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ABSTRACT
We consider parametric reachability control problems for real-time systems. We
model the plant as an extension of parametric timed automata, i.e., a finite automa-
ton equipped with real-valued clocks constraining its behavior, in which the timing
constraints on these clocks can make use of parameters. This extension, which we call
parametric game automata (PGA), allows for partitioning the actions in the model
between two antagonistic entities: the controller and the environment. The most
general problem we study then consists in synthesizing both a controller and values
for the parameters such that some control location of the automaton is reachable.

It is however well-known that most non-tivial problems on parametric timed au-
tomata are undecidable and the classical techniques for the verification (and a for-
tiori for the control) of timed systems do not terminate in that setting. We therefore
provide a subclass of PGA called L/U game automata for which it is decidable.

We then consider a backward fixed-point semi-algorithm for solving timed games
with reachability objective allowing to compute the most permissive winning strat-
egy.

We argue the relevance of this approach and demonstrate its practical usability
with a small case-study.

KEYWORDS
timed automata, control, game theory, parameters, synthesis

1. Introduction

Real-time and embedded systems often interact with the environment in an unpre-
dictable way. They can also be reactive machines that cooperate with the environment
in order to provide their service. Such uncertainties in the system introduced by the
environment are often difficult to model. Therefore, these systems need a controller
to ensure their correct behavior. Its purpose is to regulate the activity and ensure
that the system under control meets the specifications, no matter what happens in
the environment.

The introduction of the automata-based formalism into the field of control was
motivated by the inadequacy of models based on continuous mathematics (differential
equations) to describe certain classes of systems. A decision to open a gate or to turn
left or right are discrete and most naturally modeled with an automaton. Control
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using automata-based approach lies between computer science and control, and brings
together these two communities.

Instead of verifying the correctness of a system, we have here the problem of synthe-
sizing the model for the controller. It consists in computing a controller which, based
on the current state of the system, restricts the choices of the system, ensuring that
the desired property is satisfied. This problem is often modeled as the synthesis of a
winning strategy for the controller in a two-player game against the environment.

More precisely, the two players, the controller and the environment, take actions
from their own set and thus make the game progress. In each state, both players
choose, at the same time and independently of each other, a move (a delay or an
action). The goal is to find the strategy for the controller such that, no matter what
the environment does, the system ends up in a given desired state. Such a strategy is
called a winning strategy.

A formalism that is commonly used to describe such systems in a timed framework
is timed game automata (TGA, (Maler, Pnueli, & Sifakis, 1995)), that explicitly rep-
resents the moves of both players, in terms of controllable and uncontrollable edges.
They are extended timed automata that distinguish between the actions of the two
players, describing at the same time both the capabilities of the controller and the
environment.

The (Reachability) control problem for TGA is the problem of determining a strategy
for the controller such that, no matter what the environment does, the system ends
up in the desired location. This problem is known to be decidable (Maler et al., 1995).
The introduction of this model has been followed by the development of efficient
algorithms (Cassez, David, Fleury, Larsen, & Lime, 2005) and tool support (Behrmann
et al., 2007), successfully applied to several industrial case studies (e.g. (Cassez, Jessen,
Larsen, Raskin, & Reynier, 2009; Jessen, Rasmussen, Larsen, & David, 2007)).

This model, however, requires complete knowledge of the system. It is thus difficult
to use it in the early design stages when the whole system is not fully characterized.
Even when all timing constraints are known, if the environment changes or the system
is proven wrong, the whole controller synthesis process must be carried out again.
Additionally, considering a wide range of values for constants allows for a more flexible
and robust design.

Parametric reasoning is, therefore, particularly relevant for timed models, since
it allows to the designers to use parameters instead of concrete timing values. This
approach, however, leads to the undecidability of the most important problems, such
as reachability verification (Alur, Henzinger, & Vardi, 1993).

1.1. Related work.

Parametric timed automata (Alur et al., 1993) extend timed automata (Alur & Dill,
1994) to overcome the limits of checking the correctness of the systems with re-
spect to concrete timing constraints. The central problem for verification purposes,
reachability-emptiness, which asks whether there exists no parameter valuation such
that the automaton has an accepting run, is undecidable. This naturally led to the
search for subclasses of the model for which some problems would be decidable. L/U
automata (Hune, Romijn, Stoelinga, & Vaandrager, 2002) use each parameter either
as a lower bound or as an upper bound on clocks. The reachability-emptiness prob-
lem is decidable for this model, but the state-space exploration, which would allow
for explicit synthesis of all the suitable parameter valuations, still might not termi-
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nate. The decidability of various verification problems for L/U automata is further
studied in (Bozzelli & La Torre, 2009). The authors give the explicit representation
of the set of parameters, when all parameters are integers and of the same type (all
upper bounds or all lower bounds). In (Bruyère & Raskin, 2007), the authors allow
parameters both in the model and the property (PTCTL), and they show that the
model-checking problem is decidable, in discrete time over a PTA with one parametric
clock, if the equality is not allowed in the formulae. A different approach is taken in
(André, Chatain, Encrenaz, & Fribourg, 2009) where the exploration starts from an
initial set of parameter values, for which the system is correct, and enlarges the set en-
suring that the behaviors of PTA are time-abstract equivalent. They give a conjecture
for the termination of the algorithm, being true on the studied examples.

1.2. Our contribution.

We first introduce a model of timed games extended with parameters, called parametric
timed game automata (PGA). In this setting the most basic problem is: “does there
exist values for the parameters such that there exists a controller, such that some
control location is reachable whatever the environment does?”, which we will call
the parametric control problem. As the PGA formalism extends PTA, this problem is
undecidable. We therefore provide a subclass of PGA called L/U game automata for
which it is decidable. The subclass is based on a restricted use of parameters in the
clock constraints, in the spirit of the L/U automata (Hune et al., 2002).

We then consider a backward fixed-point algorithm for solving timed games with
reachability objective (Maler et al., 1995). We extend this algorithm for the parametric
approach to obtain the set of symbolic constraints on the parameters together with the
set of winning states for the controller. It consists of two fixed-point parts, a forward
exploration of the state-space and a backward propagation of winning states. The
termination however, is not guaranteed.

1.3. Organization of the Paper.

The rest of the paper is organized as follows. Section 2 provides definitions about
PGA, the problems we are considering, and recalls some negative decidability results.
In Section 3 we present the subclass of PGA for which the reachability-emptiness game
is decidable and give the proofs. The algorithm for solving timed games, is presented
in Section 4. Finally we present a small case-study in Section 5 and we conclude with
Section 6.

2. Parametric Timed Game Automata

2.1. Preliminaries.

R is the set of real numbers and R≥0 is the set of non-negative real numbers. Q is
the set of rational numbers, Z the set of integers. Let V ⊆ R. A V -valuation on some
finite set X is a function from X to V . We denote by V X the set of V -valuations on
X.

Let X be a finite set of variables modeling clocks and let P be a finite set of
parameters. A parametric clock constraint γ is an expression of the form γ ::= xi v
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p | − xi v p | γ ∧ γ, where xi, xj ∈ X, v∈ {≤, <}, and p is a linear expression of the
form k0 + k1p1 + ...+ knpn with k0, ...kn ∈ Z and p1, ...pn ∈ P .

