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S U M M A R Y
Seismic imaging is an efficient tool to investigate the Earth interior. Many of the different
imaging techniques currently used, including the so-called full waveform inversion (FWI), are
based on limited frequency band data. Such data are not sensitive to the true earth model,
but to a smooth version of it. This smooth version can be related to the true model by
the homogenization technique. Homogenization for wave propagation in deterministic media
with no scale separation, such as geological media, has been recently developed. With such an
asymptotic theory, it is possible to compute an effective medium valid for a given frequency
band such that effective waveforms and true waveforms are the same up to a controlled error.
In this work we make the link between limited frequency band inversion, mainly FWI, and
homogenization. We establish the relation between a true model and an FWI result model. This
relation is important for a proper interpretation of FWI images. We numerically illustrate, in
the 2-D case, that an FWI result is at best the homogenized version of the true model. Moreover,
it appears that the homogenized FWI model is quite independent of the FWI parametrization,
as long as it has enough degrees of freedom. In particular, inverting for the full elastic tensor
is, in each of our tests, always a good choice. We show how the homogenization can help to
understand FWI behaviour and help to improve its robustness and convergence by efficiently
constraining the solution space of the inverse problem.

Key words: Inverse theory; Numerical solutions; Computational seismology; Seismic
tomography; Wave propagation.

1 I N T RO D U C T I O N

Since the late sixties, seismic data have been used to investigate the
Earth interior and to image its mechanical properties, for academic
and industrial purposes, at scales ranging from few metres to the
global Earth. Modern seismic imaging methods are based on an
inverse problem making it possible to retrieve information about
the Earth mechanical properties from active (explosion or airgun)
or passive (earthquakes, ambient noise) seismic records. Because
of the tremendous computing power such a scheme would require, a
full exploration of the inverse problem solution space based on the
direct modelling of the seismogram full waveforms, as envisioned
by Tarantola (2005), is still out of reach, despite the progress in
the design of high performance computing devices, reaching now
exascale performances.

Because of this intrinsic limitation, seismologists have devel-
oped seismic imaging and tomography techniques which are mainly
based on reduced data, (i.e. secondary observables such as body
waves arrival times, surface wave phase velocities, normal model
eigenfrequencies ...) together with an appropriate approximate so-

lution of the wave propagation modelling problem, that are quicker
to solve than the full wave equation. These choices make it possible
to assume that the inverse problem nonlinearity is weak enough so
that a solution to the inverse problem can be computed through local
optimization techniques. Nevertheless, mathematical regularization
(non-data-driven constraints) are always necessary to make the so-
lution of the inverse problem unique. In this framework, for global
and regional scales, time arrival and phase velocity tomography
methods have provided significant results and images of the deep
Earth (e.g. Romanowicz 2003, for a review). At the exploration
scale, migration imaging techniques from reflection data have been
introduced to recover high-resolution structural information of the
subsurface reflectivity. These high-resolution seismic imaging tech-
niques rely on a prior knowledge of the smooth background wave
velocity and, in their earlier version, on a linearized wave propaga-
tion operator, aiming at refocusing primary reflections only in depth
(Claerbout 1985; Beylkin 1987; Beylkin & Burridge 1990).

During the last two decades, the simultaneous development of
wide angle/azimuth broadband seismic acquisition systems and
high performance computing devices have made possible the
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successful application of seismic imaging techniques based on the
full waveform, from the exploration to the global scale. Compared
to the previous techniques (tomography, migration), full waveform
inversion (FWI) aims at extracting the information from the entire
waveform in a limited frequency band, through a local minimiza-
tion of the difference between the observed and synthetic data. At
the global and continental scales, FWI methods, often based on
the Spectral Element Method for the forward modelling tool and
gradient descent algorithms (steepest descent, nonlinear conjugate
gradient) for the optimization, are making important progress (Tape
et al. 2010; Lekić & Romanowicz 2011; Fichtner et al. 2013). At the
exploration scale, the method is now routinely used in the industry,
mainly for the 3-D reconstruction of the pressure wave velocity in
the acoustic approximation (Plessix & Perkins 2010; Sirgue et al.
2010; Peter et al. 2011; Warner et al. 2013; Operto et al. 2015).

