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ABOUT SUCCESSIVE GAUSS-SEIDELISATIONS

PHILIPPE PONCET AND FRANCOIS ROBERT

Abstract. This note adresses the general problem of the dynamicaVtoetiar successive Gauss-Seidel trans-
formations (shortly called Gauss-Seidelisations) of @igimapping over the-cube. Complete results are given for
n = 2 andn = 3, and then a natural conjecture is proved to be false for greatThus this interesting and simple
problem remains still open for > 4.

Key words. Discrete Operators — Gauss-Seidel — Computer algebra -eBoalgebra — Grobner basis-cube
— Graph theory — Short cycled transformations.
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1. Overview. Let
E=]]E
p=1

be the Cartesian product of a finite number of dgisand let7 be a mapping oF into itself.
The relationshipy = F(x) is detailed into

yp = Fp(z1,...,2,) with p=1,2,...,n

whereF), is thep'® component ofF, that is to say a mapping frof into E,,, and wherer,,
(resp.y,) is the component of (resp.y) in E,,.

Define theGauss-Seidel transformati¢or Gauss-SeidelisatiQy = (G,) of F = (F})
as the following mapping of’ into itself (cf. [1]) :

Gi(z) = Fi(x)
(3.1) { Gp(z) = F, (Gi(®),...,Gp1(x), @p, ..., Tp)

with p = 2...n. We denote shortlg = 7 (F)

Thesuccessive Gauss-Seidelisatiofig, is the sequencdg;) of mappings fron¥ into
itself defined by

Go F
(1.2) Giy1 = Gauss-Seidelisation of G;
= T (G:) withi=0,1,2,...

The general question we address in this note is concernédhdtbehavior of; when
i increases. In a linear algebra context for example, thewhseeE = R", F(X) = A- X
and A is a givenn x n real matrix has been addressed as soon as 1972 in [2]. Inapérp

*Laboratoire de Modélisation et de Calcul (LMC), BP53, P88, Grenoble cedex 9, France.
TLMC and ENSIMAG, BP53, F-38041, Grenoble cedex 9, France.
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2 P. PONCET and F. ROBERT

we focus over the boolean case, which meansfhasta mapping from the-cube,{0,1}",
into itself. Let&,, be the set of the™?" mappings from the:-cube into itself.

It has been quoted in [1] and proved in [3] thaFifs aboolean contractiorthe sequence
of G; leads to a stable mappir®* = (G*), in at mostn — 1 steps, such that; (x) is
a constant over the-cube and generallg:; () depends only o1, ..., z, With p =
1...n—1.

We now address the general problem of the behavior ofjthier any givenGg, = F
from then-cube into itself (not necessarily a boolean contraction).

2. Known results about both the 2-cube and the 3-cube.

2.1. The 2-cube.We are now interested in successive Gauss-Seidelisatiomsapings
from the 2-cube into itself, that is to say elementgafThis set hagtE, = 256 elements.

We are to show that this dynamical system reaches eithebée gpaint or a cycle of
length two, after at most one step. One uses here the metbachsh [4].

LetF € & be one of the 256 mappings over the 2-cube. There are foue@o@linctions
h, k, l andm of x5 such as

Fl(ZCl,SCQ) X1 h(I2)+I_1k(.CC2)
.7:(561,.562) = =
Fg(l‘l,l'g) X1 l(l‘g)—l—l'_lm(l'g)

which means

Fl(:vl,-) =z h+7T1k
F
FQ(Il,') = Ill+I_1m

Similarly, one denotes

Ggi)(l'l, ) =z h+7T1k
(2.1) Gi

Géi)(xl, J=a i +TTmy
Knowing g; is equivalent to knowing how to build(i); that means knowing hovwy and
m; depend orh, k, [ andm. Because of (1.1), one can write
ng) (1‘1, 1‘2) = Géiil) (ng) (1‘1, .1'2), ,TQ)
= Fi(x1, 22)li—1(x2) + Fi(z1, x2)m,i—1(22)

becaus&\” = Fy, foralli € N. But

(2.2) = 21h(z2) + Trk(z2) + h(22) k(22)
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SoGg) can be expanded, and then identified with (2.1), which means :

Géi)(xla ) = (Il h+17_1k_1) lio1 + (SC1E+$_1E+EE) mi—1
=T (hli_l +Emi_1) + 71 (kli_l +Emi_1) +EEmi_1
=x1l; + T1m; (by definition)

Thenl; andm; can be identifietland as a result, we have a recurrent definition of these
two functions. Hence the Gauss-Seidelisaiihn= 7 (G;_1) is equivalent to the Boolean
recurrence :

o0 (L] [ 5] o

PROPOSITIONL. Such a matrix\/ satisfies\/® = M.