For any parametric clock constraint γ and any parameter valuation v, we note v(γ)
the linear constraint on clocks obtained by replacing each parameter pi by its value
v(pi). Similarly, given a linear constraint on clocks γ and a clock valuation w, w(γ) is
a boolean value, obtained by replacing each clock x by it value w(x). We denote by
G(X,P ) the set of parametric constraints over X, and by G′(X,P ) a set of parametric
constraints over X of the form γ′ ::= xi v p | γ′ ∧ γ′.

For a clock valuation w on X and t ∈ R≥0, we write w+t for the valuation assigning
w(x) + t to each x ∈ X. For R ⊆ X, w[R] denotes the valuation assigning 0 to each
x ∈ R and w(x) to each x ∈ X\R. Finally, we define the null valuation 0X on X by
∀x ∈ X,0X(x) = 0.

2.2. Parametric Timed Games

Definition 2.1. A Parametric Timed Automaton (PTA) is a tuple A = (L, l0, X,
Σ, P, E, Inv), where L is a finite set of locations, l0 ∈ L is the initial location, X is a
finite set of clocks, Σ is a finite alphabet of actions, P is a finite set of parameters,
E ⊆ L × Σ × G(X,P ) × 2X × L is a finite set of edges, and Inv : L 7→ G′(X,P ) is a
function that assigns a (parametric) invariant to each location.

If (l, a, γ,R, l′) ∈ E then there is an edge from l to l′ with action a, (parametric)
guard γ and set of clocks to reset R.

For any Q-valuation v on P , the structure v(A) obtained from A by replacing
each constraint γ by v(γ) is a timed automaton with invariants (Alur & Dill, 1994;
Henzinger, Nicollin, Sifakis, & Yovine, 1994). The behavior of a PTA A is described
by the behavior of all timed automata obtained by considering all possible valuations
of parameters.

Definition 2.2 (Semantics of a PTA). The concrete semantics of a PTA A under a
parameter valuation v, notation v(A), is the labeled transition system (Q, q0,→) over
Σ ∪R≥0 where:

• Q = {(l, w) ∈ L×RX≥0 | w(v(Inv(l))) is true }
• q0 = {(l0,0X) ∈ Q}
• delay: (l, w)

t−→ (l, w + t) with t ≥ 0, iff ∀t′ ∈ [0, t], (l, w + t′) ∈ Q
• action: (l, w)

a−→ (l′, w′) with a ∈ Σ, iff (l, w), (l′, w′) ∈ Q, there exists an
edge (l, a, γ,R, l′) ∈ E, such that w′ = w[R] and w(v(γ)) is true.

A finite run of PTA A, under a parameter valuation v, is a sequence of alternating
delay and action transitions in the semantics of v(A), ρ = q1a1q2...an−1qn, where

∀i ∈ [1..n− 1], qi ∈ Q, ai ∈ Σ ∪R≥0, and qi
a−→ qi+1. The last state of ρ is denoted by

last(ρ). We denote by Runs(v(A)) the set of runs starting in the initial state of v(A),
and by Runs(q, v(A)) the set of runs starting in q. A state q is said to be reachable in
A if there exists a finite run ρ ∈ Runs(v(A)), such that last(ρ) = q.

We now go one step further and define Parametric Timed Game Automata to model
our control problems.

Definition 2.3. A Parametric (Timed) Game Automaton (PGA) G is a paramet-
ric timed automaton with its set of actions Σ partitioned into controllable (Σc) and
uncontrollable (Σu) actions.
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Like for PTA, for any PGA G and any rational valuation on parameters v, the
structure v(G), obtained by replacing each constraint γ by v(γ), is a timed game
automaton (Cassez et al., 2005; Maler et al., 1995).

We formalize our reachability control problem as a timed game, in which the con-
troller player has to reach some distinguished location in a TGA:

Definition 2.4 ((Parametric) Timed Game). A (reachability) parametric timed game
is a pair (G, lgoal) where G is a PGA and lgoal is a location of G.

A (non-parametric) timed game is a parametric timed game (G, lgoal) in which G is
a TGA.

In a TGA, two players, a controller and an environment, choose at every instant one
of the available actions from their own sets, according to their strategy, and the game
progresses. Since the game is symmetric, we give only the definition for the controller
playing with actions from Σc. At each step, a strategy tells the controller to either
delay in a location (denote by the delay action), or to take a particular controllable
action.

For reachability timed games, one can consider two semantics for uncontrollable
actions: either they can only spoil the game and it is up to the controller to do some
controllable action to win, or, if at some state s only an uncontrollable action is enabled
but forced by time to happen leading to a winning state then, the state s is winning.
The usual semantics (Asarin, Maler, Pnueli, & Sifakis, 1998; Cassez et al., 2005; Maler
et al., 1995) is the first one where uncontrollable actions cannot help to win and is the
one we consider in this paper.

Definition 2.5 (Strategy). A strategy F over v(G) is a partial function from
Runs(v(G)) to Σc ∪ {delay} such that for every finite run ρ, if F(ρ) ∈ Σc then

last(ρ)
F(ρ)−−−→ q for some state q = (l, w), and if F(ρ) = delay, then there exists some

d > 0 such that for all 0 ≤ d′ ≤ d, there exists some state q such that last(ρ)
d′−−→ q.

Since we focus on control problems for which the control objective (given a pa-
rameter valuation) is to reach a particular location of timed automata, we need only
memoryless strategies (Maler et al., 1995), i.e., strategies F such that F(ρ) only de-
pends on last(ρ).

Outcome defines the restricted behavior of v(G), when the controller plays some
strategy F .

Definition 2.6 (Outcome). Let G be a PGA, v be a parameter valuation, and F be
a strategy over v(G). The outcome Outcome(q,F) of F from state q is the subset of
runs in Runs(q, v(G)) defined inductively as:

• the run with no action q ∈ Outcome(q,F)

• if ρ ∈ Outcome(q,F) then ρ′ = (ρ
δ−−→ q′) ∈ Outcome(q,F) if ρ′ ∈ Runs(q, v(G))

and one of the following three condition holds:
(1) δ ∈ Σu,
(2) δ ∈ Σc and δ = F(ρ),

(3) δ ∈ R≥0 and ∀0 ≤ δ′ < δ, ∃q′′ ∈ S s.t. last(ρ)
δ′−−→ q′′ ∧F(ρ

δ′−−→ q′′) = delay.
• for an infinite run ρ, ρ ∈ Outcome(q,F), if all the finite prefixes of ρ are in

Outcome(q,F).

As we are interested in reachability games, we consider only the runs in the out-
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come that are “long enough” to have a chance to reach the goal location: a run
ρ ∈ Outcome(q,F) is maximal if it is either infinite or there is no delay d and no

state q′ such that ρ′ = (ρ
d−−→ q′) ∈ Outcome(q,F) and F(ρ′) ∈ Σc (the only possi-

ble actions from last(ρ) are uncontrollable actions). MaxOut(q,F) denotes the set of
maximal runs for a state q and a strategy F .

