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On Exponential Stabilization of Spin-1
2

Systems

W. Liang, N. H. Amini, P. Mason

Abstract— In this paper, we study the stabilization problem of
quantum spin- 1

2
systems under continuous-time measurements.

In the case without feedback, we show exponential stabilization
around the excited and ground state by providing a lower bound
of the convergence rate. Based on stochastic Lyapunov tech-
niques, we propose a parametrized feedback controller ensuring
exponential convergence toward the target state. Moreover, we
provide a lower bound of the convergence rate for this case.
Then, we discuss the effect of each parameter appearing in
the controller in the convergence rate. Finally, we illustrate the
efficiency of such feedback controller through simulations.

I. INTRODUCTION

The evolution of an open quantum system undergoing
indirect continuous-time measurements is described by the
so-called quantum stochastic master equation, which has
been derived by Belavkin in quantum filtering theory [6] (see
also [9], [20] for a modern treatment). The solutions of such
equation are called quantum trajectories and their properties
have been studied in [14], [15].
The deterministic part of quantum stochastic master equa-
tion, which corresponds to the average dynamics, is given
by the well known Lindblad operator. Its stochastic part
represents the back-action effect of continuous-time mea-
surements. Feedback control of open quantum systems has
been the subject of many papers [20], [14], [19], [11]. In all
of these papers, the control input appears in the Lindblad
operator (through the system Hamiltonian). The experiment
considered in [?] is a relevant example where a real-time
feedback control is applied to stabilize an arbitrary photon
number state in a microwave cavity.
The preparation of a pure state is investigated as an essential
step towards quantum technologies. According to [1], the
stochastic part, unlike the deterministic one, contributes to
increase the purity of the quantum state, thus yielding a
desirable effect for the preparation of a pure state. On
the other hand, if we do not implement a control to the
quantum system, the measurement induces a collapse of the
quantum state towards either one of the eigenstates of the
measurement operator, a phenomenon known as quantum
state reduction [2], [20], [14], [18]. Thus, combining the
continuous measurement with the feedback control may
provide a desirable approach for preparing the target state
in practice.
In [20], the authors design for the first time a quantum
feedback controller that globally stabilizes a quantum spin- 1
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system (which is a special case of quantum angular momen-
tum systems) towards an eigenstate of σz in the presence
of imperfect measurements. This feedback controller has
been designed by looking numerically for an appropriate
global Lyapunov function. Then, in [14], by analyzing the
stochastic flow and by using stochastic Lyapunov techniques,
the authors construct a switching feedback controller which
globally stabilizes the N -level quantum angular momentum
system, in the presence of imperfect measurements, to the
target eigenstate. A continuous version of this feedback
controller has been proposed in [19]. The essential ideas in
[20], [19] for constructing the continuous feedback controller
remain the same: the controllers consist of two parts, the
first one making the state converge locally to the target
eigenstate, and the second one driving the system away from
the antipodal eigenstates. More recently, [11] introduces a
non-smooth Lyapunov-like theory to construct a continuous
feedback controller that stabilizes globally the generic N -
level quantum system at the target eigenstate.
The problem of estimating and optimizing the rate of con-
vergence to the target eigenstate is also relevant in order to
make the preparation more robust. For example, in [8], the
authors prove the exponential stability of particular target
subspaces for general N -level quantum system driven by
Wiener processes and Poisson processes with an open-loop
control (time-depending Hamiltonian) and in the case of
perfect measurements. Also, in the recent paper [?] the
authors have proven, by simple Lyapunov arguments, the
stochastic exponential stability for a related control system
obtained by applying a proportional output feedback.
The contribution of this paper is threefold: Firstly, we prove
exponential stabilization around the excited state and ground
state for a spin- 1

2 system without feedback and we provide a
lower bound of the convergence rate; Secondly, we construct
a parametrized feedback controller which almost surely stabi-
lizes exponentially the spin- 1

2 system around the excited state
(or ground state) providing a lower bound of the convergence
rate; Finally, we study the effects of the parameters of the
controller on the rate of convergence.
This paper is organized as follows. In Section II, we intro-
duce the stochastic model describing spin- 1

