, the case
when x is a 2-leaf of S2α−4 being similar).

4. A 2-leaf ℓα−3 of Sα−3 is an f -broadcast vertex.
Note first that if α − 3 = k, then the optimality of f implies f(ℓα−3) = α, so that cost(f) =
2α = 2(diam(L)− 1), in contradiction with Observation 12. We thus have α− 3 < k.

We let β = f(ℓα−3). We necessarily have β ≤ α.

If β ≤ 2, the mapping g defined by g(ℓ) = α− 1, g(ℓα−3) = 3, and g(v) = f(v) for every other
vertex v of L, is clearly an independent broadcast on L with cost(g) = cost(f)− 1− β + 3 =
cost(f) − β + 2 ≥ cost(f), which contradicts the minimality of α or the optimality of f (see
Figure 6(a)).

Suppose now β ≥ 3 and let gα−3 be the mapping defined by gα−3(ℓ) = 3, gα−3(ℓj) = 2 for
one leaf ℓj of each spine-subtree Sj, 1 ≤ j ≤ α− 4, gα−3(ℓα−3) = 3 and g(v) = f(v) for every
other vertex v of L. The mapping gα−3 is clearly an independent broadcast on L, with

cost(gα−3) = cost(f)− α− β + 3 + 2(α− 4) + 3 = cost(f) + (α− β)− 2

(see Figure 6(b), where S1, . . . , Sα−4 are supposed to be of type S1, all other cases being
similar). Therefore, the mapping gα−3 contradicts either the optimality of f or the minimality
of α if β < α− 1.
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S0 Sα−3

α β ≤ 2

−→

S0 Sα−3

α− 1 3

(a) Case 4, β ≤ 2

S0 S1 Sα−4 Sα−3

0 0

α 3 ≤ β < α− 1

−→

S0 S1 Sα−4 Sα−3

2 2

3 3

(b) Case 4, 3 ≤ β < α− 1

S0 S1 Sα−3 Sα−2

0 0

α α− 1 ≤ β ≤ α

−→

S0 S1 Sα−3 Sα−2

2 3

3 3

(c) Case 4, 6 ≤ α− 1 ≤ β ≤ α and ℓα−2 is only f -dominated by ℓα−3

Figure 6: Independent broadcasts for the proof of Lemma 24, case 4 (only one branch per spine-subtree
is depicted).

We can thus assume α − 1 ≤ β ≤ α, so that β ≥ 6. Suppose that the spine-subtree Sα−2

contains a leaf ℓα−2 which is f -dominated only by ℓα−3. In that case, we consider the mapping
gα−2 defined by gα−2(ℓ) = 3, gα−2(ℓj) = 2 for one leaf ℓj of each spine-subtree Sj, 1 ≤ j ≤ α−4,
gα−2(ℓα−3) = gα−2(ℓα−2) = 3, and g(v) = f(v) for every other vertex v of L (see Figure 6(c),
where S1, . . . , Sα−4 and Sα−2 are supposed to be of type S1, all other cases being similar).
The mapping gα−2 is clearly an independent broadcast on L, with

cost(gα−2) = cost(f)− α− β + 3 + 2(α − 4) + 3 + 3 = cost(f) + (α− β) + 1 > cost(f),

which contradicts the optimality of f .

Therefore, each leaf of Sα−2 is f -dominated by ℓα−3 and (at least) one other vertex x. More-
over, we necessarily have f(ℓα−3)−1 ≤ f(x) ≤ f(ℓα−3) if Sα−2 is of type S1, or f(x) = f(ℓα−3)
if Sα−2 is of type S2. Hence, f(x) ≥ f(ℓα−3) − 1 = β − 1 ≥ 5, which implies the uniqueness
of x, since a 2-leaf of S2α−6 and a 1-leaf of S2α−5 are at distance 4 from each other, and v2α−4

cannot be an f -broadcast vertex by Corollary 8.

We consider two subcases, depending on whether x is a 1-leaf of S2α−5 or a 2-leaf of S2α−6.

