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Abstract

This paper is devoted to the design of Vortex-In-Cell methfud the Direct Numerical
simulations of wall-bounded flows. A first method using bdited grid is presented in the
particular case of a cylinder wake. This method, which hanhesed in [26] to investigate
the effect on the wake topology of cylinder rotations, is ateesion of the VIC method
presented in [4] for periodic geometries. Features of théhatkethat are specific to wall-
bounded geometries - interpolation operators, field catmrs and vorticity flux formulas to
enforce no-slip boundary conditions - are described inildetdhe accuracy of the method
in the calculation of the body forces is investigated by cargmns with experiments and
benchmark calculations. A second class of methods is ingini¢ af the immersed boundary
methods. The paper in particular shows that the no-slipitiond are very naturally handled
by the vorticity-flux formulas, independently of the relatilocations of the particles and the
body. Numerical experiments on the test-case of a ring igip@on a cylinder suggest that
the method is second order accurate.

1 Introduction

The Direct Numerical Simulation of three-dimensional bluff-body flows riesa challenging

problem in CFD. Even for rather simple geometries, like a cylinder, the reeat€uracy and ro-
bustness is very demanding for classical grid-based techniques. Wbileaay often dictates the
use of non-dissipative finite-difference or spectral element schestaslity impose constraints,
on the compatibility of the grid and flow topologies and on the time-step values;ahaubstan-

tially slow down the methods.

By contrast, particle methods, when they use the appropriate tools, allovmi® extent to
by-pass the usual accuracy-stability dilemma. The advection part of tiadieqs indeed relies on
the advection of particle, and thus is linearly unconditionally stable. Nonlisteaility requires
that particles do not collide, something which is guaranteed as long as thetéimdees not
exceed the time-scale on which the flow is strained. This condition tdads C|Vu|~! and thus
does not involve the mesh size. As for the diffusion part of the equatidarrdmistic particle
methods are based on explicit solvers that are stable under finite-dféetike conditions of
the typevAt < Ch™2, wherev is the viscosity and: is the mesh-size. For moderate to high
Reynolds numbers and affordable resolutions, this condition is genecdléysevere limitation in
3D calculations.

Systematic comparisons on a variety of 2D flows with non-dissipative finiferdifce schemes
have shown that, in many cases, time-step limitations are indeed far less kesfactparticle
methods than for Eulerian methods, leading to substantial savings.



Concerning 3D computations, recent comparisons [4] with spectral netbogderiodic lam-
inar and turbulent flows have given some insight into the accuracy ansuthgrid behavior of
particle methods. For 3D wall-bounded flows, vortex methods have bemessfully used to
compute vortex-wall collision [21] and, more recently, the flow past argpavarious Reynolds
numbers [24]. In the first case, the method was a Vortex-In-Cell mettwdbining Lagrangian
transport of particles with Eulerian field calculation, while in the second ttesauthors used a
totally grid-free vortex method, based on fast N body solvers for fialdkiation.

Our goal in this paper is two-fold. First, we show that Vortex In Cell mettardsin terms of
accuracy/cost balance, a viable alternative to Eulerian methods for DiMSutations of cylinder
wakes. Secondly, we propose and validate an immersed boundary Wo@e} method to handle
more complex geometries.

Concerning the first point, one reason for focusing on cylinder wakésat this is a well-
documented flow (see [19, 1, 18] for example), in particular since therampntal work of
Williamson [29]. For this flow however many open questions remain, due to the tiomsaof
current CFD solvers. Some of these questions regarding the bi-dimalsadion of 3D wakes
under cylinder rotations, are addressed elsewhere [26, 27, 8] aqlabent paper focuses on the
numerical technigues underlying these numerical simulations.

For cylinder wakes, and more generally bluff-body flows, beside the si@e-constraints al-
ready mentioned, Eulerian methods face additional difficulties in the treatrheatftow bound-
ary conditions. Nonlinear stability requires special care there, sometinties expense of mesh
refinement, although accuracy should not be a concern in this part fibwhdf grid-free particle
methods are evidently free of these difficulties, this is at the expense @f tisia-consuming N
body solvers. As for vortex in cell methods, since fields are computedydd,ghey have to intro-
duce artificialboundary conditions on the outer parts of the computationdbbthe calculation
of the fields. One goal of the present study is in particular to check whatioeiracy, in the drag
computation in particular, or stability impose drastic conditions on the size of theutational
box for vortex-in-cell methods. Another point of concern about vomethods for wall-bounded
flows is the consistent treatment of no-slip boundary conditions. Vorticikffitmulas have been
demonstrated (see in particular [16]) to be the appropriate formulatioroftexymethods to han-
dle in two dimensions these boundary conditions. For 3D flows, an exteoktbis formulation
is given in [5] for flat boundaries. In the present paper, we showiththe case of more gen-
eral geometries the curvature of the boundary modifies the Neumann intoiia tigpe boundary
condition for the azimuthal component of the vorticity.

Concerning the second point addressed in this paper, the method wis@rigpn the spirit
of immersed boundary schemes originally proposed by Peskin [22] aedth revisited in the
context of finite-difference techniques [9]. The general idea is tadawehnical difficulties in
generating a body-fitted grid around a possibly moving complex 3D obskaclssing for instance
a finite-difference solver on a fixed Cartesian grid overlapping with thmbary of the obstacle.
Boundary conditions are enforced through a forcing term in the right Isgde of the Navier-
Stokes equations.

