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ABOUT SUCCESSIVE GAUSS-SEIDELISATIONS

PHILIPPE PONCET∗ AND FRANÇOIS ROBERT†

Abstract. This note adresses the general problem of the dynamical behavior for successive Gauss-Seidel trans-
formations (shortly called Gauss-Seidelisations) of a given mapping over then-cube. Complete results are given for
n = 2 andn = 3, and then a natural conjecture is proved to be false for greater n. Thus this interesting and simple
problem remains still open forn ≥ 4.
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1. Overview. Let

E =

n
∏

p=1

Ep

be the Cartesian product of a finite number of setsEp and letF be a mapping ofE into itself.
The relationshipy = F(x) is detailed into

yp = Fp(x1, . . . , xn) with p = 1, 2, . . . , n

whereFp is thepth component ofF , that is to say a mapping fromE into Ep, and wherexp

(resp.yp) is the component ofx (resp.y) in Ep.

Define theGauss-Seidel transformation(or Gauss-Seidelisation)G = (Gp) of F = (Fp)
as the following mapping ofE into itself (cf. [1]) :

{

G1(x) = F1(x)
Gp(x) = Fp

(

G1(x), . . . , Gp−1(x), xp, . . . , xn

)(1.1)

with p = 2 . . . n. We denote shortlyG = T (F)

Thesuccessive Gauss-Seidelisationsof F , is the sequence(Gi) of mappings fromE into
itself defined by







G0 = F
Gi+1 = Gauss-Seidelisation of Gi

= T
(

Gi

)

with i = 0, 1, 2, . . .

(1.2)

The general question we address in this note is concerned with the behavior ofGi when
i increases. In a linear algebra context for example, the casewhereE = IRn, F(X) = A · X
andA is a givenn × n real matrix has been addressed as soon as 1972 in [2]. In this paper
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2 P. PONCET and F. ROBERT

we focus over the boolean case, which means thatF is a mapping from then-cube,{0, 1}n,
into itself. LetEn be the set of the2n2n

mappings from then-cube into itself.

It has been quoted in [1] and proved in [3] that ifF is aboolean contraction, the sequence
of Gi leads to a stable mappingG⋆ = (G⋆), in at mostn − 1 steps, such thatG⋆

n(x) is
a constant over then-cube and generallyG⋆

p(x) depends only onxp+1, . . . , xn with p =
1 . . . n − 1.

We now address the general problem of the behavior of theGi for any givenG0 = F
from then-cube into itself (not necessarily a boolean contraction).

2. Known results about both the 2-cube and the 3-cube.

2.1. The 2-cube.We are now interested in successive Gauss-Seidelisations of mappings
from the 2-cube into itself, that is to say elements ofE2. This set has#E2 = 256 elements.

We are to show that this dynamical system reaches either a stable point or a cycle of
length two, after at most one step. One uses here the method shown in [4].

LetF ∈ E2 be one of the 256 mappings over the 2-cube. There are four boolean functions
h, k, l andm of x2 such as

F(x1, x2) =





F1(x1, x2)

F2(x1, x2)



 =





x1 h(x2) + x1 k(x2)

x1 l(x2) + x1 m(x2)





which means

F







F1(x1, ·) = x1 h + x1 k

F2(x1, ·) = x1 l + x1 m

Similarly, one denotes

Gi











G
(i)
1 (x1, ·) = x1 h + x1 k

G
(i)
2 (x1, ·) = x1 li + x1 mi

(2.1)

KnowingGi is equivalent to knowing how to buildG(i)
2 ; that means knowing howli and

mi depend onh, k, l andm. Because of (1.1), one can write

G
(i)
2 (x1, x2) = G

(i−1)
2

(

G
(i)
1 (x1, x2), x2

)

= F1(x1, x2)li−1(x2) + F1(x1, x2)mi−1(x2)

becauseG(i)
1 = F1, for all i ∈ IN. But

F1(x1, x2) = x1h(x2) + x1k(x2)