(a) x is a 1-leaf of S2α−5.
In this case, we consider the mapping gx defined by gx(ℓ) = gx(ℓα−3) = 3, gx(x) = 2,
gx(ℓj) = 2 for one leaf ℓj for each of the spine-subtrees Sj , j ∈ {1, . . . , 2α− 6} \ {α− 3},
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S0 S1 Sα−3 Sα−2 S2α−5

0 0 f(x)

α β

−→

S0 S1 Sα−3 Sα−2 S2α−5

2 2 2

3 3

(a) Case 4(a), β ≥ 7, β − 1 ≤ f(x) ≤ β and ℓα−2 is f -dominated by ℓα−3 and x = ℓ2α−5

S0 S1 Sα−3 Sα−2 S2α−6

0 0

α β f(x)

−→

S0 S1 Sα−3 Sα−2 S2α−6

2 2

3 3 3

(b) Case 4(b), β ≥ 7, β − 1 ≤ f(x) ≤ β and ℓα−2 is f -dominated by ℓα−3 and x = ℓ2α−6

Figure 7: Independent broadcasts for the proof of Lemma 24, case 4 continued (only one branch per
spine-subtree is depicted).

and gx(v) = f(v) for every other vertex v of L (see Figure 7(a)). Again, the mapping gx
is clearly an independent broadcast on L, with

cost(gx) = cost(f)− α+ 3 + 2(α− 4)− β + 3 + 2(α − 3)− f(x) + 2
= cost(f) + 3α− β − f(x)− 6.

We thus get a contradiction on the minimality of α or the optimality of f since α ≥ 7
and f(x) ≤ β ≤ α.

(b) x is a 2-leaf of S2α−6.
In this case, we consider the mapping gx defined by gx(ℓ) = gx(ℓα−3) = gx(x) = 3,
gx(ℓj) = 2 for one leaf ℓj for each of the spine-subtrees Sj , j ∈ {1, . . . , 2α− 7} \ {α− 3},
and gx(v) = f(v) for every other vertex v of L (see Figure 7(b)). Again, the mapping gx
is clearly an independent broadcast on L, with

cost(gx) = cost(f)− α+ 3 + 2(α− 4)− β + 3 + 2(α − 4)− f(x) + 3
= cost(f) + 3α− β − f(x)− 7.

We thus get a contradiction on the minimality of α or the optimality of f since α ≥ 7
and f(x) ≤ β ≤ α.

We thus obtain a contradiction in each case, which implies that no counter-example to the
lemma exists. This completes the proof. �

Let f be any independent broadcast on a locally uniform 2-lobster L and Si be any spine-subtree
of L. Recall that f∗(Si) denotes the broadcast value of Si, that is, the sum of the broadcast values
of the vertices of Si. The next lemma shows that if f is an optimal independent broadcast on a
locally uniform 2-lobster L of length k ≥ 1, then there exists an optimal independent broadcast f̃
on L such that every spine-subtree of L contains an f̃ -broadcast vertex.

Lemma 25 If L is a locally uniform 2-lobster of length k ≥ 1, and f is an optimal independent
broadcast on L, then there exists an optimal independent broadcast f̃ on L such that f̃∗(Si) > 0 for
every i, 0 ≤ i ≤ k.
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Proof. Since the result directly follows from Lemma 9 if k = 1, we only need to consider the case
k > 1. Assume to the contrary that there does not exist any such independent broadcast f̃ , and
let f be an optimal independent broadcast on L that maximises the number of f -broadcast leaves.
Let i be the smallest index such that f∗(Si) = 0, and ℓi be any leaf of Si.

Suppose first that Si is of type S2, so that ℓi is a 2-leaf. From the choice of Si, we know that
f∗(Si−1) > 0. Moreover, we claim that Si−1 is of type S2 and that, for every leaf ℓi−1 of Si−1,
f(ℓi−1) ≤ 4. Indeed, this follows from Lemma 24 if i = 1. If i ≥ 2, Si−1 cannot be of type S1

since otherwise any vertex that f -dominates ℓi would also f -dominate all the leaves of Si−1 (such
a dominating vertex must belong to some Sj with j > i). Thus Si−1 is of type S2 and the fact that
f∗(Si−2) > 0 implies f(ℓi−1) ≤ 4 for every leaf ℓi−1 of Si−1. Therefore, ℓi is necessarily f -dominated
by a vertex y ∈ Sj, for some j > i. Consider the mapping g defined by g(y) = f(y)− 1, g(ℓi) = 1,
and g(v) = f(v) for every other vertex v of L. The mapping g is an independent broadcast on L
with cost(g) = cost(f), which contradicts the maximality of the number of f -broadcast leaves.