Definition 2.7 (Winning strategy, state, game). Let G = (L, l0, X,Σ
c∪Σu, P, E, Inv)

be a PGA and (G, lgoal) a parametric timed game. Let v be a parameter valuation.
A strategy F in the non-parametric game (v(G), lgoal) is winning from state q if for

all runs ρ ∈ MaxOut(q,F), there is some state (lgoal, w) in ρ.
A state q is winning if there exists a winning strategy from q.
The timed game (v(G), lgoal) is winning if its initial state is winning.
The parametric timed game (G, lgoal) is winning if there exists some parameter

valuation v such that (v(G), lgoal) is winning.

In the non-parametric case, the (reachability) control (resp. synthesis) problem is
that of the existence (resp. computation) of a strategy such that, no matter what
happens in the environment, the system ends-up in the desired location (for short
we say this location is enforceable). The control problem is known to be decidable
(Maler et al., 1995) and there exists efficient symbolic algorithms for the computation
of winning states and strategies (Cassez et al., 2005). We now extend these problems
to account for parameters.

Parametric control problem:
Inputs : A PGA G and a location lgoal of G.
Problem : Is the parametric timed game (G, lgoal) winning?

Parametric synthesis problem:
Inputs : A PGA G and a location lgoal of G.
Problem : Compute the set of valuations v of the parameters and the corre-

sponding winning strategies for (v(G), lgoal) to be winning.

The emptiness problem for PTA, i.e. the existence, for a PTA A, of a parameter val-
uation v such that some location is reachable in v(A) is undecidable (Alur et al., 1993).
As the parametric control problem extends the reachability problem (reachability is
control with all transitions controllable), the following theorem holds.

Theorem 2.1. The parametric control problem for PGA is undecidable.

As a consequence to this negative result we now investigate restrictions to the PGA
formalism to make the control problem decidable.

3. L/U Reachability Timed Games

The following syntactic subclass of PTA, called L/U-automaton, has been proposed
in Hune et al. (2002) as a decidable subclass for the emptiness problem. It relies on
the notion of upper and lower bounds for parameters:

Definition 3.1 (Lower and upper bounds). Let γ be a single conjunct of a parametric
clock constraint on the set of clocks X and the set of parameters P . Constraint γ is
of the form sx ∼ Σiaipi, where s ∈ {−1, 1}, x ∈ X, ∼∈ {<,≤} and for all i, ai ∈ Z
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and pi ∈ P . Parameter pi is an upper (resp. lower) bound in γ if ai is positive (resp.
negative).

Parameter p is an upper (resp. lower) bound in the PTA A if for each conjunct γ of
each parametric clock constraint in the guards and invariants of A, either p does not
occur in γ (its coefficient is zero) or p is an upper (resp. lower) bound in γ.

Definition 3.2 (L/U-automaton). A PTA A is an L/U-automaton if every parameter
is either an upper bound or a lower bound in A.

The reachability-emptiness problem is PSPACE-complete for L/U automata (Hune
et al., 2002) and, more generally, the emptiness, universality and finiteness of the
parameter valuation set are PSPACE-complete for infinite runs acceptance properties,
and integer-valued parameters (Bozzelli & La Torre, 2009). These good results are
based on a monotonicity property that L/U automata have: decreasing lower bounds
or increasing upper bounds only adds behaviors. So if we set all lower bounds to 0 and
all upper bounds to a large enough constant that we can compute, then the resulting
timed automaton contains all the possible behaviors. This makes these automata very
well-suited for reachability-like properties.

We accordingly extend this subclass to define a subclass of parametric game au-
tomata for which the parametric control problem is decidable.

Partition of the Set of Parameters The parameters are partitioned into two sets.
The first set P l contains parameters that are used as lower bounds in the guards on
the controllable transitions and as upper bounds in the guards of the uncontrollable
transitions. The parameters from the other set, P u, are used as upper bounds in
the controllable transitions and as lower bounds in the uncontrollable transitions.
Increasing an upper bound or decreasing a lower bound both make the controller more
powerful and restricts the environment (and vice-versa). We assume that invariants
are non-parametric constraints.

Definition 3.3 (L/U game automata (L/U PGA)). An L/U game automaton G =
(L, l0, X,Σ

c ∪ Σu, P, E, Inv) is a parametric game automaton in which:

• the set of parameters P is partitioned as P l and P u;
• each parameter p ∈ P l occurs only as lower bound (resp. upper bound) in the

guards of controllable (resp. uncontrollable) transitions;
• each parameter p ∈ P u occurs only as upper bound (resp. lower bound) in the

guards of controllable (resp. uncontrollable) transitions;
• for each location l, Inv(l) contains no parameter.

We now prove the following theorem:

Theorem 3.1. The control problem is decidable for L/U games.

Proof. Let (λ, µ) represent a parameter valuation such that λ applies to parameters
p ∈ P l, and µ applies to parameters p ∈ P u, and let G[λ, µ] the corresponding timed
game automaton obtained from a PGA G. Recall that a parameter p ∈ P l is a lower
bound in the guards of controllable transitions or an upper bound in the guards of
uncontrollable transitions. Reciprocally, a parameter p ∈ P u is an upper bound in the
guards of controllable transitions or a lower bound in the guards of uncontrollable
transitions. Let G[0,∞] be the TGA obtained from G when each parameter pui ∈ P u is
set to ∞, and each parameter pli ∈ P l is set to 0. Setting a lower bound parameter to
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∞ (in uncontrollable edges) effectively means removing this edge (or setting its guard
to False). In this way, we obtain a timed game automaton, for which the existence of
a winning strategy is known to be decidable.

We now prove the lemma 3.4 that links this TGA to the original problem:

Lemma 3.4. Let G be a L/U game automaton and lgoal one of its locations. There
exists a parameter valuation (λ, µ) such that lgoal ∈ L is enforceable in G[λ, µ] with a
strategy F , iff it is enforceable in G[0,∞] using the same strategy F .

Proof. First notice that by increasing parametric upper bounds or decreasing para-
metric lower bounds, we give more power to the controller and less to the environment.
Recall that uncontrollable actions cannot help to win, i.e., if the timed game is winning
then, in the outcome of any winning strategy, there exists a winning run in which no
uncontrollable action is used. So G[0,∞] represents the most favorable case for the
controller, i.e., if a winning strategy exists in v(G) for some valuation v it certainly
also is possible in G[0,∞].

Now, in the converse direction suppose some winning strategy F exists in G[0,∞].
Given a location, it follows from Maler et al. (1995), that F can be considered con-
stant on regions without loss of generality. Recall that regions are elementary convex
polyhedra that partition the clock-space, and there are a finite number of them for
any given TA. By construction of these regions, taking any transition from two states
with the same location and clock valuations in the same region leads to states with
the same location and clock valuations in the same region (see Alur and Dill (1994)
for details).

0 is obviously a suitable value for the lower bound parameters.
We are therefore searching for a finite value for the upper bound parameters such

that all runs of a given strategy F remain winning. Note that each run of a winning
strategy necessarily reaches the goal location in finite time and with a finite number
of discrete actions.

