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ABSTRACT

We tackle the challenging problem of efficient and accurate seismic traveltime computation

in 3D anisotropic media, by applying the fast sweeping method to a discontinuous Galerkin-

based Eikonal solver. Using this method leads to a stable and highly accurate scheme, which

is faster than finite-difference schemes for given precision, and with a low computational cost

compared to the standard Runge–Kutta discontinuous Galerkin formulation. The integral

formulation of the discontinuous Galerkin method also makes it easy to handle seismic

anisotropy and complex topographies. Several numerical tests on complex models, such as

the 3D SEAM model, are given as illustration, highlighting the efficiency and the accuracy
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of this new approach. In the near future, these results will be used together with accurate

solvers for seismic amplitude and take-off angle computation in order to revisit asymptotic

inversion (traveltime/slope tomography) and imaging approaches (quantitative migration

involving amplitudes and angles).
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INTRODUCTION

Asymptoptic approaches based on traveltime and amplitude computation in the high fre-

quency approximation are widely used in many seismic applications such as traveltime/slope

tomography for initial velocity model building (Le Meur, 1994; Hole and Zelt, 1995; Billette

and Lambaré, 1998; Leung and Qian, 2006; Taillandier et al., 2009; Lelièvre et al., 2011;

Tavakoli F. et al., 2017), or ray-based (quantitative) migration (Beylkin, 1985; Bleistein,

1987; Beylkin and Burridge, 1990; Jin et al., 1992; Gray and May, 1994; Lambaré et al.,

2003; Operto et al., 2003). The advantage of a slowly varying quantity (traveltime) com-

pared to the highly oscillating wavefield makes possible efficient decimations/interpolations

over sparse grids for storage, which might be of great interest when working with large

models and datasets (Mendes, 2000; Vanelle and Gajewski, 2002; Alkhalifah, 2011).

In the high-frequency regime, we may consider the Lagrangian framework of the ray the-

ory to compute traveltimes by tracing the characteristics of the Eikonal equation (Červený,

2001). Solving the related ordinary differential equation with initial conditions (source lo-

cation and shooting angle) is straightforward and easy to handle. However, when boundary

conditions are considered (source and receiver locations), the two-point ray tracing can

be a quite challenging task because of the non-uniform sampling of the medium by rays.

Estimating traveltimes at a given point of the medium leads to sophisticated interpola-

tion/extrapolation techniques, especially when considering shadow zones (Runborg, 2007).

Also, when considering many source/receiver pairs, the ray tracing approach might become

less efficient, as the computational cost scales as the product between the number of sources

and receivers. Alternatively, when one is only interested in first-arrival traveltimes, solving

the Eikonal equation within an Eulerian framework enables the computation of first-arrival
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traveltimes everywhere in the medium, thanks to the concept of viscosity solution (Cran-

dall and Lions, 1983, 1984): somehow, geometrical theory of diffraction is handled by the

viscosity solution (Keller, 1962; Runborg, 2007). Moreover, the computational cost is only

proportional to the number of sources, which makes it very efficient for dense acquisition

settings. The drawback of the Eikonal approach is that it implies to solve a nonlinear partial

differential equation (PDE) which requires sophisticated numerical tools to obtain reliable

and accurate results.

Vidale (1988) promoted an expanding box framework, and triggered an abundant litera-

ture about Eikonal solvers. The original scheme of Vidale (1988) only computes traveltimes

corresponding to outgoing rays. In heterogeneous media, the first arrival is thus not guaran-

teed, since some rays may go back into the expanding square, for instance in the presence of

high velocity zones. Improvements of this technique are proposed in Podvin and Lecomte

(1991), van Trier and Symes (1991), and Hole and Zelt (1995). Kim and Cook (1999)

uses (Weighted) Essentially Non-Oscillatory (WENO) schemes (Shu and Osher, 1988, 1989;

Jiang and Shu, 1996; Liu et al., 1994; Jiang and Peng, 2000) for local discretization, while

choosing the expanding box framework (”Down’N’Out”) for computing the global solution.

A post-sweeping (PS) technique is added in order to retrieve the causality and thus first-

arrival traveltimes, which leads to the ENO-DNO-PS algorithm. This is to some extent

similar to the approach developed in Hole and Zelt (1995) based on additional reverse prop-

agation steps. Instead of relying on an arbitrary squared-box expansion, wavefront-tracking

schemes are proposed to better fit causality by following the expansion of the wavefront it-

self (Qin et al., 1992; Cao and Greenhalgh, 1994). Doing so, the post-sweeping technique

is no longer necessary.

In their concepts, ENO-DNO-PS schemes are close to fast-sweeping methods (FSM)
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and wavefront-tracking schemes are similar to fast-marching methods (FMM), two general

classes of methods developed in the field of applied mathematics which have found appli-

cations in many domains in the recent years. These methods rely on an ordering of the

nodes. FMM belongs to single-pass algorithms, based on Dijsktra’s algorithm (Dijkstra,

1959), which considers the propagation front and makes it evolve (Tsitsiklis, 1995; Sethian,

1996, 1999). On the other hand, FSM belongs to multi-pass algorithms relying on global

orderings of the nodes. All nodes are updated during each Gauss-Seidel iteration (sweep),

following alternative orderings (Boué and Dupuis, 1999; Tsai et al., 2003; Zhao, 2005; Kao

et al., 2004; Luo and Zhao, 2016). Both FMM and FSM have been intensively applied to

solve the Eikonal equation in a wide range of problems. Extensive comparisons showing

their numerical efficiencies can be found in Gremaud and Kuster (2006), and highlight that

determining which strategy is the best is highly problem-dependent.