This meang; = G;. If M2 # M, the sequence @; reaches a cycle of length 2 after
at most one step. /2 = M, the sequence reaches a stable point. The two situatiorizecan

represented by :

F=Go F =Go
G1=Gs g*
Go

As an example, we can consider the following mapping fronteeibe into itself :
(n)-(7)
X9 T
Then the successive Gauss-Seidelisations lead to the nggpi

G T1 _ x1 + T2
T\ 2 T + x2

o T T G _ (Tt
2\ 2 (T1 + x2) + 22 Ty + T2

and as expecteds = G; .

and

For this example, the successive Gauss-Seidelisationsecpresented as follows :

1The constant coefficient is dealt with sinte= =1 + 1.
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F—do Gz = T(61)

T
RN
\/
G1=T(Go) =G3 4

2.2. The 3-cube.Here#&3; = 16777216, and the decomposition is not as easy as (2.1),
because there are three dimensions (The third componenidh tougher to compute !).
However, it is still possible to apply the method used for 2heube, but it is much heavier
and requires computer algebra. Moreover, this kind of ne:tbemn no longer be applied to
higher dimension than three.

One can think to use some computer algebra in the ZIV@Z
with the operationsp and® (method shown and fully explained in [5]). This ring is in-
troduced because it allows faster computation than Bockgebrd. We can switch from
Boolean algebra to the ring operations, and converselygusi

Ty = T y+ITy
r®Yy = T-Y

2.4

(2.4) rt+y = x2DYyYDrR®yY
T = 16¢«x

andz = yifandonly ifx & y = 0.

We want now to show that for = 3, we reach a cycle whose length divides 4 after at
most 3 steps, whatever is the mappiiig= F we have been iterating from. Let us use the
same kind of notation for the iterated function as wher 2. This means we can describe a
mappingg; from the 3-cube into itself with :

Gy (a1, 02,) = amzr ®bry @ ey © d
(2.5) Gi Géi)(:vl,:vz, ) =eix1me @ fizn ® gixa @ h

Ggl)(zl,@,') =pit122DqT1 DT T2D S

whereg, 1 = 7(G;) are the successive Gauss-Seidelisations obtained fromitiad func-
tionGo. The functions:, b, ¢, d, e;, fi, gi, hi, i, i, 74, 5; depend oz, fromthe ring Z / 2Z into
itself.

i+1)

We compute, expand and ident@é as we did in (2.1). Hence :

€it1 a®db a 0 0 e;
fir1 | 0 b 0 0 fi
(2:6) giv1 | | cdd ¢ 1 0 gi
hit1 0 d 0 1 h;

2Roughly, this is due to the fact that the ideal generated byGHhbbner basis containing tb@f — X; like
polynoms simulates calculus E\/ 2Z and allows to use thfastoperations oZ[ X ... Xy ].
3We do not need to write the because it's the same operation dsence no mistake can be done.
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whose matrix is denoted by, and satisfie$® = S. As a resultGY, the second component
of G;, reaches a cycle of length two after at most one step, likegr2tcube (the square).

The computation of is heavier, hence done through computer algklarad we finally
carry out :

Pit1 = Aip; © aq; D e;r;
qi+1 = Bip; © bg; © fir;
rit1 = Cip; © cqi © giri
Si+1 = Dip; ® dg; © hir; @ s;

2.7)

whereA;, B;, C;, D; are basic functions from the ring/ 27 into itself. This leads to the
recurrence :

Pi+1 Ai a e 0 i
e S R R
Sit1 D, d h; 1 Si
which can be written
Vi1 = Ty,

The coefficients of; depend on the first two componentsgf As a result, because of
the first two components periodicity property, we hdye, = T;. That means for all > 1,
T, =15 or Ty, and :

Vig1 =TT 1 ... T T5T Tovg

PROPOSITION2. These matrice$; satisfy

(2.9) (ToTh)° Ty = ToTh Ty

In other words G; = Gs. This shows that we necessarily reach a cycle of length 4 afte
at most 3 steps :

4MapleV was used to compute this, with rules lik¢ = z, and a few other well-chosen rules in the ring, to
speed up the computation.

SActually :
A; (eiDfiPgiPhi) Dble; ®gi)®cle; ® fi)dde;
B;
C;

a
bf; @ bh; @ df;
cg; ®ch; ®dg; and D; = dh;
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1

To

1Ty

TyT1 Ty

TN

Ty (T2Th)?To

(T2T1)*To
We used computer algebra for the proof (cf. [5]), that meapskeck that :
(T2T1)3 To ® 11Ty = 0
Since forn = 2, we reach a cycle of length 2 after at most one step, and fer3 we

reach a cycle whose length divides 4 after at most three ,stepaow adress the following
guestion :Find the general behavior of the successive Gauss-Seatiels for anyn.