Based on these successful applications, two main research di-
rections are currently identified. The first consists in a better in-
terpretation of physics of wave propagation, going beyond the cur-
rent common mechanical approximations (typically the acoustic
approximation at the exploration scale and the VS approximation
at the regional and global scales) and a better accounting for the
amplitude of the seismic signal. This requires the use of much
more expensive viscoelastic wave propagation modelling solvers,
correctly accounting for the attenuation and the anisotropy of the
subsurface. This also yields a challenging multiparameter inverse
problem involving at least P-wave and S-wave velocities to be re-
constructed. The second research direction consists in the design
of a more automatized workflow, less relying on human exper-
tise, enhancing the robustness of FWI procedures. Indeed, the FWI
problem is intrinsically ill-posed as the misfit function might ex-
hibit several local minima leading to non-informative geological
models. Designing strategies to avoid these local minima is at the
heart of many methodological studies. In practice, this requires a
careful data analysis, and the design of ad hoc multilevel hier-
archical schemes based on frequency band, time-windowing and
offset selections (also known as layer stripping approach) (Bunks
et al. 1995; Pratt 1999; Shipp & Singh 2002; Brossier et al. 2009).
This is complemented through the design of kinematically accu-
rate initial models through high-resolution tomography techniques
(Billette & Lambaré 1998; Alerini et al. 2007) and the introduction
of prior knowledge through the design of regularization strategies
(Tikhonov, smoothing techniques) and prior model information.

This second line of investigation might be summarized as a search
for an FWI formulation leading to a better posed inverse problem,
potentially less prone to exhibit local minima. In this paper, we
investigate numerically how the concept of homogenization and
equivalent medium could help in this respect. Our leading idea is
to account for the fact that seismic waves propagating within the
subsurface interior are always frequency band-limited. For this rea-
son any subsurface mechanical properties variations smaller than a
fraction of the shortest propagated wavelength are ‘seen’ as smooth,
often anisotropic, heterogeneities (Capdeville et al. 2013). The ho-
mogenization theory provides means to compute this equivalent
anisotropic medium, the medium ‘seen’ by the wavefield.

Homogenization, effective media or upscaling techniques gather
a wide range of methods able to compute effective properties and
equations of a fine scale problem when large scale properties are
needed. In the context of wave propagation, the idea is to re-
move the heterogeneities of scale much smaller than the minimum
wavefield wavelength and to replace them by effective properties.
For ‘long’ elastic waves propagating in stratified media, Backus
(1962) gave explicit formula to upscale finely layered media. One

important result of this work is to show that a finely layered isotropic
medium becomes an anisotropic effective medium for long waves.
For periodic media, an important class of methods, the two-scale ho-
mogenization methods, has been developed (e.g. Sanchez-Palencia
1980). To obtain the effective media, the effective equations and
local correctors, two-scale homogenization methods require one to
solve the so-called periodic-cell problem. This periodic-cell prob-
lem can be solved analytically only for the specific case of layered
media, whereas a numerical method such as finite elements is nec-
essary for more general media. For stochastic media, methods for-
mally similar to the two-scale homogenization methods exist (e.g.
Bensoussan et al. 1978; Blanc et al. 2007). Finally, solutions called
‘numerical homogenization’ (e.g. Weinan et al. 2007) also needs a
scale separation.

Typical geological media present no spatial periodicity, no nat-
ural scale separation or any kind of spatial statistical invariance.
This difficulty excludes all of the above mentioned homogenization
techniques from the problem of upscaling geological media. To fill
this gap, the non-periodic homogenization technique (Capdeville
et al. 2010b; Guillot et al. 2010; Capdeville et al. 2010a, 2015;
Capdeville & Cance 2015) has recently been introduced. While the
non-periodic homogenization technique is strongly inspired from
the classical two-scale periodic homogenization, it has some major
differences. One of them relies on the fact that the obtained effective
properties are not spatially constant, they are just ‘smoother’ than
the original medium. So far, this homogenization method has been
mostly used to simplify seismic forward modelling. In this context,
the non-periodic homogenization can be seen as a pre-processing
step of the elastic model prior to being used in the wave equation
solver (e.g. spectral elements, finite differences ...). By removing
all the fine scales, the non-periodic homogenization drastically re-
duces meshing complexity associated with elastic discontinuities
and makes the computation optimum (see e.g. Capdeville et al.
2015). Note that for relatively weak elastic contrasts, an alternate
solution based on a second order Born approximation exists (Jordan
2015).

