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Abstract

We illustrate the problem of wake optimization on two examples. In the first example, the destruction of trailing
vortices, we show that stochastic optimization is a flexible tool to identify vortex systems enhancing natural
instabilities. In the second example, the problem of drag reduction in a cylinder wake, a priori information on
the flow dynamics is highly desirable and we give some preliminary results whichshould be useful to select the
most efficient parameters in an optimization strategy based on differential rotation of the cylinder.

Keywords :Three-dimensional flows; Wakes; Control; Transition to turbulence.

1 Introduction

The control of wakes is a subject of paramount importance in aircraft and automobile industry. Depending
on the particular application, wake control can have various goals and can be achieved either by passive or
active strategies. Passive control mostly operates through shape optimization and often results in the addition
of appendices like foilers or ribblets to the surface of the obstacle. Activecontrol implies that one is ready to
impart energy on the flow by means of actuators on the surface of the obstacle, keeping in mind that this energy
must be included in the global energy budget to conclude on the efficiencyof the particular control strategy.

We focus here on two examples, each of them emphasizing a specific challenge of active control in 3D
wakes. The first example is the destruction of trailing vortices shed by airplane wings. The second example is
the drag reduction behind a bluff body. Both examples illustrate the need of active control. In the first case,
there is little hope that any reasonable passive device could prevent the formation, or significantly modify the
characteristics, of tip vortices that are created by the wings and flaps of an aircraft. In the second case, the
automobile industry is a good example where shape optimization has led to importantimprovements in the
last decades, but nowadays shows its limits, mostly due to design considerations. In the coming years, new
drastic regulations in pollutants emissions will impose to explore new directions and in particular active control
strategies.

These strategies, beside the technology issues that they will raise, will be very demanding in terms of
simulation and optimization tools. Three-dimensional wakes are still a very challenging field for simulation
methods, because of the complex unsteady features of the flows. Concerning optimization itself, if optimal
control has been able to give interesting results for 2D flows [9, 17], there is still a long way to a systematic
approach of 3D flows. Close loop control, where actuation would be imposed adaptively in terms of sensor
informations is an even more open field, with the noticeable exception of [10] where it is shown that pressure
measurements on the surface of the obstacle can be turned into vorticity fluxes and, ultimately, blowing and
suction to significantly reduce the drag. Most of the current works in the field still aim at gaining insights into
the dynamics of the flows in order to propose simple open loop strategies.

In this paper we review some recent or on-going efforts to implement evolution strategies for the optimiza-
tion of 3D wakes. Evolution strategies are stochastic optimization methods whereparameters are optimized
through random search followed by selection on the basis of the evaluationof an objective function. Their
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convergence properties are not as well established as for gradient based methods, but they do not require to
differentiate objective functions and are thus rather straightforward to implement. Other advantages are their
ability to track global, instead of local, optima, their natural parallelism and their flexibility in accounting for
constraints or a priori informations in the parameter space. The trade-offis clearly that they are CPU time
consuming, in particular for the optimization of 3D unsteady flows, because their convergence is slow and ev-
ery iteration involves a complete run. Evolution strategies have already proved to be very efficient for several
instances of flow optimization. We refer to [19] and the references thereinfor examples in mixing and jet
optimization.

In the sequel, we first show in section 2 that the destruction of trailing vortices is a striking case where
evolution strategy is successful. The starting point here was a study by Crouch [5] of cooperative instabilities
of two pairs of vortex tubes. In that study some particular parameter valueswhere shown to potentially enhance
vortex break-up, on a time scale much smaller than classical single-pair Crowinstabilities. In this example, the
problem setting is rather simple and simulations are not very expensive. Evolution strategies not only could
rapidly converge to a solution very close to the particular parameters exhibited in [5], but also could open up to
other, more efficient, solutions.

In section 3, we turn to the problem of drag reduction in a cylinder wake. Inthat case, in order to derive
successful evolution strategies the complexity of the dynamics makes it crucial to reduce the parameter space
dimension. One way to achieve this dimension reduction is to inject a priori informations available for this type
of flows. Section 3 is devoted to that particular problem for the cylinder wake. We in particular investigate
the links between three-dimensional features in the wake and drag values.We first consider two-dimensional
control strategies, based on cylinder rotations then on 2D differential rotation parameters identified in [11]. We
show that these control strategies on 3D flows make the flow return to a 2D state. Based on the 3D instability
modes that naturally develop in uncontrolled 3D wakes, we then explore some3D control profiles and discuss
their potential efficiency in the context of drag optimization.