Suppose now that Si is of type S1, so that ℓi is a 1-leaf, and that ℓi is f -dominated by a
unique vertex y. If y ∈ Si−1 then the mapping g defined by g(y) = f(y) − 1, g(ℓi) = 1, and
g(v) = f(v) for every other vertex v of L, is an independent broadcast on L, with cost(g) = cost(f),
which contradicts the maximality of the number of f -broadcast leaves. If y ∈ Sj for some j > i,
then we necessarily have either f(y) = dL(y, ℓi), if Si−1 is of type S1, or dL(y, ℓi) ≤ f(y) ≤
dL(y, ℓi) + 1, if Si−1 is of type S2. Therefore, the mapping g defined by g(y) = dL(y, ℓi) − 1,
g(ℓi) = 1 + f(y) − dL(y, ℓi), and g(v) = f(v) for every other vertex v of L, is an independent
broadcast on L, with cost(g) = cost(f), which again contradicts the maximality of the number of
f -broadcast leaves.

Suppose finally that Si is of type S1 and that ℓi is f -dominated by two distinct vertices y1 and
y2, with y1 ∈ Si1 and y2 ∈ Si2 . Note that we necessarily have, without loss of generality, i1 = i− 1
and i < i2. We claim that f(y1) ≥ 3 and f(y2) ≥ 3. Indeed, if, say, f(y1) = 2, then y1 = vi−1, which
contradicts Corollary 8. The case f(y2) = 2 is similar. Moreover, we clearly have either f(y1) = 3
and f(y2) = dL(y2, ℓi), if Si−1 is of type S1, or f(y1) = 4 and dL(y2, ℓi) ≤ f(y2) ≤ dL(y2, ℓi) + 1, if
Si−1 is of type S2. We consider two cases, depending on the value of f(y2).

1. f(y2) = dL(y2, ℓi).
In that case, the mapping g defined by g(y1) = f(y1) − 1, g(y2) = f(y2) − 1, g(ℓi) = 2,
and g(v) = f(v) for every other vertex v of L, is an independent broadcast on L, with
cost(g) = cost(f), which contradicts the maximality of the number of f -broadcast leaves.

2. f(y2) = dL(y2, ℓi) + 1.
In that case, we necessarily have that Si−1 is of type S2 and f(y1) = 4 on one hand, and
f(y2) ≥ 4 on the other hand, which implies that f∗(Si2+1) = 0, if i2 < k.

If y2 is not a 1-leaf of Si+1, then the mapping g defined by g(y1) = 3, g(y2) = dL(y2, ℓi) − 1,
g(ℓi) = 2+ f(y2)− dL(y2, ℓi), and g(v) = f(v) for every other vertex v of L, is an independent
broadcast on L, with cost(g) = cost(f), which contradicts the maximality of the number of
f -broadcast leaves.

Otherwise, that is, y2 is a 1-leaf of Si+1 and f(y2) = 4, we cannot give to ℓi the broadcast
value 2 + f(y2) − dL(y2, ℓi) = 2 + 4 − 3 = 3, since ℓi would then dominate y2. Observe that
since Si+1 is of type S1, we have i+ 1 < k, so that Si+2 exists.

If Si+2 is of type S2, then the leaves of Si+2 are necessarily f -dominated only by y2. Let ℓi+2

be any leaf of Si+2. In that case, the mapping g defined by g(y1) = 3, g(ℓi) = 2, g(y2) = 2,
g(ℓi+2) = 1, and g(v) = f(v) for every other vertex v of L, is an independent broadcast on
L, with cost(g) = cost(f), which contradicts the maximality of the number of f -broadcast
leaves.

Suppose finally that Si+2 is of type S1, and let ℓi+2 denote any 1-leaf of Si+2. Note that y2
f -dominates ℓi+2. If ℓi+2 is f -dominated only by y2, then the mapping g defined by g(y1) = 3,
g(ℓi) = 2, g(y2) = 2, g(ℓi+2) = 2, and g(v) = f(v) for every other vertex v of L, is an
independent broadcast on L, with cost(g) > cost(f), which contradicts the optimality of f .
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Otherwise, let z be the other vertex of L which f -dominates ℓi+2. Then, the mapping g
defined by g(y1) = 3, g(ℓi) = 2, g(y2) = 2, g(ℓi+2) = 2, g(z) = g(z) − 1, and g(v) = f(v) for
every other vertex v of L, is an independent broadcast on L, with cost(g) = cost(f), which
contradicts the maximality of the number of f -broadcast leaves.

This completes the proof. �

From Lemma 25 and Corollary 8, we get the following corollary.

