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Abstract

This paper is devoted to the design of Vortex-In-Cell methods for the Direct Numerical
simulations of wall-bounded flows. A first method using body-fitted grid is presented in the
particular case of a cylinder wake. This method, which has been used in [26] to investigate
the effect on the wake topology of cylinder rotations, is an extension of the VIC method
presented in [4] for periodic geometries. Features of the method that are specific to wall-
bounded geometries - interpolation operators, field calculations and vorticity flux formulas to
enforce no-slip boundary conditions - are described in details. The accuracy of the method
in the calculation of the body forces is investigated by comparisons with experiments and
benchmark calculations. A second class of methods is in the spirit of the immersed boundary
methods. The paper in particular shows that the no-slip conditions are very naturally handled
by the vorticity-flux formulas, independently of the relative locations of the particles and the
body. Numerical experiments on the test-case of a ring impinging on a cylinder suggest that
the method is second order accurate.

1 Introduction

The Direct Numerical Simulation of three-dimensional bluff-body flows remains a challenging
problem in CFD. Even for rather simple geometries, like a cylinder, the need for accuracy and ro-
bustness is very demanding for classical grid-based techniques. While accuracy often dictates the
use of non-dissipative finite-difference or spectral element schemes,stability impose constraints,
on the compatibility of the grid and flow topologies and on the time-step values, thatcan substan-
tially slow down the methods.

By contrast, particle methods, when they use the appropriate tools, allow to some extent to
by-pass the usual accuracy-stability dilemma. The advection part of the equations indeed relies on
the advection of particle, and thus is linearly unconditionally stable. Nonlinearstability requires
that particles do not collide, something which is guaranteed as long as the time-step does not
exceed the time-scale on which the flow is strained. This condition reads∆t ≤ C|∇u|−1 and thus
does not involve the mesh size. As for the diffusion part of the equation, deterministic particle
methods are based on explicit solvers that are stable under finite-difference like conditions of
the typeν∆t ≤ Ch−2, whereν is the viscosity andh is the mesh-size. For moderate to high
Reynolds numbers and affordable resolutions, this condition is generally not a severe limitation in
3D calculations.

Systematic comparisons on a variety of 2D flows with non-dissipative finite-difference schemes
have shown that, in many cases, time-step limitations are indeed far less restrictive for particle
methods than for Eulerian methods, leading to substantial savings.

1



Concerning 3D computations, recent comparisons [4] with spectral methods for periodic lam-
inar and turbulent flows have given some insight into the accuracy and thesubgrid behavior of
particle methods. For 3D wall-bounded flows, vortex methods have been successfully used to
compute vortex-wall collision [21] and, more recently, the flow past a sphere at various Reynolds
numbers [24]. In the first case, the method was a Vortex-In-Cell method,combining Lagrangian
transport of particles with Eulerian field calculation, while in the second casethe authors used a
totally grid-free vortex method, based on fast N body solvers for fields evaluation.

Our goal in this paper is two-fold. First, we show that Vortex In Cell methodsare, in terms of
accuracy/cost balance, a viable alternative to Eulerian methods for DNS computations of cylinder
wakes. Secondly, we propose and validate an immersed boundary VortexIn Cell method to handle
more complex geometries.

Concerning the first point, one reason for focusing on cylinder wakesis that this is a well-
documented flow (see [19, 1, 18] for example), in particular since the experimental work of
Williamson [29]. For this flow however many open questions remain, due to the limitations of
current CFD solvers. Some of these questions regarding the bi-dimensionalization of 3D wakes
under cylinder rotations, are addressed elsewhere [26, 27, 8] and the present paper focuses on the
numerical techniques underlying these numerical simulations.

For cylinder wakes, and more generally bluff-body flows, beside the time-step constraints al-
ready mentioned, Eulerian methods face additional difficulties in the treatment of outflow bound-
ary conditions. Nonlinear stability requires special care there, sometimes atthe expense of mesh
refinement, although accuracy should not be a concern in this part of theflow. If grid-free particle
methods are evidently free of these difficulties, this is at the expense of using time-consuming N
body solvers. As for vortex in cell methods, since fields are computed on agrid, they have to intro-
duce artificialboundary conditions on the outer parts of the computational box for the calculation
of the fields. One goal of the present study is in particular to check whether accuracy, in the drag
computation in particular, or stability impose drastic conditions on the size of the computational
box for vortex-in-cell methods. Another point of concern about vortex methods for wall-bounded
flows is the consistent treatment of no-slip boundary conditions. Vorticity flux formulas have been
demonstrated (see in particular [16]) to be the appropriate formulation for vortex methods to han-
dle in two dimensions these boundary conditions. For 3D flows, an extensionof this formulation
is given in [5] for flat boundaries. In the present paper, we show that in the case of more gen-
eral geometries the curvature of the boundary modifies the Neumann into a Robin type boundary
condition for the azimuthal component of the vorticity.

Concerning the second point addressed in this paper, the method we propose is in the spirit
of immersed boundary schemes originally proposed by Peskin [22] and recently revisited in the
context of finite-difference techniques [9]. The general idea is to avoid technical difficulties in
generating a body-fitted grid around a possibly moving complex 3D obstacle,by using for instance
a finite-difference solver on a fixed Cartesian grid overlapping with the boundary of the obstacle.
Boundary conditions are enforced through a forcing term in the right hand side of the Navier-
Stokes equations.

The interpolation on the grid of this forcing term, which by nature is singular and has support
on the boundary, is in finite-difference methods a critical point that conditions the overall accuracy.
For vortex methods, the situation is very different. No-slip boundary conditions are enforced by
sources of vorticity which are located on the boundary. The accuracy of this procedure depends
on the grid resolution underlying the distributions of source boundary points and flow particles,
but not on the relative locations of these two sets of points. The vorticity flux of boundary sources
onto the flow particles somehow plays the role of interpolation formulas neededin finite-difference
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methods. The method we propose is strongly based on this remark and thus only introduces minor
changes - including for 3D geometries - over a method which would use a body-fitted grid. In that
respect, our method differs significantly from the vortex method designed in[23] (see also [28]),
where particles close to the boundaries are monitored and given special treatments.

