About Successive Gauss-Seidelisations

Philippe Poncet, François Robert

To cite this version:

Philippe Poncet, François Robert. About Successive Gauss-Seidelisations. Taiwanese Journal of Mathematics, TJM, 1999, 3, pp. 491 - 501. 10.11650/twjm/1500407162 . hal-02010704

HAL Id: hal-02010704 https://hal.science/hal-02010704

Submitted on 7 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ABOUT SUCCESSIVE GAUSS-SEIDELISATIONS

PHILIPPE PONCET* ${ }^{*}$ AND FRANÇOIS ROBERT ${ }^{\dagger}$

Abstract

This note adresses the general problem of the dynamical behavior for successive Gauss-Seidel transformations (shortly called Gauss-Seidelisations) of a given mapping over the n-cube. Complete results are given for $n=2$ and $n=3$, and then a natural conjecture is proved to be false for greater n. Thus this interesting and simple problem remains still open for $n \geq 4$.

Key words. Discrete Operators - Gauss-Seidel - Computer algebra - Boolean algebra - Gröbner basis - n-cube - Graph theory - Short cycled transformations.

AMS subject classifications. 15A18, 34C35, 34DXX.

1. Overview. Let

$$
E=\prod_{p=1}^{n} E_{p}
$$

be the Cartesian product of a finite number of sets E_{p} and let \mathcal{F} be a mapping of E into itself. The relationship $y=\mathcal{F}(x)$ is detailed into

$$
y_{p}=F_{p}\left(x_{1}, \ldots, x_{n}\right) \quad \text { with } \quad \mathrm{p}=1,2, \ldots, \mathrm{n}
$$

where F_{p} is the $p^{t h}$ component of \mathcal{F}, that is to say a mapping from E into E_{p}, and where x_{p} (resp. y_{p}) is the component of x (resp. y) in E_{p}.

Define the Gauss-Seidel transformation (or Gauss-Seidelisation) $\mathcal{G}=\left(G_{p}\right)$ of $\mathcal{F}=\left(F_{p}\right)$ as the following mapping of E into itself (cf. [1]) :

$$
\left\{\begin{array}{l}
G_{1}(x)=F_{1}(x) \tag{1.1}\\
G_{p}(x)=F_{p}\left(G_{1}(x), \ldots, G_{p-1}(x), x_{p}, \ldots, x_{n}\right)
\end{array}\right.
$$

with $p=2 \ldots n$. We denote shortly $\mathcal{G}=\mathcal{T}(\mathcal{F})$
The successive Gauss-Seidelisations of \mathcal{F}, is the sequence $\left(\mathcal{G}_{i}\right)$ of mappings from E into itself defined by

$$
\left\{\begin{align*}
\mathcal{G}_{0} & =\mathcal{F} \tag{1.2}\\
\mathcal{G}_{i+1} & =\text { Gauss-Seidelisation of } \mathcal{G}_{i} \\
& =\mathcal{T}\left(\mathcal{G}_{i}\right) \text { with } i=0,1,2, \ldots
\end{align*}\right.
$$

The general question we address in this note is concerned with the behavior of \mathcal{G}_{i} when i increases. In a linear algebra context for example, the case where $E=\mathbb{R}^{n}, \mathcal{F}(X)=A \cdot X$ and A is a given $n \times n$ real matrix has been addressed as soon as 1972 in [2]. In this paper

[^0]${ }^{\dagger}$ LMC and ENSIMAG, BP53, F-38041, Grenoble cedex 9, France.
we focus over the boolean case, which means that \mathcal{F} is a mapping from the n-cube, $\{0,1\}^{n}$, into itself. Let \mathcal{E}_{n} be the set of the $2^{n 2^{n}}$ mappings from the n-cube into itself.

It has been quoted in [1] and proved in [3] that if F is a boolean contraction, the sequence of \mathcal{G}_{i} leads to a stable mapping $\mathcal{G}^{\star}=\left(G^{\star}\right)$, in at most $n-1$ steps, such that $G_{n}^{\star}(x)$ is a constant over the n-cube and generally $G_{p}^{\star}(x)$ depends only on x_{p+1}, \ldots, x_{n} with $p=$ $1 \ldots n-1$.

We now address the general problem of the behavior of the \mathcal{G}_{i} for any given $\mathcal{G}_{0}=\mathcal{F}$ from the n-cube into itself (not necessarily a boolean contraction).