The interpolation on the grid of this forcing term, which by nature is singuldres support
on the boundary, is in finite-difference methods a critical point that comditioe overall accuracy.
For vortex methods, the situation is very different. No-slip boundary itiond are enforced by
sources of vorticity which are located on the boundary. The accurattysoprocedure depends
on the grid resolution underlying the distributions of source boundarytsaimd flow particles,
but not on the relative locations of these two sets of points. The vorticity flomandary sources
onto the flow particles somehow plays the role of interpolation formulas neéefiade-difference



methods. The method we propose is strongly based on this remark and ihirgremauces minor
changes - including for 3D geometries - over a method which would useyaflitati grid. In that
respect, our method differs significantly from the vortex method designg8]r(see also [28]),
where particles close to the boundaries are monitored and given speataténts.

The outline of the paper is as follows. In section 2, we describe our metitbdody-fitted
particles and grid for cylinder wake calculations. We detail the Poissomisobed to compute
velocity and strain on the grid, and the vorticity boundary conditions netmedtisfy no-slip
boundary conditions. We also give some indications on the cost of the metimpared to a
purely grid-free particle method. Our method is then validated by systematieciisp of drag
curves for moderate Reynolds numbers. In section 3 we turn to the immesseddry vortex
method. We describe the algorithms used to satisfy no-through flow aniiprtmeandary condi-
tions. The numerical validation is performed on the test-case of a ring-eylgallision. Finally
section 4 is devoted to concluding remarks.

2 A\Vortex-In-Cell method for the computation of 3D cylinder wakes

The general idea behind Vortex-In-Cell (VIC) methods, and morergdipéarticle-In-Cell meth-
ods, is to use particles to transport conservative quantities and gedHti@snulas to compute
fields. For the incompressible Navier-Stokes equations written in the vorteiogity form

ow

E—I—(u-V)w—(w-V)u—yAw:() (1)
particles thus carry vorticity, while velocity and strain are computed on arrigaolgrid using
Poisson solvers. The reason for using this strategy to compute the fitisadrof direct, Biot-
Savart law inspired, integral formulas, is that even the fastest summationles are in many
practical situations at least one order of magnitude slower than FF&-basent Poisson solvers.
This will appear clearly on the timings shown later in in this section.

The overall algorithm classically consists of alternating advection andsffuequations.
Convection is done by pushing particles with their local velocities and updtteigstrength to
account for the local vorticity stretching (computed with centered fourderofinite difference
schemes).

Diffusion is done by a Particle Strength Exchange (PSE) algorithm withoapiate Neumann
boundary condition to cancel the slip resulting for the advection step dsésstance [16, 5]).

To preserve the accuracy of Particle methods for long time simulations, it hgdken ob-
served that frequent regridding of particles on regular locations iessacy (see [14] for a con-
vergence study of remeshing). In our algorithm, remeshing is done it &vee-step just before
diffusion. This allows to use the PSE scheme with formulas normalized on tiediadiscrete
moments, and thus avoids quadrature errors in the diffusion approximagen[Z5, 6] for in-
stance). When there is a solid boundary, in the body-fitted method desdnilteis section the
grid fits with the solid boundary while particle are initialized and remeshed orggestad grid.

Each time step of the algorithm can be summarized in this way:

Convection step:

e interpolation of vorticity from particles to grid
e computation of velocity and strain on the grid



e interpolation of velocity and strain on particles
e update of particle locations and strengths

Particle remeshing: interpolation of particle strengths on regular locations

Diffusion step: PSE scheme and vorticity flux formulas

Note that, as already mentioned, the time step for diffusion and for convietogshing are
constrained by different stability conditions and need not be the samerattiqe several sub-
steps of convection, using 4th order Runge-Kutta time-stepping, may leemkide one diffusion
step.

The overall structure of the algorithm has been described in a numbefeoénces (see in par-
ticular [6, 4]) and we focus here on the particular aspects of the algorétated to the cylindrical
geometry: we first discuss the interpolation formulas needed to exchafogmation between
particles and grid and to remesh patrticles; then we describe the Poissenssdd to compute
velocity values on the grid; finally we derive vorticity-flux formulas whichngkate the no-slip
boundary conditions. The end of the section is devoted to the numericahtaticbf the algo-
rithm on two and three-dimensional wake simulations.

2.1 Interpolation formulas for particle-grid mapping and p article remeshing

Let us first give the notations corresponding to the geometry of a badfllow. 2 denotes the
computational domain, extending from the boundary of the obstacle, debpie,, to the outer
boundary, denoted hly... In the case of a flow past a cylinder, we will denote by subscripfs
andz respectively radial, azimuthal and spanwise field components. We willreesEtperiodic
boundary conditions in the cylinder axis direction and the computational doexaémds from
r=Rytor = Ry.

Interpolation formulas are based on convolutions with a smooth kernel. dimelkused in
the present work is based on the following one-dimensional function whittird order - in the
sense that it preserves the 3 first moments of the distribution, twice consilyubfierentiable and
symmetric (see [5]) :

(3% — 522 +2) /2 ifo<z<1
C(z)=< 2-2)?1—-x)/2 ifl<z<?2 2)
0 if x>2

Rescaling this function at a grid-sizeyields the following expression

o) =2¢ (%) ©

To account for cylindrical geometries, the interpolation is based on tgmeducts of this func-
tion in cylindrical coordinates. Assuming the same grid-size in radial, angudrazimuthal
directions, the redistribution of a given functigh extended by periodicity in the angular and
azimuthal directions, into a functiofiis given by

f(r,0,z2) =

+00 “+o00o Roo (4)
o] s 0n - 960 - 96t~ u)s dsds du

—00 —00 Ro



where the subscriptin A, means that the shape of the kernel depends on the location. The kernel
A, = (. is chosen unless particles and grid points are close to the boundaryefsmabnd layer

of grid-points (corresponding to = Ry, + ¢) the kernel{ is used with ghost particles inside the
body, carrying symmetric weights. This amounts to replacihg

0 otherwise

¢(r) if r
Ag,4e(r) =< ¢(r)+¢2—-7r) ifO<r<1 (5)

This kernel is second order accurate.