In presence of anisotropy, the Eikonal equation is more complex and needs adequate

numerical strategies. The ENO-DNO-PS principles were extended to the anisotropic case

in Dellinger and Symes (1997), Kim (1999), and Qian et al. (2001). Some extensions have

also been carried out concerning FMM (Cristiani, 2009). They are based on approximations

and they are generally difficult to implement. Mirebeau (2014) and Mirebeau and Portegies

(2018) propose a new approach for the FMM for anisotropic Eikonal. However, the most

mature strategies proposed so far in a geophysical context rely on FSM. The first extensions

have focused on elliptical anisotropy (Tsai et al., 2003; Qian et al., 2007a), which could be

handled quite naturally since it amounts to a dilation in space. The general 2D tilted

transversely anisotropic (TTI) Eikonal comprises spatial derivatives of the traveltime to the

power of four, which is more challenging. Han et al. (2017) propose to solve the related

quartic equation and to select the appropriate root, yielding a high computational cost.
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Tavakoli F. et al. (2015), Waheed et al. (2015), and Waheed and Alkhalifah (2017) prefer

a fixed-point iteration technique to solve an elliptical equation at each iteration with a

suitable right-hand side accounting for anellipticity.

Most of the FSM extensions to anisotropy considered 2D problems only, except in Wa-

heed et al. (2015) where tilted orthorhombic (TOR) media are considered. Moreover, all

the above-mentioned methods are developed using finite differences (FD) schemes, gener-

ally of first-order, or higher-order at high cost with non-compact stencils. The convergence

order is in general less than one, or equal to one if the source point is handled correctly by

using the celerity domain, the factorization or the perturbation methods for instance (Pica,

1997; Zhang et al., 2005a; Fomel et al., 2009; Luo and Qian, 2011; Noble et al., 2014). This

results in Eikonal solvers that are efficient and simple to implement, but with a limited

accuracy. Another strategy has been explored recently in Le Bouteiller et al. (2018), using

a discontinuous Galerkin (DG) finite-element discretization instead of a FD approach, in

order to increase the convergence order, and to obtain high accuracy on traveltimes and

spatial derivatives in heterogeneous TTI media. Obtaining derived quantities like angles,

amplitudes, or curvatures, with high accuracy, is crucial for tomographic/imaging methods.

These quantities are based on first-order and second-order derivatives of the traveltime, so

that second-order or third-order schemes are required for traveltime computation. Another

advantage of such a finite-element approach is that the integral finite-element formulation

can be performed in complex geometries, so that complex topographies can be precisely

handled. This turns out to be of major interest when considering complex land targets

(Improta et al., 2002; Taillandier et al., 2009).

Inspired by the work of Cheng and Shu (2007) and Cheng and Wang (2014), Le Bouteiller

et al. (2018) consider a numerical scheme applicable to generic time-dependent Hamilton–
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Jacobi equations, a class of equations to which Eikonal belongs, and make use of the Runge–

Kutta time integration with suitable source condition until the steady state is reached, which

corresponds to the sought traveltime solution. We shall refer to this method as the RK-DG

solver. In terms of computational cost, the main bottleneck of this approach is the rather

slow convergence in pseudo-time to reach the static solution through all transient states

in every part of the medium, while the evolution of the front is localized. This results in

an algorithmic complexity of O(#dof3/2) where the total number of degrees of freedom is

denoted by #dof.

It seems therefore natural to integrate the FSM approach in such formulation, with

O(N) complexity, as an acceleration tool for reaching the steady state. Such an idea is

already tested in a FD framework by Zhang et al. (2005b), using FSM as an acceleration

loop over the time-marching procedure. Regarding DG approaches, a numerical strategy

is developed in 2D to solve Hamilton–Jacobi equations with a FSM procedure over a DG

discretization by Li et al. (2008) and Zhang et al. (2011). Based on the DG solver of Cheng

and Shu (2007), this strategy exhibits some practical limitations: an initial guess is needed

and deduced from a preliminary FD computation; the local scheme requires a cumbersome

least-squares L2 reconstruction of the solution’s derivatives at the cell interface. In addition,

it is developed only for isotropic media, and the point source singularity is not cured.

We propose to integrate such FSM acceleration into the approach developed in Le

Bouteiller et al. (2018). The implementation of FSM over this solver and the extension

to three dimensions leads to an accurate and efficient solver for 3D traveltime computation,

which we refer to as the FSM-DG solver. Based on the state-of-the-art DG scheme of Cheng

and Wang (2014), the L2 reconstruction of spatial derivatives is avoided. Without any need

of initial solution guess, features such as point source singularity treatment, 2D-TTI and
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3D-TOR anisotropy and complex topographies are integrated in this new approach yielding

highly accurate traveltime estimation with a rather simple handling by potential users.

The remainder of the paper is organized as follows. First, the numerical method is

detailed: the Eikonal equation and its causality-consistent DG discretization are recalled,

an FSM strategy which consists of a local solver and a global Gauss-Seidel-based strategy

is presented, and a mesh deformation strategy for topography handling is exhibited. Sec-

ond, the accuracy and the efficiency of the resulting FSM-DG solver are illustrated through

various examples in 2D and 3D: first in simple media for validation purpose, then in com-

plex realistic media, such as the 3D SEAM model, with heterogeneities, topography, and

anisotropy to illustrate the properties of the solver on challenging settings. In the last ex-

ample, a comparison is performed with a full wavefield modeling. A conclusion closes this

study.

NUMERICAL METHOD

Eikonal equation

Hereafter, we adopt the dynamic formulation of the Eikonal PDE in the Hamiltonian frame-

work, which writes

∂ξu(x, ξ) +H(x,∇xu(x, ξ)) = 0, (1)

where the spatial coordinates x span the space Rd with d = 2 or d = 3, and ξ denotes a

pseudo-time evolution parameter. In an isotropic medium, one can write

HISO(x,∇xu(x, ξ)) = ‖∇xu(x, ξ)‖ − 1

c(x)
, (2)
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where the wave speed is denoted by c(x). The stationary state of Hamilton–Jacobi equation

1 with the Hamiltonian of equation 2 verifies the static Eikonal equation H = 0. At the

stationary state, we have lim
ξ→∞

u(x, ξ) ≡ T (x) where T (x) is the traveltime field. In a

finite computational domain, we set the source boundary condition to u(xs, ξ) = 0 at any

pseudo-time ξ at the source point xs, and such stationary state is obtained at a finite pseudo-

time ξ? once the source information have been propagated from the source to the entire

domain. Using this time-marching procedure to reach the steady-state is studied in Zhang

et al. (2005b), while a formal link between the static and the dynamic Hamilton–Jacobi

equations is proposed by Osher (1993) through the level-set framework.