2. Known results about both the $\mathbf{2}$-cube and the $\mathbf{3}$-cube.

2.1. The 2-cube. We are now interested in successive Gauss-Seidelisations of mappings from the 2 -cube into itself, that is to say elements of \mathcal{E}_{2}. This set has $\# \mathcal{E}_{2}=256$ elements.

We are to show that this dynamical system reaches either a stable point or a cycle of length two, after at most one step. One uses here the method shown in [4].

Let $\mathcal{F} \in \mathcal{E}_{2}$ be one of the 256 mappings over the 2 -cube. There are four boolean functions h, k, l and m of x_{2} such as

$$
\mathcal{F}\left(x_{1}, x_{2}\right)=\binom{F_{1}\left(x_{1}, x_{2}\right)}{F_{2}\left(x_{1}, x_{2}\right)}=\binom{x_{1} h\left(x_{2}\right)+\overline{x_{1}} k\left(x_{2}\right)}{x_{1} l\left(x_{2}\right)+\overline{x_{1}} m\left(x_{2}\right)}
$$

which means

$$
\mathcal{F}\left\{\begin{array}{l}
F_{1}\left(x_{1}, \cdot\right)=x_{1} h+\overline{x_{1}} k \\
F_{2}\left(x_{1}, \cdot\right)=x_{1} l+\overline{x_{1}} m
\end{array}\right.
$$

Similarly, one denotes

$$
\mathcal{G}_{i}\left\{\begin{array}{l}
G_{1}^{(i)}\left(x_{1}, \cdot\right)=x_{1} h+\overline{x_{1}} k \tag{2.1}\\
G_{2}^{(i)}\left(x_{1}, \cdot\right)=x_{1} l_{i}+\overline{x_{1}} m_{i}
\end{array}\right.
$$

Knowing \mathcal{G}_{i} is equivalent to knowing how to build $G_{2}^{(i)}$; that means knowing how l_{i} and m_{i} depend on h, k, l and m. Because of (1.1), one can write

$$
\begin{aligned}
G_{2}^{(i)}\left(x_{1}, x_{2}\right) & =G_{2}^{(i-1)}\left(G_{1}^{(i)}\left(x_{1}, x_{2}\right), x_{2}\right) \\
& =F_{1}\left(x_{1}, x_{2}\right) l_{i-1}\left(x_{2}\right)+\overline{F_{1}\left(x_{1}, x_{2}\right)} m_{i-1}\left(x_{2}\right)
\end{aligned}
$$

because $G_{1}^{(i)}=F_{1}$, for all $i \in \mathbb{N}$. But

$$
\begin{align*}
\overline{F_{1}\left(x_{1}, x_{2}\right)} & =\overline{x_{1} h\left(x_{2}\right)+\overline{x_{1}} k\left(x_{2}\right)} \\
& =x_{1} \overline{h\left(x_{2}\right)}+\overline{x_{1}} \overline{k\left(x_{2}\right)}+\overline{h\left(x_{2}\right)} \overline{k\left(x_{2}\right)} \tag{2.2}
\end{align*}
$$

So $G_{2}^{(i)}$ can be expanded, and then identified with (2.1), which means :

$$
\begin{aligned}
G_{2}^{(i)}\left(x_{1}, \cdot\right) & =\left(x_{1} h+\overline{x_{1}} \overline{k_{1}}\right) l_{i-1}+\left(x_{1} \bar{h}+\overline{x_{1}} \bar{k}+\bar{h} \bar{k}\right) m_{i-1} \\
& =x_{1}\left(h l_{i-1}+\bar{h} m_{i-1}\right)+\overline{x_{1}}\left(k l_{i-1}+\bar{k} m_{i-1}\right)+\bar{h} \bar{k} m_{i-1} \\
& =x_{1} l_{i}+\overline{x_{1}} m_{i} \quad \text { (by definition) }
\end{aligned}
$$

Then l_{i} and m_{i} can be identified ${ }^{1}$ and as a result, we have a recurrent definition of these two functions. Hence the Gauss-Seidelisation $\mathcal{G}_{i}=\mathcal{T}\left(\mathcal{G}_{i-1}\right)$ is equivalent to the Boolean recurrence :

$$
v_{i}=\left[\begin{array}{l}
l_{i} \tag{2.3}\\
m_{i}
\end{array}\right]=\left[\begin{array}{ll}
h & \bar{h} \\
k & \bar{k}
\end{array}\right]\left[\begin{array}{l}
l_{i-1} \\
m_{i-1}
\end{array}\right]=M v_{i-1}
$$