The outline of the paper is as follows. In section 2, we describe our method with body-fitted
particles and grid for cylinder wake calculations. We detail the Poisson solver used to compute
velocity and strain on the grid, and the vorticity boundary conditions neededto satisfy no-slip
boundary conditions. We also give some indications on the cost of the methodcompared to a
purely grid-free particle method. Our method is then validated by systematic inspection of drag
curves for moderate Reynolds numbers. In section 3 we turn to the immersed boundary vortex
method. We describe the algorithms used to satisfy no-through flow and no-slip boundary condi-
tions. The numerical validation is performed on the test-case of a ring-cylinder collision. Finally
section 4 is devoted to concluding remarks.

2 A Vortex-In-Cell method for the computation of 3D cylinder wakes

The general idea behind Vortex-In-Cell (VIC) methods, and more generally Particle-In-Cell meth-
ods, is to use particles to transport conservative quantities and grid-based formulas to compute
fields. For the incompressible Navier-Stokes equations written in the vorticity-velocity form

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u− ν∆ω = 0 (1)

particles thus carry vorticity, while velocity and strain are computed on an Eulerian grid using
Poisson solvers. The reason for using this strategy to compute the fields, instead of direct, Biot-
Savart law inspired, integral formulas, is that even the fastest summation formulas are in many
practical situations at least one order of magnitude slower than FFT-based current Poisson solvers.
This will appear clearly on the timings shown later in in this section.

The overall algorithm classically consists of alternating advection and diffusion equations.
Convection is done by pushing particles with their local velocities and updatingtheir strength to
account for the local vorticity stretching (computed with centered fourth-order finite difference
schemes).

Diffusion is done by a Particle Strength Exchange (PSE) algorithm with appropriate Neumann
boundary condition to cancel the slip resulting for the advection step (see for instance [16, 5]).

To preserve the accuracy of Particle methods for long time simulations, it has long been ob-
served that frequent regridding of particles on regular locations is necessary (see [14] for a con-
vergence study of remeshing). In our algorithm, remeshing is done at every time-step just before
diffusion. This allows to use the PSE scheme with formulas normalized on the basis of discrete
moments, and thus avoids quadrature errors in the diffusion approximation (see [25, 6] for in-
stance). When there is a solid boundary, in the body-fitted method described in this section the
grid fits with the solid boundary while particle are initialized and remeshed on a staggered grid.

Each time step of the algorithm can be summarized in this way:

Convection step:

• interpolation of vorticity from particles to grid

• computation of velocity and strain on the grid
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• interpolation of velocity and strain on particles

• update of particle locations and strengths

Particle remeshing: interpolation of particle strengths on regular locations

Diffusion step: PSE scheme and vorticity flux formulas

Note that, as already mentioned, the time step for diffusion and for convection/remeshing are
constrained by different stability conditions and need not be the same. In practice several sub-
steps of convection, using 4th order Runge-Kutta time-stepping, may be done inside one diffusion
step.

The overall structure of the algorithm has been described in a number of references (see in par-
ticular [6, 4]) and we focus here on the particular aspects of the algorithmrelated to the cylindrical
geometry: we first discuss the interpolation formulas needed to exchange information between
particles and grid and to remesh particles; then we describe the Poisson solver used to compute
velocity values on the grid; finally we derive vorticity-flux formulas which translate the no-slip
boundary conditions. The end of the section is devoted to the numerical validation of the algo-
rithm on two and three-dimensional wake simulations.

2.1 Interpolation formulas for particle-grid mapping and p article remeshing

Let us first give the notations corresponding to the geometry of a bluff-body flow. Ω denotes the
computational domain, extending from the boundary of the obstacle, denoted byΓb, to the outer
boundary, denoted byΓ∞. In the case of a flow past a cylinder, we will denote by subscriptsr, θ
andz respectively radial, azimuthal and spanwise field components. We will assumeL-periodic
boundary conditions in the cylinder axis direction and the computational domainextends from
r = Rb to r = R∞.

Interpolation formulas are based on convolutions with a smooth kernel. The kernel used in
the present work is based on the following one-dimensional function whichis third order - in the
sense that it preserves the 3 first moments of the distribution, twice continuously differentiable and
symmetric (see [5]) :

ζ(x) =





(
3x3 − 5x2 + 2

)
/2 if 0 6 x 6 1

(2− x)2(1− x)/2 if 1 6 x 6 2
0 if x > 2

(2)

Rescaling this function at a grid-sizeε yields the following expression

ζε(x) =
1

ε
ζ
(x
ε

)
(3)

To account for cylindrical geometries, the interpolation is based on tensorproducts of this func-
tion in cylindrical coordinates. Assuming the same grid-size in radial, angularand azimuthal
directions, the redistribution of a given functionf , extended by periodicity in the angular and
azimuthal directions, into a functioñf is given by

f̃(r, θ, z) =

∫ +∞

−∞

∫ +∞

−∞

∫ R∞

R0

f(s, ξ, u)Λr(r − s)ζε(θ − ξ)ζε(z − u) s ds dξ du

(4)
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where the subscriptr in Λr means that the shape of the kernel depends on the location. The kernel
Λr = ζε is chosen unless particles and grid points are close to the boundary. For the second layer
of grid-points (corresponding tor = Rb + ε) the kernelζ is used with ghost particles inside the
body, carrying symmetric weights. This amounts to replacingζ by

ΛRb+ε(r) =





ζ(r) if r 6 0
ζ(r) + ζ(2− r) if 0 6 r 6 1
0 otherwise

(5)

This kernel is second order accurate.

For the first layer of points (on the cylinder) we use the following one-sided interpolation
formula

ΛRb
(r) =

{
r2 + 4r + 13/4 if −(4 +

√
3 )/2 6 r 6 0

0 otherwise
(6)

This kernel has been chosen because it has the property to preservecirculation and linear impulse
when particles and grid-points lie on staggered grids. We recall that this is the procedure selected
to initialize and remesh particles.