For the first layer of points (on the cylinder) we use the following oneesidéerpolation
formula ) /3
ot +4r4+13/4 if —(44+v3)/2<r <0
Ar(r) = { 0 otherwise ©)
This kernel has been chosen because it has the property to presewation and linear impulse
when particles and grid-points lie on staggered grids. We recall that this rditedure selected
to initialize and remesh patrticles.

Finally, the interpolation of a quantityj, carried by particles located &t,, 6,,, z,) and whose
volume isv, is given by

Tpa Op, 2p) Z JalAr,( 7q)Ce(0p — 0g)Ce(zp — 2¢)vq (7)

Note that this summation involves image particles in the corresponding directioalketin ac-
count angular and spanwise periodicity. This formula easily extends tcaewhen different
grid-sizes are used in the 3 directions.

Formula (7) is used at three stages of the algorithm: when particle vorticity ipakiéed
on a fixed cylindrical grid where velocity are evaluated (see next s@ctidren field values are
interpolated back to particles, and finally to remesh an eventually distortédigalistribution
into a fresh, regular distribution. As we already mentioned, to maintain ancofahe particle
discretization, in all our calculations we remesh the particle at every time-stepetihe diffusion
step. The remeshing procedure and formulas (5) and (6) are illustnatéigares 2 and 3.

2.2 Velocity evaluations

Once vorticity has been assigned to the grid, the velocity is computed acgoodime Helmholtz
decomposition
u=u+Vxy+Vo (8)

wheret is the potential flow around the cylinder with prescribed value at infinity. tBea has
V xu = w andV -u = 0 provided the stream functiap and the potentiap satisfy the following
Poisson equations

AP = win (9)
V. = 0inQ (10)
Ap = 0inQ (11)

The boundary conditions to complement this system are adjusted to enstireugh flow on
the cylinder and the artificial boundary conditian= u on the outer limit of the computational
domain.



More precisely our solution procedure is as follows. We first computand+, solutions to
A, = wg, —At)y = w, With periodic boundary conditions in theand#-direction, and ho-
mogeneous Dirichlet boundary conditions in the radial direction. Therowgate the remaining
component),, satisfying— A, = w, with periodic boundary conditions in theandd-direction,
and the following Dirichlet boundary condition in the radial direction

Z O,
1/12(1”,9,2) = _/O ¢

" (r,0,s)dsforr = Ry andr = Ry (12)
With these boundary conditions, one has

V-4 =00nT},andl'y
and periodic boundary conditions in Since
AV )=V -winQ
anw is divergence-free, this implies that
V-4 =0inQ

It remains to compute the scalar potentialn order to impose the correct boundary condition on
the cylinder, we require the following Neumann type boundary condition

99
on

to complement the Poisson equation (11)doFigure 4 summarizes the procedure ro impose the
no-though flow boundary condition.

Note that, if
L awr
/0 o (r,0,s)ds #0

the periodic boundary condition combined with (12) may create a singularity foand thus
for ¢, near the corners dR which can affect the accuracy in the finite-difference calculations
of velocities. In [25], an algorithm to remove this singularity is derived gdasn the resolution

of additional two-dimensional Poisson equations. However, in practaaliations, spurious
effects of this singularity have never been observed and the origiraiithlg based on formula
(12) without correction has been found satisfactory. It is also impottambtice that the far-field
boundary condition consists of imposimg= u at the outer boundary. This may seem a rather
crude approximation, in particular compared to the exact far-field condiitipticitly used in grid-
free vortex methods. Nevertheless, the numerical results shown betevialsie 1) demonstrate
that this boundary condition allows to obtain convergent results on the Wwithycomputational
domains significantly smaller, in the streamwise direction, than those currerttlyindinite-
difference methods.

One nice feature of using a scalar potential to compute velocities, is thatlégueconditions
do not couple the computations of the three components of the stream fincTibis allows to
use simple scalar Poisson solvers. In our simulations we used classiqa¢kgbackage solvers.

To give an idea of the computational cost of the overall numerical ptoegh compute the
velocities, including interpolations and Poisson solvers, we show in Figaredmparison of
CPU times for our method compared to the fast summation algorithm based orcade=given

= —(Vx) -nonT, and 'y (13)
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in [17]. For a sake of fairness, a scaling factordpfbased on the CPU time needed for direct
summation methods on the different platforms, has been applied to accotiné fdifference in
processor speeds between the 3GIMhz processor used by these authors and the Afjilta
Mhz processor we were using. Although the development and implementéihfast solvers

is a rapidly growing field, we believe that these comparisons give a goazhtiah of the speed
up offered by VIC methods, except when vorticity is strongly localized¢ivivas the case in the
vortex sheet calculations of [17]).