2 Optimization of trailing vortices

The control of trailing vortices remains a challenging problem of strong economical interest. These vortices are
naturally shed by airplanes and cause strong down-wash that are a hazard for following aircrafts. Many studies
have focused on the so-called Crow instability that spontaneously break-up these vortices [20]. Recently some
studies [5, 18] have considered cooperative instabilities resulting from the interaction of several vortex pairs.
The starting point of the study in [5] is the identification of a complex system of vortices shed by the wings, the
flaps and the fuselage of a typical aircraft. This vortex system is sketched in Figure 1. The two pairs originating
from the wing tips and the inboard flaps are of particular interest. Crouch [5] shows that, depending on the
perturbations that are imparted to these two pairs of initially parallel tubes, several instability regimes can be
observed, respectively termed long wave, transient growth, and short wave instabilities (Figure 1, right picture).
In particular, the transient growth regime was shown to produce a growth rate far exceeding that of a single pair.
Based on these findings Crouch and Spalart proposed to implement activecontrol devices to trigger the proper
instabilities. Our goal in this study was to identify the fastest growing instability byperforming a systematic
search in the parameter space defining the initial state of the perturbed vortex pair, having in mind that the
success of such an approach could open up to the investigation of a broader class of vortex systems with the
possibility of further accelerating the break-up process.

2.1 The evolution strategy

The principle of Evolution Strategies (ES) is an exploration of the parameter space by a random walk followed
by a simple selection process. Iff is the function to minimize andX ∈ RN denotes the parameter vector, an
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Figure 1: Sketch of vortex system shed by an airplane (left picture) andof long-wave, transient growth and
short wave instabilities (right picture, top to bottom) (Courtesy of J. Crouch).

iteration of a so-called one-member strategy can be summarized by

Xt+1 =

{

Xt + σtZt if f(Xt + σtZt) 6 f(Xt)
Xt otherwise

In the above formula,Zt denotes a random Gaussian vector with zero mean and unit standard deviation. The
radiusσt of the random walk is updated in function of the success rate at the previous iterations in order to
optimize the convergence speed. A high success rate meaning that one is far away from the minimum induces
an increase inσt. In this work we have implemented the so-called1/5 rule: the variance is increased if the
success ratio during the last iterations is greater than 1/5.

The method just described is isotropic in the sense that the random walk is done in all directions with
equal probability. Convergence speed-up can be reached if one adapts the random walk in the direction of
best success rate. This is the so-called Covariance Matrix Adaptation (CMA) technique (see [7]). Instead of
mutating a single parameter (one-member strategy) one may also consider mutations and recombinations among
several individuals (multi-member strategies). For the present purpose,the plain one-member ES proved to be
sufficient.

2.2 Results

Our study focused essentially on the case of two pairs of co-rotating vortices in the configuration studied by
Crouch. The parameters on which the Evolution Strategies optimized were:

• the perturbation initial amplitude of the tip (ǫ1) and outboard (ǫ2) vortices

• the angles of the perturbation planesα1, α2

• the wavelength of the perturbationsλ
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Figure 2: Convergence history for the Evolution Strategy.

• the separation between the two vorticesδ

• the circulation ratio between the outboard and tip vorticesΓ

Quantities were adimensionalized by the span (distance between the vorticity centers of each pair) which was
always kept constant, and the total circulation of each pair. The computations were done on a periodic box of
size2× 2× λ by a vortex method using643 elements (see below in section 3.1 for details on the numerics).

To work with parameters in the same order of magnitude as in [5], the total perturbation was constrained to
be below10% of the span:

ǫ21 + ǫ22 6 0.01

The following additional constraints were imposed on these parameters to remain within achievable design
configurations:

0.25 6 δ 6 0.4; 0.5 6 λ 6 10; 0. 6 Γ 6 0.5

Note that the constraints onλ allow for a wide range of wavelengths, varying from short wavelength of the
order of a few core sizes, to long wavelengths of the type found in Crow instability.

