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This Brief Communication presents a numerical investigation of the dimensionality of a flow behind
a three-dimensional rotationally oscillating circular cylinder. These computations are performed at
a Reynolds number Re5500, which is at a level where the mode B is the dominant
three-dimensional instability. We show that a rotation of high enough amplitude makes the 3D
instabilities vanish and brings the flow back to its nominal two-dimensional state. © 2002
American Institute of Physics. @DOI: 10.1063/1.1479344#

The von Kármán alleys generated in the wake of a cir-
cular cylinder are, at low Reynolds numbers, a time-periodic
and two-dimensional flow. It is now well known from both
experiments1,2 and numerical investigations3,4 that this nomi-
nally two-dimensional flow becomes three-dimensional
when Re.190.

The three-dimensional structures of vorticity are present
into two forms, called mode A and mode B, with wavelength
of 4D and 0.8D , respectively, D being the diameter of the
cylinder. These two three-dimensional modes are the only
stable modes, at least up to Re51900,5 though the wave-
length of mode A tends to decrease as the Reynolds number
increases.6 Vortex dislocation may occur by means of inter-
action between mode A and mode B.2 Moreover, mode B
structures are clearly orthogonal to the axis of the cylinder
and to the von Kármán alleys. While the Reynolds number
increases, there is a gradual transfer of energy from mode A
to mode B, and at Re5500, chosen for our simulations,
mode B is considered as the dominant three-dimensional
effect.

This Brief Communication focuses on the behavior of
mode B instabilities when the cylinder is rotationally oscil-
lating. In the bidimensional case, it has been shown that a
rotationally oscillating cylinder can lead to different kinds of
von Kármán alleys in its wake, with various strengths and
frequencies depending on the rotation parameters.7 The
present work aims at explaining how the three-
dimensionality of the flow interacts with these alleys.

Frequencies are chosen at once and twice the Strouhal
number, corresponding to natural and the first super-
harmonic of the vortex shedding. For both these frequencies,
we show that the flow turns back to its two-dimensional
configuration when the amplitude is high enough ~half a
revolution in our case!.

The computational approach is summarized as follows.
We perform direct numerical simulations of the Navier–
Stokes equations in their velocity–vorticity formulation:
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over a cylindrical domain V. The computational domain is
an ‘‘O-grid,’’ whose spanwise length is 0<z<L5pD , and
radius in 1<r<114p . The spanwise length is not critical
for our investigation since we are focusing our attention on
mode B. The Reynolds number is defined as Re5U`D/n,
where D is the diameter of the cylinder, U` the free stream
velocity, and n the kinematic viscosity.

The numerical method is a particle in cell method ~hy-
brid vortex method!, in the spirit of Cottet and
Koumoutsakos.8 The boundary layer is computed by a flux
of vorticity on the cylinder.9 The three parts of the Navier–
Stokes equations, i.e., the convection, the diffusion, and the
flux of vorticity, are successively solved in a fractional-step
algorithm.8–10 A periodic third-order remeshing, critical for
accuracy, is performed in order to maintain the regularity of
the particle locations. Several simulation of 3D unbounded
flows have been performed in order to validate the numerical
method.11,12

The simulation begins with a slight rotation in order to
trigger the 2D von Kármán instability, when t,4. Then we
let the three-dimensionality grow until it reaches saturation.
The mode B wavelength being 0.8D ,3 we get four couples of
contrarotating fingers of vorticity, i.e., eight vortex struc-
tures, in the computational domain. Two interesting features
of the flow, in order to measure the three-dimensionality, are
the spanwise enstrophy,
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and the orthogonal enstrophy,
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which extracts the enstrophy contained in the crosswise and
streamwise vortex structures from the whole enstrophy.

The nominal drag ~when the flow is still bidimensional!
of the flow past a nonrotating cylinder is 1.45 and close toa!Electronic mail: philippe.poncet@imag.fr
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Henderson’s benchmark value of 1.445.13 Three-
dimensionality makes the drag coefficient decrease down to
1.2, which can be compared to the value of 1.24 provided by
Mittal and Balachandar14 at Re5525, though both are over-
estimated, in the present case because of the spanwise short
length of the cylinder. Indeed, simulations with larger non-
rotating cylinders give 1.17, which is the same as
Wieselsberger’s.15 The present nominal Strouhal number is
found at S t50.229 and also close to Henderson’s, at 0.228.13

The present 3D Strouhal number is 0.220, once again close
to Mittal and Balachandar’s,14 i.e., 0.222, though both are
higher than experimental Strouhal numbers. Present wave-
length of the mode B is 0.8D while Barkley and Henderson3

predict this wavelength at 0.82D , with similar spectral pro-
files, which ensures that mode B instabilities are correctly
computed in the present simulations.