Finally, the interpolation of a quantityfp carried by particles located at(rp, θp, zp) and whose
volume isvp is given by

f̃(rp, θp, zp) =
∑

q

fqΛrp(rp − rq)ζε(θp − θq)ζε(zp − zq)vq (7)

Note that this summation involves image particles in the corresponding directions totake in ac-
count angular and spanwise periodicity. This formula easily extends to the case when different
grid-sizes are used in the 3 directions.

Formula (7) is used at three stages of the algorithm: when particle vorticity is interpolated
on a fixed cylindrical grid where velocity are evaluated (see next section), when field values are
interpolated back to particles, and finally to remesh an eventually distorted particle distribution
into a fresh, regular distribution. As we already mentioned, to maintain accuracy of the particle
discretization, in all our calculations we remesh the particle at every time-step before the diffusion
step. The remeshing procedure and formulas (5) and (6) are illustrated on Figures 2 and 3.

2.2 Velocity evaluations

Once vorticity has been assigned to the grid, the velocity is computed according to the Helmholtz
decomposition

u = u+∇×ψ +∇φ (8)

whereu is the potential flow around the cylinder with prescribed value at infinity. Onethen has
∇×u = ω and∇ ·u = 0 provided the stream functionψ and the potentialφ satisfy the following
Poisson equations

−∆ψ = ω in Ω (9)

∇ ·ψ = 0 in Ω (10)

∆φ = 0 in Ω (11)

The boundary conditions to complement this system are adjusted to ensure no-through flow on
the cylinder and the artificial boundary conditionu = u on the outer limit of the computational
domain.
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More precisely our solution procedure is as follows. We first computeψx andψy solutions to
−∆ψx = ωx, −∆ψy = ωy with periodic boundary conditions in thez andθ-direction, and ho-
mogeneous Dirichlet boundary conditions in the radial direction. Then we compute the remaining
componentψz, satisfying−∆ψz = ωz with periodic boundary conditions in thez andθ-direction,
and the following Dirichlet boundary condition in the radial direction

ψz(r, θ, z) = −
∫ z

0

∂ψr

∂r
(r, θ, s) ds for r = Rb andr = R∞ (12)

With these boundary conditions, one has

∇ ·ψ = 0 onΓb andΓ∞

and periodic boundary conditions inz. Since

∆(∇ ·ψ) = ∇ · ω in Ω

anω is divergence-free, this implies that

∇ ·ψ = 0 in Ω

It remains to compute the scalar potentialφ. In order to impose the correct boundary condition on
the cylinder, we require the following Neumann type boundary condition

∂φ

∂n
= −(∇×ψ) · n on Γb and Γ∞ (13)

to complement the Poisson equation (11) forφ. Figure 4 summarizes the procedure ro impose the
no-though flow boundary condition.

Note that, if ∫ L

0

∂ψr

∂r
(r, θ, s) ds 6= 0

the periodic boundary condition combined with (12) may create a singularity forψz, and thus
for φ, near the corners ofΩ which can affect the accuracy in the finite-difference calculations
of velocities. In [25], an algorithm to remove this singularity is derived, based on the resolution
of additional two-dimensional Poisson equations. However, in practical calculations, spurious
effects of this singularity have never been observed and the original algorithm based on formula
(12) without correction has been found satisfactory. It is also importantto notice that the far-field
boundary condition consists of imposingu = u at the outer boundary. This may seem a rather
crude approximation, in particular compared to the exact far-field conditionimplicitly used in grid-
free vortex methods. Nevertheless, the numerical results shown below (see table 1) demonstrate
that this boundary condition allows to obtain convergent results on the bodywith computational
domains significantly smaller, in the streamwise direction, than those currently used in finite-
difference methods.

One nice feature of using a scalar potential to compute velocities, is that boundary conditions
do not couple the computations of the three components of the stream functions. This allows to
use simple scalar Poisson solvers. In our simulations we used classical Fishpack package solvers.

To give an idea of the computational cost of the overall numerical procedure to compute the
velocities, including interpolations and Poisson solvers, we show in Figure 1a comparison of
CPU times for our method compared to the fast summation algorithm based on a tree-code given
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in [17]. For a sake of fairness, a scaling factor of4, based on the CPU time needed for direct
summation methods on the different platforms, has been applied to account for the difference in
processor speeds between the SGI75 Mhz processor used by these authors and the Alpha500
Mhz processor we were using. Although the development and implementation of 3D fast solvers
is a rapidly growing field, we believe that these comparisons give a good indication of the speed
up offered by VIC methods, except when vorticity is strongly localized (which was the case in the
vortex sheet calculations of [17]).

In practical implementations of vortex methods, an additional speed up factorcan be obtained
from the following remark: the convection of particles is most often done with amulti-step time-
stepping. In a Biot-Savart type algorithm, velocities are in general recomputed at every sub-step
since particles have moved. In all our VIC calculations, we have observed that it is possible to
compute only once per time step the grid velocities without noticeably deterioratingthe accuracy.
Particle motions during the substeps have only to be taken into account when grid velocities are
interpolated on particle locations. When a fourth order Runge-Kutta time-stepping is used, this
introduces another significant speed up (note that this remark also appliesto Biot-Savart codes:
in that case a fast summation, instead of a Poisson solver, would be used to compute velocity and
strain on regular grid points).

To finish with these comparisons, let us again stress the fact that the speedup of VIC methods
on Biot-Savart based methods is very much problem dependent. In case particles occupy only a
very small portion (say less that 10%) of a computational box that would be required in a Vortex
In Cell method, Biot-Savart inspired methods may become comparable or evenmore effective
than VIC methods. Particular cases of localized vorticity are 1D or 2D vortexsheets (like in the
calculations of [17]) or when one desires to follow a wake very far downstream (like in reference
[24]). In our case, we were interested by body forces for a cylinderwake in a computational
grid which was filled by approximately25% of particles, and Biot-Savart methods were clearly
outperformed by VIC methods (by a factor of about 20 according to figure 1) .