Corollary 26 If L is a locally uniform 2-lobster of length k ≥ 1, and f is an optimal independent
broadcast on L, then there exists an optimal independent broadcast f̃ on L such that, for every
spine-subtree Si of L, 0 ≤ i ≤ k, and every vertex x of Si, f̃(x) ≤ 1 if x = vi, f̃(x) ≤ 3 if x is a
1-leaf of Si, and f̃(x) ≤ 4 if x is a 2-leaf of Si.

Proof. Let f̃ be an optimal independent broadcast on L such that f̃∗(Si) > 0 for every i, 0 ≤ i ≤ k.
The existence of f̃ is guaranteed by Lemma 25. If x = vi, then f̃(x) ≤ 1 follows from Corollary 8.
Otherwise, assuming that the claimed bound on f̃(x) is not satisfied would imply f̃∗(S) = 0 for a
neighbouring spine-subtree S of Si, in contradiction with our assumption on f̃ . �

The next two lemmas show that if f is an optimal independent broadcast on a locally uniform
2-lobster L of length k ≥ 1, then there exists an optimal independent broadcast f̃ on L such that
the f̃ -value of every spine-subtree S of L is bounded from above by a value depending on the type
of S.

Recall that T4 denotes the type of sequence used in step 4 in the proof of Lemma 22, that is

T4 = 〈E2.E0〉 A.{(C|A).A}∗ 〈E0.E2〉.

In the following, when we say that a spine-subtree Si appears as an A-spine-subtree (resp. as
an C-spine-subtree) in a sequence of type T4, we mean that Si = Aj (resp. Si = Xj) for some j,
0 ≤ j ≤ p (resp. 1 ≤ j ≤ p), in the corresponding sequence A0X1A1 . . . XpAp.

Lemma 27 If L is a locally uniform 2-lobster of length k ≥ 1, and f is an optimal independent
broadcast on L, then there exists an optimal independent broadcast f̃ on L such that, for every
spine-subtree Si of L, 0 ≤ i ≤ k, f̃ satisfies the following properties.

1. f̃∗(Si) > 0.

2. If f̃∗(Si) = λ1(Si), or f̃∗(Si) = λ2(Si), then f̃(ℓ) = 1 for every leaf of Si.

3. If Si is of type S1, then

(a) f̃∗(Si) ≤ λ1(Si) if Si is of type B or Ca,

(b) f̃∗(Si) ≤ 3 if Si is of type Cc,

(c) f̃∗(Si) ≤ 2 if Si is of type Cc and Si belongs to a sequence of type T4,

4. If Si is of type S2, then

(a) f̃∗(Si) ≤ λ2(Si) + 1 if Si is of type A,

(b) f̃∗(Si) ≤ λ2(Si) + λ∗
2(Si) + α∗

2(Si) if Si is of type Cb or D,

(c) f̃∗(Si) ≤ λ2(Si) + λ∗
2(Si) + α∗

2(Si)− 1 if Si is of type Cb and Si belongs to a sequence of
type T4.

5. If Si is not of type A, then f̃(vi) = 0.

Proof. Thanks to Lemma 25, we know that we can choose an independent broadcast f̃ on L which
satisfies Item 1. By Corollary 26, we get that the f̃ -value of every 1-leaf is at most 3, and that the
f̃ -value of every 2-leaf is at most 4. This observation will be implicitly used all along the proof.
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Note also that if f̃∗(Si) = λ1(Si), or f̃
∗(Si) = λ2(Si), then we can obviously modify f̃ , in order

to satisfy Item 2, without modifying its cost.
We now prove that f̃ can be chosen in such a way that it satisfies all the other items of the

lemma. Let Si be any spine-subtree of L.
Note first that the above observation already proves Item 3b. Moreover, observe that we neces-

sarily have f̃∗(Si) ≤ λ1(Si) if Si is of type B or Ca, since in each of these cases, the only way to attain
this value is to have one leaf ℓ of Si with f̃(ℓ) = f̃∗(Si), which would imply that a neighbouring
spine-subtree of Si has no f̃ -broadcast vertex, in contradiction with Item 1. This proves Item 3a.