Proposition 1. Such a matrix M satisfies $M^{3}=M$.
This means $\mathcal{G}_{3}=\mathcal{G}_{1}$. If $M^{2} \neq M$, the sequence of \mathcal{G}_{i} reaches a cycle of length 2 after at most one step. If $M^{2}=M$, the sequence reaches a stable point. The two situations can be represented by :

As an example, we can consider the following mapping from the 2-cube into itself :

$$
\mathcal{F}\binom{x_{1}}{x_{2}}=\binom{\overline{x_{1}}+x_{2}}{x_{1}}
$$

Then the successive Gauss-Seidelisations lead to the mappings :

$$
\mathcal{G}_{1}\binom{x_{1}}{x_{2}}=\binom{\overline{x_{1}}+x_{2}}{\overline{x_{1}}+x_{2}}
$$

and

$$
\mathcal{G}_{2}\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
\overline{x_{1}}+x_{2} \\
\left(\overline{x_{1}}+x_{2}\right) \\
\hline
\end{array}\right)=\binom{\overline{x_{1}}+x_{2}}{x_{1}+x_{2}}
$$

and as expected $\mathcal{G}_{3}=\mathcal{G}_{1}$.
For this example, the successive Gauss-Seidelisations can be presented as follows :

[^1]
2.2. The 3-cube. Here $\# \mathcal{E}_{3}=16777216$, and the decomposition is not as easy as (2.1), because there are three dimensions (The third component is much tougher to compute !). However, it is still possible to apply the method used for the 2 -cube, but it is much heavier and requires computer algebra. Moreover, this kind of method can no longer be applied to higher dimension than three.

One can think to use some computer algebra in the ring $\mathbf{Z} / 2 \mathbf{Z}$
with the operations \oplus and \otimes (method shown and fully explained in [5]). This ring is introduced because it allows faster computation than Boolean algebra ${ }^{2}$. We can switch from Boolean algebra to the ring operations, and conversely, using :

$$
\left\{\begin{align*}
x \oplus y & =x \cdot \bar{y}+\bar{x} \cdot y \tag{2.4}\\
x \otimes y & =x \cdot y \\
x+y & =x \oplus y \oplus x \otimes y \\
\bar{x} & =1 \oplus x
\end{align*}\right.
$$

and $x=y$ if and only if $x \oplus y=0$.
We want now to show that for $n=3$, we reach a cycle whose length divides 4 after at most 3 steps, whatever is the mapping $\mathcal{G}_{0}=\mathcal{F}$ we have been iterating from. Let us use the same kind of notation for the iterated function as when $n=2$. This means we can describe a mapping \mathcal{G}_{i} from the 3 -cube into itself with :

$$
\mathcal{G}_{i}\left\{\begin{array}{l}
G_{1}^{(i)}\left(x_{1}, x_{2}, \cdot\right)=a x_{1} x_{2} \oplus b x_{1} \oplus c x_{2} \oplus d \tag{2.5}\\
G_{2}^{(i)}\left(x_{1}, x_{2}, \cdot\right)=e_{i} x_{1} x_{2} \oplus f_{i} x_{1} \oplus g_{i} x_{2} \oplus h_{i} \\
G_{3}^{(i)}\left(x_{1}, x_{2}, \cdot\right)=p_{i} x_{1} x_{2} \oplus q_{i} x_{1} \oplus r_{i} x_{2} \oplus s_{i}
\end{array}\right.
$$

where $\mathcal{G}_{i+1}=\mathcal{T}\left(\mathcal{G}_{i}\right)$ are the successive Gauss-Seidelisations obtained from the initial function \mathcal{G}_{0}. The functions $a, b, c, d, e_{i}, f_{i}, g_{i}, h_{i}, p_{i}, q_{i}, r_{i}, s_{i}$ depend on x_{3}, from the ring ${ }^{3} \mathbf{Z} / 2 \mathbf{Z}$ into itself.