Once the three-dimensionality is fully developed, in our
case at tc5110, the cylinder begins to rotate, with a tangen-
tial velocity on the body given by

Vbody5ApS fR sin~pS f t !, ~4!

where S f is the forced Strouhal number and A is the ampli-
tude of rotation.

Figures 1 and 2 show the nominally bidimensional sur-
face of isovorticity, and this surface once the mode B is
developed. We consider only S f as a multiple of S t , the
natural Strouhal number.

When a high-amplitude rotation is performed, half a cir-
cumference in our case, we see that strong alleys are created.
These alleys are strong enough to unhook the fingers of vor-
ticity from the cylinder: as a result, these fingers are brought
away from the cylinder, and the flow becomes laminar and
bidimensional in a growing neighborhood of the cylinder.

This mechanism, in the case S f5S t , i.e., when the rota-
tion frequency is locked on the natural vortex shedding, is
exhibited on Fig. 3. We see that for a while, at t51205tc

110, the flow is still fully three-dimensional, and even more
than at t5tc . But after a few shedding cycles the instabilities
are sent downstream. After a few periods, no visible instabil-
ity remains. Nevertheless, a very small amount @0.4% of the
initial orthogonal enstrophy, see Eq. ~3!# of three-
dimensionality remains in the flow. We consider this residual
amount as insignificant.

Furthermore, the case A5p/3 has been also computed,
and does not lead to a bidimensional state ~see Fig. 4!. In-
deed, the orthogonal enstrophy tends ~roughly! to 80, which
represents more than half its value at t5tc , that is to say, a
three-dimensional state. This also shows the possibility of a
bifurcation between p/3 and p/2.

One also considers the rotation frequency as the first
super-harmonic, i.e., S f52S t . In this case, the instabilities
also vanish. Indeed, we see in Fig. 5 that instabilities are
brought away as well as if S f5S t . For this high-frequency

FIG. 1. Surface of isovorticity of the nominal 2D state.

FIG. 2. Surface of isovorticity when the 3D instabilities are fully
developed.

FIG. 3. Surfaces of isovorticity after activation of the rotation with S f

5S t . Above: t5120, below: t5135. Rotation starts at t5110.

FIG. 4. Orthogonal enstrophy ivxi2
2
1ivyi2

2 versus time for a rotation with
S f5S t . – – –: A5p/2, ---: A5p/3.
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rotation, the orthogonal enstrophy ~3! decreases down to
1026, which means that three-dimensionality vanishes com-
pletely.

The vanishing of mode B is shown on Fig. 6, on which
the orthogonal enstrophy ivxi2

2
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2 is plotted for both
S f5S t and S f52S t . As we have already mentioned, this
quantity measures the amount of vorticity orthogonal to the
axis of the cylinder, that is to say, the streamwise and cross-
wise vorticity. These curves, on Fig. 6, show that at t5140
5tc130 the flow is bidimensional in the region defined by

the computational domain. Moreover, Figs. 3 and 5 exhibit
snapshots of the isovorticity surface when three-dimensional
structures have not yet vanished.

As a conclusion, we have shown numerically that the
nonlinear three-dimensional flow created past a circular cyl-
inder can be laminarized by means of a rotation of this cyl-
inder. This has been shown in the case of a rotation of half a
revolution and at two values of frequency.

This behavior might be valid only in a neighborhood of
the cylinder, even if it is large compared to the radius. In-
deed, the rotation gives strength to the von Kármán alleys
and once these alleys fade, by means of the diffusion, there
might be a critical distance after which three-dimensional
structures are stable. In order to elucidate how this hypotheti-
cal critical distance depends on the rotation parameters, fur-
ther, in-depth numerical investigations are required.

Moreover, the rotation plays certainly a critical role in
the way back to a bidimensional state of the flow. Figure 4
shows that in the case S f5S t , the bifurcation amplitude is
between p/3 and p/2. A systematic parametric study with a
larger cylinder is under way in order to elucidate bifurcation
patterns.
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FIG. 5. Isovorticity surfaces after activation of the rotation with S f52S t .
Above: t5120, below: t5130. Rotation starts at t5110.

FIG. 6. Orthogonal enstrophy ivxi2
2
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2 versus time for a rotation with
A5p/2. – – –: S f5S t , ---: S f52S t .

2023Phys. Fluids, Vol. 14, No. 6, June 2002 Vanishing of mode B in the wake