Now, starting from any reachable state, if the environment does not play, the strat-
egy allows the controller to reach the goal in bounded time. Since the maximum time
that can be spent in a given region is 1 time unit, and since the strategy is constant
on regions, for all starting states with the same location and in the same region, this
bounded time differ by at most one. We can therefore compute a uniform bound on
all starting regions for the time until the controller reaches the goal by following the
strategy (without any disturbance from the environment). Let us call T this bound.

Since the strategy is winning the environment can only play a finite number of
time in each run of the outcome of the strategy, and that number can be uniformly
bounded. Let us call N this bound.

As a consequence N ∗T is certainly an upper bound for the time to enforce the goal
location with the strategy F .

Finally, we just need to ensure that the upper bounds on each clock, in each guard,
are bigger than that constant: consider all the single conjuncts γj in the guards of the
PGA. Constraint γj is of the form sx ∼ Σiaipi, where s ∈ {−1, 1}, x ∈ X, ∼∈ {<,≤}
and for all i, ai ∈ Z and pi ∈ P . Let us call βj the expression

∑
i bipi with bi = ai if

ai is positive and bi = 0 otherwise (i.e. we set all lower bound parameters to 0). The
conjunction of the constraints βj ≥ N ∗T is upward-closed (because all the coefficients
of the parameters are positive) and, by construction, any solution µ of that system is
a valuation such that F is still a winning strategy in G[0, µ].

The claimed result follows directly from Lemma 3.4 and the decidability of the
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control problem for TGA (Maler et al., 1995).

If we think in terms of control it may not be very realistic to be allowed to forbid
uncontrollable transitions using the values of their parameters. It may actually even
seem a bit far-fetched to parametrize uncontrollable actions at all. A consequence of
the previous result however, is that for the subclass of L/U game automata with no
parameter in the guards of uncontrollable transitions, the problem of the emptiness of
the set of valuations such that the controller has a winning strategy is decidable too.

In the context of games however, having a game as symmetric as possible, including
parametrization of guards makes sense. We will now explore the case in which we
nonetheless impose that the parameter valuations never set the guards of the uncon-
trollable transitions to false: we can restrict their behavior but not to the point of
uniformly forbidding the transition.

Consequently, we define a stronger form of the control problem:

Definition 3.5 (T -restricting parameter valuation). Let G be a PGA and T a subset
of its edges. A parameter valuation v is T -restricting if there exists some edge in T ,
with a guard g, such that v(g) is not satisfiable.

A guard being satisfiable means there exists some clock values for which it is true,
but not necessarily that these clock values are indeed reachable in some run. To il-
lustrate the definition, suppose we have a guard x ≤ a ∧ x ≥ b, where x is a clock
and a and b are parameters, then all the valuations such that a < b are restricting.
A contrario, suppose we have a guard x ≤ a ∧ y ≥ b, where x and y are clocks and a
and b are parameters, then the valuations such that a < b are non-restricting even if
it makes the guard false for some values of x and y (e.g. when x = y).

We can now define a more general control problem, in which we are interested only
in non-restricting parameter valuations:

Definition 3.6 (T -non-restricting control problem). Let G be a PGA, lgoal one of
its location, and T a subset of its edges. The T -non-restricting control problem asks
whether there exists a valuation v of the parameters such that v is not T -restricting
and (v(G), lgoal) is winning.

Theorem 3.2. The T -non-restricting control problem and the control problem are
equivalent for general PGA.

Proof. The T -non-restricting problem is clearly the more general problem since we
can always take an empty T set.

Now, remark that the non-restriction constraint can be encoded in the PGA: sup-
pose to begin with that there is only one edge in T and let g be its guard. Then
just add an extra location l′0 that becomes the new initial location. From l′0 add as
many unconstrained self-loops as clocks in the system, each resetting exactly one clock,
and each a different one. Then add a controllable edge from l′0 to the previous initial
location l0, with guard g and resetting all clocks. Clearly, using the self-loops, any
combination of values for the clocks can be reached in l′0 and the transition from l′0
can therefore be taken if and only if g is satisfiable. After taking this transition, all
clocks are reset to zero, we are in l0, and the execution in the PGA can then proceed
exactly as before the transformation. In order to reach the goal, the extra transition
must be taken, and therefore the guard must be satsifiable. The only parameter valu-
ations solutions to the control problem on this modified PGA are therefore those that
are not T -restricting. Finally, if there are several edges in T , we just need to add the
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same widget in sequence at the beginning for each edge to obtain the same result.
In this transformation, if the edges in T are controllable, the extra widgets are

compatible with the L/U restriction, and therefore starting from an L/U PGA, we
obtain again an L/U PGA.

The following corollaries are immediate:

Corollary 3.7. The T -non-restricting problem for PGA is undecidable.

Corollary 3.8. The T -non-restricting control problem is decidable for L/U PGA if
T contains only controllable edges.

Proof. In the transformation proposed in the proof of theorem 3.2, if the edges in
T are controllable, the extra widgets are compatible with the L/U restriction, and
therefore starting from an L/U PGA, we obtain again an L/U PGA for which the
control problem is decidable.

In the previous proof, if some edge in T is uncontrollable, we cannot in general make
the same encoding for that edge because the added transitions are controllable and,
by the L/U restriction, cannot in general have the same guard as an uncontrollable
edge (except if this guard has no parameters but then the non-restriction constraint
is useless). Actually, in that case the problem is also undecidable:

Theorem 3.3. The T -non-restricting control problem is undecidable for L/U game
automata.

Proof. We prove that if T can contain uncontrollable edges, then we can solve the
control problem for PGA, which is undecidable, using the T -non-restricting problem
for L/U PGA.

Let G be some PGA. We do the following transformation: for each parameter p
that is used both as an upper bound and a lower bound in G, we replace it by two
parameters p− and p+, using p− for lower bounds and p+ for upper bounds. We
thus obtain an L/U PGA. To this L/U PGA, we further add a location l∗, which is
completely disconnected from the rest, and to that location we add self-loops in the
following manner: for each pair p− and p+, we add a controllable self-loop with guard
p− ≤ x ≤ p+, for some arbitrary clock x, and an uncontrollable self-loop with guard
p+ ≤ x ≤ p−. By construction, we still have an L/U PGA. Let us call it G′. We define
T as the set of all these self-loops.

Clearly, a parameter valuation v is not T -restricting if and only if v(p−) ≤ v(p+)
(due to controllable edges in T ) and v(p+) ≤ v(p−) (due to uncontrollable edges in
T ), that is if and only if v(p−) = v(p+). And with this condition, the runs in v(G) and
in v(G′) are isomorphic. Consequently, v is a solution to the T -non-restricting control
problem for G′ if and only if it is a solution to the control problem for G.