We compute, expand and identify $G_{2}^{(i+1)}$ as we did in (2.1). Hence :

$$
\left[\begin{array}{c}
e_{i+1} \tag{2.6}\\
f_{i+1} \\
g_{i+1} \\
h_{i+1}
\end{array}\right]=\left[\begin{array}{cccc}
a \oplus b & a & 0 & 0 \\
0 & b & 0 & 0 \\
c \oplus d & c & 1 & 0 \\
0 & d & 0 & 1
\end{array}\right]\left[\begin{array}{l}
e_{i} \\
f_{i} \\
g_{i} \\
h_{i}
\end{array}\right]
$$

[^2]whose matrix is denoted by S, and satisfies $S^{3}=S$. As a result, G_{2}^{i}, the second component of \mathcal{G}_{i}, reaches a cycle of length two after at most one step, like in the 2 -cube (the square).

The computation of G_{3}^{i} is heavier, hence done through computer algebra ${ }^{4}$, and we finally carry out :

$$
\left\{\begin{align*}
p_{i+1} & =A_{i} p_{i} \oplus a q_{i} \oplus e_{i} r_{i} \tag{2.7}\\
q_{i+1} & =B_{i} p_{i} \oplus b q_{i} \oplus f_{i} r_{i} \\
r_{i+1} & =C_{i} p_{i} \oplus c q_{i} \oplus g_{i} r_{i} \\
s_{i+1} & =D_{i} p_{i} \oplus d q_{i} \oplus h_{i} r_{i} \oplus s_{i}
\end{align*}\right.
$$

where $A_{i}, B_{i}, C_{i}, D_{i}$ are basic functions from the ring $\mathbf{Z} / 2 \mathbf{Z}$ into itself 5. This leads to the recurrence :

$$
\left[\begin{array}{c}
p_{i+1} \tag{2.8}\\
q_{i+1} \\
r_{i+1} \\
s_{i+1}
\end{array}\right]=\left[\begin{array}{llll}
A_{i} & a & e_{i} & 0 \\
B_{i} & b & f_{i} & 0 \\
C_{i} & c & g_{i} & 0 \\
D_{i} & d & h_{i} & 1
\end{array}\right]\left[\begin{array}{c}
p_{i} \\
q_{i} \\
r_{i} \\
s_{i}
\end{array}\right]
$$

which can be written

$$
\nu_{i+1}=T_{i} \nu_{i}
$$

The coefficients of T_{i} depend on the first two components of \mathcal{G}_{i}. As a result, because of the first two components periodicity property, we have $T_{i+2}=T_{i}$. That means for all $i \geq 1$, $T_{i}=T_{2}$ or T_{1}, and :

$$
\nu_{i+1}=T_{i} T_{i-1} \ldots T_{2} T_{1} T_{2} T_{1} T_{0} \nu_{0}
$$

PROPOSITION 2. These matrices T_{i} satisfy

$$
\begin{equation*}
\left(T_{2} T_{1}\right)^{3} T_{0}=T_{2} T_{1} T_{0} \tag{2.9}
\end{equation*}
$$

In other words : $\mathcal{G}_{7}=\mathcal{G}_{3}$. This shows that we necessarily reach a cycle of length 4 after at most 3 steps :

[^3]\[

\left\{$$
\begin{array}{l}
A_{i}=a\left(e_{i} \oplus f_{i} \oplus g_{i} \oplus h_{i}\right) \oplus b\left(e_{i} \oplus g_{i}\right) \oplus c\left(e_{i} \oplus f_{i}\right) \oplus d e_{i} \\
B_{i}=b f_{i} \oplus b h_{i} \oplus d f_{i} \\
C_{i}=c g_{i} \oplus c h_{i} \oplus d g_{i} \quad \text { and } \quad D_{i}=d h_{i}
\end{array}
$$\right.
\]

We used computer algebra for the proof (cf. [5]), that means we check that :

$$
\left(T_{2} T_{1}\right)^{3} T_{0} \oplus T_{2} T_{1} T_{0} \equiv 0
$$

Since for $n=2$, we reach a cycle of length 2 after at most one step, and for $n=3$ we reach a cycle whose length divides 4 after at most three steps, we now adress the following question : Find the general behavior of the successive Gauss-Seidelisations for any n.