2 systems contain-
ing control inputs in the presence of imperfect measurements
and we introduce the notions of stochastic stability needed
throughout the paper. In Section III, we analyze the system
without feedback and we provide an estimation of the rate
of convergence to the excited or ground state in the quantum
state reduction phenomenon. In Section IV, we propose
a continuous-time feedback controller which almost surely
globally exponentially stabilizes the quantum spin- 1

2 system



around the target eigenstate. We also analyze the asymptotic
behavior of trajectories associated to the quantum dynamics
with feedback. We precise that our continuous feedback has
a similar form as the ones used in [20], [19]. Simulation
results provided in Section V demonstrate the effectiveness
of our control design.

II. PRELIMINARIES

A. System description

Consider a filtered probability space (Ω,F , (Ft),P). Let
Wt be a standard Wiener process and assume that Ft
is the natural filtration of the process Wt. The stochastic
master equation describing the dynamics of a quantum spin-
1
2 system is given by

dρt =

(
−iωeg

2
[σz, ρt] +

M

4
(σzρtσz − ρt)− i

ut
2

[σy, ρt]

)
dt

+

√
ηM

2
[σzρt + ρtσz − 2Tr(σzρt)ρt]dWt

=: F (ρt)dt+G(ρt)dWt

(1)
where ut = u(ρt) is the feedback controller, ωeg is the
difference between the energies of the excited state and the
ground state, η ∈ [0, 1] is determined by the efficiency of the
photodetectors, and M > 0 is the strength of the interaction
between the light and the atoms. The matrices σx, σy, and
σz correspond to the Pauli matrices. The quantum state is
described by the density operator ρ, which belongs to the
space S,

S := {ρ ∈ C2×2 : ρ = ρ∗,Tr(ρ) = 1, ρ ≥ 0}, (2)
where ρ∗ denotes Hermitian conjugation. For a 2-level quan-
tum system, ρ can be uniquely characterized by the Bloch
sphere coordinates (x, y, z) as

ρ =
1+ xσx + yσy + zσz

2
=

1

2

[
1 + z x− iy
x+ iy 1− z

]
. (3)

The vector (x, y, z) belongs to the ball
B(R3) := {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}.

The stochastic differential equation (1) expressed in the
Bloch sphere coordinates takes the following form

dxt =

(
−ωegyt −

Mxt
2

+ utzt

)
dt−

√
ηMxtztdWt

dyt =

(
ωegxt −

Myt
2

)
dt−

√
ηMytztdWt

dzt = −utxtdt+
√
ηM

(
1− z2

t

)
dWt.

(4)

The existence and uniqueness of the solution of (1) have
been studied in [15], [14].

B. Stochastic stability

In this subsection, we introduce the notions of stochastic
stability needed throughout the paper by adapting classical
notions (see e.g. [13], [12]) to our setting. In order to provide
them, we first present the definition of Bures distance [7].

Definition 2.1: The Bures distance between two quantum
states ρa and ρb lying in the state space S is given by

dB(ρa, ρb) :=

√
2− 2

√
Tr(ρaρb) + 2

√
det(ρa) det(ρb).

Also, the Bures distance between a quantum state ρa and a
set E ⊆ S is defined as dB(ρa, E) = minρ∈E dB(ρa, ρ).
Given E ⊂ S and r > 0, we define the neighborhood Br(E)
of E as

Br(E) = {ρ ∈ S : dB(ρ,E) < r}.

Definition 2.2: Let Ē be an invariant set of system (1),
then Ē is said to be

1. locally stable in probability, if for every ε ∈ (0, 1) and
r > 0, there exists a δ = δ(ε, r), such that,

P
{
ρt ∈ Br(Ē) for t > 0

}
≥ 1− ε,

whenever ρ0 ∈ Bδ(Ē).
2. exponentially stable in mean, if for some positive

constants α and β,
E
[
dB(ρt, Ē)

]
≤ αdB(ρ0, Ē)e−βt,

whenever ρ0 ∈ S.
3. almost surely exponentially stable, if

lim sup
t→∞

1

t
log dB(ρt, Ē) < 0, a.s.

whenever ρ0 ∈ S . The left-hand side of the above
inequality is called the Lyapunov exponent of the
solution and its absolute value describes the rate of
convergence.