As a consequence of Theorem 3.3, we need to further restrict L/U PGA to obtain
decidability for the non-restricting control problem. As we have seen above we could
just enforce non-parameterized guards in uncontrollable transitions, but we can do a
bit better: All the guards on the uncontrollable transitions that contain a parameter
as a lower (resp. upper) bound have to contain a constant as a non-strict upper (resp.
lower) bound. Non-strict inequalities are mandatory so that a clock can take the value
equal to the constant as a single time point in the emptiness test. The guards on
controllable transitions have no other restriction than the L/U condition.
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We also limit the parametric linear expression in the constraints of uncontrollable
transitions to just one parameter.

Definition 3.9 (Simple L/U game automata). A simple L/U game automaton is
a L/U game automaton in which the guards of the uncontrollable transitions are
constraints of the form k ≤ x ≤ p or p ≤ x ≤ k, where x ∈ X, p ∈ P , and k ∈ Q.

Theorem 3.4. The T -non-restricting control problem for simple L/U game automata
is decidable.

Proof. In order to prove Theorem 3.4, we build from any L/U simple game automaton
G a TGA as follows. First remark that, by using the transformation described in the
proof of Theorem 3.2, we can assume that T contains only uncontrollable edges.

Recall that by the L/U restriction:

• parameters pui ∈ P u are used as the lower bounds in the guards on the uncon-
trollable transitions,
• parameters pli ∈ P l are used as the upper bounds in the guards on the uncon-

trollable transitions.

Let min(pui ) be the minimal constant that appears as an upper bound in the guards
containing pui as a lower bound, and max(pli) be the maximal constant that appears
as a lower bound in the guards containing pli as an upper bound. Let G[max,min]
represent the L/U TGA obtained with the parameter valuation that assigns 0 to each
lower bound parameter and ∞ to each upper bound parameter that appears only in
controllable transitions or in uncontrollable transitions not in T , and max(pli) (resp.
min(pui )) to every other pli (resp. pui ) bound parameter.

Lemma 3.10. Let G be simple L/U PGA, lgoal one its locations, and T a subset of
its edges. The T -non-restricting problem for G is equivalent to the control problem for
the TGA G[min,max].

Proof. Clearly, by construction, none of the components of this valuation for pu pa-
rameters can be increased because it is already ∞ or because that would give a T -
restricting valuation. Similarly, none of the components of this valuation for pl parame-
ters can be decreased because it is already 0 or because that would give a T -restricting
valuation.

So G[max,min] contains all the possible behaviors for a non-restricting valuation
and the rest of the proof proceeds as in Lemma 3.4.

The Theorem follows immediately.

The use of simple L/U game automata is illustrated in the case-study, Section 5,
presenting a copper annealing controller.

4. A Symbolic Semi-Algorithm to Solve Parametric Timed Games

For timed reachability games, a winning strategy for the controller can be synthesized
using a well-known backward fixed-point algorithm for solving timed games (Maler
et al., 1995). The algorithm is based on the time and action predecessor operators
(Alfaro, Henzinger, & Majumdar, 2001; Maler et al., 1995), that compute the set of
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winning states, starting from the goal location. We examine in this section, how this
algorithm can be extended to the parametric case.

4.1. Parametric symbolic state

In order to represent the infinite state space of PGA, we need an abstraction. We use
here an extension of the classical symbolic states abstraction of TA and TGA (Larsen,
Pettersson, & Yi, 1995).

Definition 4.1 (Parametric symbolic state). A symbolic state of a parametric timed
(game) automaton G, with set of clocks X and set of parameters P , is a pair (l, Z)
where l is a location of A and Z is a set of valuations v on X ∪ P .

Given an arbitrary order on clocks and variables, their R-valuations can be seen as
points in the |X ∪ P |-dimensional space R|X∪P |. Valuation sets that be reached by a
given sequence of edges can be represented by convex polyhedra (Jovanović, Lime, &
Roux, 2015).

For the computation of the state space, we define the following parametric extensions
of the classical operations on valuation sets (Jovanović et al., 2015):

• future: Z↗ = {v′ | ∀p ∈ P, v′(p) = v(p) and ∀x ∈ X, v′(x) = v(x) + d, d ≥ 0};
• reset of the clock variables in set R ⊆ X: Z[R] = {v[R] | v ∈ Z}.

We also need the following operators on symbolic states.

• initial symbolic state of PTA A = (L, l0,Σ, X, P,E, Inv): Init(A) = (l0, {v ∈
RX∪P | v|X ∈ {~0X}↗ ∩ v|P (Inv(l0))|X});
• successor by some edge e = (l, a, γ,R, l′): Succ((l, Z), e) = (l′, (Z ∩ γ)[R]↗ ∩

Inv(l′))

For the backward computation of winning states, we need the following operators:

• past: Z↙ = {v′ | ∃v ∈ Z s.t. ∀p ∈ P, v′(p) = v(p) and ∀x ∈ X, v′(x) = v(x) −
d, d ≥ 0}
• inverse reset of clocks in set R ⊆ X: Z[R]−1 = {v′ | ∃v ∈ Z s.t. ∀p ∈ P, v′(p) =
v(p) and ∀x ∈ X, v(x) = 0 if x ∈ R and v′(x) = v(x) if x 6∈ R}
• predecessor by edge e = (l, a, γ,R, l′): Pred((l′, Z), e) = (l, Z[R]−1 ∩ γ ∩ Inv(l)).

The predecessor by an edge operation is extended by union to define controllable
and uncontrollable action predecessors (predecessors by edge):

• controllable predecessors: cPred((l′, Z)) =
⋃
c∈Σc Pred((l′, Z), c)

• uncontrollable predecessors: uPred((l′, Z)) =
⋃
u∈Σu Pred((l′, Z), u)

We also need to define a safe-timed predecessors (Predt) operator. Let S1, S2 ⊆ S,
both having the same location, and where S is the set of states in the semantics of a
PGA. A state (l, v) ∈ S is in Predt(S1, S2) if from (l, v) we can reach (l, v′) ∈ S1 by
time elapsing and along the path from (l, v) to (l, v′) avoid S2, formally:

Predt(S1, S2) = {(l, v) | ∃d ≥ 0 s.t. (l, v)
d−→ (l, v′), (l, v′) ∈ S1 and Post[0,d](l, v) ⊆ S\S2}

where Post[0,d](l, v) = {(l, v′) ∈ S | ∃t ∈ [0, d] s.t. (l, v)
t−→ (l, v′), v′(x) = v(x) +
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t, if x ∈ X; v′(x) = v(x) if x ∈ P} is the future operator limited to a maximum time
elapising of d time units.