Following Le Bouteiller et al. (2018), we write the Hamiltonian for the 2D vertical

transversely isotropic (VTI) case as

HV TI = d(u,x)2 + e(u,z)
2 + c(u,x)2(u,z)

2 − 1, (3)

where the derivatives of u(x, z, ξ) with respect to x and z are respectively denoted by u,x

and u,z, and with 

c =− 2(ε− δ)V 4
P ,

d =(1 + 2ε)V 2
P ,

e =V 2
P ,

(4)

where the Thomsen’s parameters are denoted by ε and δ (Thomsen, 1986), and the P -wave

velocity along the vertical axis is denoted by VP . This derivation comes from Christof-

fel’s dispersion relation in an elastic medium (see e.g. Červený, 2001; Slawinski, 2003),

considering only the coupled P–SV propagation mode, under the acoustic approximation

(Alkhalifah, 2000). The tilted (TTI) case is retrieved by applying the local rotation by the
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angle θ(x) between the local rotation-symmetry axis and the vertical axis, yielding

HTTI = d(u,x cos θ + u,z sin θ)2 + e(u,z cos θ − u,x sin θ)2

+ c(u,x cos θ + u,z sin θ)2(u,z cos θ − u,x sin θ)2 − 1.

(5)

Similarly, the 3D orthorhombic (OR) Hamiltonian writes under the acoustic approxi-

mation

HOR =a(u,x)2 + b(u,y)
2 + c(u,z)

2 + d(u,x)2(u,y)
2 + e(u,x)2(u,z)

2

+f(u,y)
2(u,z)

2 + g(u,x)2(u,y)
2(u,z)

2 − 1,

(6)

with 

a =V 2
P (1 + 2ε2),

b =V 2
P (1 + 2ε1),

c =V 2
P ,

d =V 4
P (1 + 2ε2)

(
(1 + 2ε2)(1 + 2δ)− (1 + 2ε1)

)
,

e =− 2(ε2 − δ2)V 4
P ,

f =− 2(ε1 − δ1)V 4
P ,

g =− V 6
P

(
(1 + 2ε2)2(1 + 2δ)− 2(1 + 2ε2)

√
(1 + 2δ2)

√
(1 + 2δ1)

√
(1 + 2δ)

+ (1 + 2δ2)(1 + 2δ1)− 4(ε2 − δ2)(ε1 − δ1)
)
,

(7)

where anisotropic parameters ε2 and δ2 hold in the [x, z] plane, anisotropic parameters

ε1 and δ1 hold in the [y, z] plane, and anisotropic parameter δ holds in the [x, y] plane.

This parameterization comes from Tsvankin (1997) and is consistent with an alternative

parameterization proposed in Alkhalifah (2003) and used in Waheed et al. (2015). The tilted

(TOR) case is retrieved by applying the local 3×3 rotation operator involving three rotation

angles: the dip angle θ(x), the azimuth angle φ(x), and the rotation angle ψ(x) which is

the rotation angle of the elastic tensor in the rotated horizontal plane, corresponding to the
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crack orientation in this plane. The rotation operator RTOR writes

RTOR =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 . (8)

Replacing quantities u,x, u,y, and u,z by their rotated expression, obtained from equation

8, into the Hamiltonian of equation 6 yields the TOR Hamiltonian. The substitution is as

simple as for going from expression 3 to expression 5, although we do not explicitly write

the TOR Hamiltonian here for the sake of concision.

In order to increase the accuracy of the solver, we implement the point-source factor-

ization, as proposed in Pica (1997), Zhang et al. (2005a), Fomel et al. (2009), and Luo and

Qian (2011). Le Bouteiller et al. (2018) extend the factorization principles to the DG dis-

cretization and show that this makes possible to retrieve a second-order convergence when

using approximations by polynomials of order 1. The additive factorization embeds the

source singularity inside a reference solution u0(x) such that

u(x, ξ) = u0(x) + τ(x, ξ). (9)

We then plug expression 9 into Hamiltonian expressions 2, 3, and 6. We adopt the additive

factorization since it yields a Hamiltonian which depends only on the gradient of the un-

known τ . On the contrary, the Hamiltonian obtained with a multiplicative strategy defined

by u(x, ξ) = u0(x)τ(x, ξ) depends also on the unknown τ itself. The resulting equation

would thus contain an additional term leading out of the frame of equation 1.

Finally, the Hamiltonian obtained with the additive factorization is plugged into the

dynamic Hamilton–Jacobi equation 1 that we solve for τ(x, ξ). This leads to the factored
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Hamilton–Jacobi equation for the isotropic case

∂ξτ + ‖∇xu0 +∇xτ‖ −
1

c
= 0. (10)

Factored equations for 2D-VTI and 3D-OR cases are given in Appendix A (equations A-1

and A-2, respectively), and tilted cases are retrieved as described before. The reference

solutions u0 are chosen to be analytical solution in isotropic, TTI, or TOR media with

homogeneous elastic parameters given by their values at the source point.