2.3 No-slip boundary condition and vorticity flux formulas

In vortex methods, the no-slip boundary condition is classically enforced by the creation of a
vortex layer in the vicinity of the boundary [2]. In a fractional step algorithm, this vortex layer
is designed to cancel the slip resulting from previous advection and diffusion steps. A clear-cut
mathematical definition of this method is based on a vorticity flux formula - or Neumann type
boundary conditions - in the vorticity diffusion equation. In two dimensions, if∆t is the diffusion
time-step andu · τ the residual slip resulting form the advection of particles and the PSE scheme,
this formula reads

∂ω

∂t
− ν∆ω = 0 in Ω

ν
∂ω

∂n
= −u · τ

∆t
onΓb

This equation has to be solved for a time-step∆t, with zero initial condition. The resulting field
is then added to the vorticity obtained at the end of the previous advection-diffusion step.

This is the method implemented in [16] (see figure 5). In three-dimensional flows, boundary
conditions are required for all three components of the vorticity. For planeboundaries, the 2D
boundary conditions easily extend to give Neumann boundary conditions for the two tangential
vorticity components. The flux of each tangential component must cancel the slip in the orthog-
onal direction [5]. For curved boundaries however, a closer look atthe vorticity equation for the
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azimuthal component reveals that the vorticity flux for this component shouldcorrespond to a
Robin type boundary condition. Indeed, from the Navier-Stokes equation, one gets in a viscous
splitting algorithm the following diffusion equation forωθ

∂ωθ

∂t
− ν

(
∆ωθ +

2

r2
∂ωr

∂θ
− ωθ

r2

)
= 0 in Ω (14)

Upon observing that
∂

∂r

(
1

r

∂

∂r
(rωθ)

)
=

1

r

∂

∂r

(
r
∂ωθ

∂r

)
− ωθ

r2

this equation can be rewritten as

∂ωθ

∂t
− ν

[
∂

∂r

(
1

r

∂

∂r
(rωθ)

)
+

1

r2
∂2ωθ

∂θ2
+
∂2ωθ

∂z2
+

2

r2
∂ωr

∂θ

]
= 0.

Its shows that the flux of azimuthal vorticity entering the flow through diffusion is given by
(ν/r)(∂(rωθ)/∂r). As a result, the natural boundary condition onωθ to cancel the slip in the
spanwise direction reads

ν

r

∂

∂r
(rωθ) =

uz
∆t

onΓb (15)

As for the spanwise vorticity, since there is no curvature in the boundary on that direction, its
boundary condition is a regular Neumann boundary condition, as in the case of a plane boundary.
Finally the boundary condition for the normal vorticity component is clearly anhomogeneous
Dirichlet condition, since this component only involves tangential derivatives of the velocity at
the wall.To summarize, the no-slip boundary condition is satisfied through the solution over the
time-step∆t of the following diffusion equation

∂ω

∂t
− ν∆ω = 0 in Ω (16)

ωr = 0 onΓb (17)

ν
∂ωz

∂n
= − uθ

∆t
onΓb (18)

ν

(
ωθ

r
+
∂ωθ

∂n

)
=
uz
∆t

onΓb (19)

whereuθ, uz respectively denote the azimuthal and spanwise residual slip at the end ofthe previous
convection step.

As a check of the consistency of these boundary conditions, it is worth noticing that they do not
create any vorticity divergence. Along the same lines as in [5] and [27] wewrite, upon expanding
the divergence and Laplace operators in the cylindrical basis(~er, ~eθ, ~ez):

∂

∂r
(∇ · ω) =

∂2ωr

∂r2
+

1

r

∂ωr

∂r
− ωr

r2
− 1

r2
∂ωθ

∂θ
+

1

r

∂2ωθ

∂r∂θ
+
∂2ωz

∂r∂z

= (∆ω) · ~er +
1

r

∂

∂θ

(
1

r
ωθ

)
+

1

r

∂

∂θ

∂ωθ

∂r
+

∂

∂z

∂ωz

∂r

In view of (14),(16) and (17), we obtain on the boundaryΓb

∂

∂r
(∇ · ω) =

1

ν

∂ωr

∂t
+

1

r

∂

∂θ

(
ωθ

r
+
∂ωθ

∂r

)
+

∂

∂z

∂ωz

∂r

=
1

ν

∂ωr

∂t
+

1

ν∆t

1

r

∂uz
∂θ

− 1

ν∆t

∂uθ
∂z

=
1

ν

∂ωr

∂t
+

ω̃r

ν∆t
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where we have denoted bỹω the vorticity associated with the velocity field at the beginning of
this diffusion step. We next observe that, by (17), the radial vorticity vanishes at the wall during
the diffusion step. Since the normal velocity is zero at the wall, this remains trueduring the
convection step, and the above right-hand side thus vanishes at the wall. The vorticity divergence
finally satisfies 




∂(∇ · ω)
∂t

− ν∆(∇ · ω) = 0 in Ω

∂

∂r
(∇ · ω) = 0 on Γb

which proves our claim that, with the boundary conditions (14)-(16), no vorticity divergence is
created during the diffusion step.