This corresponds intuitively to the states that can reach S1 by delay, without going
through any state in S2 along the path. Safe-timed predecessor operator can also be
expressed as follows:

Lemma 4.2 ((Cassez et al., 2005)). For any two symbolic states S1 and S2, such that
S2 is convex:

Predt(S1, S2) = (S↙1 \S
↙
2 ) ∪ ((S1 ∩ S↙2 )\S2)↙

Also, the following distribution law holds:

Lemma 4.3 ((Cassez et al., 2005)). For any two symbolic states S1 =
⋃
i S1i and

S2 =
⋃
j S2j:

Predt(
⋃
i

S1i,
⋃
j

S2j) =
⋃
i

⋂
j

Predt(S1i, S2j)

4.2. Computing the Winning States in Parametric Timed Games

Lemma 4.4. For any location l, any set of valuations on both clocks and parameters
Z,Z ′, and any parameter valuation v|P :

(1) v|P (Z↙) = v|P (Z)↙

(2) v|P (Z ∩ Z ′) = v|P (Z) ∩ v|P (Z)

(3) v|P (Z[R]−1) = v|P (Z)[R]−1

(4) v|P (Z \ Z ′) = v|P (Z) \ v|P (Z)
(5) for any edge e, v|P (Pred((l, Z), e)) = Pred((l, v|P (Z)), v|P (e))
(6) v|P (Predt(Z1, Z2)) = Predt(v|P (Z1), v|P (Z2))

Proof. The proofs for the first two items can be found in the Lemma 1 of Jovanović
et al. (2015). The proof is given for the future operator however. The proof for the
past operator is extremely similar and needs just changing the sign for time elapsing.

Consider now the inverse reset operator. Suppose that v|X ∈ v|P (Z[R]−1). Then the
valuation v on clocks and parameters obtained by combining v|X and v|P belongs to

Z[R]−1. Then there exists v′ ∈ Z such that v′|P = v|P , and for all clock x, if x ∈ R
then v′(x) = 0 and if x 6∈ R then v′(x) = v(x). It follows that v′|X ∈ v|P (Z), v′|X and

for all clock x, if x ∈ R then v′|X(x) = 0 and if x 6∈ R then v′|X(x) = v|X(x). This, in

turn, means that v|X ∈ v|P (Z)[R]−1. The other direction works similarly.
We now turn to set difference. Consider v|X ∈ v|P (Z \Z ′). Then the valuation v on

clocks and parameters obtained by combining v|X and v|P belongs to Z but not to Z ′

and therefore v|X ∈ v|P (Z) but not in v|P (Z ′), and finally it belongs to the difference
of the two. The other direction is similar.

The proof for Pred follows from the results for intersection and inverse reset. That
of Predt follows from Lemma 4.2 and the results for past and intersection.
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We now present a well-known backward fixed-point algorithm for solving timed
games with a reachability objective (Maler et al., 1995). We first compute forward the
whole reachable state space, then compute backwards the winning states. In Maler et
al. (1995), the authors only use the backwards computation. Here, we also intersect
with the actual reachable state space.

The computation therefore consists of a sequence of two fixed-points on the state-
space of the PGA. To handle these sets of states, we use, as before, the notion of
parametric symbolic state from Definition 4.1, S = (l, Z), and the corresponding
operators.

We extend the Succ operator to arbitrary sets of states by defining, for any set of
states S and any location l, the subset Sl of S containing the states with location l.
Sl is therefore a symbolic state (l, Z) for some set of valuations Z. Then we define
Succ(S, e) as Succ(Sl, e), with l being the source location of edge e.

As a direct consequence of Jovanović et al. (2015), the reachable state-space of the
PGA G can then be computed by the following fixed-point (when it exists):

S0 = ∅ and Sn+1 = Init(G) ∪
⋃
e∈E

Succ(Sn, e)

The final fixed-point set is noted S∗.
If we denote by Sgoal = {lgoal} × RX∪P , then the backwards algorithm for solving

reachability games is the fixed-point computation of:

W0 = ∅ and Wn+1 = S∗ ∩ (Predt(cPred(Wn), uPred(S∗\Wn)) ∪ Sgoal),

When it exists, the final fixed-point set is noted W ∗. We give the following result:

Lemma 4.5. For a PGA G, a location lgoal, and a state (l, v), it holds that for all
i, (l, v) is reachable and there exists a winning strategy enforcing lgoal in at most i
controllable steps from (l, v|X) in v|P (G) iff (l, v) ∈Wi.

Proof. We proceed by induction. The property obviously holds for W0. Now, suppose
it holds for some n ≥ 0.

(1) We first prove the left to right implication. Let (l, v) be a state in Wn+1.
Then (l, v) ∈ S∗ ∩ (Predt(cPred(Wn), uPred(S∗ \ Wn)) ∪ Sgoal). If (l, v) ∈
Sgoal we are done, else, by Lemma 4.4, the latter implies that (l, v|X) is in
Predt(cPred(v|P (Wn)), uPred(v|P (S∗) \ v|P (Wn))). By definition of Predt, there
exists a non-negative delay d such that v|X + d ∈ cPred(v|P (Wn)) and for all
0 ≤ d′ ≤ d, v|X + d′ 6∈ uPred(v|P (S∗) \ v|P (Wn)). So, by delaying from v|X , we
can enforce the reachability of cPred(v|P (Wn)). From there, by taking a control-
lable edge we can enforce the reachability of v|P (Wn) and, using the induction
hypothesis, after that we can win in at most n controllable edges. Putting it all
together, we can then force the win from vX , in at most n+1 controllable edges.

(2) Now, we prove the right to left implication. If there is a strategy to win in at
most n+ 1 steps, then:
• Either we need no controllable edges at all, then we are already in Sgoal

and we are done;
• Or we need at least one controllable edge (possibly after some delay),

which can be forced, and then we can win in at most n controllable edges.
By the induction hypothesis, this latter statement means we are then in
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v|P (Wn). So, from v|X , we can force the reachability of Pred(v|P (Wn)),
possibly after some delay, which by definition of Predt is exactly v|X ∈
Predt(cPred(v|P (Wn)), uPred(RX≥0 \ v|P (Wn))). Since (l, v) is reachable, it is
also in S∗ and it is therefore also equivalent to only consider uncontrollable
transitions in reachable states that could divert us from Wn. Finally, we
get v|X ∈ v|P (S∗) ∩ Predt(cPred(v|P (Wn)), uPred(v|P (S∗) \ v|P (Wn))) and
we conclude with Lemma 4.4.

Now, with Lemma 4.5, we can prove the correctness and completeness of the algo-
rithm.

Theorem 4.1 (Correctness and completeness). When W ∗ exists, for any PGA G
and any location lgoal, there exists a winning strategy for the controller in v(G), for a

parameter valuation v iff v ∈ (W ∗ ∩ (l0,~0X ×Q|P |))|P .

Proof. (1) We start by proving the right to left implication. Suppose v ∈ (W ∗ ∩
(l0,~0X×Q|P |))|P . Then there exists a state (l0, v0) in W ∗ such that v0|P = v and
v0|X has all coordinates equal to 0. Valuation v0 is on X ∪P and since it belongs
W ∗, it belongs to Wn for some n. We can then apply Lemma 4.5 to conclude.

(2) Now, we prove the left to right implication. If there exists a winning strategy for
the controller to win in v(G) then it means that it can win within a finite number
of controllable steps. Then, by Lemma 4.5, it means that the state (l0, v0), such
that v0|P = v and v0|X has all coordinates equal to 0, belongs to Wn for some
n, and therefore to W ∗, which concludes the proof.