3. The general case : thei-cube.

Square or 2-cube Cube 3D or 3-cube

NZ

In the 4-cube or in higher dimension, computer algebra tcafsno longer be applied,
neither to check all the mappings nor to symbolically vakdaproperty, whether the compu-
tation is done in the Boolean algebra or in the rfag 2Z . The 4-cube is the first real step in
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abstraction and technical difficulties in computation iderto reach a general result. Since
#E4 ~ 2-10'9, applying the same kind of methods as before would lead totig®s the
estimated age of the universe under computation...

It has been conjectured (cf. [3][6]) that in tecube, whatever the function we start
from, a cycle is reached, whose length divi@&€s ) after at mos2(®~1) — 1 steps. This
unsophisticated conjecture fits well with both the resuitthie 2-cube and the 3-cube, and
also with the boolean contractions.

In the sequel we show that this conjectacelonger holdsand give a method in order to
find counterexamples for = 4.

3.1. Description of a mapping from then-cube into itself. There are2"2" mappings
of then-cube into itself. Such a mappidg is described by its table (or itiscomponents) :

F; : {0,1}" — {0,1}

A basis is required in order to build a component, so each oot can be described by its
coordinates in this basis.

In then-cube, this basisl; can be writtefin Z/2Z :

€
X9 n
(3.1) I : | 3 | — (zk @& &kj)
: k=1
Tn,

wherej =0...2" — 1 and
¢ { 0 if 2 divides the euclidian quotient j|2F1
kj =

1 if not

As a result, giving a mapping from thecube into itself is equivalent to giving a set
(aij) € {0,1} withi = 1...nandj = 1...2", thatis to say if0, 1}"*". Given a seta;;),
we can rebuild the mapping with :

F{o 1" — {0,1}"

X1 Fl (:v)
T = . — .
where theF; are the boolean sums :
gn
(32) FZ(I) = Zaijﬂj,l(a:)
j=1

This definition (3.2) gives a complete description and emates all the mappings from
then-cube into itself. Since itis impossible to make a test oth@imappings, this description
allows to catch random mappings and test a given propertii@em t

6TheseHj are only the knowmn:1 z2 =3 x4, T1 T2 T3 T4, T1 T2 T3 T4, - - ., T1 T2 T3 T4 Written in Z/ 2Z
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3.2. Cyclesin the 4-cubeAs a result of (3.1), a random mapping from the 4-cube into
itself is equivalent to a random set ®f parameters if0, 1} EZ/ 27 , without having any
mapping aside.

If true, the conjecture quoted above would lead to reach decyhose length divides 8
after at most 7 stegswhich meansg;5 = G.

AtestforGis = GrisGis(x) = Gr(x) forallz € {0,1}* orGi5s © Gr = 0.

A code has been written in order to compute the successivessBeidelisations of a
mapping defined by such a set, and to test the progagy= G-. If the property is not
satisfied, the code returns the transient and cycle lend@lsides, another code has been
made to check these results in balj 2Z and Boolean algebra. After one and half an hour
on a Pentium class computer, one of the random mappings iagojteesatisfyG,o = Gs.

g g g /
1 3 5 g

Go Go Ga Ge Ggr s Go

This example with a transient of length 8 contradicts thgextnre above, which is thus
proved to be definitively false.

It took almost four hours under computation to find anotharmnterexample. These
examples are shown in [6]. Of course, no hand-made couraemgle has ever been found,
and the two ones above have been checked in several ways.

Another kind of mapping has been found, satisfyfiig= G>. This is a mapping whose
cycle length, here 6, does not divides 8. Thus the seconaptmt conjecture, about a cycle
length dividing 8 is false as well.

A third kind of counterexample has even a cycle longer thaht8s one satisfie§; =
Gs, which means a cycle of length 12.

"That means that after at most 7 steps, we would reach eithiable point, or a cycle of length 2, 4 or 8.
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G4 G12 Gio

G1
Go G2 \(‘}3 > 9
Gs g7 /

Gy Ge gs

This last example is indeed the following :

x1 T2T3T4 + T1T2T4 + T1T2T3T4 + X122

Fl| 2 _ ToT3 + T2X3T4 + T1X2X3 + T1T2T3T4 + T1X2T3%4
T3 T2X3%4 + X1 T2 T3 + T1T2T3
Tq TaX3X4 + T1T2T3T4 + T1 T2T3T4

The whole experiment tested 6800 mappings and took 44 hawa@ntium class com-

puter.

4. Conclusion. The dynamical behavior of the successive boolean Gauskel3gitions

is known forn = 2 andn = 3. Besides, since a natural conjecture has been proved to be
false as soon as = 4, the problem remains still open in dimension greater or Etipam 4.
Thus, such a generalisation is not as simple as it had oncetbeeght.

(1]
(2]
(3]
(4]
(5]
(6]
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