Suppose now that Si is of type A. If the broadcast value of a 2-leaf of Si is 2, then its at least
two sister-leaves cannot be f̃ -broadcast vertices since this would contradict the optimality of f̃ (by
giving the broadcast value 1 to each 2-leaf of a branch B of Si, we get f̃∗(B) ≥ λ2(B)). Therefore,
the greatest possible value of f̃∗(Si) is obtained when the spine-vertex vi and all the 2-leaves of Si

have f̃ -value 1. This gives f̃∗(Si) ≤ λ2(Si) + 1, which proves Item 4a.
Suppose now that Si is of type Cb or D. Observe first that, if f̃(vi) = 1, then the broadcast

value of every leaf of Si is 1. The optimality of f̃ then implies that Si has a unique branch B with
two leaves and no branch with a unique leaf, since otherwise we could set to 0 the broadcast value
of vi and to 3 the broadcast value of one leaf of every such branch, and thus increase the cost of
f̃ . (Note also that, for the same cost, we can set f̃(vi) = 0 and set to 0 and 3 the broadcast value
of the two leaves of this branch. This remark will be useful in the next paragraph.) In that case,
we thus have f̃∗(Si) = λ2(Si) + 1 ≤ λ2(Si) + λ∗

2(Si) + α∗
2(Si), which proves Item 4b. Suppose now

f̃(vi) = 0 and let B be any branch of Si. The optimality of f̃ then implies the following. If B has
one or two 2-leaves, the f̃ -value of one of theses leaves is 3 (otherwise, we would have f̃∗(B) ≤ 2).
If B has at least three leaves, the largest possible value of f̃∗(B) is λ2(B), since as soon as a 2-leaf
has a broadcast value at least 2, none of its sister-leaves can be a broadcast vertex. (Note that if
B has three 2-leaves, then either one of them has f̃ -value 3, or, for the same cost, each of them has
f̃ -value 1.) Therefore, f̃∗(Si) ≤ λ2(Si) + λ∗

2(Si) + α∗
2(Si), which proves Item 4b.

Suppose now that Si is of type Cb or Cc, and belongs to some sequence of type T4. In such a
sequence, each spine-subtree of type C is associated with one of its neighbouring spine-subtrees of
type A, in such a way that no spine-subtree of type A is associated with two distinct spine-subtrees
of type C. Let S′

i denote the spine-subtree associated with Si (we have S′
i ∈ {Si−1, Si+1}). On the

one hand, from the above discussion about spine-subtrees of type A, we know that their largest
possible broadcast value can be attained only if their spine-vertex has broadcast value 1. On the
other hand, from the above discussion about spine-subtrees of type Cb or Cc, we know that their
largest possible broadcast value can be attained only if one leaf ℓ of the unique branch B of Si

having at most two, or exactly two leaves, has a broadcast value of 3. Therefore, Si and S′
i cannot

get their largest possible broadcast value both at the same time. We thus need either to remove the
broadcast value of the spine-vertex of S′

i, or to give the broadcast value 2 to ℓ if ℓ is a 2-only-leaf, or
1 to each 2-leaf of B otherwise. This second choice proves that the optimal independent broadcast
f̃ can be chosen in order to satisfy Items 4c and 3c.

It remains to prove Item 5. If Si is of type S1, the result follows from Lemma 3. We thus only
need to consider the case when Si is of type Cb or D. Suppose that f̃(vi) = 1 (we cannot have
f̃(vi) > 1 by Corollary 8). If Si is of type Cb, then we can set f̃(vi) = 0, f̃(ℓ) = 3 for a 2-leaf ℓ of Si

belonging to the unique branch of Si having at most two leaves, and f̃(ℓ′) = 0 for the sister-leaf ℓ′

of ℓ, if any. Such a modification does not decrease the cost of f̃ and we are done. If Si is of type D,
then we cannot have f̃(vi) = 1, since this would contradict the optimality of f̃ , as the previous
modification can be done on the at least two branches of Si having at most two 2-leaves.

This completes the proof. �

Lemma 28 If L is a locally uniform 2-lobster of length k ≥ 1, and f is an optimal independent
broadcast on L, then there exists an optimal independent broadcast f̃ on L such that, for every
spine-subtree Si of L, 0 ≤ i ≤ k, f̃ satisfies the following properties.
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1. f̃ satisfies all the items of Lemma 27,

2. f̃∗(Si) ≤ λ2(Si) if Si is of type A and Si does not appear as an A-spine-subtree in a sequence
of type T4.

Proof. Thanks to Lemma 27, we know that we can choose an independent broadcast on L which
satisfies Item 1. So consider such a broadcast f̃ on L. Recall that by Item 5 of Lemma 27, f̃(vi) = 0
for every spine-subtree Si which is not of type A. Moreover, by Item 4a of Lemma 27, if Si is a
spine-subtree of L of type A, then f̃∗(Si) ≤ λ2(Si)+1, and, as observed in the proof of that lemma,
the only way to attain this value is to give a broadcast value of 1 to the spine-vertex and to all the
2-leaves of Si.