Remark that the non-restriction constraint of Section 2 can be easily enforced in
the symbolic computation presented in this section. For each guard, linear constraints
on the parameters ensuring that the guard will not be uniformly false can be statically
derived. We can then constrain the initial symbolic state of the PGA with these addi-
tional constraints and carry out the rest of the computation with no further change.
We thus obtain the winning states (and associated parameter valuations) only for
non-restricting parameter valuations.

4.3. Winning Strategy

In this section we show how to extract the winning strategy from the set of winning
states. We first recall a classical result (straightforwardly extended to the parametric
setting):

Theorem 4.2 ((Maler et al., 1995)). Let (G, lgoal) be a parametric reachability timed
game. For all parameter valuations v, if there exists a winning strategy in v(G) then
there exists a memory-less winning strategy in v(G).

With this theorem, and following Maler et al. (1995), it is easy to extract a memory-
less winning strategy from the set of winning states. We proceed as follows: control-
lable action predecessors give us states from which a corresponding controllable action
should be taken, while timed predecessors give us states in which we should delay.
Since we work on symbolic states, for all the (concrete) states in a given symbolic
state of W ∗, in particular with the same clock valuations but different parameter
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valuations, give the same strategies by this procedure. This thus gives “parametric
strategies” defined in reference to the parameters. We illustrate how the computation
of a memory-less strategy works with the following example.

4.4. Example

l0 l1

l2 lgoal

l3

l4

x > a;u1

x < 1
u2

x := 0

x ≤ a; c1

x ≥ 2; c2

x < b
u3

c3

x ≤ a
c4

Figure 1. A L/U game automaton

l0
x ≥ 0

l1
x > a

l2
x ≥ 0

lgoal
x ≥ 2

l3
x ≥ 0

l4
x ≥ 0

u1

u2

c1

c2

u3

c3

c4

Figure 2. Simulation graph of the L/U game
automaton of Figure 1

We consider the same example as in Cassez et al. (2005), but we parametrize the
model in order to obtain a L/U game automaton (Figure 1). It has one clock x,
controllable (ci) and uncontrollable (ui) actions and two parameters a and b: a appears
positively in the guards of the controllable transitions c1 and c4 and negatively in the
guard of the uncontrollable transition u1; b appears positively in the guard of the
uncontrollable transition u3. The reachability game consists in finding a strategy for
the controller that eventually ends up in the location lgoal.

We now explain how the algorithm works. Although the algorithm of Cassez et
al. (2005) is an interleaved combination of a forward computation and a backward
propagation, for the sake of simplicity, we start from the complete symbolic reachability
graph and show the back-propagation of winning states.

After the computation of the symbolic reachability graph, shown in Figure 4.4,
the backward algorithm starts from the symbolic winning subset (lgoal, x ≥ 2). By
a controllable action (c2) predecessor, we obtain (l2, x ≥ 2). Computing the timed
predecessors removes the constraint x ≥ 2, and computing the controllable predecessors
adds x ≥ b in order not to end-up in loc3 by u3. The resulting state is (l2, x ≥ b). One
of the controllable transitions taking us to loc2 is c4. A controllable action predecessor
(c4) adds a constraint x ≤ a. The constraint on the parameters derived in this state
is a ≥ b. This constraint is back-propagated to the preceding states. The (safe) timed
predecessors give us the state (l4, x ≥ 0 ∧ a ≥ b).

We obtain successively the following sets of winning states: (l3, x ≥ 0 ∧ a ≥ b),
(l2, (x ≥ b) ∨ (x ≥ 0 ∧ a ≥ b)) and (l0, (x ≤ a) ∧

(
(x < 1 ∧ a ≥ b) ∨ x ≥ 1

)
∧
(
(x ≥

b) ∨ (x ≥ 0 ∧ a ≥ b)
)
. The last one simplifies to (l0, (x ≤ a ∧ a ≥ b)).

We stop here with the details of the computation and give the set of winning states

obtained upon the termination of the algorithm: (l0, (x ≤ a)∧
(

(x < 1∧ a ≥ b)∨ (x ≥

16



b)∨(x ≥ 0∧a ≥ b)
)

, (l2, (x ≥ b)∨(x ≥ 0∧a ≥ b)), (l3, x ≥ 0∧a ≥ b), (l4, x ≥ 0∧a ≥ b)
and (lgoal, x ≥ 2).

Let us now show how to extract a winning strategy from the winning set of states.
The symbolic state (l2, x ≥ 2) is the controllable action predecessor of (lgoal, x ≥ 2)
by action c2. Then the winning strategy is: in all states of (l2, x ≥ 2) the controllable
transition c2 should be taken immediately, and in (l2, x ≥ 0), we should delay until
x ≥ 2. The controllable action predecessor from l2 takes us to the symbolic state
(l4, x ≥ b ∧ x ≤ a), deriving a constraint a ≥ b. From that state action c2 should be
taken immediately, and timed predecessors give the symbolic state (l4, x ≥ 0, a ≥ b)
in which we should delay until x ≥ b. A whole winning strategy consists in:

In all states: Do:
(l0, 0 ≤ x ≤ a) c1

(l2, 0 ≤ x < 2) delay
(l2, x ≥ 2) c2

(l3, x ≥ 0) c3

(l4, 0 ≤ x < b) delay
(l4, x ≥ b ∧ x ≤ a) (recall that b ≤ a) c4

Most Permissive Strategy Notice that there may be several winning strategies.
Algorithmically speaking, the order of exploration of the winning states leads to
different winning strategies. As an example, applying controllable predecessor from
(l2, (x ≥ b) ∨ (x ≥ 0 ∧ a ≥ b)) to l0 can lead to both strategies from l0:

(1) doing c1 in all states (l0, x) with x ≤ a;
(2) delaying in all states (l0, x) with x < b and x ≤ a and doing c1 for all states with

x ≥ b and x ≤ a (recall that b ≤ a).

The most permissive strategy can be defined as the union of all these winning
strategies.

5. Case study

The applications of parametric real-time control cover a wide range of domains. Among
them are manufacturing systems, traffic systems, communication protocols, logistic
systems, hardware circuits and embedded systems. For the latter, our approach allows
of course the synthesis of controllers of the environment, but also the synthesis of
device drivers, as well as the synthesis of real-time schedulers. For such systems it is
often impossible to obtain the complete knowledge of the system, especially in the early
design stages and even when all the timing constants are known, if the execution of the
system slightly deviates from the expected behavior, the system synthesized by a non-
parametric approach might not satisfy the expected properties anymore. The interest
of the use of parameter has been shown for the design of a concrete industrial aerial
video tracking system made by Thales (Parquier et al., 2016). Finally, considering a
wide range of values for timing constants jointly with a control approach allows for a
more flexible and robust design.

We now show on a case study how the parametric reachability control problem
modeled by a simple L/U game automata can be used for the design of a system.

We will first show that, regardless of the values of the parameters, there is no
winning strategy that eventually end up in the goal location. We then modify the
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Heat

Maintain Bad2

CoolGoal Bad3

Bad1

y ≤ 100
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y ≤ 300

x ≤ b ∧ y ≤ 100;u1 x ≥ b ∧ x ≤ a+ 10;
x := 0, c1

y ≤ 50;u2

x ≤ b;u4

y ≥ 100;u2

x ≥ a;u3
y ≥ 200; c2

y ≥ 280; c3

Figure 3. A Copper Annealing Controller model

model of the system in order to obtain a winning strategy that we generate with our
algorithm.