= x1h(x2) + x1k(x2) + h(x2) k(x2)(2.2)
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SoG
(i)
2 can be expanded, and then identified with (2.1), which means :

G
(i)
2 (x1, ·) =

(

x1 h + x1 k1

)

li−1 +
(

x1 h + x1 k + h k
)

mi−1

= x1

(

h li−1 + hmi−1

)

+ x1

(

k li−1 + k mi−1

)

+ h k mi−1

= x1 li + x1 mi (by definition)

Thenli andmi can be identified1 and as a result, we have a recurrent definition of these
two functions. Hence the Gauss-SeidelisationGi = T (Gi−1) is equivalent to the Boolean
recurrence :

vi =

[

li
mi

]

=

[

h h̄

k k̄

] [

li−1

mi−1

]

= Mvi−1(2.3)

PROPOSITION1. Such a matrixM satisfiesM3 = M .

This meansG3 = G1. If M2 6= M , the sequence ofGi reaches a cycle of length 2 after
at most one step. IfM2 = M , the sequence reaches a stable point. The two situations canbe
represented by :

F = G0

G1 = G3

G2

F = G0

G⋆

As an example, we can consider the following mapping from the2-cube into itself :

F

(

x1

x2

)

=

(

x1 + x2

x1

)

Then the successive Gauss-Seidelisations lead to the mappings :

G1

(

x1

x2

)

=

(

x1 + x2

x1 + x2

)

and

G2

(

x1

x2

)

=

(

x1 + x2

(x1 + x2) + x2

)

=

(

x1 + x2

x1 + x2

)

and as expectedG3 = G1.

For this example, the successive Gauss-Seidelisations canbe presented as follows :

1The constant coefficient is dealt with since1 = x1 + x1.
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F = G0

T

T

T
G2 = T (G1)

G1 = T (G0) = G3

2.2. The 3-cube.Here#E3 = 16777216, and the decomposition is not as easy as (2.1),
because there are three dimensions (The third component is much tougher to compute !).
However, it is still possible to apply the method used for the2-cube, but it is much heavier
and requires computer algebra. Moreover, this kind of method can no longer be applied to
higher dimension than three.

One can think to use some computer algebra in the ringZZ
/

2ZZ
with the operations⊕ and⊗ (method shown and fully explained in [5]). This ring is in-
troduced because it allows faster computation than Booleanalgebra2. We can switch from
Boolean algebra to the ring operations, and conversely, using :















x ⊕ y = x · ȳ + x̄ · y
x ⊗ y = x · y
x + y = x ⊕ y ⊕ x ⊗ y

x̄ = 1 ⊕ x

(2.4)

andx = y if and only if x ⊕ y = 0.

We want now to show that forn = 3, we reach a cycle whose length divides 4 after at
most 3 steps, whatever is the mappingG0 = F we have been iterating from. Let us use the
same kind of notation for the iterated function as whenn = 2. This means we can describe a
mappingGi from the 3-cube into itself with :

Gi



























G
(i)
1 (x1, x2, ·) = a x1 x2 ⊕ b x1 ⊕ c x2 ⊕ d

G
(i)
2 (x1, x2, ·) = ei x1 x2 ⊕ fi x1 ⊕ gi x2 ⊕ hi

G
(i)
3 (x1, x2, ·) = pi x1 x2 ⊕ qi x1 ⊕ ri x2 ⊕ si

(2.5)

whereGi+1 = T (Gi) are the successive Gauss-Seidelisations obtained from theinitial func-
tionG0. The functionsa, b, c, d, ei, fi, gi, hi, pi, qi, ri, si depend onx3, from the ring3 ZZ

/

2ZZ into
itself.