Suppose that there exists in L a spine-subtree Si of type A, that does not appear as an A-
spine-subtree in any sequence of type T4, and such that f̃(vi) = 1, which implies f̃(ℓ) = 1 for every
leaf ℓ of Si since f̃ is optimal. Such a spine-subtree will be called a bad spine-subtree. Moreover,
suppose that Si is the leftmost such bad spine-subtree of L. We claim that the broadcast f̃ can be
modified, without decreasing its cost, in such a way that either the number of bad spine-subtrees in
L strictly decreases, or this number is still the same but the index of the leftmost bad spine-subtree
in L strictly increases, which will prove Item 2.

All along this proof, we will modify the independent broadcast f̃ on some spine-subtrees, ac-
cording to their type. By applying the standard modification of f̃ on a spine-subtree Sj of L, we
mean the following.

• If Sj is a bad spine-subtree, then we set f̃(vj) = 0.

• If Sj is of type A and is not a bad spine-subtree, then we set f̃(vj) = 1.

• If Sj is of type Cb, then we set f̃(ℓ) = 3 for a 2-leaf ℓ of the unique branch of Sj having at
most two leaves.

• If Sj is of type Cc, then we set f̃(ℓ) = 3 for a 1-leaf ℓ of Sj, and f̃(ℓ′) = 0 for the sister-leaf
of ℓ.

• If Sj is of type D, then we set f̃(ℓ) = 3 for one 2-leaf ℓ of each branch of Sj having at most
two 2-leaves, and f̃(ℓ′) = 0 for its sister-leaf ℓ′, if any.

We first consider the case when Si belongs to some sequence of type T4, but not as an A-spine-
subtree, which implies that the length of this sequence is at least 3. Let A0X1A1 . . . XpAp, p ≥ 1,
denote the corresponding sequence. Every spine-subtree corresponding to some Xj , 1 ≤ j ≤ p,
is surrounded by two spine-subtrees of type A. If any such spine-subtree Sα (corresponding to
some Xj) is of type A, then having f̃(sα) = 1 would imply that none of sα−1 and sα+1 is an
f̃ -broadcast vertex. We can thus apply the standard modification of f̃ on all the spine-subtrees
A0,X1, A1, . . . ,Xp, Ap, without decreasing the cost of f̃ .

We suppose now that Si does not belong to any sequence of type T4. The following claims will
be useful in the sequel.

Claim 29 If a bad spine-subtree Sj, not belonging to any sequence of type T4, has a neighbouring
spine-subtree of type D, then we can modify f̃ , without decreasing its cost, in such a way that the
number of bad spine-subtrees strictly decreases.

Proof. Suppose that Si+1 exists and is of type D (the case when Si−1 exists and is of type D is
similar). If Si+2 does not exist, or if Si+2 exists and f̃(vi+2) = 0, then we can apply the standard
modification of f̃ on Si and Si+1, without decreasing the cost of f̃ . Finally, if Si+2 exists and
f̃(vi+2) = 1, we get that Si+2 is also a bad spine-subtree of L. In that case, we can apply the
standard modification of f̃ on Si, Si+1 and Si+2, without decreasing the cost of f̃ since Si+1 has at
least two branches with at most two leaves. �
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Claim 30 Let Si be the leftmost bad spine-subtree in L, that does not belong to any sequence of
type T4. If Si+1 is of type A and Si+2 is of type B, Ca or Cc, then we can modify f̃ , without decreasing
its cost, in such a way that the index of the leftmost bad spine-subtree in L strictly increases.

Proof. Since f̃(vi) = 1, we get that f̃∗(Si+2) = λ1(Si+2) (the f̃ -broadcast value of every leaf in Si+2

is 1), so that we can apply the standard modification of f̃ on Si and Si+1 (recall that f̃(ℓ) = 1 for
every leaf of Si+2 by Item 2 of Lemma 27), without decreasing the cost of f̃ , but strictly increasing
the index of the leftmost bad spine-subtree in L. �

Claim 31 If Si is the leftmost bad spine-subtree in L, that does not belong to any sequence of
type T4, then we can assume that Si+1 is of type Cb or Cc.