DG discretization

The DG spatial discretization of equation 1 is proposed in Cheng and Wang (2014) and

further adapted to the factored TTI Eikonal in Le Bouteiller et al. (2018). We present

the scheme in its most general formulation which handles unstructured polygonal (2D) and

polyhedral (3D) meshes. Note that the rectangular/cuboid Cartesian formulation simplifies

the discretization of the medium following a natural ordering along the x-, y-, and z-axes

which will be useful for FSM algorithm as we shall see. The space Ω is partitioned into n

elements denoted by Ki, i = 1, ..., n. For each element Ki, we choose a local approximation

space Pi spanned by a basis of shape functions φji (x). In practice, we consider polynomial

spaces Pk containing all polynomials of degree at most k. In our numerical tests, we used

P1 and P2 spaces. We define nKi to be the outward unit normal to the boundary of the

element Ki. At element interfaces, traces v±h and jumps [vh], of any numerical quantity vh

defined inside two neighboring elements are given respectively by

v±h (x) = lim
ε↓0

vh(x± εnKi),

[vh](x) = v+
h (x)− v−h (x).

(11)
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With these expressions, as well as their spatial derivatives and their projections on bound-

aries, different key quantities F ,G,K are defined at the boundary between two elements in

order to build a causality consistent flux estimation, which is an essential ingredient of the

DG formulation. These quantities depend nonlinearly on the solution itself and on the local

values of the Hamiltonian function. For the sake of concision, the expressions F ,G,K are

given in Appendix B.

The weak formulation of equation 1 can be stated as follows:

Find uh(., ξ) ∈ {v : v|Ki ∈ Pi, ∀i ∈ {1, ..., n}} ∀ξ > 0 such that∫
Ki

(
∂ξuh(x, ξ) +H

(
x,∇xuh(x, ξ)

))
vi(x)dx

+

∫
∂Ki

F
(
x,∇xu

±
h (x)

)
[uh](x, ξ)v−i (x)ds

− C∆Ki

∑
Sj
i∈∂Ki

1

∆Sji

∫
Sj
i

G
(
x,∇xu

±
h (x)

)
[∇xuh · nKi ](x, ξ)v

−
i (x)ds

− 2C∆Ki

∑
S̄j
i∈∂̄Ki

1

∆S̄ji

∫
S̄j
i

K
(
x,∇xu

±
h (x)

)
(∇xu

−
h (x, ξ) · nKi) v

−
i (x) ds = 0,

(12)

for each i ∈ {1, ..., n} and for any test function vi ∈ Pi,

where ∆Ki (respectively ∆Sji ) is the volume of the element Ki (respectively the surface

of the face j of element Ki). The set ∂Ki denotes the internal faces of element Ki which are

shared with other elements. The set ∂̄Ki denotes the external faces of element Ki which

are part of the domain boundary ∂Ω. The test functions vi are shape functions as usual for

Galerkin approaches (Zienkewicz and Morgan, 1983). The first term of scheme 12 ensures

consistency, embedding a weak formulation of the Hamilton–Jacobi equation. The second

term determines the information flow direction and acts as an upwind flux term. It also

allows to capture potential shocks, keeping the smallest traveltime next to triplications of

the wavefield. The third term treats the so-called rarefaction situations where non-causal
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entropy violations may occur in the traveltime solution. The scaling factor C is chosen

empirically: numerous observations have shown that 0.25 gives stable schemes in practice

(Cheng and Wang, 2014). The fourth term, acting on external edges only, is added in order

to enforce suitable radiative boundary conditions (Le Bouteiller et al., 2018). For further

technical knowledge about setting up the RK-DG implementation, we refer the reader to

Cockburn and Shu (1998).

Local solver

Instead of solving scheme 12 over the whole domain in a time-marching approach as proposed

in Le Bouteiller et al. (2018), in this study we evolve elements one by one to a temporary

local stationary solution with a local iterative strategy. In other words, given current

solutions in its neighbors, solution inside an element evolves until its local steady state is

reached, before considering the next element. Therefore, the local solver consists in solving

scheme 12 repeatedly for a given element Ki. Formally, we introduce the variable ξi as

a local pseudo-time variable, which is no longer global. The local integration, which can

be considered as a local fixed-point procedure, is performed in ξi with an explicit Euler

method. Using an explicit time integration is advantageous because scheme 12 is highly

nonlinear: the numerical fluxes depend on the solution itself in a nonlinear way. Moreover,

we verify that it is not necessary to use higher-order time schemes like second-order Runge–

Kutta method in this local solver. Its implementation is straightforwardly derived from

the RK-DG formulation, taking care of restricting the computation to the current element.

Iterations are performed until a convergence criterion is reached, which we refer to as the

real quantity local conv.
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However, in some transient configurations, such convergence may not be reached due

to the nonlinearity of the problem and causality considerations. When the upwind flux is

initially oriented toward a given direction at an edge of a cell (e.g. an initial orientation

given by a direct wave), the cell could be in a configuration such that changing its orientation

to another direction (e.g. a diving wave coming through a higher velocity zone) turns out

to be impossible during the fixed-point local procedure. Once the local solver has reached a

given number max local iter of local iterations without local convergence, we have designed

a specific procedure, that we call degenerate local solver, which is activated for overcoming

such situation. This degenerate solver detects, among the four (2D) or six (3D) neighbors

of the current element, the one with the lowest traveltime values (in practice we compare

the maximum values at edges). Once the fastest edge has been retrieved, we simulate a

(non-physical) plane wave coming from this edge and traveling through the element at the

local wave speed. This allows to reconstruct a temporary solution with a correct orientation

of fluxes and respecting the velocity inside the element. Such a solution will not be the final

solution after the sweeping strategy we describe in the next paragraph. This temporary

simple estimation enables various branches of the final solution to propagate along the

current sweep and eventually to keep the fastest one at each location. We proceed with

sweeps until this degenerate solver is not activated anymore: this is one of the criteria

required for global convergence.

The degenerate local solver we have designed is a key procedure which unlocks several

crucial issues for developing an efficient FSM-DG method. First, it avoids to be trapped in

a wrong causality setting, as described above. Second, as a consequence, it exempts from

the need of a good initial solution, which was a practical limitation in Zhang et al. (2011).