The Copper Annealing Controller Let us consider the Copper Annealing Con-
troller depicted in Figure 3. Annealing, in metallurgy and materials science, is a heat
treatment wherein a material is altered, causing changes in its properties such as
strength and hardness. It is a process that produces conditions by heating to above
the critical temperature, maintaining a suitable temperature, and then cooling.

The parametric timed automaton shown in Figure 3 has two clocks x and y, two
parameters a and b, controllable (ci) and uncontrollable (ui) actions. Action c1 stops
the heater to maintain the temperature. Actions c2 and c3 start and stop the cooler,
respectively. The copper is observed by sensors that produce uncontrollable actions: u1

is raised when the copper could be softer: it should be heated a bit more; u2 is raised
when the copper is too hard: the process must stop; u3 is raised when the copper is
soft enough: it should be cooled as soon as possible; u4 is raised when the copper is
too soft: the process must stop.

We assume that the parameters are non-negative.
The parameter a means that a heating stage is followed by a maintaining stage

whose duration can be either longer than the heating duration or shorter, but no more
than 10 time units shorter. Parameter b comes from the dynamics of the system. For
a copper wire heated during at least b time units, the values given by sensors u1 and
u4 are relevant and guaranteed during b time units after the end of the heating stage.

No winning strategy The reachability game consists in finding a strategy, that will
eventually end up in the location Goal. Actually, for this model, we obtain that there
is no winning strategy for this game since it is impossible to prevent the transition
u1 from the location Maintain and then the location Bad1 is always reachable after
some loops (c1.u1)∗ followed by u2.

Then the model of the controller must be corrected. Since heating a bit more the
copper, when it is possible, is not necessary, we can delete the transition u1 (another
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way would consist in controlling the transition from Maintain to Heat when action
u1 occurs by adding a location and two controllable actions).

Winning states Thus, on the corrected model, there exists a winning strategy if and
only if (b < 100) ∧ (a > 40) ∧ (a > b) and the set of winning states obtained by the
algorithm is:

• (Heat, (x ≥ 0) ∧ (y ≥ 0) ∧ (y < 100) ∧ (b < 100) ∧ (a > 40) ∧ (a > b)),
• (Maintain, (x ≥ 0) ∧ (y > 50) ∧ (y ≤ 200) ∧ (b ≤ y − x ≤ a + 10) ∧ (y − x <

100) ∧ (a > b)),
• (Cool, (x > b) ∧ (0 ≤ y ≤ 300) ∧ (b ≤ y − x ≤ a+ 10) ∧ (y − x < 100)),
• (Goal, y ≥ 280 ∧ (b ≤ y − x ≤ a+ 10) ∧ (y − x < 100)).

Intuitively, the condition b < 100 allows to avoid Bad1 by ensuring that the location
Heat can be left before the condition y ≥ 100 becomes true; the condition a > 40
allows to avoid Bad2 by ensuring that the location Maintain can be reached with
y > 50 and the condition a > b allows to avoid Bad3.

T-non-restricting parameter valuations Let T be the set of edges of the L/U
PGA of the Figure 3. All the valuations of the model such that b < a + 10 are T-
restricting since they make the guard x ≥ b∧x ≤ a+10 not satisfiable. However all the
valuations such that there exists a winning strategy (i.e. (b < 100)∧(a > 40)∧(a > b))
are T-non-restricting.

Instantiating the parameters The constraints on the parameters are a > 40, b <
10 and a > b. A sensible choice in this domain is a = 60 and b = 50 which indeed
satisfies the constraints and also ensures a good level of robustness, with a being
small enough not to delay the process too much. For more complex constraints, linear
programming could be used to optimize the design.

Winning strategy A winning strategy corresponding to this parameter valuation,
and extracted from the winning states set, consists in:

In all states (recall that x ≥ 0 and y ≥ 0): Do:
(Heat, {y ≤ 50 or x < 50}) delay
(Heat, {y > 50 and 50 ≤ x ≤ 70}) c1

(Maintain, {y < 200}) delay
(Maintain, {y = 200}) c2

(Cool, {y < 280}) delay
(Cool, {280 ≤ y}) c3

Implementing the strategy Implementing such a strategy has been studied in
Wulf, Doyen, and Raskin (2005). It can be done on different targets such as field
programmable gate arrays (FPGA) (Fleming & Thomas, 2013) or microcontroller
(Bandur, Kahl, & Wassyng, 2012). For more complex strategy and in particular for
distributed system, the implementation of distributed timed automata specification
is proposed in Devillers, Didier, and Klaudel (2013) allowing to guarantee that the
specification are preserved by the implementation.
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6. Conclusion

In this paper we have studied control problems for timed automata extended with
timing parameters, expressed in terms of parametric timed games. In that setting,
the existence of parameter values such that a controller enforcing the reachability of
some control location exists is undecidable. We have therefore proposed a decidable
subclasses based on a restricted use of parameters in the clock constraints, in the spirit
of the L/U automata (Hune et al., 2002).

We have also proposed an extension of a well-known fixed-point backward algo-
rithm for solving timed games of Maler et al. (1995), for the parametric approach. In
that parametric setting, our algorithm consists of two parts, the fixed-point forward
exploration of the state-space and the fixed-point backward computation of winning
states. Its termination is not guaranteed but when it does terminate, it gives the set
of symbolic constraints on parameters and the set of winning states, from which it is
easy to extract a winning strategy and, in turn, a controller.

In future work, we plan to implement the algorithm and for this we will focus
on different restrictions on the use of parameters to ensure the decidability of the
control problems and the termination of the synthesis procedures. In particular, since
in practice the timing features of systems are given as integers, we will apply the
bounded integer approach of Jovanović, Lime, and Roux (2013); Jovanović et al. (2015).
Moreover, to avoid an explicit enumeration of all the possible values of parameters
we will implement a modification of the symbolic computation of S∗ that preserves
the integer parameter valuations which will be given as symbolic constraints between
parameters.

In order to cover a wider range of real-time systems, in particular those using
preemptive scheduling, we also plan to extend this work to Petri Nets with stop-
watches Berthomieu, Lime, Roux, and Vernadat (2007). In such a formalism, we allow
clocks to be stopped and resumed later on, while memorizing their values. We will
rely on existing prior work on such formalisms (e.g. Berthomieu et al. (2007); Lime
and Roux (2009) for stopwatch Petri nets or Alur et al. (1995) for hybrid automata).
As already noted in Henzinger, Ho, and Wong-toi (1997), for stopwatch automata, a
non initialized stopwatch with a null timed derivative can be interpreted as a timing
parameter. The basic reachability problems for stopwatch automata or Petri nets are
undecidable however, even without using parameters. We nonetheless want to inves-
tigate the design of incomplete algorithms, or efficient semi-algorithms for stopwatch
Petri nets with parameters.
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