Note that any equilibrium ρ̄ of (1), that is any quantum state
satisfying F (ρ̄) = G(ρ̄) = 0, corresponds to a special case
of invariant set.

Notation 2.3: Suppose that the function V (ρ, t) : S ×
R+ → R+ is continuously twice differentiable in ρ and once
in t. We denote by L the infinitesimal generator associated
with the equation (1). The latter acts on V in the following
way,
L V (ρ, t)

:=
∂V (ρ, t)

∂t
+
∂V (ρ, t)

∂ρ
F (ρ) +

1

2

∂2V (ρ, t)

∂ρ2
(G(ρ), G(ρ)),

where derivatives must be taken componentwise and the
Hessian must be thought as a quadratic form. Then, by Itô’s
formula, dV (ρ, t) = L V (ρ, t)dt+ ∂V (ρ,t)

∂ρ G(ρ)dWt.

III. QUANTUM STATE REDUCTION

In this section, we study the dynamics of the quantum
spin system (1) with ut = 0. First, we note that in this
case the states ρg = diag(1, 0) and ρe = diag(0, 1) are
the equilibria of system (1), i.e., F (ρg) = F (ρe) = 0 and
G(ρg) = G(ρe) = 0. In the following theorem, we prove
that the quantum state reduction of dynamics (1) towards the
invariant set Ē := {ρg, ρe} occurs with exponential velocity.

Theorem 3.1 (Quantum state reduction): For system (1),
with ut = 0 and ρ0 ∈ S, the set Ē is exponentially
stable in mean and a.s. with Lyapunov exponent less than
−ηM2 . Moreover, the probability of convergence to ρ̄ ∈ Ē is
Tr(ρ0ρ̄).



Proof: The proof proceeds in two steps:
Step 1: We take the standard deviation process

V (ρt) =

√
Tr(σ2

zρt)− Tr2(σzρt) =

√
1− Tr2(σzρt)

as candidate Lyapunov function. It is twice continuously
differentiable with respect to ρt, except for the set Ē.
By Lemma 1.1 given in the appendix, we can assume
that Ē is never attained, which allows us to calculate
L V (ρt) = −ηM2 V (ρt). By Itô’s formula, for all ρ0 ∈
S, E[V (ρt)] = V (ρ0) +

∫ t
0
E[L V (ρt)]ds which implies

E[V (ρt)] = V (ρ0)e−
ηM
2 t. We have

dB(ρt, Ē) =

{
dB(ρt, ρe), if Tr(σzρt) > 0;

dB(ρt, ρg), if Tr(σzρt) ≤ 0.

Thus, for all ρt ∈ S, 0 ≤ dB(ρt, Ē) ≤
√

2−
√

2. Moreover,
C1dB(ρt, ρe) ≤ V (ρt) ≤ C2dB(ρt, ρe), if Tr(σzρt) > 0;

C1dB(ρt, ρg) ≤ V (ρt) ≤ C2dB(ρt, ρg), if Tr(σzρt) ≤ 0,

where C1 =
√

1 +
√

2/2 and C2 = 2. Then, we have

C1dB(ρt, Ē) ≤ V (ρt) ≤ C2dB(ρt, Ē). (5)

Thus, for all ρ0 ∈ S , E[d(ρt, Ē)] ≤ C2/C1 d(ρ0, Ē)e−
ηM
2 t,

which implies that the set Ē is exponentially stable in mean.
Now, we consider the following stochastic process,

Q(ρt) = e
ηM
2 tV (ρt) ≥ 0,

whose infinitesimal generator is given by

LQ(ρt) = e
ηM
2 t[ηM/2V (ρt) + L V (ρt)] = 0.