Once the correct boundary conditions have been identified, it remains to indicate how they
translate in a vortex method. Following the idea developed in [15] we use a boundary integral
formulation. The solution to (16)-(19) is written as

ω(x, t) =

∫ t

0

∫

Γb

G (x− ξ, 4ν(t− s))µ(ξ, s) dξds (20)

whereG, the kernel of the heat equation, is defined in 3D by

G(ζ, σ) =
e−ζ2/σ2

π3/2 σ3

Applying Friedmann’s theory [10] to equations (16)-(19), one finds that components ofµ are
solutions of the integral equations :

−1

2
µr(x, t) + ν

∫ t

0

∫

Γb

1

r
G (x− ξ, 4ν(t− s))

(
µ(ξ, s) · nx

)
dξds = 0 (21)

−1

2
µθ(x, t)+ν

∫ t

0

∫

Γb

[
∂G

∂nx

+
G

r

]
(x− ξ, 4ν(t− s))

(
µ(ξ, s) · τx

)
dξds = −uθ(x, t)

∆t
(22)

and

−1

2
µz(x, t) + ν

∫ t

0

∫

Γb

∂G

∂nx

(x− ξ, 4ν(t− s))
(
µz(ξ, s)

)
dξds =

uz(x, t)

∆t
(23)

If the boundary was a flat plane, these three integral equations would beuncoupled. In cylin-
drical coordinates, there is a coupling between equations (21) and (22). Note that in the case of a
general 3D bodyΓb, there would be a coupling between all these three equations. Nevertheless,
equation (21) can be rewritten

−1

2
µr(x, t)+νκ

3

∫ t

0

∫

Γb

G (x− ξ, 4ν(t− s))
(
µr(ξ, s)x · ξ + µθ(ξ, s) det(x, ξ, ~ez)

)
dξds = 0

whereκ = 1/R is the curvature of the cylindrical physical boundary. Since, for symmetry reasons,

∫ t

0

∫

Γb

G (x− ξ, 4ν(t− s)) det(x, ξ, ~ez) dξds = 0
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to the leading orderµr is solution of

−1

2
µr(x, t) + νκ3

∫ t

0

∫

Γb

G (x− ξ, 4ν(t− s))
(
µr(ξ, s)x · ξ

)
dξds = 0

and thusµr ≃ 0. Consequently, only the two independent equations (22) and (23) haveto be
solved. By means of a Taylor development of the heat layer [15], one finally gets

[
µθ
µz

]
≃ −2(

1 + κ
√
ν∆t/π

)
∆t

J2

[
uθ
uz

]
where J2 =

[
0 1
−1 0

]
(24)

where we recall thatuθ, uz are the spurious velocities obtained at the end of a convection step.
The flux of vorticity defining the boundary layer is thus totally explicited. Numerical validations
of these formulas can be found in [25].

2.4 Numerical results

In this section we present some numerical validation of the method just presented for wake calcu-
lations.

The wake of a cylinder remains a challenging case, in particular due to the computational
effort devoted in grid-based methods to correctly approximate the outflow boundary conditions.
Our goal here was in particular to investigate the effect of a rather shorttruncation of the compu-
tational domain on the accuracy in the computed drag coefficient. Figures 10and 6 summarize the
dynamics of a typical wake, going from a 2D Kármán street (cf. figure 7) to a fully 3D flow (cf.
figure 6), for a Reynolds numberRe = 300. An indicator of the amount three-dimensionality of
the flow is the enstrophy corresponding to the radial and azimuthal vorticity components, what we
call transverse enstrophy, denoted as

Z⊥ =

∫

Ω
ω2
r (x) + ω2

θ(x) dx

Figure 12 shows that this transverse enstrophy remains in a first stage basically at the round-
off level, then increases exponentially while streamwise vorticity develops along so-called ”mode
B” waves [29] (see figure 6), whose wavelength is close to the diameter ofthe cylinder. An
interesting tool to track these waves is the spectral profile, defined as the norm of the spanwise
Fourier transform of the velocity field for a given wave number. The spectral profile associated
to the main-growth wavelength, in the present caseλ/D = 0.79, is shown on figure 11. This
result compares well with the spectral profile provided in [1], whose main-growth wavelength is
predictedλ/D = 0.82.

The dynamics evolution from 2D to 3D is accompanied by a decrease in the drag value, as
shown in figure 10. A thorough discussion of these results is given in [27].

Beyond this stage, streamwise structures of vorticity interact together and with the von Ḱarmán
alleys. The flow enters a saturated regime, represented by the saturation of the transverse enstro-
phy, plotted on figure 12.

In these calculations the computational domain was

R ≤ r ≤ (1 + 4π)R and − πR ≤ z ≤ πR

We used256 × 128 × 128 grid points. The ratio grid spacing versus particle spacing was always
unity. When the wake was fully developed, particles occupied roughly25% of the computational
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(R∞ −Rb)/Rb Npart (×10−3) CD St ĈL

2π 4.60 1.5270 0.2253 1.135
4π 8.29 1.4205 0.2247 1.130
8π 16.66 1.4080 0.2237 1.125
16π 33.12 1.4075 0.2232 1.123

Table 1: Two-dimensional drag coefficients and Strouhal numbers forRe = 400 and various
domain sizes.Npart is the mean number of particles once oscillatory regime is established.

Re Dim. CD St Ref. CD Ref. St
300 2D 1.382 0.2110 1.377 0.211
300 3D 1.262 0.2027 1.28∗ 0.203∗

400 2D 1.408 0.2237 1.414 0.220
400 3D 1.198 0.210 1.2† −

Table 2: Mean drag coefficients and Strouhal numbers for various Reynolds numbers, compared
to reference diagnostics from [11], except∗ from [18] and† from [13].

box. This size, which allows to follow 4 rolls (see figure 10), is in general thought as sufficient
for accurate computation of body forces, especially the drag coefficient, provided the outflow
boundary conditions do not create spurious vorticity. This is confirmed byour calculations.

Indeed, table 1 and figures 8 and 9 shows the evolution of a few two-dimensional diagnostics
with respect to the domain size. These diagnostics are the mean drag coefficientCD, the mean
top lift coefficientĈL and Strouhal numberSt. The domain size is successively chosen at(R∞ −
Rb)/Rb = 2π, 4π, 8π and16π.