Our goal was to optimize the instability on the tip, stronger, vortex. To measure the deformation of this
vortex, we computed the average angle, inside the core of the tip vortex, ofthe vorticity vectorω with the base
flow axis. More precisely the objective function was given by the formula

f =

∫

dz

∫

A(z)

ω2
x + ω2

y

ω2
z

dA(z)

where

A(z) = {(x, y), |ω(x, y, z)| > 1/2|ω|max}

Figure 2 shows the convergence history of the Evolution algorithm.

The parameter values finally obtained by the ES are listed on Table 1, togetherwith the parameters that
are reported in [5] to lead to efficient transient growth. Some striking similarities can be noticed between
these two sets of parameters. In particular the ES has selected perturbations that are mostly located on the tip
vortex (ǫ2 << ǫ1), confirming the observation in [5] of efficient transient growth when theoutboard vortex was
unperturbed. The wavelength of the perturbations (λ) is also very close to the one given in [5].
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2.3 Perspectives and open questions

Trailing vortices are a good example of an unsteady complex flow where Evolution Strategies are successful to
retrieve optimal parameters. One reason is that the simplicity of the flow geometryenables simulations which
are not too expensive. For that particular example, the flexibility of this optimization technique should allow to
investigate more complex vortex systems. We actually ran the evolution strategy on 4 pairs, 2 of which being of
opposite circulation, playing the role of vortices 54 and 55 in Figure 1. We didobtain parameter values for this
system which even improved the optimal growth rate for two pairs. However one open and critical question that
remains to be solved is the time span on which the objective should be measured for this particular application.
We did observe that, for 4 as well as for 2 pairs, the growth rates significantly decreased after the control time.
This confirms observation made in [18] and there is some doubt that these parameters are indeed optimal for
fastest reconnection. Moreover the growth rates proved to be rather sensitive to parameter values. The present
findings should thus be taken with caution. Nevertheless we believe that the ease Evolution Strategies have to
incorporate constraints of any kind in the parameter range, in particular to fit current design constraints, make
them an appealing tool for further studies.

3 Control of three-dimensional wake behind a cylinder

One important drawback of Evolution strategies for unsteady flows is their computational cost. If, as the
above example demonstrated, one-member strategies can be efficient for 3D flows in simple geometries, for
more complex problems like drag optimization in bluff-body flows parallel implementations of multi-member
strategies are certainly desirable. Moreover, acceptable convergence speed requires to work on parameter
spaces as small as possible. For this purpose, it is crucial to accumulate asmuch knowledge as possible on the
flow dynamics in order to select the appropriate parameters to optimize.

We show in the sequel some preliminary results along these lines for the case of a flow past a cylinder. The
choice of the cylinder is dictated by the fact that it embodies many generic features of 3D dynamics and that
several experimental and numerical results exist to validate the proposedmethods. Concerning the particular
problem of drag optimization, some results exist in 2D. In particular, optimal control techniques have been
applied to propose cylinder rotation or suction and blowing parameters to suppress the shedding [9, 8] or
reduce the drag [17]. However to our knowledge these methods have not been extended to 3D flows. Stochastic
drag optimization has also been recently used for 2D cylinder [11], and our on-going efforts aim at extending
these results to the 3D case.

Whatever control technique is used, applications to 3D flows are always very demanding on the numerical
side. Suction, blowing and body rotations dramatically change the boundarylayer dynamics by introducing
strong dipoles in the flow. The particle solver that we have used seems to meetthe robustness requirements
to handle these features. In the sequel we first sketch the numerical code and then discuss some 3D control
strategies that give some interesting directions for future optimization.

α1 α2 ǫ1 ǫ2 δ Γ λ
Optimal parameters 0.47 0.73 0.098 0.008 0.26 0.31 0.72
Parameters in [5] π/4 π/4 0.1 0. 0.3 0.4 0.7

Table 1: Comparison of the parameters found by the Evolution Strategy and those studied in [5]
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3.1 A Particle-In-Cell method for 3D bluff-body flows

We consider the velocity-vorticity form of the incompressible Navier-Stokesequations :

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u− ν∆ω = 0 (1)

Particle-In-Cell methods combine particles and grids to discretize these equations : particles carry vorticity
and implicitly take in account transport terms in the equation, while velocity and strain are computed on an
underlying grid. The no-slip boundary condition is enforced through vorticity flux formulas.