Hence, the process Q(ρt) is a positive martingale. Due
to the Doob’s martingale convergence theorem [16], the
process Q(ρt) converges almost surely to a finite limit A
as t → ∞. Consequently, supt≥0Q(ρt) = A implies
supt≥0 V (ρt) = Ae−

ηM
2 t a.s.. Letting t → ∞, we obtain:

lim supt→∞
1
t log V (ρt) ≤ −ηM2 a.s.. By the inequality (5),

lim sup
t→∞

1

t
log dB(ρt, Ē) ≤ −ηM

2
, a.s. (6)

which means that the set Ē is a.s. exponentially stable.
Furthermore, we conclude that almost all paths which never
exit the set Br(ρ̄) ⊂ S exponentially converge to ρ̄ ∈ Ē.

Step 2: We follow the approach of [4], [2] to calculate
the probability of convergence towards ρ̄ ∈ Ē. According to
the result of Step 1, we denote the terminal state ρ∞ of the
reduction process ρ∞ := Peρe + Pgρg , where Pe (resp. Pg)
is the probability of reducing to ρe (resp. ρg), as t → ∞.
Since L Tr(ρtρ̄) = 0, Tr(ρtρ̄) is a positive martingale. By
the Doob’s martingale convergence theorem, we have
E[Tr(ρ∞ρ̄)] = lim

t→∞
E[Tr(ρtρ̄)] = E[Tr(ρ0ρ̄)] = Tr(ρ0ρ̄).

Therefore, Pe = Tr(ρ0ρe), Pg = Tr(ρ0ρg). The proof is
complete. �

IV. EXPONENTIAL STABILIZATION BY CONTINUOUS
FEEDBACK

A. Almost sure global exponential stabilization

Lemma 4.1: For system (1) with ρ0 ∈ S, assume that
under the feedback law ut the system (1) admits ρ̄ ∈ Ē as

unique equilibrium, then for all r ∈ (0,
√

2],
Pρ0{τBr <∞} = 1,

where τBr denotes the first entry time of Br(ρ̄).
Proof: In order to prove the lemma, we will make use of

the support theorem, in the form considered in [5]. For this
purpose, one has to consider the Stratonovich version of the
equation (1) and the corresponding controlled deterministic
differential equation, which takes the form

ρ̇ = F (ρ)− 1

2

∂G(ρ)

∂ρ
G(ρ) +G(ρ)w(t), (7)

where w is the (deterministic) control input. Assume without
loss of generality that ρ̄ = ρe, then by the hypothesis of the
lemma we have that F (ρg) 6= 0 and therefore ρg is not an
equilibrium point of (7). Moreover, since the z component of
G(ρ) in the Bloch sphere coordinates is different from zero
outside Ē, we deduce that, for any ρ(0) ∈ S, there exists a
control w(t) steering (7) from ρ(0) to Br(ρ̄) in finite time.
Thus, the assumptions in [5, Propositions 4.3 and 4.6] are
satisfied, in such a way that, for a fixed T > 0, there exists
εT > 0 such that, for all ρ0 ∈ S, Pρ0(τBr < T ) ≥ εT .

By Dynkin’s inequality [10], ∀ ρ0 ∈ S and ∀ r ∈ (0,
√

2],

Eρ0 [τBr ] ≤
T

1− supρ0∈S Pρ0(τBr ≥ T )
≤ T

εT
<∞.

Then by Markov inequality, ∀ ρ0 ∈ S and ∀ r ∈ (0,
√

2],
Pρ0{τBr <∞} = 1. The proof is complete. �

Theorem 4.2: For system (1) with ρ0 ∈ S, denote as
ρ̄ ∈ Ē the target eigenstate, and assume that the feedback
controller ut satisfies the condition of Lemma 1.1 given in
the appendix and ut = 0 in Ē if and only if ρt = ρ̄. Suppose
that there exists a function V (ρ), which is twice continuously
differentiable on the set Br(ρ̄) \ ρ̄ with r ∈ (0,

√
2], and

positive constants C, C1, C2 such that, ∀ ρt ∈ Br(ρ̄) \ ρ̄ ,
(i) C1 dB(ρt, ρ̄) ≤ V (ρt) ≤ C2 dB(ρt, ρ̄),

(ii) L V (ρt) ≤ −C V (ρt).
Then ρ̄ is a.s. exponentially stable.