In practical implementations of vortex methods, an additional speed up tatdye obtained
from the following remark: the convection of particles is most often done wittuki-step time-
stepping. In a Biot-Savart type algorithm, velocities are in general rectadai every sub-step
since particles have moved. In all our VIC calculations, we have obdeha it is possible to
compute only once per time step the grid velocities without noticeably deteriothgragrcuracy.
Particle motions during the substeps have only to be taken into account wberelpcities are
interpolated on particle locations. When a fourth order Runge-Kutta timeistefs used, this
introduces another significant speed up (note that this remark also afgpBést-Savart codes:
in that case a fast summation, instead of a Poisson solver, would be usadgate velocity and
strain on regular grid points).

To finish with these comparisons, let us again stress the fact that thelgpeédIC methods
on Biot-Savart based methods is very much problem dependent. In @adisdes occupy only a
very small portion (say less that 10%) of a computational box that woul@dpgined in a Vortex
In Cell method, Biot-Savart inspired methods may become comparable omsweneffective
than VIC methods. Particular cases of localized vorticity are 1D or 2D vattierts (like in the
calculations of [17]) or when one desires to follow a wake very far daveam (like in reference
[24]). In our case, we were interested by body forces for a cylingte in a computational
grid which was filled by approximatel§5% of particles, and Biot-Savart methods were clearly
outperformed by VIC methods (by a factor of about 20 according todidir

2.3 No-slip boundary condition and vorticity flux formulas

In vortex methods, the no-slip boundary condition is classically enforgethd creation of a
vortex layer in the vicinity of the boundary [2]. In a fractional step algonithhis vortex layer

is designed to cancel the slip resulting from previous advection and idiffisteps. A clear-cut
mathematical definition of this method is based on a vorticity flux formula - or Nearmgre
boundary conditions - in the vorticity diffusion equation. In two dimensionAtifs the diffusion
time-step anadh - 7 the residual slip resulting form the advection of particles and the PSE scheme
this formula reads

8—w—l/Aw = 0inQ

ot
Oow u-T
Von — A oMb

This equation has to be solved for a time-stefy with zero initial condition. The resulting field
is then added to the vorticity obtained at the end of the previous advectiosidif step.

This is the method implemented in [16] (see figure 5). In three-dimensiona,flloundary
conditions are required for all three components of the vorticity. For ptemmdaries, the 2D
boundary conditions easily extend to give Neumann boundary conditioribd two tangential
vorticity components. The flux of each tangential component must careslithin the orthog-
onal direction [5]. For curved boundaries however, a closer lodkeavorticity equation for the

7



azimuthal component reveals that the vorticity flux for this component shmrespond to a
Robin type boundary condition. Indeed, from the Navier-Stokes equatite gets in a viscous
splitting algorithm the following diffusion equation far

M—V(Aw9+2a°‘““—°”9>20in9 (14)
T T

9 lﬁ( ) _ 10 [ Owg) we
Or \rOr e ror rar r2

this equation can be rewritten as
Owg o (10 1 0%wy  O%wy 2 0w |
E%_V{ar <rar<mﬁ>> e T a2 Tean | T
Its shows that the flux of azimuthal vorticity entering the flow through diffas® given by

(v/r)(0(rwe)/0r). As a result, the natural boundary condition onto cancel the slip in the
spanwise direction reads

Upon observing that

v o Uy

ror "0 =
As for the spanwise vorticity, since there is no curvature in the boundampat direction, its
boundary condition is a regular Neumann boundary condition, as in tleeotasplane boundary.
Finally the boundary condition for the normal vorticity component is clearhhamogeneous
Dirichlet condition, since this component only involves tangential derigativf the velocity at
the wall.To summarize, the no-slip boundary condition is satisfied through thosoover the
time-stepAt of the following diffusion equation

onT', (15)

ow .
o vAw=0 inQ (16)
w, =0 onl, (17)
Ow,  ug
v onl (18)
wg  Owg) Uz
1 <7“ + 81’1) = At on Fb (19)

whereuy, u, respectively denote the azimuthal and spanwise residual slip at the tredorévious
convection step.

As a check of the consistency of these boundary conditions, it is wotitimpthat they do not
create any vorticity divergence. Along the same lines as in [5] and [2%nite, upon expanding
the divergence and Laplace operators in the cylindrical Hasigy, €, ):

D gy P L0 o 1wy 10w
or Cor2 ror  r?2 r200  rordd  ordz
L, 1o [1 1 0 Owy 0 Ow,
= (Bw)-a D5 (ﬂ@) o0 or oz or
In view of (14),(16) and (17), we obtain on the bound&gy
0 10w, 10 [wy Owg 0 Ow,
E(V'w) v 8t+r09<7‘ 8r)+628r

10w 110w 1 Ow _ 10w G
v Ot vAtr 00

VAL D v ot AL
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where we have denoted by the vorticity associated with the velocity field at the beginning of
this diffusion step. We next observe that, by (17), the radial vorticityshees at the wall during
the diffusion step. Since the normal velocity is zero at the wall, this remainsdtriting the
convection step, and the above right-hand side thus vanishes at the aloffticity divergence
finally satisfies

M—m(v.w):o in
ot

0

E(VUJ):O Oan

which proves our claim that, with the boundary conditions (14)-(16), anticity divergence is
created during the diffusion step.