Finally, it exempts from a severe constraint on the Hamiltonian: the RK-DG scheme used in
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Le Bouteiller et al. (2018) required a Lipschitz continuous Hamiltonian in order to define a

suitable CFL condition which would not depend on the solution. This limitation prompted

the authors to use a complicated 2D TTI Hamiltonian in order to ensure stability in all

the elements at every timestep. In our FSM-DG method, if an instability raises during the

local integration, then the degenerate solver acts as a post-treatment limiter, by replacing

the solution with an approximate one respecting the local causality. Therefore, we are able

to use standard anisotropic Hamiltonians of equations 3 and 6.

Fast-sweeping algorithm

The global solution is obtained by applying the local solver successively to all the elements

in a block Gauss–Seidel approach: nonlinear equations are solved element by element, each

element representing several unknowns (degrees of freedom). As in Zhao (2005), the al-

ternating sweepings follow the four (2D) or eight (3D) natural orderings of the structured

Cartesian mesh. For unstructured grids, it could be possible to pre-compute specific or-

derings of the elements for sweeping: we have not implemented such strategy because of

the additional implementation complexity (Qian et al., 2007a,b). For Cartesian grid, the

natural directions allow to sample efficiently the characteristics of the Eikonal equation.

A boundary condition is set at the source: inside the source element, the numerical

solution τ is set to zero and does not evolve, so that the traveltime solution equals the

reference solution inside this source element.
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Initialization

Initialization steps are defined for both local solver and sweeping procedure. Regarding the

sweeping, the first four (2D) or eight (3D) sweeps are performed from the source element

toward the boundaries, respectively in the four (2D) or eight (3D) quarters of the domain

defined by the horizontal and vertical axes aligned with the source point. We have found

this to be the best initialization in order to optimize the number of sweeps needed to reach

the convergence. At the local scale, the first time the local solver is called for a given

element, the degenerate solver is executed at first, then the local iterative procedure occurs.

The element is tagged as updated afterwards. When executing the local solver, only the

at-least-once updated neighbors are considered. At edges where a neighbor has not been

updated yet, a boundary condition is applied, which is the same as at the domain boundaries

(fourth term in scheme 12).

For sake of conciseness, the algorithms are presented in 2D. The block Gauss–Seidel

procedure and its initialization are detailed in Algorithms 1 and 2. The structure of the

local solver is presented in Algorithm 3, and the degenerate solver is detailed in Algorithm

4. The extension to higher dimensions of these algorithms is straightforward by sweeping

in the additional dimensions.

Mesh deformation for topography

Finite-element methods are able to handle complex geometries in a natural way, thanks

to the integral formulation allowing deformed elements. Scheme 12 is written in a general

formulation where cells could be of any polygonal type. For example, we could design

2-D unstructured triangle meshes, as shown in Le Bouteiller et al. (2018), Case Study 4.
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Instead, at the exploration scale, vertically deformed Cartesian grids are very attractive

for their simplicity (Hestholm, 1999; Tarrass et al., 2011; Trinh et al., 2018). The main

advantages are that there is no mesh generation step to be performed by the user: the spatial

position of each element can be accessed directly by its indices in x, y, and z. Moreover, the

grid allows to keep the natural ordering of elements when performing the FSM algorithm,

yielding an optimal efficiency for the Gauss-Seidel procedure. The topography variation is

simply described by a gradual vertical deformation of elements, keeping a constant number

of elements in x, y, and z directions. After interpolating the topography z? over the (x, y)

nodes, the explicit mapping between a reference unit cube and each deformed element is

established. The Gauss points used for computing integrals in scheme 12 are defined in

the reference cube, and the quantities in the physical space are estimated at these Gauss

points using the mapping, the local Jacobian, and chain rules for the spatial derivatives.

The quantities needed at Gauss points are precomputed prior to solving Eikonal itself, and

only once for a given deformed grid. Figure 1 shows an example of a vertically deformed

mesh in 2D.

NUMERICAL RESULTS

All the numerical experiments (2D and 3D) are performed on a laptop computer using a

single core of an Intel R© Core
TM

i7-4600U computer processing unit with a frequency of 2.10

GHz, and 8 GB of DDR3 SDRAM. The computations are done in double precision.
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Algorithm 1 Sweeping

1: procedure Sweep1

2: for i = 1→ Nx do

3: for j = 1→ Nz do

4: call Local Solver(i, j)

5: procedure Sweep2

6: for i = Nx → 1 do

7: for j = 1→ Nz do

8: call Local Solver(i, j)

9: procedure Sweep3

10: for i = Nx → 1 do

11: for j = Nz → 1 do

12: call Local Solver(i, j)

13: procedure Sweep4

14: for i = 1→ Nx do

15: for j = Nz → 1 do

16: call Local Solver(i, j)

17: procedure Sweeping

18: call Init Sweep

19: for k = 1→ max iter do

20: select case mod(k − 1, 4) + 1

21: case(1) call Sweep1

22: case(2) call Sweep2

23: case(3) call Sweep3

24: case(4) call Sweep4

25: if ‖(u− uold)/uold‖ < global conv then return
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Figure 1: Vertically deformed mesh for a cross-section extracted from SEAM II Foothills

benchmark model. The topography (blue line) has been interpolated over 101 equally-

distributed points in x -direction. The mesh is 100 × 40 elements.