Details of these algorithms can be found in [3, 12, 2, 14, 13, 4]. References [14, 15, 4] more specifically
deal with design, validation and results in cylindrical geometry. For a sake of completeness we outline here the
main features of the algorithm. Each particle, with indexp, carries an element of vorticityωp, with volumevp
and locationxp. These quantities satisfy the system of differential equations :

dxp

dt
= u(xp) ,

dωp

dt
= (ω ·∇u) (xp) + ν∆ω(xp) (2)

while volumes remain constant due to the incompressibility. These convection-diffusion equations are solved
in a viscous splitting algorithm, alternating convection and diffusion steps.

In the convection step, the particle velocities and strain needed in the right hand side of (2) are obtained
as follows: the vorticity carried by the particles is first interpolated on a fixedcylindrical grid and velocity
is evaluated by means of grid-based Poisson solvers. More precisely, the velocity is decomposed using the
Helmholtz decomposition

u = u+∇×ψ +∇φ (3)

whereu is the irrotational field with the prescribed far field behavior.

The stream functionψ satisfies in the fluid domainΩ the system

−∆ψ = ω , ∇ ·ψ = 0

and the potentialφ is used to enforce the no-through boundary conditionu · n = 0 - wheren denotes the
outward unit normal vector - on the cylinder surfaceΓ:

∆φ = 0 in Ω ,
∂φ

∂n
= −(∇×ψ) · n onΓ.

Once velocity ant its derivatives are computed on the grid, these quantities are interpolated back to particles.
This allows next to push particles and update their circulations. A fourth order Runge-Kutta time-stepping is
used to solve the underlying ordinary differential equations.

After each convection step, particles are remeshed on a regular cylindrical grid. The kernel used to interpo-
late vorticity from the particles to the grid and to remesh particles is a third order piecewise cubic spline.

Particle vorticities are finally redistributed to simulate diffusion. The no-slip boundary conditionu · τ = 0
(imposing a given slip can be done with straightforward modification) is satisfied in the diffusion step through
the flux onΓ of the tangential components of the vorticity: ifuθ, uz are the tangential components of the veloc-
ity in the azimuthal and spanwise directions at the end of an advection step, one solves for the corresponding
components of the vorticity the following boundary conditions on the surfaceof the cylinder

ν
∂ωz

∂n
= − uθ

∆t

ν

(

ωθ

r
+

∂ωθ

∂n

)

=
uz
∆t
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Figure 3: Effect of three-dimensionality on drag and lift coefficients atRe = 300 (left picture) and vorticity
isovalues of post-transient three-dimensional flow att = 270 (right picture) (from [15]).

whereν is the viscosity and∆t is the time-step. These vorticity boundary conditions are implemented by
means of integral equations.

To summarize, each time-step consists of the following sequence of operations:

• interpolate particle vorticity on a cylindrical grid

• compute stream functions and potential on the grid

• differentiate these quantities on the grid to obtain velocity and strain on the grid

• interpolate velocity and strain back to particles

• push particles and update vorticity

• remesh particles on regular locations

• compute the residual slip on the boundary and diffuse vorticity among particles with the appropriate
vorticity fluxes to enforce the desired slip

Several features of wake dynamics can be used to check the accuracyof the method. It is well-known
that when the viscosity is small enough (i.e.Re > 190), two-dimensional solutions are unstable and solutions
become fully 3D. Figure 3 illustrates the evolution of drag and lift and the production of streamwise vorticity
that goes together with the transition from 2D to 3D of the wake for a Reynoldsnumber of300. For moderate
Reynolds numbers the instabilities involved in this transitions are mainly of two kinds, usually calledmode
A andmode B(see [22]). References [15, 16] show that the present numerical method agrees well in all the
classical diagnostics (drag and lift coefficients, Strouhal numbers, exponential growth of instabilities, energy
spectrum, spectral profiles of unstable modes, coherent structures) obtained by other numerical or experimental
techniques. A nice feature of the method is its combination of robustness and accuracy. Let us point out that
robustness was crucial to allow direct numerical simulations even in presence of severe boundary manipulations,
as those considered in the sequel.