In the inversion context, the homogenization method has been
already used either to mix different scales (Afanasiev et al. 2015)
or to constrain FWI gradient updates in the layered media case
(Afanasiev et al. 2016). More generally, the homogenization con-
cept raises a puzzling point: for a given frequency band-limited
data set, at least two Earth subsurface models minimize similarly
a waveform misfit function, the true and the homogenized models.
Knowing that, for local optimization approaches, only one model
can be found, we can already guess that the solution model is, at
best, the homogenized model and not the true model. Indeed, ho-
mogenized models represent what is ‘seen’ by the wavefield. More
technically, the homogenized models are ‘simpler’ in the sense that
they need a finite number of parameters to describe them, which is
not the case for the true models. This has been confirmed in a recent
work, but only in the layered media case: it has been proposed that
FWI can retrieve at best the homogenized medium and that this fact
can be used to properly set up the inversion problem (Capdeville
et al. 2013). Extending those results from the stratified media case
to the general case is not trivial for similar reasons that extending
the homogenization principle from the layered case to the general
case is also difficult (Capdeville et al. 2010a).

In the present work, we pursue mainly two objectives. First, we
extend the results of Capdeville et al. (2013) to higher dimensions
(2-D and 3-D). Second, we aim at presenting ideas on how ho-
mogenization concepts can be used to better constrain and better
understand FWI.
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Figure 1. The � domain of boundary ∂�. Ns = 3 sources (stars) and Nr = 4
receivers (triangles) are represented. The circles connected with dashed lines
are two successive zooms on � texture symbolizing the multiscale nature of
the domain heterogeneities.

Beyond the objective of making and understanding the FWI bet-
ter, we also aim at establishing the relation between the true model
and the model resulting from an FWI. This relation is fundamental
to set up a downscaling inverse problem. Its objective is to properly
interpret the FWI results as a probability distribution over possi-
ble fine scale models (Bodin et al. 2015; Nawaz & Curtis 2017)
where fine scales are here scales of interest for the interpretation
below the FWI resolution limit.

In the following, we first define FWI and its solution space. We
then introduce the homogenization concept and its consequences for
the inverse problem. We then show a series of examples illustrating
the exposed ideas before discussing our results and concluding our
work.

2 T H E F U L L WAV E F O R M I N V E R S E
P RO B L E M

2.1 Context

We consider an elastic body � of boundary ∂� (see Fig. 1). We
assume that this elastic body is fully characterized by its ‘true’
parameters, the density ρ t (x) and the fourth order elastic tensor ct (x)
defined for all x in �. We consider Ns point sources, characterized by
their location xt

s and mechanism qt
s (moment tensor or force vector)

for s ∈ {1, ..., Ns}. These sources are triggered independently in �

and recorded by Nr, d = 2 or d = 3 component receivers, in 2-D or
3-D respectively, located in xr , r ∈ {1, ..., Nr }.

Based on the recorded waveforms, an FWI aims at retrieving
information about the elastic model and sources in �. In the fol-
lowing, we define more precisely the model space M to which
belong potential solutions to the inverse problem, the data set d and
the forward problem linking potential models and synthetic data.
Finally, we define the misfit function between the recorded data and
synthetic data as well as the chosen optimization algorithm to solve
the inverse problem.

2.2 The fine scale model space

The fine scale model space is the one to which the true model
belongs. It contains all the unknown parameters required to model
the data in the full frequency band. In our case, this corresponds
to the density and elastic parameters in �, together with the source
parameters.

We first define E(�), the admissible elastic properties space.
E(�) gathers all the physically possible density and elastic tensor
distributions (ρ(x), c(x)) in � such that

(i) ρ(x) is positive and bounded;
(ii) c(x) is a fourth order tensor, positive definite and bounded;
(iii) c(x) follows the classical major and minor symmetries, lead-

ing to only six independent coefficients in 2-D and 21 in 3-D.

In general, elastic structures are multiscale: for a given scale,
there are always heterogeneities at a smaller scale (see Fig. 1).
Consequently, the number of parameters necessary to characterize
in a deterministic way the spatial distribution of a general elastic
structure is infinite. As a consequence, E is an infinite dimensional
space. Note that, in the real world, there may be a finite limit to this
dimension when reaching the atomic scale. But this limit is out of
reach and is not considered here.