Proof: The proof proceeds in 3 steps:

1. ρ̄ is locally stable in probability.
2. ∃T <∞ s.t. ∀ t ≥ T , ρt ∈ Br(ρ̄) a.s..
3. ρ̄ is a.s. exponentially stable.

Step 1. Choose r ∈ (0,
√

2) and let ε ∈ (0, 1) be arbitrary,
by the continuity of V (ρt) and the fact that, for all ρt ∈ S,
V (ρt) = 0 if and only if dB(ρt, ρ̄) = 0, we can find a
δ = δ(ε, r) > 0 such that,

1/ε sup
ρ0∈Bδ(ρ̄)

V (ρ0) ≤ C1r. (8)

Let τ be the first exit time of ρt from Br(ρ̄). By Itô’s formula
and the condition (ii),

E[V (ρt∧τ )] ≤ V (ρ0)− C E
[∫ t∧τ

0

V (ρs)ds

]
≤ V (ρ0).

For all t ≥ τ , dB(ρt∧τ , ρ̄) = dB(ρτ , ρ̄) = r. Hence, by the
condition (i),

E[V (ρt∧τ )] ≥ E[1{t∧τ}V (ρτ )]

≥ E[1{t∧τ}C1dB(ρτ , ρ̄)] ≥ C1r P(τ ≤ t).



Combining with the inequality (8), we have

P(τ ≤ t) ≤ E[V (ρt∧τ )]

C1r
≤ V (ρ0)

C1r
≤ ε.

Letting t→∞,
P(τ <∞) ≤ ε⇒ P{dB(ρt, ρ̄) < r for t ≥ 0} ≥ 1− ε,

which concludes the first step.
Step 2. Since ut = 0 in Ē if and only if ρt = ρ̄, by

Lemma 4.1, we obtain, for all ρ0 ∈ S, Pρ0{τBδ <∞} = 1,
where τBδ = inf{t ≥ 0 : ρt ∈ Bδ(ρ̄)} with δ ∈ (0, r). It
implies that ρt enters Bδ(ρ̄) in a finite time almost surely.
Then we employ an argument inspired by [14] and suppose
ρ0 ∈ S. We define two sequences of stopping times {σk}k≥0

and {τk}k≥1 with σ0 = 0 and, for n ≥ 1, τn = inf{t ≥
σn−1 : ρt ∈ Bδ(ρ̄)} and σn = inf{t ≥ τn : ρt /∈ Br(ρ̄)}.
Then by the strong Markov property and the Bayes’ formula,
we have
Pρ0(τn <∞|σn−1 <∞) = 1, Pρ0(σn <∞|τn <∞) ≤ ε.
Moreover, by the construction of the stopping times, we have
Pρ0(τn <∞|σn <∞) = Pρ0(σn−1 <∞|τn <∞) = 1.

Hence by Bayes’ formula, we obtain

Pρ0(σn <∞)

Pρ0(σn−1 <∞)

= Pρ0(σn <∞|τn <∞)Pρ0(τn <∞|σn−1 <∞).

In addition with Pρ0(σ1 < ∞) ≤ ε, we have Pρ0(σn <
∞) ≤ εn and thus

∑∞
n=1 Pρ0(σn < ∞) ≤

∑∞
n=1 ε

n =
ε

1−ε < ∞. By the Borel-Cantelli lemma, we can conclude
that, for almost all trajectories, there exists N <∞, such that
σn =∞ for all n ≥ N . That is, for almost all sample paths,
there exists T < ∞ such that, for all t ≥ T , ρt ∈ Br(ρ̄).
This completes the proof of Step 2.

Step 3. In this step, we obtain an upper bound of the
Lyapunov exponent by employing an argument inspired
by [13, Theorem 3.3, p. 121]. For every fixed T consider
the event ΩT = {ρt ∈ Br(ρ̄) for all t ≥ T}. Conditioning
to ρt ∈ ΩT , from the condition (ii), we get

L log V (ρt) ≤ −C−
1

2
[Vρ(ρt)G(ρt)/V (ρt)]

2 =: −C−g
2(t)

2
for t ≥ T which implies
log V (ρt) = log V (ρT )−C(t− T )

+

∫ t

T

g(s)dWs −
1

2

∫ t

T

g2(s)ds.