Once the correct boundary conditions have been identified, it remainslitaia how they

translate in a vortex method. Following the idea developed in [15] we use redbouintegral
formulation. The solution to (16)-(19) is written as

t
w(x,t) = / G(x—&4v(t—s)) u(&, s)déds (20)
0o Jr,
whereG, the kernel of the heat equation, is defined in 3D by
e—¢*/a?
G(¢,0) = Y

Applying Friedmann’s theory [10] to equations (16)-(19), one finds ¢banponents of: are
solutions of the integral equations :

1

—zur(x,t)—&—y/t 1G(x—é’,ély(t—s)) ((€,s) ny) déds =0 (21)
o Jrp, T

—f,ug x,t) +V/ /Fb [8G G} x —&4v(t —9)) (,u({,s) 'Tx) d€ds = —UG(AXt’t) (22)

Ony

and

—*Mz x,t) + 1// g 6nx (x — & 4v(t —9)) (uz(ﬁ,s)) d€ds = UZ(AXt, 2 (23)

If the boundary was a flat plane, these three integral equations wouwlddeeipled. In cylin-
drical coordinates, there is a coupling between equations (21) andN28 that in the case of a
general 3D body',, there would be a coupling between all these three equations. Nevestheles
equation (21) can be rewritten

t
—;ur(x,t)—l—wﬁ;g/o G(x—&4v(t—s)) (u (& 5)x - &+ po(€,s) det(x, &, €.)) déds =0

Ty

wherex = 1/Ris the curvature of the cylindrical physical boundary. Since, for symyme#&sons,
t
/ G(x — & 4v(t —s)) det(x,&,€,) déds =0
0o Jr,

9



to the leading ordet,. is solution of

t
—gpet) v [ G et - ) (i€ 9)x - €) deds =0
0 Ty

and thusu, ~ 0. Consequently, only the two independent equations (22) and (23)tbdwe
solved. By means of a Taylor development of the heat layer [15], oalifigets

[MQ}N —2 J2|:u€:| where ng[_ol (1)} (24)

SRR (N PN

where we recall thaty, u, are the spurious velocities obtained at the end of a convection step.
The flux of vorticity defining the boundary layer is thus totally explicited. Nuoavalidations
of these formulas can be found in [25].

2.4 Numerical results

In this section we present some numerical validation of the method just pedfenwake calcu-
lations.

The wake of a cylinder remains a challenging case, in particular due to thputational
effort devoted in grid-based methods to correctly approximate the outibmudary conditions.
Our goal here was in particular to investigate the effect of a rather siodation of the compu-
tational domain on the accuracy in the computed drag coefficient. Figuiesdl® summarize the
dynamics of a typical wake, going from a 2CaKran street (cf. figure 7) to a fully 3D flow (cf.
figure 6), for a Reynolds numbéte = 300. An indicator of the amount three-dimensionality of
the flow is the enstrophy corresponding to the radial and azimuthal vortmityponents, what we
call transverse enstrophy, denoted as

Figure 12 shows that this transverse enstrophy remains in a first stsigallyaat the round-
off level, then increases exponentially while streamwise vorticity developgao-called "mode
B” waves [29] (see figure 6), whose wavelength is close to the diamettreofylinder. An
interesting tool to track these waves is the spectral profile, defined a®theai the spanwise
Fourier transform of the velocity field for a given wave number. Thespeprofile associated
to the main-growth wavelength, in the present cag® = 0.79, is shown on figure 11. This
result compares well with the spectral profile provided in [1], whose meomAly wavelength is
predicted\/D = 0.82.

The dynamics evolution from 2D to 3D is accompanied by a decrease in thevdlize, as
shown in figure 10. A thorough discussion of these results is given in [27

Beyond this stage, streamwise structures of vorticity interact togetheritimthesvon Karman
alleys. The flow enters a saturated regime, represented by the satufdtiertransverse enstro-
phy, plotted on figure 12.

In these calculations the computational domain was
R<r<(l1+4m)R and —7R<z<n7R

We used56 x 128 x 128 grid points. The ratio grid spacing versus particle spacing was always
unity. When the wake was fully developed, particles occupied roufity of the computational

10



(Roo — Rb)/Rb Npart (x1073) C’7D Sy 6\’L

27 4.60 1.5270 0.2253 1.135
4 8.29 1.4205 0.2247 1.130
8m 16.66 1.4080 0.2237 1.125
167 33.12 1.4075 0.2232 1.123

Table 1: Two-dimensional drag coefficients and Strouhal humber&éfore= 400 and various
domain sizesN,,: is the mean number of particles once oscillatory regime is established.

Re Dim. Cp St Ref.Cp Ref.S;
300 2D 1.382 0.2110 1.377 0.211
300 3D 1.262 0.2027  1.28*  0.203*
400 2D 1.408 0.2237 1.414 0.220
400 3D 1.198 0.210 1.2 —

Table 2. Mean drag coefficients and Strouhal numbers for variousdRiy numbers, compared
to reference diagnostics from [11], excégtom [18] and' from [13].

box. This size, which allows to follow 4 rolls (see figure 10), is in generalitiint as sufficient
for accurate computation of body forces, especially the drag coeffigieavided the outflow
boundary conditions do not create spurious vorticity. This is confirmeslibgalculations.

Indeed, table 1 and figures 8 and 9 shows the evolution of a few two-diomahsliagnostics
with respect to the domain size. These diagnostics are the mean dragieoeffig, the mean
top lift coefficientC;, and Strouhal numbes;. The domain size is successively chosefrat, —
Ry)/Ry = 2m, 4w, 8m and167.

One can notice on figure 9 that convergence of lift coefficient anduB&ionumber is first
order, while drag coefficient is third order. Computations can be comsides converged for
(R — Ry)/Ry = 8n. For a distance olr, the error in the diagnostics is of the order16%.
Given that we were mostly interested by the relationship between the dimerigtom flow and
the drag values, and that the difference between the 3D and 2D drags althis Reynolds num-
ber was about ten times bigger, this level of accuracy was considesatistactory. A truncation
radius corresponding tQ?., — R)/ R, = 4w allows 3D calculations with good enough spanwise
resolution to capture the desired wavelengths. Note that most finite-difiesecalculations need
to extend the domain much further in the radial direction to avoid spurious refleetion, some-
times at the expense of an insufficient spanwise resolution (for instafe Pne explanation of
the good behavior of the method even for relatively small domain in the radiaition is that the
truncation of the domain only affects the field reconstruction, while the lragga treatment of
the vorticity advection equation does not rely on any artificial boundangition.