Proof. If Si−1 is of type Cc, then, since f̃(vi) = 1, we get that f̃(ℓ) = 1 for every 1-leaf of Si−1.
Similarly, if Si−1 is of type Cb, then f̃(ℓ) ≤ 2 for every 2-leaf of Si−1. In both cases, we can thus
apply the standard modification of f̃ on Si and Si−1, without decreasing the cost of f̃ .

Thanks to Claim 29, we can thus assume that Si−1 either does not exist or is of type A, Ca
or B (these two latter cases imply that Si−2 cannot be of type Cc, and is thus necessarily of type
B or Ca). If Si−1 is of type A and Si−2 is of type Cc, then, similarly as above, we can apply the
standard modification of f̃ on Si and Si−2, without decreasing the cost of f̃ .

In all the remaining cases, Si is of type 〈E2.E0〉A, so that we necessarily have that either Si+1 is
of type Cb or Cc, or Si+1 is of type A and Si+2 is of type Cc, since otherwise Si would be a sequence
of type T4. But the case when Si+1 is of type A and Si+2 is of type Cc is covered by Claim 30.

This concludes the proof. �

Thanks to Claims 29 and 31, we can assume that Si−1 is not of type D, and that Si+1 is of type
either Cb or Cc. We consider these two cases separately when Si+2 is not a bad spine-subtree, or
together otherwise.

1. Si+1 is of type Cb and Si+2 is not a bad spine-subtree.
In that case, we can apply the standard modification of f̃ on Si and Si+1 and we are done.

2. Si+1 is of type Cc and Si+2 is not a bad spine-subtree.
In this case, Si+2 necessarily exists and is of type S2. If Si+3 is not a bad spine-subtree, then
we can apply the standard modification of f̃ on Si and Si+1 and we are done. Otherwise,
Si+2 must be of type Cb or A, thanks to our assumption based on Claim 29. We thus have
two cases to consider.

(a) Si+3 is a bad spine-subtree and Si+2 is of type Cb.
In that case, we get that f̃(ℓ) ≤ 2 for every 2-leaf ℓ of Si+2, so that we can apply the
standard modification of f̃ on Si, Si+1, Si+2 and Si+3, without decreasing the cost of f̃ .

(b) Si+3 is a bad spine-subtree and Si+2 is of type A.
In that case, Si+4 must exist and must be of type Cc, since otherwise the sequence
SiSi+1Si+2 would be of type T4. Observe then that Si+3 is somehow “in the same situation
as Si”.
Let L′ = S′

1S
′
2S

′
3S

′
4 . . . S

′
s, s ≥ 5, be the maximal subsequence of L, starting at Si (that

is, S′
1 = Si), whose type is a prefix of (A.Cc.A)∗ (considered as a word), and such that

S′
j is a bad spine-subtree if j ≡ 1 (mod 3). We then have three cases, according to the

value of (s mod 3).

i. If s ≡ 1 (mod 3), which means that Si+s is not of type Cc, we get that Si . . . Si+s−1

is a sequence of type T4, a contradiction.

ii. If s ≡ 0 (mod 3), which means that Si+s is not a bad spine-subtree, we can apply
the standard modification of f̃ on all the spine-subtrees S′

j of L
′ with j 6≡ 0 (mod 3),

without decreasing the cost of f̃ .
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iii. If s ≡ 2 (mod 3), which means that Si+s is not of type A, we get that Si+s is thus
of type Cb. If Si+s+1 is not a bad spine-subtree, then we can apply the standard
modification of f̃ on all the spine-subtrees S′

j of L′ with j 6≡ 0 (mod 3), without

decreasing the cost of f̃ . If Si+s+1 is a bad spine-subtree, then we can apply the
standard modification of f̃ on Si+s, Si+s+1, and on all the spine-subtrees S′

j of L′

with j 6≡ 0 (mod 3), without decreasing the cost of f̃ .

3. Si+1 is of type Cb or Cc, and Si+2 is a bad spine-subtree.
In this case, we get that either Si+3 is of type Cb or Cc, or Si+3 is of type A and Si+4 is of
type Cc, since otherwise SiSi+1Si+2 would be a sequence of type T4. Therefore, Si+2 is “in the
same situation as Si”.

Let L′ = S′
1S

′
2S

′
3 . . . S

′
s, s ≥ 4, be the maximal subsequence of L, starting at Si (that is,

S′
1 = Si), whose type is a prefix of (A.(Cb[Cc))

∗ (considered as a word), and such that S′
j is

a bad spine-subtree if j ≡ 1 (mod 2). We then have two cases, according to the value of (s
mod 2).