We compute, expand and identifyG(i+1)
2 as we did in (2.1). Hence :









ei+1

fi+1

gi+1

hi+1









=









a ⊕ b a 0 0
0 b 0 0

c ⊕ d c 1 0
0 d 0 1

















ei

fi

gi

hi









(2.6)

2Roughly, this is due to the fact that the ideal generated by the Gröbner basis containing theX2

i
− Xi like

polynoms simulates calculus inZZ
/

2ZZ and allows to use thefastoperations ofZZ[X1 . . . Xn].
3We do not need to write the⊗ because it’s the same operation as·, hence no mistake can be done.
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whose matrix is denoted byS, and satisfiesS3 = S. As a result,Gi
2, the second component

of Gi, reaches a cycle of length two after at most one step, like in the 2-cube (the square).

The computation ofGi
3 is heavier, hence done through computer algebra4, and we finally

carry out :















pi+1 = Aipi ⊕ aqi ⊕ eiri

qi+1 = Bipi ⊕ bqi ⊕ firi

ri+1 = Cipi ⊕ cqi ⊕ giri

si+1 = Dipi ⊕ dqi ⊕ hiri ⊕ si

(2.7)

whereAi, Bi, Ci, Di are basic functions from the ringZZ
/

2ZZ into itself5. This leads to the
recurrence :









pi+1

qi+1

ri+1

si+1









=









Ai a ei 0
Bi b fi 0
Ci c gi 0
Di d hi 1

















pi

qi

ri

si









(2.8)

which can be written

νi+1 = Tiνi

The coefficients ofTi depend on the first two components ofGi. As a result, because of
the first two components periodicity property, we haveTi+2 = Ti. That means for alli ≥ 1,
Ti = T2 or T1, and :

νi+1 = TiTi−1 . . . T2T1T2T1T0ν0

PROPOSITION2. These matricesTi satisfy

(

T2T1

)3
T0 = T2T1T0(2.9)

In other words :G7 = G3. This shows that we necessarily reach a cycle of length 4 after
at most 3 steps :

4MapleV was used to compute this, with rules likex2 = x, and a few other well-chosen rules in the ring, to
speed up the computation.

5Actually :

{

Ai = a(ei ⊕ fi ⊕ gi ⊕ hi) ⊕ b(ei ⊕ gi) ⊕ c(ei ⊕ fi) ⊕ dei

Bi = bfi ⊕ bhi ⊕ dfi

Ci = cgi ⊕ chi ⊕ dgi and Di = dhi
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T1T2T1T0

(T2T1)2T0

T2T1T0

T1(T2T1)2T0

I

T0

T1T0

We used computer algebra for the proof (cf. [5]), that means we check that :

(

T2T1

)3
T0 ⊕ T2T1T0 ≡ 0

Since forn = 2, we reach a cycle of length 2 after at most one step, and forn = 3 we
reach a cycle whose length divides 4 after at most three steps, we now adress the following
question :Find the general behavior of the successive Gauss-Seidelisations for anyn.

3. The general case : then-cube.

4-cube

Cube 3D or 3-cubeSquare or 2-cube

In the 4-cube or in higher dimension, computer algebra toolscan no longer be applied,
neither to check all the mappings nor to symbolically validate a property, whether the compu-
tation is done in the Boolean algebra or in the ringZZ

/

2ZZ . The 4-cube is the first real step in
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abstraction and technical difficulties in computation in order to reach a general result. Since
#E4 ≃ 2 · 1019, applying the same kind of methods as before would lead to 800times the
estimated age of the universe under computation...

It has been conjectured (cf. [3][6]) that in then-cube, whatever the function we start
from, a cycle is reached, whose length divides2(n−1) after at most2(n−1) − 1 steps. This
unsophisticated conjecture fits well with both the results in the 2-cube and the 3-cube, and
also with the boolean contractions.

In the sequel we show that this conjectureno longer holds, and give a method in order to
find counterexamples forn = 4.

3.1. Description of a mapping from then-cube into itself. There are2n2n

mappings
of then-cube into itself. Such a mappingF is described by its table (or itsn components) :

Fi : {0, 1}n −→ {0, 1}

A basis is required in order to build a component, so each component can be described by its
coordinates in this basis.