Table 2 shows a comparison of drag values obtained in our computatianslée figure
10) and in other reference simulations [11, 18, 13]. More numericaltsesn this flow, and in
particular new results concerning the effect of cylinder rotations on fadgy of the wake, can
be found in [26, 27, 7].
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3 Immersed boundary Vortex-In-Cell methods

The concept of immersed boundaries is an attempt to free numerical compsittitows around
complex geometries from technically difficult and time consuming grid generatigorithms.
One may distinguish two broad classes of such methods. In the first dassjscent to Volume
of Fluid (VOF) methods, computational cells close to the boundary are giwprecial treatment,
depending on the way they intersect the boundary. For the inertial terimsfance, this approach
typically leads in 2D finite-volume methods to modified flux formulas that seemrrathaved
to implement in 3D. In this class of methods, let us also mention the recent papEuonhans
and Winckelmans [23], where vortex methods are designed to handle coBiplgeometries. In
this paper, particles are given different treatments depending on trstaaak to or amount of
overlapping with the body.

In the second class of methods, the flow equations are discretized in & wvagithroughout
the computational domain, which includes the immersed body, and boundatifiocns appear in
the form of localized forcing terms in the right hand side of the flow equations efforts belong
to this class. We actually believe that since a non body-fitted method canechdakntage, at
least not in a straightforward way, of refinement potential that grid iggio® methods in general
offer near boundaries, immersed boundary techniques must remaisingrg and economical to
compete with ever improving body-fitted techniques.

Immersed boundary methods can be traced back to Peskin’s originalfitlemting elastic
fibers in biological flows by forces acting on the flow [22]. This idea, Whizas actually pro-
posed together with a vortex method, although physically appealing, dicelyobm a clear-cut
treatment of boundary conditions. More recent efforts in the contefité-difference methods
aimed at giving a more conventional numerical definition of boundaryitond imposed on an
immersed boundary. The general idea is to enforce boundary conditiemggh the addition of
a singular source term on the boundary. This source term can be writtsinsimply and effi-
ciently directly at the discrete level as a forcing that at every time-stepgitihe flow back to rest
on the boundary. A key point is then to interpolate this singular forcing omgtigepoints next
to the boundary. Of particular interest is the reference [9] where tberacy of the particular
form of the interpolation function which distributes the forcing term on the gridiscussed. It
seems that the optimal interpolation scheme has to be chosen carefully in fuidtie particular
finite-difference method used to discretize the Navier-Stokes equationseitered second-order
finite-difference methods a linear interpolation allows to retain second aaberracy up to the
boundary.

In view of their robustness and reasonable cost when used with Cartgiia, Vortex In Cell
methods should clearly benefit from immersed boundaries approachesacturacy of vortex
methods is largely dependent on accurate regridding techniques thatarafeequire the use of
global mappings to Cartesian geometries - as it is the case for cylinder wkesugh it is pos-
sible to combine several local mappings in domain decomposition-like methodsthétcilitate
their implementation for complex geometries [6], incorporating the concept of isaddound-
aries in Vortex-In-Cell methods would certainly add a great deal of fikityiin their application.
The field computations through Poisson solvers is also clearly faster ins@2argeometries than
for more general cases, in particular due to the coupling generally @pgéathe computations
of all stream function components.

As it turns out, the treatment of immersed boundaries is very natural in thextaf vortex
methods [3]. Even in a body-fitted vortex method, vorticity flux formulas usezhtisfy the no-
slip condition can indeed be seen as a forcing term in the flow equation. Aslindemonstrate
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below, the extension of this technique to immersed boundary is at the same time itenzeatia
accurate. In the rest of this section, we successively describe hdvamdie no-through flow an
no-slip boundary conditions, then we show some numerical validations afétteod.

3.1 No-through flow boundary condition

When the Biot-Savart law is used to compute velocities in grid-free vortex mgtkize no-through
flow boundary condition is enforced by using single or double layer piaisn These potentials
are evaluated on source points distributed along the boundary andhhindegral equations which
translate the condition - n = 0 on these points, along the lines of the classical panel method [12].
This procedure does not require particles in the flow to be initialized andsteedeon body-fitted
grid. It thus gives a simple and elegant way to deal with immersed bound@isils of this
method and numerical illustrations on impulsively started 2D cylinder are gilsawhere [3, 7].
Here, for cost considerations already mentioned, we are interesteldaityevaluations based on
grid Poisson solver. This leads to a slightly more involved method to accoutitdao-through
flow boundary condition.

Let us assume that, at a given time-st@gs an extended vorticity field (that may simply be
the extension by of the flow vorticity) in a computational baf containing the body (typically
we will use a square box). Going back to the Helmholtz decomposition of theityglwve have to
solve, for the extended stream functiapsind potentialy, successively

~AY = @winQ (25)
V¢ = 0inQ (26)
then
A = 0inQandinQ—Q (27)
% — —(V x%) nonly, (28)

The above boundary condition @nhas to be understood in the sense of outer normal derivative -
assuming the flow domain is outside the obstacle.