(a) If s ≡ 1 (mod 2), which means that Si+s is not of type Cb nor Cc, we get that Si+s is
of type A and Si+s+1 is of type Cc, since otherwise L′ would be a sequence of type T4.
In that case, since Si+s−1 is a bad spine-subtree, we get that f̃∗(Si+s+1) = 2, so that
we can apply the standard modification of f̃ on the spine-subtrees Si, . . . , Si+s, without
decreasing the cost of f̃ .

(b) If s ≡ 0 (mod 2), which means that Si+s is not a bad spine-subtree, we consider two
cases.
If Si+s−1 is of type Cb, then we can apply the standard modification of f̃ on the spine-
subtrees Si, . . . , Si+s−1, without decreasing the cost of f̃ .
If Si+s−1 is of type Cc, we get that Si+s is of type either A (but not a bad spine-subtree),
Cb or D. If Si+s+1 is not a bad spine-subtree, then, again, we can apply the standard
modification of f̃ on the spine-subtrees Si, . . . , Si+s−1, without decreasing the cost of
f̃ . If Si+s+1 is a bad spine-subtree and Si+s is not of type A, then we necessarily have
f̃(ℓ) ≤ 2 for every 2-leaf ℓ of Si+s, so that we can apply the standard modification of f̃
on the spine-subtrees Si, . . . , Si+s+1, without decreasing the cost of f̃ . If Si+s+1 is a bad
spine-subtree and Si+s is of type A, then, by applying the standard modification of f̃ on
Si+s and Si+s+1, we get a new subsequence L′, whose length has been increased by 1, so
that we now have s ≡ 1 (mod 2) and the previous case applies.

This completes the proof. �

3.5 Main result

We are now able to prove the main result of our paper.

Theorem 32 For every locally uniform 2-lobster L of length k ≥ 0, βb(L) = β∗(L).

Proof. If k = 0, the result follows from Lemma 21, observing that the independent broadcast built
in its proof reaches the upper bounds on the broadcast values stated in Lemma 27. We can thus
assume k ≥ 1. By Lemma 22, we know that there exists an independent broadcast f on L with
cost(f) = β∗(L). Let f be the independent broadcast on L constructed in the proof of Lemma 22.
We claim that for every spine-subtree Si of L, f

∗(Si) equals the upper bound given in Lemmas 27
or 28, which will prove the theorem.

1. If Si is of type B or Ca, then f∗(Si) has been set to λ1(Si) in Step 1, and never modified in
the following steps.

2. If Si is of type Cb, then f∗(Si) has been set to λ2(Si) + λ∗
2(Si) + α∗

2(Si) in Steps 1 and 2.
Moreover, if Si belongs to some sequence of type T4, then f∗(Si) has been decreased by 1 in
Step 4.
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3. If Si is of type Cc, then f∗(Si) has been set to 3 in Steps 1 and 3. Moreover, if Si belongs to
some sequence of type T4, then f∗(Si) has been decreased by 1 in Step 4.

4. If Si is of type D, then f∗(Si) has been set to λ2(Si) + λ∗
2(Si) + α∗

2(Si) in Steps 1 and 2, and
never modified in the following steps.

5. Finally, if Si is of type A, then f∗(Si) has been set to λ1(Si) in Step 1. Moreover, if Si belongs
to some sequence of type T4, then f∗(Si) has been increased by 1 in Step 4.

This concludes the proof. �

4 Concluding remarks

In this paper, we have given an explicit formula for the broadcast independence number of a subclass
of lobsters, called locally uniform 2-lobsters. Moreover, it is easily seen that computing the value
β∗(L) for a locally uniform 2-lobster L of length k can be done in linear time (simply processing
the spine-subtrees S0, . . . , Sk in that order), which improves the result of Bessy and Rautenbach [5]
for this particular subclass of trees.

A natural question, as a first step, would be to extend our result to the whole subclass of
locally uniform lobsters. In fact, we were able to give an explicit formula for every such lobster
not containing any spine-subtree of type Z, that is, having exactly one branch and three 2-leaves
(see [1]). However, the proof is then quite involved and we thus decided to only consider in this
paper the restricted class of locally uniform 2-lobsters. Determining when the optimal broadcast
value of a spine-subtree of type Z is 3 or 4 appears to be not so easy.

The more general question of giving an explicit formula for the broadcast independence number
of the whole class of lobsters is certainly more challenging.
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