One can notice on figure 9 that convergence of lift coefficient and Strouhal number is first
order, while drag coefficient is third order. Computations can be considered as converged for
(R∞ − Rb)/Rb = 8π. For a distance of4π, the error in the diagnostics is of the order of1%.
Given that we were mostly interested by the relationship between the dimension of the flow and
the drag values, and that the difference between the 3D and 2D drag values at this Reynolds num-
ber was about ten times bigger, this level of accuracy was considered assatisfactory. A truncation
radius corresponding to(R∞ −Rb)/Rb = 4π allows 3D calculations with good enough spanwise
resolution to capture the desired wavelengths. Note that most finite-differences calculations need
to extend the domain much further in the radial direction to avoid spurious wavereflection, some-
times at the expense of an insufficient spanwise resolution (for instance [20]). One explanation of
the good behavior of the method even for relatively small domain in the radial dierction is that the
truncation of the domain only affects the field reconstruction, while the Lagrangian treatment of
the vorticity advection equation does not rely on any artificial boundary condition.

Table 2 shows a comparison of drag values obtained in our computations (see also figure
10) and in other reference simulations [11, 18, 13]. More numerical results on this flow, and in
particular new results concerning the effect of cylinder rotations on the topology of the wake, can
be found in [26, 27, 7].
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3 Immersed boundary Vortex-In-Cell methods

The concept of immersed boundaries is an attempt to free numerical computations of flows around
complex geometries from technically difficult and time consuming grid generationalgorithms.
One may distinguish two broad classes of such methods. In the first class, reminiscent to Volume
of Fluid (VOF) methods, computational cells close to the boundary are givena special treatment,
depending on the way they intersect the boundary. For the inertial terms for instance, this approach
typically leads in 2D finite-volume methods to modified flux formulas that seem rather involved
to implement in 3D. In this class of methods, let us also mention the recent paper of Ploumhans
and Winckelmans [23], where vortex methods are designed to handle complex 2D geometries. In
this paper, particles are given different treatments depending on there distance to or amount of
overlapping with the body.

In the second class of methods, the flow equations are discretized in a unique way throughout
the computational domain, which includes the immersed body, and boundary conditions appear in
the form of localized forcing terms in the right hand side of the flow equations. Our efforts belong
to this class. We actually believe that since a non body-fitted method cannot take advantage, at
least not in a straightforward way, of refinement potential that grid generation methods in general
offer near boundaries, immersed boundary techniques must remain verysimple and economical to
compete with ever improving body-fitted techniques.

Immersed boundary methods can be traced back to Peskin’s original idea of treating elastic
fibers in biological flows by forces acting on the flow [22]. This idea, which was actually pro-
posed together with a vortex method, although physically appealing, did not rely on a clear-cut
treatment of boundary conditions. More recent efforts in the context offinite-difference methods
aimed at giving a more conventional numerical definition of boundary conditions imposed on an
immersed boundary. The general idea is to enforce boundary conditionsthrough the addition of
a singular source term on the boundary. This source term can be written most simply and effi-
ciently directly at the discrete level as a forcing that at every time-step drives the flow back to rest
on the boundary. A key point is then to interpolate this singular forcing on thegrid-points next
to the boundary. Of particular interest is the reference [9] where the accuracy of the particular
form of the interpolation function which distributes the forcing term on the gridis discussed. It
seems that the optimal interpolation scheme has to be chosen carefully in function of the particular
finite-difference method used to discretize the Navier-Stokes equations. For centered second-order
finite-difference methods a linear interpolation allows to retain second orderaccuracy up to the
boundary.

In view of their robustness and reasonable cost when used with Cartesian grids, Vortex In Cell
methods should clearly benefit from immersed boundaries approaches. The accuracy of vortex
methods is largely dependent on accurate regridding techniques that in general require the use of
global mappings to Cartesian geometries - as it is the case for cylinder wakes. Although it is pos-
sible to combine several local mappings in domain decomposition-like methods thatcan facilitate
their implementation for complex geometries [6], incorporating the concept of immersed bound-
aries in Vortex-In-Cell methods would certainly add a great deal of flexibility in their application.
The field computations through Poisson solvers is also clearly faster in Cartesian geometries than
for more general cases, in particular due to the coupling generally appearing in the computations
of all stream function components.

As it turns out, the treatment of immersed boundaries is very natural in the context of vortex
methods [3]. Even in a body-fitted vortex method, vorticity flux formulas usedto satisfy the no-
slip condition can indeed be seen as a forcing term in the flow equation. As wewill demonstrate
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below, the extension of this technique to immersed boundary is at the same time immediate and
accurate. In the rest of this section, we successively describe how wehandle no-through flow an
no-slip boundary conditions, then we show some numerical validations of themethod.

3.1 No-through flow boundary condition

When the Biot-Savart law is used to compute velocities in grid-free vortex methods, the no-through
flow boundary condition is enforced by using single or double layer potentials. These potentials
are evaluated on source points distributed along the boundary and through integral equations which
translate the conditionu ·n = 0 on these points, along the lines of the classical panel method [12].
This procedure does not require particles in the flow to be initialized and remeshed on body-fitted
grid. It thus gives a simple and elegant way to deal with immersed boundaries.Details of this
method and numerical illustrations on impulsively started 2D cylinder are givenelsewhere [3, 7].
Here, for cost considerations already mentioned, we are interested in velocity evaluations based on
grid Poisson solver. This leads to a slightly more involved method to account for the no-through
flow boundary condition.

Let us assume that, at a given time-step,ω is an extended vorticity field (that may simply be
the extension by0 of the flow vorticity) in a computational boxΩ containing the body (typically
we will use a square box). Going back to the Helmholtz decomposition of the velocity, we have to
solve, for the extended stream functionsψ and potentialφ, successively

−∆ψ = ω in Ω (25)

∇ ·ψ = 0 in Ω (26)

then

∆φ = 0 in Ω and inΩ− Ω (27)

∂φ

∂n
= −(∇×ψ) · n onΓb. (28)

The above boundary condition onφ has to be understood in the sense of outer normal derivative -
assuming the flow domain is outside the obstacle.