Let us first point out that, if the domain is simple enough, the condition (23) is much simpler
to complement with appropriate boundary conditions that enforce thegéivee-free condition
(24) than for a general domain. For a square box with sides parallel taxiedor instance, it
suffices to use homogeneous Neumann boundary condition on the smngieular to thez-
axis for thez-component ok and homogeneous Dirichlet condition for the 2 other components,
and similar conditions on the other sides of the box. This is definitely one ty@im using a
Cartesian mesh rather than a body-fitted mesh.

The strategy to implement the boundary condition (25) whgdoes not coincide with grid-
points starts with the following observation.difvas a continuous harmonic extension of the exact
flow potential across the boundary, in view of its gradient discontinuity welgvget

where[-] means the jump acrods, andér, is the two-dimensional Dirac mass supportediiy
The goal is to determin gﬁ] - and to distribute it on grid points. We proceed as follows: we first
b
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tag grid points which are at a distance less than the grid-size from the &guivtie denote bf
the set made by thesé grid-points. We then are looking for a functighwith support orT" (see
figure 13), such that the solution to the system

Ap = ginQ (29)
% _ OonT (30)
on
satisfies -
o — ~
P —(V x1)-nonl

This constitutes a linear system for the unknown functjoover I' of size N. We use a GM-

RES type iterative solver to solve this system. The vector-matrix produdivewvin the iterative

method consists of the solution of a Poisson equation followed by the evakatiqrotential

derivatives on the tagged grid-points. In the numerical examples gigkmwpwe use a stan-
dard Fishpack Poisson solver on a Cartesian uniform mesh, and seatgrdone-sided finite-
differences for the gradient evaluation.

The method just outlined is very simple-minded and one expected drawback &rtbe the
boundary condition is only fulfilled "near” the boundary, at most firstesrcan be achieved, with
the risk of flow leaking outsid€. However the incompressibility of the flow has a nice side effect
here: the no-slip condition implies that the normal derivative of the normatirg component
vanishes oi',. Therefore one has

u-n(x) = O (d(x,T})?)

As a result, enforcing no-through flow at a distance less than a gridesizethe boundary yields
second order accuracy. In all our numerical experiment, no-thréloghat the boundary was
indeed satisfied well beyond the truncation errors introduced by the afipeoximations made
in the vortex method. At every time-step, the GMRES method was initialized by sudt i&f
the previous time-step and two to three iterations were in general sufficieeath the chosen
residual error - fixed ta0~ in our calculations.

3.2 Remeshing, diffusion and no-slip boundary condition

The reason for treating remeshing diffusion and no-slip boundaryittemeh the same discussion
is that these three steps are tightly linked outside the advection step. In iex-Yo-Cell algo-
rithms, we recall that remeshing is performed just before diffusion artétitg flux formulas. In
a body-fitted mesh, as already mentioned, one in general tries to usédeddeymulas. Diffu-
sion for the tangential vorticity components is performed with homogeneoun&lauboundary
conditions before vorticity fluxes formulas are applied. Since immerseddasymethods work
on extended vorticity, these variants are no longer necessary, andgstashing or PSE formulas
can be used in a straightforward way. This definitely distinguishes our ohétbm the method
proposed in [23] which uses corrected interpolation formulas to acdouithe overlapping of
the boundary and the cells and is more in the spirit of VOF method. Note thaothieity flux
formulas that are essential in any vortex method are designed to cometie dasis of the slip
evaluated at the beginning of that step, any wrong vorticity flux that caa been injected in the
flow by diffusion and remeshing. Using centered formulas to remesh vordioiyplain PSE for-
mulas to diffuse vorticity near the boundary have only the effect of intrindugpurious vorticity
in the flow, something that the vorticity flux formulas are in any case designeatttect. In other
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words, not only the method described in section 2 can be used without nadidifieven if the
boundary does not coincide with the underlying grid, but the conceptrokrsed boundary frees
us from the need of having to use particular remeshing or diffusion fosmdar the boundary.

Another point that must be made is that the vorticity flux is done from sowggthat are
located on the boundaty, itself, and not on grid points, and is estimated on the basis of the slip
also evaluated ofi,. Therefore the no-slip boundary condition is enforced, up to the dizatien
errors, on the body boundary itself, no matter where flow particles arelizgtiband remeshed.

In their ease to handle naturally immersed boundaries, vortex method defiiffetyfrom grid-
based methods.

3.3 Numerical examples

We focus here on the case of a ring impinging on a 3D cylinder (comparodsg values
with reference results for impulsively started 2D cylinders are givemlsee [3, 7]). The initial
condition consists of a ring of unit circulation with outer radiug, and a Gaussian core of radius
0.5, located at a distance from the cylinder equal to 2.5 times the cylinder radius.

The computational box is a cube of size corresponding to 3 cylinder dissndiee Reynolds
number is400. Figure 14 shows isosurfaces of vorticity magnitude at two successive tifitbe
collision process. One can observe the production of secondaryityoditthe cylinder which
rebounds and eventually creates two secondary rings.

We show in Figure 15 the normal velocity on the cylinder for a rather cagidesize, corre-
sponding to a grid resolution 823 points, compared to the normal velocity that would be induced
in free space by the ring on the cylinder. The normal velocity is at a lew# that particles only
exceptionally leak outside the flow domain.

We now turn to the treatment of the no-slip condition. In Figure 16 we monitor the time
evolution of the residual slip velocity together with the location, in the directich@ymmetry
axis of the ring, of the center of velocity (for the purpose of this figureséhquantities are not
scaled). One can observe that the slip is slightly increasing as the ringaziyess the cylinder.