Algorithm 2 Init Sweeping

1: procedure Init Sweep

2: updated(:,:)=False

3: for i = ixs → Nx do

4: for j = izs → Nz do

5: call Local Solver(i, j)

6: updated(i, j)=True

7: for i = ixs → 1 do

8: for j = izs → Nz do

9: call Local Solver(i, j)

10: updated(i, j)=True

11: for i = ixs → 1 do

12: for j = izs → 1 do

13: call Local Solver(i, j)

14: updated(i, j)=True

15: for i = 1→ ixs do

16: for j = izs → 1 do

17: call Local Solver(i, j)

18: updated(i, j)=True
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Algorithm 3 Local Solver

1: procedure Local Solver(i, j)

2: for n = 1→ max local iter do

3: inside = HJ integral(i, j)

4: for (k, l) ∈ neighbors(i, j) do

5: if updated(k, l) then

6: edges ← edges + flux integral(i, j, k, l)

7: else

8: edges ← edges + boundary integral(i, j, k, l)

9: uij = uijold + ∆t(inside+ edges)

10: if ‖(uij − uijold)/u
ij
old‖ < local conv then return

11: uijold = uij

12: call Degenerate Solver(i, j)

Algorithm 4 Degenerate Solver

1: procedure Degenerate Solver(i, j)

2: tmin = 100000

3: for (k, l) ∈ neighbors(i, j) do tmin = min(tmin,max(ukledge))

4: uij = DG projection
(
tmin + dist(x, edge min)/minKij (c(x))

)

Vertical gradient of velocity

We first exhibit the efficiency of the FSM-DG technique in a 2D isotropic case, where the

velocity of the medium varies linearly with depth. In a 4 × 4 km square, the velocity varies

from a value of 2 km/s at the surface to a value of 4 km/s at depth. The point source is

located at the surface with coordinates xs = 2 km, zs = 0 km. The knowledge of the exact

solution enables error computation for traveltime as well as its spatial derivatives (Fomel

et al., 2009). A refinement study is carried out and the results are shown in Tables 1 and

2: L2 errors are exhibited with respect to the number of degrees of freedom when using P1

polynomial approximations, together with a comparison of CPU times between the RK-DG

and the FSM-DG techniques. We perform similar experiments using a fast-sweeping FD
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RK-DG

N #dof Error Order dx error Order CPU (s)

21 1323 1.74E− 03 1.13E− 02 0.36

41 5043 4.66E− 04 1.97 5.51E− 03 1.08 1.6

81 19683 1.21E− 04 1.98 2.71E− 03 1.04 11

161 77763 3.07E− 05 1.99 1.34E− 03 1.02 78

321 309123 7.74E− 06 2.00 6.69E− 04 1.01 600

641 1232643 1.94E− 06 2.00 3.34E− 04 1.00 4900

Table 1: RK-DG results from the first numerical example in 2D. Number of elements

along one direction (N), number of degrees of freedom (#dof), L2 error of the solution

and its derivative along x-direction, convergence orders, and CPU times, for P1 polynomial

approximation.

solver from Noble et al. (2014); results are given in Table 3. All these results are compared

in Figure 2.

The convergence of the schemes are highlighted in Figure 2a. The FD method exhibits

a first-order convergence: when the spatial discretization step is divided by two, the error

is also divided by two. Note that both RK-DG and FSM-DG methods yield the same error,

since they yield the same final state in a given discretization after integration in ξ. As

expected, the higher slope of decrease of the error with respect to the number of degrees of

freedom highlights the second-order convergence of the P1 DG approximation. Coherently,

the x-derivative of the solution exhibits a first-order convergence (Tables 1 and 2). This

result was already exhibited in Le Bouteiller et al. (2018). In terms of computational cost,
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FSM-DG

N #dof Error Order dx error Order CPU (s) CPU ratio

21 1323 1.73E− 03 1.18E− 02 0.21 1.7

41 5043 4.65E− 04 1.96 5.60E− 03 1.11 0.43 3.7

81 19683 1.21E− 04 1.98 2.73E− 03 1.06 0.68 16

161 77763 3.07E− 05 1.99 1.35E− 03 1.03 2.0 39

321 309123 7.74E− 06 2.00 6.70E− 04 1.01 6.6 91

641 1232643 1.95E− 06 1.99 3.35E− 04 1.00 26 188

Table 2: FSM-DG results from the first numerical example in 2D. Number of elements

along one direction (N), number of degrees of freedom (#dof), L2 error of the solution and

its derivative along x-direction, convergence orders, CPU times, and CPU ratio between

RK-DG and FSM-DG, for P1 polynomial approximation. Please note the slow increase of

the CPU time with respect to the number of degrees of freedom (see Figure 2b).
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FSM-FD

N #dof Error Order CPU (s)

72 5184 6.08E− 03 0.01

140 19600 2.91E− 03 1.06 0.05

278 77284 1.46E− 03 0.99 0.18

556 309136 7.32E− 04 1.00 0.76

1110 1232100 3.67E− 04 1.00 3.1

2220 4928400 1.84E− 04 1.00 12

4440 19713600 9.42E− 05 0.97 50

Table 3: FSM-FD results from the first numerical example in 2D. Number of elements

along one direction (N), number of degrees of freedom (#dof), L2 error of the solution,

convergence orders, and CPU times.
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Figure 2: Comparison of FD and DG methods with respect to accuracy (L2 error), CPU time

and number of degrees of freedom. a) The DG scheme enables high-order approximation,

yielding lower error for a fixed number of degrees of freedom compared to the FD method.

b) Although the DG method implies a higher computational burden for a fixed number of

degrees of freedom compared to the FD method, the fast-sweeping algorithm applied to

the DG method (FSM-DG) exhibits a linear complexity, which is more efficient than the

RK-DG method. c) Finally, the resulting efficiency is higher with the FSM-DG method

than the FD method: reaching a fixed level of error is done with lower CPU time.
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the analysis of the slopes in Figure 2b shows that the RK-DG method has a computational

complexity in O(#dof 3/2), compared to the linear complexity (O(#dof)) of the FSM-FD

method. This is why the RK-DG method is not efficient. However, the new FSM-DG

algorithm constitutes a huge improvement since it exhibits a linear complexity in O(#dof),

as the FSM-FD scheme. Finally, the analysis of Figure 2c underlines that, for reaching

low levels of error, the most efficient algorithm is the new FSM-DG. For a given level of

error, this algorithm is much faster than FSM-FD because it needs less degrees of freedom

to reach the same accuracy.

In terms of memory requirements, in this 2D case, the FSM-FD code requires approx-

imately 315 MB of memory for the case where N = 4440. This amount is obtained by

summing the sizes of the arrays allocated for the traveltime and for the velocity model.