3.2 Control strategy using rotation

As a first example of control for the cylinder wake, we consider the caseof spanwise invariant oscillations of
the cylinder. It has been shown experimentally in [21] that a fast oscillatingrotation of the cylinder leads to
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Figure 4: Surfaces of isovorticity after activation of the rotation locked onthe flow self-frequency (left pictures)
and on twice this frequency (right pictures) (from [15]).
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Figure 5: Orthogonal enstrophy versus time for an oscillating rotation of thecylinder. – – : rotation lock on the
flow self-frequency, - - - : twice the flow self-frequency (from [15]).

a substantial drag reduction. This fact, already observed in 2D simulations[6] has recently been confirmed in
fully 3D simulations [15, 16].

An additional property of this kind of control demonstrated in these references is the two-dimensionalization
of the flow in a large neighborhood of the body when the angular velocity is large enough. The dimension of
the flow is measured by means ofdirectional enstrophies: the spanwise and orthogonal enstrophies

Zz =

∫

Ω
ω2
z dv , Z

⊥

=

∫

Ω
ω2
x + ω2

y dv (4)

represent the amount of vorticity parallel or orthogonal to the cylinder axis. Global enstrophy is recovered by
Z = Zz + Z

⊥

.

WhenZ
⊥

is small, the flow is mainly two-dimensional, while whenZ
⊥

andZz are close, the flow is
completely three-dimensional. The values ofZ

⊥

obtained atRe = 500 for an oscillating rotation (half a
revolution of amplitude, once and twice the natural frequency of flow) areplotted on figure 5. Isosurfaces are
plotted on figure 4 for a control rotation locked on once and twice the flow self-frequency.

In these calculations and in the following, we used a resolution of256× 128× 128 points in the computa-
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Figure 6: Shape of functionsf andf̃ , extrema at±0.723 and mid-value at±0.42.

tional domain
(r, θ, z) ∈ Ω = [1, 1 + 4π]× [−π, π]× [0, 4π]

for a cylinder of radius unity. Periodicity was assumed in the spanwise direction.

3.3 Control strategy using tangential velocity profiles

In order to propose more effective control strategies, we now consider the case when cylinder rotation is a
function of θ and z. Recent results for 2D cylinders [11] have actually allowed to find optimal tangential
velocity profiles distributed on16 points evenly distributed around the cylinder. We chose, as a base profile,
a functionf that approximately fits these values and allowed spanwise variation along modes A and B which
describe the 3D instabilities in the wake. Our functionf has the following expression

f(θ) = − sin

(

3.2 θ3

3 + θ10

)

This function, plotted on figure 6, exhibits two extrema, which are chosen near the separation points in
order to reduce the drag : the profilef is a smooth function approaching values obtained in [11]. This smooth
function can be seen as a regularization of the piecewise constant function f̃ plotted on figure 6, which could
correspond experimentally to a6-ribbons control.

To account for spanwise variations, the present computations use the four control parameters

C =









C1

C2

C3

C4









(5)

and the azimuthal tangential velocity profile on the body is given by

Vslip(θ, z) =
D

2
f(θ)C ·









1
2 sin(2z/D)
2 sin(4z/D)
2 sin(8z/D)









(6)

with −π 6 θ 6 π and0 6 z 6 2πD. The control is started impulsively, attc = 270 for 3D computations.

The energy involved in this control is

E =
1

2

∫ 2πD

0

∫ π

−π

Vslip(θ, z)
2Rdθdz = 2πR3 ‖C‖22

∫ π

−π

f(θ)2 dθ (7)

because cross terms have null mean value. The energy required in a particular control within this class is thus
given by the Euclidean norm ofC.
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Figure 7: Effect of 2D control (C1 = 1) on drag and lift coefficients :

——— : 2D without control, – – – : 3D without control,
- - - - - : 2D with control, ......... : 3D with control.

3.4 Two-dimensional control on 2D and 3D wakes

By two-dimensional control, we mean a velocity profile that does not dependon spanwise coordinate, and thus
can be applied to both 2D and 3D flows.