3. The general case : the n-cube.

Square or 2-cube

In the 4-cube or in higher dimension, computer algebra tools can no longer be applied, neither to check all the mappings nor to symbolically validate a property, whether the computation is done in the Boolean algebra or in the ring $\mathbf{Z} / 2 \mathbf{Z}$. The 4 -cube is the first real step in
abstraction and technical difficulties in computation in order to reach a general result. Since $\# \mathcal{E}_{4} \simeq 2 \cdot 10^{19}$, applying the same kind of methods as before would lead to 800 times the estimated age of the universe under computation...

It has been conjectured (cf. [3][6]) that in the n-cube, whatever the function we start from, a cycle is reached, whose length divides $2^{(n-1)}$ after at most $2^{(n-1)}-1$ steps. This unsophisticated conjecture fits well with both the results in the 2 -cube and the 3 -cube, and also with the boolean contractions.

In the sequel we show that this conjecture no longer holds, and give a method in order to find counterexamples for $n=4$.
3.1. Description of a mapping from the n-cube into itself. There are $2^{n 2^{n}}$ mappings of the n-cube into itself. Such a mapping \mathcal{F} is described by its table (or its n components) :

$$
F_{i}:\{0,1\}^{n} \longrightarrow\{0,1\}
$$

A basis is required in order to build a component, so each component can be described by its coordinates in this basis.

In the n-cube, this basis Π_{j} can be written ${ }^{6}$ in $\mathbf{Z} / 2 \mathbf{Z}$:

$$
\Pi_{j}:\left[\begin{array}{c}
x_{1} \tag{3.1}\\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right] \longmapsto \bigotimes_{k=1}^{n}\left(x_{k} \oplus \xi_{k j}\right)
$$

where $j=0 \ldots 2^{n}-1$ and

$$
\xi_{k j}= \begin{cases}0 & \text { if } 2 \text { divides the euclidian quotient } j \mid 2^{k-1} \\ 1 & \text { if not }\end{cases}
$$

As a result, giving a mapping from the n-cube into itself is equivalent to giving a set $\left(a_{i j}\right) \in\{0,1\}$ with $i=1 \ldots n$ and $j=1 \ldots 2^{n}$, that is to say in $\{0,1\}^{n 2^{n}}$. Given a set $\left(a_{i j}\right)$, we can rebuild the mapping with :

$$
\begin{gathered}
\mathcal{F}:\{0,1\}^{n} \longrightarrow\{0,1\}^{n} \\
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \longmapsto\left[\begin{array}{c}
F_{1}(x) \\
\vdots \\
F_{n}(x)
\end{array}\right]
\end{gathered}
$$

where the F_{i} are the boolean sums :

$$
\begin{equation*}
F_{i}(x)=\sum_{j=1}^{2^{n}} a_{i j} \Pi_{j-1}(x) \tag{3.2}
\end{equation*}
$$

This definition (3.2) gives a complete description and enumerates all the mappings from the n-cube into itself. Since it is impossible to make a test on all the mappings, this description allows to catch random mappings and test a given property on them.

[^4]3.2. Cycles in the 4-cube. As a result of (3.1), a random mapping from the 4-cube into itself is equivalent to a random set of 64 parameters in $\{0,1\} \equiv \mathbf{Z} / 2 \mathbf{Z}$, without having any mapping aside.

If true, the conjecture quoted above would lead to reach a cycle whose length divides 8 after at most 7 steps ${ }^{7}$, which means $\mathcal{G}_{15}=\mathcal{G}_{7}$.

A test for $\mathcal{G}_{15}=\mathcal{G}_{7}$ is $\mathcal{G}_{15}(x)=\mathcal{G}_{7}(x)$ for all $x \in\{0,1\}^{4}$ or $\mathcal{G}_{15} \oplus \mathcal{G}_{7} \equiv 0$.

A code has been written in order to compute the successive Gauss-Seidelisations of a mapping defined by such a set, and to test the property $\mathcal{G}_{15}=\mathcal{G}_{7}$. If the property is not satisfied, the code returns the transient and cycle lengths. Besides, another code has been made to check these results in both $\mathbf{Z} / 2 \mathbf{Z}$ and Boolean algebra. After one and half an hour on a Pentium class computer, one of the random mappings appeared to satisfy $\mathcal{G}_{10}=\mathcal{G}_{8}$.

This example with a transient of length 8 contradicts the conjecture above, which is thus proved to be definitively false.

It took almost four hours under computation to find another counterexample. These examples are shown in [6]. Of course, no hand-made counterexample has ever been found, and the two ones above have been checked in several ways.