In then-cube, this basisΠj can be written6 in ZZ
/

2ZZ :

Πj :















x1

x2

x3

...
xn















7−→
n

⊗

k=1

(

xk ⊕ ξkj

)

(3.1)

wherej = 0 . . . 2n − 1 and

ξkj =

{

0 if 2 divides the euclidian quotient j|2k−1

1 if not

As a result, giving a mapping from then-cube into itself is equivalent to giving a set
(aij) ∈ {0, 1} with i = 1 . . . n andj = 1 . . . 2n, that is to say in{0, 1}n2n

. Given a set(aij),
we can rebuild the mapping with :

F : {0, 1}n −→ {0, 1}n

x =







x1

...
xn






7−→







F1(x)
...

Fn(x)







where theFi are the boolean sums :

Fi(x) =

2n

∑

j=1

aijΠj−1(x)(3.2)

This definition (3.2) gives a complete description and enumerates all the mappings from
then-cube into itself. Since it is impossible to make a test on allthe mappings, this description
allows to catch random mappings and test a given property on them.

6TheseΠj are only the knownx1 x2 x3 x4, x1 x2 x3 x4, x1 x2 x3 x4, . . ., x1 x2 x3 x4 written in ZZ
/

2ZZ
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3.2. Cycles in the 4-cube.As a result of (3.1), a random mapping from the 4-cube into
itself is equivalent to a random set of64 parameters in{0, 1} ≡ZZ

/

2ZZ , without having any
mapping aside.

If true, the conjecture quoted above would lead to reach a cycle whose length divides 8
after at most 7 steps7, which meansG15 = G7.

A test forG15 = G7 is G15(x) = G7(x) for all x ∈ {0, 1}4 or G15 ⊕ G7 ≡ 0.

A code has been written in order to compute the successive Gauss-Seidelisations of a
mapping defined by such a set, and to test the propertyG15 = G7. If the property is not
satisfied, the code returns the transient and cycle lengths.Besides, another code has been
made to check these results in bothZZ

/

2ZZ and Boolean algebra. After one and half an hour
on a Pentium class computer, one of the random mappings appeared to satisfyG10 = G8.

G1

G2

G3

G0 G4

G5

G6 G7 G9

G8

This example with a transient of length 8 contradicts the conjecture above, which is thus
proved to be definitively false.

It took almost four hours under computation to find another counterexample. These
examples are shown in [6]. Of course, no hand-made counterexample has ever been found,
and the two ones above have been checked in several ways.

Another kind of mapping has been found, satisfyingG8 = G2. This is a mapping whose
cycle length, here 6, does not divides 8. Thus the second partof the conjecture, about a cycle
length dividing 8 is false as well.

G0

G7

G2

G5

G6G4

G3

G1

A third kind of counterexample has even a cycle longer than 8.This one satisfiesG15 =
G3, which means a cycle of length 12.

7That means that after at most 7 steps, we would reach either a stable point, or a cycle of length 2, 4 or 8.
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G2G0

G14 G12 G10

G13 G11

G1

G5

G4

G7

G6 G8

G3 G9

This last example is indeed the following :

F









x1

x2

x3

x4









=









x2 x3 x4 + x1 x2 x4 + x1 x2 x3 x4 + x1 x2

x2x3 + x2x3x4 + x1x2x3 + x1x2x3x4 + x1x2x3x4

x2 x3 x4 + x1 x2 x3 + x1 x2 x3

x2 x3 x4 + x1 x2 x3 x4 + x1 x2 x3 x4









The whole experiment tested 6800 mappings and took 44 hours on a Pentium class com-
puter.

4. Conclusion. The dynamical behavior of the successive boolean Gauss-Seidelisations
is known forn = 2 andn = 3. Besides, since a natural conjecture has been proved to be
false as soon asn = 4, the problem remains still open in dimension greater or equal than 4.
Thus, such a generalisation is not as simple as it had once been thought.
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