Let m = 1, 2, 3 · · · and take arbitrarily ε ∈ (0, 1). By the
exponential martingale inequality (see e.g. [13]), we have

P
{

sup
T≤t≤T+m

[∫ t

T

g(s)dWs −
ε

2

∫ t

T

g2(s)ds

]
>

2

ε
logm

}
≤ 1

m2

Since
∑∞
m=1

1
m2 < ∞, by Borel-Cantelli lemma, we have

that for almost all sample paths, there exists m0, such that
if m > m0,

sup
T≤t≤T+m

[∫ t

T

g(s)dWs −
ε

2

∫ t

T

g2(s)ds

]
≤ 2

ε
logm

Thus, for T ≤ t ≤ T +m and m > m0,∫ t

T

g(s)dWs ≤
2

ε
logm+

ε

2

∫ t

T

g2(s)ds, a.s.

If g2(t) ≥ K, then we have

log V (ρt) ≤ log V (ρT )− C(t− T ) +
2

ε
logm− 1− ε

2
K

almost surely. It gives

lim sup
t→∞

1

t
log V (ρt) ≤ −C −

1− ε
2

K a.s.

Letting ε→ 0, we have lim supt→∞
1
t log V (ρt) ≤ −C− K

2
a.s. In addition, due to (i), we have

lim sup
t→∞

1

t
log dB(ρt, ρ̄) ≤ −C − K

2
, a.s.

Since T can be taken arbitrarily large and Step 2 implies
that limT→∞ P(ΩT ) = 1 we can conclude that ρ̄ is almost
surely exponentially stable. The proof is complete. �

B. Feedback controller design

1) Control design: For simplicity, we define the following
subset of S,

Dλ(ρ̄) := {ρ ∈ S : 0 < λ < Tr(ρρ̄) ≤ 1} = Brλ(ρ̄)

where rλ =
√

2− 2
√
λ with λ ∈ (0, 1).

Theorem 4.3: Consider system (1) with ρ0 ∈ S , denote
as ρ̄ ∈ Ē the target eigenstate and let

V (ρt) =
√

1− Tr(ρtρ̄), ρ̄ ∈ Ē. (9)
Define the feedback control

ut = u
(1)
t + u

(2)
t = α[V (ρt)]

β − γ Tr(i[σy, ρt]ρ̄) (10)

where γ ≥ 0, β ≥ 1 and 0 < α < ηMλ2

(1−λ)
β−1
2

with λ ∈ (0, 1).

Then ut globally exponentially stabilizes system (1) a.s. to
ρ̄.

Proof: As ρt ≥ 0, we have
|Tr(i[σy, ρt]ρ̄)| = |Tr(σxρt)| = |xt| ≤ 2V (ρt).

We easily verify that ut satisfies the condition of Theo-
rem 4.2. The infinitesimal generator of (9) is given by

L V (ρt) =
ut
4

Tr(i[σy, ρt]ρ̄)

V (ρt)
− ηM

2
Tr2(ρtρ̄)V (ρt) (11)

For all ρt ∈ Dλ(ρ̄),
L V (ρt) ≤ −1/2[ηMλ2 − αV β−1(ρt)]V (ρt)

≤ −1/2[ηMλ2 − α(1− λ)
β−1
2 ]V (ρt)

If 0 < α < ηMλ2

(1−λ)
β−1
2

, we get

L V (ρt) ≤ −CλV (ρt) (12)

where Cλ = 1/2[ηMλ2 − α(1− λ)
β−1
2 ] > 0. Moreover, we

have
g2(t) = [Vρ(ρt)G(ρt)/V (ρt)]

2 ≥ ηMλ2, ∀ ρt ∈ Dλ(ρ̄)

By Theorem 4.2, we can show that ut exponentially stabilizes
the system (1) to ρ̄ almost surely. Furthermore, we have

lim sup
t→∞

1

t
log dB(ρt, ρn) ≤ −Kλ, a.s.

where Kλ = ηMλ2 − α
2 (1− λ)

β−1
2 . The proof is complete.