Another kind of mapping has been found, satisfying $\mathcal{G}_{8}=\mathcal{G}_{2}$. This is a mapping whose cycle length, here 6 , does not divides 8 . Thus the second part of the conjecture, about a cycle length dividing 8 is false as well.

A third kind of counterexample has even a cycle longer than 8. This one satisfies $\mathcal{G}_{15}=$ \mathcal{G}_{3}, which means a cycle of length 12.

[^5]

This last example is indeed the following :

$$
\mathcal{F}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
x_{2} x_{3} \overline{x_{4}}+\overline{x_{1}} x_{2} x_{4}+\overline{x_{1}} x_{2} \overline{x_{3}} \overline{x_{4}}+x_{1} \overline{x_{2}} \\
x_{2} \overline{x_{3}}+\overline{x_{2}} x_{3} \overline{x_{4}}+x_{1} x_{2} x_{3}+x_{1} \overline{x_{2}} x_{3} x_{4}+x_{1} x_{2} \overline{x_{3}} x_{4} \\
x_{2} x_{3} \overline{x_{4}}+x_{1} \overline{x_{2}} x_{3}+x_{1} x_{2} \overline{x_{3}} \\
\overline{x_{2}} \overline{x_{3}} x_{4}+x_{1} \overline{x_{2}} x_{3} \overline{x_{4}}+\overline{x_{1}} x_{2} \overline{x_{3}} \overline{x_{4}}
\end{array}\right)
$$

The whole experiment tested 6800 mappings and took 44 hours on a Pentium class computer.
4. Conclusion. The dynamical behavior of the successive boolean Gauss-Seidelisations is known for $n=2$ and $n=3$. Besides, since a natural conjecture has been proved to be false as soon as $n=4$, the problem remains still open in dimension greater or equal than 4 . Thus, such a generalisation is not as simple as it had once been thought.

REFERENCES

[1] F. Robert. Discrete iterations : A metric study. Number 006 in Springer series on computational methematics. Springer-Verlag, 1986.
[2] F. Robert, J.F. Maitre. Normes et algorithmes associés à une découpe de matrice. Numer. Math., 19:303-325, 1972.
[3] F. Robert. Encore un opérateur discret avec des cycles courts (suite). Technical Report RR 938-M, LMC (URA 397 CNRS, France), June 1994.
[4] A. Eberhard, F. Robert, L. Vallier. Encore un opérateur discret avec des cycles courts. Technical Report RR 937-I, LMC (URA 397 CNRS, France), March 1994.
[5] F. Robert, G. Thomas. Un résultat de comportement dynamique établi grâce au calcul formel. Technical Report RR, LMC (URA 397 CNRS, France), September 1995.
[6] P. Poncet, Y. Le Floch. Itération de l'opérateur de Gauss-Seidel sur les transformations du n-cube. Technical Report RT 161, LMC (URA 397 CNRS, France), June 1996.

[^0]: ${ }^{*}$ Laboratoire de Modélisation et de Calcul (LMC), BP53, F-38041, Grenoble cedex 9, France

[^1]: ${ }^{1}$ The constant coefficient is dealt with since $1=x_{1}+\overline{x_{1}}$.

[^2]: ${ }^{2}$ Roughly, this is due to the fact that the ideal generated by the Gröbner basis containing the $X_{i}^{2}-X_{i}$ like polynoms simulates calculus in $\mathbf{Z} / 2 \mathbf{Z}$ and allows to use the fast operations of $\mathbf{Z}\left[X_{1} \ldots X_{n}\right]$.
 ${ }^{3}$ We do not need to write the \otimes because it's the same operation as \cdot, hence no mistake can be done.

[^3]: ${ }^{4} \mathrm{MapleV}$ was used to compute this, with rules like $x^{2}=x$, and a few other well-chosen rules in the ring, to speed up the computation.
 ${ }^{5}$ Actually :

[^4]: ${ }^{6}$ These Π_{j} are only the known $x_{1} x_{2} x_{3} x_{4}, \overline{x_{1}} x_{2} x_{3} x_{4}, \overline{x_{1}} \overline{x_{2}} x_{3} x_{4}, \ldots, \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}}$ written in $\mathbf{Z} / 2 \mathbf{Z}$

[^5]: ${ }^{7}$ That means that after at most 7 steps, we would reach either a stable point, or a cycle of length 2,4 or 8 .