It corresponds to 16 bytes per degree of freedom. In our current implementation, the DG

codes require approximately 115 MB of memory for the case N = 641. Since there are

three degrees of freedom per element, it corresponds to 90 bytes per degree of freedom.

The difference with the FD code comes from additional arrays allocated in memory for the

values of the reference solution u0 and its spatial derivatives at all the Gauss points. This is

designed as such in order to optimize the CPU time. Alternatively, these quantities could

be computed on the fly. Note that the FSM-DG and RK-DG codes have the same memory

requirements.

Keeping the vertical gradient of velocity, we now perform similar simulations on a 3D

4 × 4 × 4 km cube with the FSM-DG method. The point source is located at the surface

with coordinates xs = 2 km, ys = 2 km, zs = 0 km. The results obtained with a P1

approximation are detailed in Table 4 and highlighted in Figure 3. As expected, we retrieve

a second-order convergence of the 3D DG discretization (Figure 3a). Moreover, the FSM-
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FSM-DG

N #dof Error Order dx error Order CPU (s)

11 5324 1.41E− 03 2.06E− 02 2.4

21 37044 3.73E− 04 2.05 1.11E− 02 0.96 4.3

41 275684 9.59E− 05 2.03 5.76E− 03 0.98 15

81 2125764 2.43E− 05 2.01 2.93E− 03 0.99 133

161 16693124 6.07E− 06 2.02 1.48E− 03 0.99 1150

Table 4: FSM-DG results from the first numerical example in 3D. Number of elements

along one direction (N), number of degrees of freedom (#dof), L2 error of the solution

and its derivative along x-direction, convergence orders, and CPU times, for P1 polynomial

approximation.

DG method still exhibits a linear complexity (Figure 3b), which makes it very efficient in

3D as well.

In terms of memory requirements, in the 3D case with N = 161, the FSM-DG codes

require approximately 3500 MB of memory, yielding 200 bytes per degree of freedom. Here

again, the values of the reference solution u0 and its spatial derivatives at all the Gauss

points are stored in memory.
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Figure 3: FSM-DG results from the first numerical example in 3D: L2 error and CPU time

with respect to the number of degrees of freedom. The curved shape for small number of

degrees of freedom when the CPU time is lower than 10 seconds is explained by initialization

steps in the code that do not depend on the size of the mesh, such as model reading and

source handling, for instance.
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Homogeneous 3D tilted orthorhombic medium with complex topography

In this example, we consider a homogeneous 3D TOR medium, with anisotropic parameters

chosen as follows: 

VP = 2000 m/s,

ε2 = 0.2, δ2 = 0.1,

ε1 = 0.4, δ1 = 0.3,

δ = 0.1,

φ = 30◦,

θ = 45◦,

ψ = −15◦.

(13)

We define a physical domain with a complex topography using a part of the SEAM II

model (Regone et al., 2017). We consider a domain of size 3 km along the x-axis, 7 km

along the y-axis, and 2 km along the z-axis. This domain is restricted in the z-direction by

a topography provided with the model, which we amplify by a factor 2 in order to clearly

exhibit its imprint on the traveltimes. We build a vertically-deformed mesh from a regular

Cartesian grid to follow this topography. The mesh spacing before deformation is 100 m in

the three directions. Traveltimes are computed both with and without the topography, for

a point-source located at x = 1150 m, y = 50 m, z = 945 m. Both results are superimposed

in Figure 4. The imprint of the topography is clearly visible in the near-surface areas

and might be understood by applying the Huygens principle at the bottom points of the

topography, from which the upper parts of the domain are illuminated. This example

shows the importance of taking care of topography, and the good behavior of the FSM-DG

method when doing so. Let us emphasize that not only the traveltimes are modified by the
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topography, but also the spatial derivatives, which indicate the front propagation direction.

These derivatives are of major interest when considering subsequent amplitude or angle

estimations.

3D complex SEAM II model

In this example, our FSM-DG scheme is applied onto the same part of the isotropic SEAM

II model (Regone et al., 2017). Here, we consider the original topography as provided with

the model (no amplification factor). To do so, we build a vertically-deformed mesh as in

the previous example: The original mesh step is 100 m in the three directions, and the

resulting deformed mesh is shown in Figure 5. The P-wave velocity model, shown in Figure

6, exhibits complex velocity structures with layering and faulting, as well as near-surface

low-velocity areas which are known to impair imaging and inversion results if not carefully

considered. We use the P-wave velocity of the model to compute first-arrival traveltimes for

a source located at x = 375 m, y = 350 m, and z = 528 m. The traveltime isocontours are

superimposed over the P-wave velocity model in Figure 6. In order to illustrate the quality

of the result, we perform a computation using a spectral-element solver of the elastic wave

equation applied to the same model. For this computation, we use the code SEM46 (Trinh

et al., 2017) with an impulse source in a 60× 140× 40 mesh. In Figure 7 and 8, the travel-

time isocontours obtained by the FSM-DG method are superimposed over the displacement

field in the x-direction obtained with the SEM46 code, in vertical and horizontal planes,

highlighting an almost perfect agreement between the first-arrival traveltimes and the wave-

front, although they are based on different equations (Eikonal equation versus elastic wave

equation) and different numerical methods (Discontinuous Galerkin method versus spectral

element method), respectively.
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Figure 4: Traveltime isocontours computed in the homogeneous TOR model with (blue)

and without (red) the topography. Panels at z = 945 m (left), x = 1150 m (right), and

y = 50 m (bottom). Please note that the thick zone is the contour of the topography:

the blue solution is not built above the topography, while the red solution assumes a flat

topography at the top of the domain.
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Figure 5: The 30x70x20 vertically-deformed mesh built for the SEAM II model.

In presence of a non-flat topography, the memory requirements are higher than in the

Cartesian 3D case. The last example requires approximately 180 MB of memory, corre-

sponding to 1000 bytes per degree of freedom. This is mainly due to the values of the

derivatives of the basis functions that we keep in memory at each Gauss point. Alterna-

tively, these values could be computed on-the-fly.