This implies that the control parameter set isC = (C1, 0, 0, 0). Figure 7 shows that the mean drag coef-
ficient, atRe = 300, drops from1.38 down to0.64 - a 53% reduction - whenC1 = 1. The effect of such a
control on the vorticity field is plotted on figure 8, at different time fromtc = 270 to tc + 50 = 320. One may
observe that, as for the case of constant rotation, the flow returns to a 2Dstate, and that a substantial stretching
of the recirculation zone occurs.

3.5 Control with 3D vorticity profiles

In order to first analyze individually the effects on the wake of various 3D forcings, we consider the following
control vectors:

• C = (0, 1, 0, 0), with wavelengthλ/D = π, matching themode Ainstability wavelength atRe = 300
(calledtype A controlin the sequel),

• C = (0, 0, 1, 0), with wavelengthλ/D = π/2 intermediate betweenmode Aandmode Bwavelength
(type A-B control),

• C = (0, 0, 0, 1), with wavelengthλ/D = π/4, matching themode Binstability wavelength (type B
control).

• C = (1, 0, 0, 0), spanwise invariant (2D-type control).

All these controls involve the same energy. The caseC = (1, 0, 0, 0) has already been discussed. As an
example, type A-B control points are shown on figure 9.

Figure 10 contains snapshots of the vorticity field for 2 different cases.It shows to which extent the forcing
affects the topology of the wake.

Finally, combination of modes are considered as control functions. We focus our attention on combination
of 2D-typeandA-B typecontrols, involving the same energy as in the last section.
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Figure 8: Effect of the two-dimensional controlC1 = 1 : vorticity field for a sequence of times.

Figure 9: Type A-B control : control points (left picture) and resulting flow at t = 380 = tc + 110 (right
picture).
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λ/D = π, t = 320 λ/D = π/4, t = 320

Figure 10: Influence of control wavelength on the vorticity field.
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Figure 11: Mean spanwise vorticityΓz versus time, using mixed control (type A-B and 2D) on a 3D flow. ——
: without control, - - - - - : control on 3D flow.

This leads to the parameters

C =
1√
5
(2, 1, 0, 0) (8)

which means that the velocity has the following expression :

Vslip(θ, z) =
D√
5

(

1 + sin (2z/D)
)

f(θ) (9)

This profile, whose wavelength isλ/D = π/2, has a very special property. It breaks the von Kármán
streets, into streamwise structures of vorticity which find a quasi-stationary state, thus preventing the shedding
of the flow. To measure the amount of shedding, one can consider the time evolution of themean spanwise
vorticity

Γz =

∫

Ω
ωz dv.

When von Ḱarmán alleys leave the computational domain (i.e. in presence of shedding), this quantity oscillates.
A lack of oscillation, as seen in Figure 11, thus shows an absence of shedding. Figure 13 shows the vorticity
isosurface corresponding to this particular type of wake.

Drag curves corresponding to an impulsively started control on either a 2D or a fully developed 3D wake,
are plotted on figure 12. A comparison of this result with Figure 7 suggests that the suppression of shedding,
resulting from a 3D forcing, induces an additional drag reduction of about 10% over a purely 2D control. This
preliminary result brings some confidence that a fully 3D optimization might improve 2D results.

12



0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350

Figure 12: Drag coefficient versus time, using mixed control (type A-B and 2D) on 2D and 3D flows. —— :
without control, – – – : control on 2D flow, - - - - : control on 3D flow. Constant values at0.5, 1.27 and1.38.
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Figure 13: Isosurface of vorticity, using mixed control applied on 3D flow.
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4 Conclusion and outlook

We have considered two examples of wake optimization: the destruction of trailing vortices and the reduction of
drag in a cylinder wake. The first example was simple enough, from the computational point of view, to allow
reasonably fast optimization by stochastic optimization. Furthermore, this classof optimization techniques
proved to be particularly flexible and opens the possibility to incorporate moreclosely design constraints.
In the second case, the complexity of the flow dynamics makes a brute force stochastic optimization far too
expensive. A reduction of the number of parameters is crucial. Open loopcontrol emphasizing the role of type
A and type B instabilities give promising results which should open the way to efficient implementations of
fully 3D optimization algorithms.
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