Let us first point out that, if the domainΩ is simple enough, the condition (23) is much simpler
to complement with appropriate boundary conditions that enforce the divergence-free condition
(24) than for a general domain. For a square box with sides parallel to theaxis for instance, it
suffices to use homogeneous Neumann boundary condition on the side perpendicular to thez-
axis for thez-component ofψ and homogeneous Dirichlet condition for the 2 other components,
and similar conditions on the other sides of the box. This is definitely one advantage in using a
Cartesian mesh rather than a body-fitted mesh.

The strategy to implement the boundary condition (25) whenΓb does not coincide with grid-
points starts with the following observation: ifφwas a continuous harmonic extension of the exact
flow potential across the boundary, in view of its gradient discontinuity we would get

∆φ =

[
∂φ

∂n

]

Γb

⊗ δΓb

where[·] means the jump acrossΓb andδΓb
is the two-dimensional Dirac mass supported byΓb.

The goal is to determine
[
∂φ
∂n

]
Γb

and to distribute it on grid points. We proceed as follows: we first
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tag grid points which are at a distance less than the grid-size from the boundary. We denote bỹΓ
the set made by theseN grid-points. We then are looking for a functiong, with support oñΓ (see
figure 13), such that the solution to the system

∆φ = g in Ω (29)

∂φ

∂n
= 0 onΓ (30)

satisfies
∂φ

∂n
= −(∇×ψ) · n on Γ̃

This constitutes a linear system for the unknown functiong over Γ̃ of sizeN . We use a GM-
RES type iterative solver to solve this system. The vector-matrix product involved in the iterative
method consists of the solution of a Poisson equation followed by the evaluations of potential
derivatives on the tagged grid-points. In the numerical examples given below, we use a stan-
dard Fishpack Poisson solver on a Cartesian uniform mesh, and secondorder one-sided finite-
differences for the gradient evaluation.

The method just outlined is very simple-minded and one expected drawback is that since the
boundary condition is only fulfilled ”near” the boundary, at most first order can be achieved, with
the risk of flow leaking outsideΩ. However the incompressibility of the flow has a nice side effect
here: the no-slip condition implies that the normal derivative of the normal velocity component
vanishes onΓb. Therefore one has

u · n(x) = O
(
d(x,Γb)

2
)

As a result, enforcing no-through flow at a distance less than a grid-sizefrom the boundary yields
second order accuracy. In all our numerical experiment, no-throughflow at the boundary was
indeed satisfied well beyond the truncation errors introduced by the otherapproximations made
in the vortex method. At every time-step, the GMRES method was initialized by the result of
the previous time-step and two to three iterations were in general sufficient toreach the chosen
residual error - fixed to10−5 in our calculations.

3.2 Remeshing, diffusion and no-slip boundary condition

The reason for treating remeshing diffusion and no-slip boundary condition in the same discussion
is that these three steps are tightly linked outside the advection step. In our Vortex-In-Cell algo-
rithms, we recall that remeshing is performed just before diffusion and vorticity flux formulas. In
a body-fitted mesh, as already mentioned, one in general tries to use one-sided formulas. Diffu-
sion for the tangential vorticity components is performed with homogeneous Neumann boundary
conditions before vorticity fluxes formulas are applied. Since immersed boundary methods work
on extended vorticity, these variants are no longer necessary, and plainremeshing or PSE formulas
can be used in a straightforward way. This definitely distinguishes our method from the method
proposed in [23] which uses corrected interpolation formulas to accountfor the overlapping of
the boundary and the cells and is more in the spirit of VOF method. Note that the vorticity flux
formulas that are essential in any vortex method are designed to correct, on the basis of the slip
evaluated at the beginning of that step, any wrong vorticity flux that can have been injected in the
flow by diffusion and remeshing. Using centered formulas to remesh vorticityand plain PSE for-
mulas to diffuse vorticity near the boundary have only the effect of introducing spurious vorticity
in the flow, something that the vorticity flux formulas are in any case designed tocorrect. In other

14



words, not only the method described in section 2 can be used without modification even if the
boundary does not coincide with the underlying grid, but the concept ofimmersed boundary frees
us from the need of having to use particular remeshing or diffusion formulas near the boundary.

Another point that must be made is that the vorticity flux is done from source points that are
located on the boundaryΓb itself, and not on grid points, and is estimated on the basis of the slip
also evaluated onΓb. Therefore the no-slip boundary condition is enforced, up to the discretization
errors, on the body boundary itself, no matter where flow particles are initialized and remeshed.
In their ease to handle naturally immersed boundaries, vortex method definitelydiffer from grid-
based methods.

3.3 Numerical examples

We focus here on the case of a ring impinging on a 3D cylinder (comparisonsof drag values
with reference results for impulsively started 2D cylinders are given elsewhere [3, 7]). The initial
condition consists of a ring of unit circulation with outer radius1.4, and a Gaussian core of radius
0.5, located at a distance from the cylinder equal to 2.5 times the cylinder radius.

The computational box is a cube of size corresponding to 3 cylinder diameters. The Reynolds
number is400. Figure 14 shows isosurfaces of vorticity magnitude at two successive times of the
collision process. One can observe the production of secondary vorticity on the cylinder which
rebounds and eventually creates two secondary rings.

We show in Figure 15 the normal velocity on the cylinder for a rather coarsegrid-size, corre-
sponding to a grid resolution of323 points, compared to the normal velocity that would be induced
in free space by the ring on the cylinder. The normal velocity is at a level such that particles only
exceptionally leak outside the flow domain.

We now turn to the treatment of the no-slip condition. In Figure 16 we monitor the time
evolution of the residual slip velocity together with the location, in the direction ofthe symmetry
axis of the ring, of the center of velocity (for the purpose of this figure, these quantities are not
scaled). One can observe that the slip is slightly increasing as the ring approaches the cylinder.
It reaches its maximum value at about the time of collision, noticeable in the inflexion visible in
the slope of the descent curve. Figure 17 is a refinement study, at that time, of the accuracy in
the treatment of the no-slip condition. In this figure are plotted the residual sliptogether with
the numerical dissipation of the algorithm for several mesh-resolutions. The slip is evaluated in
maximum norm, normalized by the slip induced by the initial ring, in absence of vorticity flux at
the boundary. The effective diffusion of the algorithm computed by the formula

νeff (t) =
1

2S(t)

d

dt
E(t)

whereE(t) andS(t) respectively denote the instantaneous energy and enstrophy. The discrepancy
νeff − ν, plotted in Figure 13, essentially measures the cumulative dissipative effectof remeshing
and vorticity creation. This figure shows that second order accuracy isreached, which validates the
argument given above in favor of a method where remeshing and diffusion are done by standard
centered formulas up to the boundary.