�



2) Effect of the parameters of the controller: We now
study the dynamics of the closed-loop system and discuss
informally how to choose the coefficients α, β, γ of ut to
stabilize the system more efficiently.

Case 1. Consider the case in which the trajectory ρt lies in
a small neighborhood of the target eigenstate ρ̄ permanently.
According to the infinitesimal generator of the Lyapunov
function (9) given by (11), we can see that the stochastic part
of the stochastic master equation (1) and the deterministic
part multiplied by u(2)

t always yield desirable effects on the
preparation of the target eigenstate. On the other hand u(1)

t

may impact negatively on the convergence to the target state.
Choosing a larger β allows us to reduce the negative effect
of u(1)

t for any fixed α.
Case 2. Assume that the initial state ρ0 is contained in

a neighborhood of the antipodal eigenstate. It is easy to
check that, if such a neighborhood is small enough, then
|L xt| ≥ α

2 . In particular, choosing a larger α allows one to
consider a larger neighborhood such that the inequality holds
true. Letting τ be the first exit time from the neighborhood,
by Itô’s formula, we have 2 ≥ E[|xτ − x0|] ≥ α

2E[τ ]. By
Markov’s inequality, we then get P[τ ≥ t] ≤ E[τ ]

t ≤ 4
αt .

Thus taking a larger α permits to exit more quickly from
the given neighborhood.

Case 3. Suppose that ρ0 is far from Ē. In this case,
taking V as in (9), the term in L V corresponding to u(2)

t is
always negative outside a neighborhood U of the antipodal
eigenstate, and it is proportional to γ. Thus, reasoning as in
Case 2 above, restricting to the trajectories that never enter U
for t ≥ 0 and defining τ as the first time when the trajectory
enters in a neighborhood U ′ of ρ̄, we get that a larger γ
increases the probability of quickly entering U ′.

V. NUMERICAL SIMULATIONS

For our simulations, since ρt should remain in S, we con-
sider the following Kraus form [3], [17] associated with (1),

ρt + dρt =
MdYtρtM∗dYt + 1−ηM

4 σzρtσzdt

Tr
(
MdYtρtM∗dYt + 1−ηM

4 σzρtσzdt
) ,

where

MdYt = 1−
[
i

2
(ωegσz + utσy) +

M

8
1

]
dt+

√
ηM

2
σzdYt

dYt = dWt +
√
ηMTr(σzρt)dt

The simulations in the case ut = 0 are shown in
Fig. 1. In particular, we observe that the expectation of the
Lyapunov function E[V (ρt)] fits precisely the exponential
function V (ρ0)e−

ηM
2 t, and the expectation of the Bures dis-

tance E[dB(ρt, Ē)] is always below the exponential function
2dB(ρ0,Ē)√

1+
√

2/2
e−

ηM
2 t, which confirms the results of Section III.

We set ρe as the target eigenstate. The simulations corre-
sponding to the exponential stabilization with ut considered
as in Section IV-B, are shown in Fig. 2 and 3. In Fig. 2, the
system starting at (−1, 0, 0) satisfies the condition of Case 3
of Section IV-B.2. We observe that V (ρt) and dB(ρt, ρe)
decrease quickly, that is ρt approaches ρe quickly. In Fig. 3,
the system starting at (0, 0, 1) satisfies the condition of

Fig. 1. Quantum state reduction with ut = 0 starting at (0, 0, 0), when
ωeg = 0, η = 0, 3, M = 1: The black curve represents the mean value of
the 10 arbitrary samples, the red curve represents the exponential reference.
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Fig. 2. Exponential stabilization with ut starting at (−1, 0, 0), when
ωeg = 0, η = 0, 3, M = 1, α = 7.61, β = 5, λ = 0.9, γ = 10:
The black curve represents the mean value of all the samples, the red curve
represents the exponential reference.