CONCLUSION

A FSM algorithm has been introduced in a DG approach for solving the 3D Eikonal equa-

tion. The DG approach had been previously introduced in a 2D framework, using a Runge–

Kutta solver, responsible for a high computational complexity in O(#dof 3/2). The new
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Figure 6: The Vp model extracted from the SEAM II model, with traveltime isocontours

superimposed.

FSM algorithm provides a significant increase of efficiency, making possible to reach a linear

complexity as for FSM-FD approach, while benefiting for the high accuracy and higher-order

convergence rate associated with DG approach. For this reason, higher accuracy for the

traveltime solution and its spatial derivatives is obtained compared to FD methods, while

complex structures are handled in a stable and accurate way, thanks to FE properties.

This is illustrated by the use of deformed Cartesian grid for handling topography. Both

2D and 3D implementations are performed, with TTI and TOR anisotropy, thanks to the

general Hamiltonian formulation of the DG scheme. Even more general Hamiltonian could

be considered in the future, accounting for instance for triclinic anisotropy.

We may now use these results together with accurate solvers for seismic amplitudes

and take-off angles computations in order to revisit asymptotic inversion (traveltime/slope

tomography) and imaging approaches (quantitative migration using amplitudes and angles).
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Figure 7: Displacement field in the x-direction from SEM46, an elastic spectral-element

solver, with an impulse source. The traveltime isocontours are superimposed. Snapshots

in the plane x = 1500 m and corresponding isocontours at time 0.6 (top) and 0.9 (bottom)

seconds. One could notice the numerical noise occurring ahead of the front, which comes

from the wave propagation solution, and which is visible due to the saturation of the plot.
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Figure 8: Displacement field in the x-direction from SEM46, an elastic spectral-element

solver, with an impulse source. The traveltime isocontours are superimposed. Snapshots

in the plane z = 500 m and corresponding isocontours at time 0.6 (top) and 0.9 (bottom)

second. The topographical contour is expressed by the white zone where no solution is

computed. Here again, one could notice the numerical noise occurring ahead of the front.
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APPENDIX A: FACTORED HAMILTON–JACOBI EQUATIONS

Plugging expression 9 into 2D-VTI Hamiltonian expression 3, and finally into the dy-

namic Hamilton–Jacobi equation 1 that we solve for τ(x, ξ), leads to the factored 2D-VTI

Hamilton–Jacobi equation

∂ξτ + d(u0,x + τ,x)2 + e(u0,z + τ,z)
2 + c(u0,x + τ,x)2d(u0,z + τ,z)

2 − 1 = 0. (A-1)

Now, using the 3D orthorhombic Hamiltonian of equation 6, the factored 3D-OR Hamilton–

Jacobi equation writes

∂ξτ + a(u0,x + τ,x)2 + b(u0,y + τ,y)
2 + c(u0,z + τ,z)

2

+d(u0,x + τ,x)2(u0,y + τ,y)
2 + e(u0,x + τ,x)2(u0,z + τ,z)

2 + f(u0,y + τ,y)
2(u0,z + τ,z)

2

+g(u0,x + τ,x)2(u0,y + τ,y)
2(u0,z + τ,z)

2 − 1 = 0.

(A-2)

APPENDIX B: DETAILED DG SCHEME

At an interface of element Ki, we define a two-component vector by the expression

∇xu
±
hKi

=

(∇xuh · nKi)
±

∇xuh · tKi

 . (B-1)

The first component (∇xuh · nKi)
± is the projection onto the normal nKi , of the gradient

of the numerical solution computed inside the Ki cell (−), or inside its neighbor (+). The

second component ∇xuh · tKi holds for the mean of the projections onto the tangential

vector tKi of the gradient of the numerical solution computed inside the Ki cell and inside

its corresponding neighbor.
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We also introduce the following quantities:

H±Ki
= H

(
x±,∇xu

±
hKi

)
,

HnKi
= ∇∇uH · nKi ,

H±nKi
= HnKi

(
x±,∇xu

±
hKi

)
,

H̃nKi
(x) =


H+

Ki
−H−

Ki

[∇xuh·nKi ](x)
, if [∇xuh · nKi ] (x) 6= 0,

1
2

(
H+

nKi
+H−nKi

)
, otherwise,

δnKi
(x) = max

(
0, H̃nKi

(x)−H−nKi
,H+

nKi
− H̃nKi

(x)
)
,

χnKi
(x) = max

(
δnKi

(x), |H̃nKi
(x)|

)
.

(B-2)

Quantities F ,G,K introduced in scheme 12 now write

F = min
(
H̃nKi

(x), 0
)
,

G = χnKi
(x)− |H̃nKi

(x)|,

K = min
(
H−nKi

(x), 0
)
.

(B-3)

The key quantity for preserving causality is H̃nK , referred to as the Roe speed: its sign

specifies the information flow direction at an interface between two cells. Thanks to the min

operator in F , when computing the second integral of scheme 12, the downwind cell receives

information from the upwind cell, while the upwind cell is not affected by the downwind

cell information. The continuity between elements is thus weakly enforced in an upwind

manner.

38



REFERENCES

Alkhalifah, T., 2000, An acoustic wave equation for anisotropic media: Geophysics, 65, 1239–1250.

——–, 2003, An acoustic wave equation for orthorhombic anisotropy: Geophysics, 68, 1169–1172.

——–, 2011, Efficient traveltime compression for 3D prestack Kirchhoff migration: Geophysical

Prospecting, 59, 1–9.

Beylkin, G., 1985, Imaging of discontinuities in the inverse scaterring problem by inversion of a

causal generalized Radon transform: Journal of Mathematical Physics, 26, 99–108.

Beylkin, G., and R. Burridge, 1990, Linearized inverse scattering problems in acoustics and elasticity:

Wave motion, 12, 15–52.
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