Some indications of the cost of the method can further shed some light on the limits and
possibilities of the method. For a963 grid and about500, 000 particles, the CPU time was50
seconds per time-step on a DEC alpha workstation running at500 Mhz. This must be compared
to the CPU taken by the cylindrical grid. The cost is about the same; in that case the advantage
of using a faster Cartesian grid Poisson solver and simpler interpolation formulas in the immersed
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boundary code is compensated by the cost of the linear system to satisfy theno-through flow. For
a cylinder wake, given the natural stretching of the cylindrical grid in the azimuthal direction,
it seems unlikely that an immersed boundary vortex method can compete with the body-fitted
method, except if a stretched Cartesian grid was used. Such a possibility, which would follow the
lines of [6] was not yet implemented.

4 Conclusion

Two classes of Vortex-In-Cell methods for the simulation of wall bounded flows have been de-
scribed and validated. The first class uses body-fitted grids and particledistributions. An Helmholtz
decomposition of the velocity fields allows to decouple the calculations of the stream functions
which make possible the use of fast Poisson solvers. Numerical validationsshow that for wake
calculations the far field boundary conditions required by these Poisson solvers does not introduce
severe limitations over a totally grid-free particle method, as far as body forces are concerned. The
resulting method retains the robustness and accuracy of grid-free particle methods while signifi-
cantly reducing their numerical cost. In passing, we have also given a consistent treatment of 3D
vorticity conditions which is not limited to flat boundaries.

The second class of methods deals with bodies as immersed boundaries. No through-flow and
no-slip boundary conditions are enforced at two different stages of the algorithm: the no through-
flow boundary condition is satisfied in the field calculation via the addition of an appropriate
singular component to the potential part of the velocity. The no-slip conditionis naturally handled
by the vorticity flux formulas that are derived in body-fitted geometries. Themethod has been
validated on the problem of a ring impinging on a cylinder. This problem has been selected
as a prototype of three-dimensional vortex-wall interaction which requires to capture accurately
the vorticity created at the boundary. A refinement study suggests that themethod is second
order accurate. This method thus appears to retain the simplicity of particle methods in Cartesian
geometries - in particular in the field evaluations and the interpolation formulas - while being
general enough to apply to complex geometries.
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[25] PONCET, P. 2001 Ḿethodes particulaires pour la simulation des sillages tridimensionnels.
PhD thesis, University Joseph Fourier, Grenoble, France.

[26] PONCET, P. 2002 Vanishing of mode B in the wake behind a rotating circular cylinder.Phys.
Fluids, 14(6):2021–2023.

[27] PONCET, P. 2002 Topological aspects of the three-dimensional wake behind rotary oscillat-
ing circular cylinder.Under revision for J. Fluid Mech.

[28] WALTHER, J. H. & MORGENTHAL, G. 2002 An immersed interface method for the vortex-
in-cell algorithm.J. Turbulence, 3(039):1–10.

[29] WILLIAMSON , C. H. K. 1996 Three-dimensional wake behind a cylinder.J. Fluid Mech.
328:345.

18



Figure 1: Comparison of CPU time for the evalution of particle velocities in a grid-free method
based of on fast summation algorithm [17] and in the present VIC method based on a Cartesian or
polar Poisson solver:
(∗) Direct summation [17],
(�) Fast multipole first order calculation [17],
(×) VIC method on a cylindrical grid filled with65% particles,
(+) VIC method on a cylindrical grid filled with25% particles,
(�) VIC method on a Cartesian grid filled with100% particles.

Figure 2: Interpolation between particles (located atxp) and grid points (located atxq), in cylin-
drical coordinates (left picture) and mapped coordinates (right picture).

Figure 3: Kernels used for remeshing and interpolation :ζ (—–, ΛRb+ε(– –) (left picture), and
ΛRb

(- - -) (right picture).

Figure 4: Body and far-field boundary conditions for velocity field.

Figure 5: Vorticity boundary conditions on the bodyΓb.

Figure 6: Isovalue of transverse vorticity atRe = 300, exhibiting a three-dimensional saturated
mode Binstability.

Figure 7: Two-dimensional vorticity field atRe = 300.

Figure 8: Convergence of drag coefficient and Strouhal number fortwo-dimensional simulations
atRe = 400.

Figure 9: Relative error in drag coefficientCD (+), lift coefficientCL (×) and Strouhal numberSt
(�) for two-dimensional simulations atRe = 400. Dotted lines correspond to first order (left
picture) and third order (right picture) convergence.

Figure 10: Direct Numerical Simulation of an unstable 3D wake : typical drag(—) and lift (- -)
response to three-dimensionality forRe = 300. Dotted lines correspond to0, 0.96, 1.262 and
1.38.

Figure 11: Direct Numerical Simulation of an unstable 3D wake forRe = 300 : typical spectral
profile of main-growth wavelength (mode B).

Figure 12: Evolution of the three-dimensional part of enstrophy, atRe = 300, using natural scale
(left picture) and logarithmic scale (right picture).

Figure 13: Enforcement of no through flow condition for immersed boundary technique.

Figure 14: Cylinder-ring interaction: isosurfaces of vorticity magnitude for times 10 and 40.

Figure 15: Cylinder-ring interaction: normal velocity along the cylinder symmetry plane before
and after potential correction.
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Figure 16: Cylinder-ring interaction: time history of residual slip and locationof center of vorticity
along the ring axis.

Figure 17: Residual slip and numerical diffusion for several mesh refinements.
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