Case 2 and Case 3 in Section IV-B.2. We observe that V (ρt)
and dB(ρt, ρe) also decrease quickly.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have analyzed the asymptotic behavior of
quantum spin- 1

2 systems both for the cases without and with
feedback. For the case without feedback, we have shown
that for almost all trajectories ρt exponentially converge
to the eigenstate ρe or ρg in mean and almost surely. By
combining such asymptotic behavior for the case without
feedback and the idea of breaking the symmetry of the state
space S, we designed a parametrized continuous feedback
stabilizing exponentially the system toward a predetermined
target eigenstate almost surely. Furthermore, we established
lower bounds both with and without feedback. Also, we
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Fig. 3. Exponential stabilization with ut starting at (0, 0, 1), when ωeg =
0, η = 0, 3, M = 1, α = 7.61, β = 5, λ = 0.9, γ = 10: The black curve
represents the mean value of all the samples, the red curve represents the
exponential reference.



discussed the role that each parameter appearing in the feed-
back law plays in this convergence speed. Finally, numerical
simulations confirm our theoretical results.

Future work will be focused on the extension of the results
presented in this paper to the exponential stabilization of an
arbitrary eigenstate of N -level angular momentum system.
Different directions remain to be explored. For example,
optimizing our choice of feedback. Also, the adaptation of
our results to the case where there are delays in the feedback
loop is included in our future research lines.
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APPENDIX

The following lemma is inspired by analogous results
in [12], [13].

Lemma 1.1: Assume that ρ0 6= ρ̄ with ρ̄ ∈ Ē and ut is
continuous, continuously differentiable in S \ ρ̄ and |ut| ≤
Γ
√

1− Tr(ρtρ̄) for some Γ ∈ R+. Then,
P{ρt 6= ρ̄, ∀t ≥ 0} = 1.

Proof: Due to the fact that ρt ≥ 0, in the Bloch sphere
coordinates, if |zt| → 1 then (xt, yt) → (0, 0). Thus, it is
sufficient to show the inaccessibility of ρe or ρg by proving
the following two assertions

1) For all z0 6= 1, |ut| ≤ Γ
√

1− zt with Γ ∈ R+,
P{zt 6= 1,∀t ≥ 0} = 1.

2) For all z0 6= −1, |ut| ≤ Γ
√

1 + zt with Γ ∈ R+,
P{zt 6= −1,∀t ≥ 0} = 1.

We will prove the first assertion. Suppose {zt = 1} is
accessible, that is there exists z0 such that P{τ < ∞} > 0,
where τ = inf{t ≥ 0 : zt = 1}. Then, we can find a finite
constant T sufficiently large such that P(B) > 0, where B =
{τ ≤ T}. Consider the stochastic process, Qt = 1/(1− zt)
for all zt 6= 1 and t ∈ [0, T ]. By Itô’s formula,

LQt = − utxt
(1− zt)2

+
ηM

(
1− z2

t

)2
(1− zt)2

≤ KQt

where K =
√

2 Γ + 4ηM . The above inequality holds as∣∣∣√ηM(1− z2
t )
∣∣∣ ≤ 2

√
ηM(1− zt)

and, by the assumption of the lemma, |utxt| ≤ Γ
√

2(1−zt).
Due to the Grönwall-Bellman lemma, we construct the fol-

lowing process, ft = e−KtQt whose infinitesimal generator
is given by

L ft = e−Kt(LQt −KQt).
Now for any ε ∈ (z0, 1), define the stopping time τε =
inf{t ≥ 0 : zt /∈ [−1, ε)}. By Itô’s formula,

E[fτε∧t] = Q0 + E
[∫ τε∧t

0

L fsds

]
≤ 1

1− z0
.

For all events in B, we have τε ≤ T and zτε = ε,

E
[
e−KT

1− ε
1B

]
≤ E[fτε1B ] ≤ 1

1− z0

which implies P(B) ≤ (1−ε)e−KT /(1−z0). Letting ε→ 1,
we get P(B) = 0, which contradicts the definition of B.
Hence, the first assertion is proved.

For the second assertion, we have |utxt| ≤ Γ
√

2(1 + zt)
and

∣∣√ηM(1− z2
t )
∣∣ ≤ 2

√
ηM(1 + zt). We can show

similarly to the previous case that {zt = −1} is inaccessible.
The proof is then complete. �
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