It reaches its maximum value at about the time of collision, noticeable in the infleigile in
the slope of the descent curve. Figure 17 is a refinement study, at thatofittee accuracy in
the treatment of the no-slip condition. In this figure are plotted the residuatagigther with
the numerical dissipation of the algorithm for several mesh-resolutions.slifinis evaluated in
maximum norm, normalized by the slip induced by the initial ring, in absence @titgiflux at
the boundary. The effective diffusion of the algorithm computed by thadita

1 d

Verf(t) = M@ﬂ’f)
whereE(t) andS(t) respectively denote the instantaneous energy and enstrophy. Threpdiscy
veff — v, plotted in Figure 13, essentially measures the cumulative dissipative effferheshing
and vorticity creation. This figure shows that second order accuraegdbed, which validates the
argument given above in favor of a method where remeshing and diffaseodone by standard
centered formulas up to the boundary.

Some indications of the cost of the method can further shed some light on the Imdits a
possibilities of the method. For @63 grid and about00, 000 particles, the CPU time was)
seconds per time-step on a DEC alpha workstation runnia@@Mhz. This must be compared
to the CPU taken by the cylindrical grid. The cost is about the same; in thattha advantage
of using a faster Cartesian grid Poisson solver and simpler interpolationfas in the immersed
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boundary code is compensated by the cost of the linear system to satisfy-theough flow. For
a cylinder wake, given the natural stretching of the cylindrical grid in thienathal direction,
it seems unlikely that an immersed boundary vortex method can compete with diiditbed

method, except if a stretched Cartesian grid was used. Such a possibiiitiy would follow the
lines of [6] was not yet implemented.

4 Conclusion

Two classes of Vortex-In-Cell methods for the simulation of wall boundedslhave been de-
scribed and validated. The first class uses body-fitted grids and pdititibutions. An Helmholtz
decomposition of the velocity fields allows to decouple the calculations of thenstienctions
which make possible the use of fast Poisson solvers. Numerical validatans that for wake
calculations the far field boundary conditions required by these Poisbars does not introduce
severe limitations over a totally grid-free particle method, as far as bodgdame concerned. The
resulting method retains the robustness and accuracy of grid-freel@antthods while signifi-
cantly reducing their numerical cost. In passing, we have also givensstent treatment of 3D
vorticity conditions which is not limited to flat boundaries.

The second class of methods deals with bodies as immersed boundariesouhtfiow and
no-slip boundary conditions are enforced at two different stagesedlgorithm: the no through-
flow boundary condition is satisfied in the field calculation via the addition of morogriate
singular component to the potential part of the velocity. The no-slip condgioaturally handled
by the vorticity flux formulas that are derived in body-fitted geometries. mMi¢hod has been
validated on the problem of a ring impinging on a cylinder. This problem has lselected
as a prototype of three-dimensional vortex-wall interaction which regureapture accurately
the vorticity created at the boundary. A refinement study suggests thahdtieod is second
order accurate. This method thus appears to retain the simplicity of particleaséthGartesian
geometries - in particular in the field evaluations and the interpolation formuldsle Wweing
general enough to apply to complex geometries.
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Figure 1. Comparison of CPU time for the evalution of particle velocities in afoeel-method
based of on fast summation algorithm [17] and in the present VIC methed lnaisa Cartesian or
polar Poisson solver:

(x) Direct summation [17],

(O) Fast multipole first order calculation [17],

(x) VIC method on a cylindrical grid filled witls5% particles,

(4) VIC method on a cylindrical grid filled witR5% particles,

(M) VIC method on a Cartesian grid filled witth)0% particles.

Figure 2: Interpolation between particles (located gtand grid points (located at,), in cylin-
drical coordinates (left picture) and mapped coordinates (right picture

Figure 3: Kernels used for remeshing and interpolatign(=—, Ag,+.(— —) (left picture), and
Ag, (- --) (right picture).

Figure 4: Body and far-field boundary conditions for velocity field.
Figure 5: Vorticity boundary conditions on the boHy.

Figure 6: Isovalue of transverse vorticity & = 300, exhibiting a three-dimensional saturated
mode Binstability.

Figure 7: Two-dimensional vorticity field de = 300.

Figure 8: Convergence of drag coefficient and Strouhal numbewimdimensional simulations
at Re = 400.

Figure 9: Relative error in drag coefficiefit (+), lift coefficientC, (x) and Strouhal numbef,

(O) for two-dimensional simulations de = 400. Dotted lines correspond to first order (left
picture) and third order (right picture) convergence.

Figure 10: Direct Numerical Simulation of an unstable 3D wake : typical ¢rapand lift (- -)

response to three-dimensionality f&e = 300. Dotted lines correspond @ 0.96, 1.262 and
1.38.

Figure 11: Direct Numerical Simulation of an unstable 3D wakeRer= 300 : typical spectral
profile of main-growth wavelength (mode B).

Figure 12: Evolution of the three-dimensional part of enstrophfteat= 300, using natural scale
(left picture) and logarithmic scale (right picture).

Figure 13: Enforcement of no through flow condition for immersed boyniggzhnique.
Figure 14: Cylinder-ring interaction: isosurfaces of vorticity magnituadifoes 10 and 40.

Figure 15: Cylinder-ring interaction: normal velocity along the cylinder sytnynglane before
and after potential correction.
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Figure 16: Cylinder-ring interaction: time history of residual slip and locatiorenter of vorticity
along the ring axis.

Figure 17: Residual slip and numerical diffusion for several meshawefémts.
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