Assuming the sources are localized in space (point sources), we
define the source parameter space as

S = {(xs, qs) ∈ (� × R
p), s ∈ {1 . . . Ns}} , (1)

where xs is the source location and qs the source mechanism,
which can either be a moment tensor Ms (in this case we have
p = d(d + 1)/2) or a force vector fs (respectively p = d).

The model space M is defined by

M = E ∪ S. (2)

It is also an infinite dimensional space by definition.
A model m ∈ M, potentially a solution of the FWI problem,

made of an elastic model and of the source parameters, can be
written as

m = {(ρ(x), c(x)), ∀x ∈ �; (xs, qs), s ∈ {1, ..., Ns}} . (3)

The ‘true’ model mt is

mt = {
(ρ t (x), ct (x)), ∀x ∈ �; (xt

s, qt
s), s ∈ {1, ..., Ns}

}
. (4)

In the following, the model m restricted to the source number s
is denoted by m|s :

m|s = {(ρ(x), c(x)), ∀x ∈ �; xs, qs}. (5)

2.3 The forward modelling equations

We assume that, for a given model m, of component (ρ, c), for a
source number s among the Ns sources, for any x ∈ � and any time
t ∈ [0, T], the displacement u(x, t ; m|s) is the solution of the elastic
wave equation

ρ∂t t u − ∇ · σ = ss,

σ = c : ε(u), (6)

where ss(x, t) is the sth external source term, σ (x, t ; m|s) is the
stress and ε(u) = 1

2 (∇u + (∇u)ᵀ) is the strain and ᵀ the ‘transpose’
operator. Inelastic losses are ignored in this work for the sake of
simplicity. They have nevertheless an important effect in practice
(see, for instance, Kamei & Pratt 2013).

The wave equation is completed by the normal stress free bound-
ary condition, for x ∈ ∂�,

σ (x, t) · n(x) = 0 , ∀(x, t) ∈ ∂� × [0, T ] , (7)
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where n is the outward normal to ∂�, and zero initial conditions (the
medium is considered to be at rest at t = 0). We consider sources
ss(x, t) of the following form

ss(x, t) = −Ms · ∇δ(x − xs)gs(t) , (8)

for moment tensor sources or

ss(x, t) = fsδ(x − xs)gs(t) , (9)

for force vector sources, where gs(t) is the source time function.

2.4 The data set

The Ns elastic sources are triggered independently in �, generating
elastic waves, for which the corresponding displacement ds,r (t) at
receivers r is recorded for a duration T. The collected data set is

d = {ds,r (t), (r, s, t) ∈ {1, ..., Nr } × {1, ..., Ns} × [0, T ]} . (10)

In the following, we assume that the physics of the problem is
known (i.e. the true model mt belongs to M) and that solving the
forward problem defined in Section 2.3 accurately models the data
within some limit corresponding to numerical noise.

2.5 FWI misfit function

We define the classical least-squares misfit function:

E(m) =
∑
r,s

∫ T

0
(ds(xr , t) − u(xr , t ; m|s))2 dt. (11)

where u(xr , t ; mt |s) is the solution of the wave eq. (6) computed for
the model m restricted to a source s. Other misfit functions could be
chosen (such as those based on phase or envelope measurements,
cross-correlation approaches, deconvolution approaches, optimal
transport approaches, etc.), but as long as they rely on finite fre-
quency data, we expect the conclusions of the present study to
remain unchanged. The FWI problem is formulated as the mini-
mization problem

m̄ = arg min
m∈M

E(m) . (12)

It can be mathematically proven that, assuming perfect illumina-
tion (unlimited number of sources, unlimited number of receivers
recording both displacement and traction on a closed surface, dif-
ferent from the free surface, and an infinite observation time) the
true model mt can be uniquely recovered and, in this case, m̄ = mt

(Nachman 1988; Nakamura & Uhlmann 1994). However, in prac-
tice, because computing power is finite, (12) cannot be solved. In
the FWI framework, the classical solution to this problem is to limit
the data frequency band by introducing a maximum frequency fm

to the recorded signal and to the source time function gs. This can
simply be done using a low-pass filter F fm :

d fm
s (xr , t) = F fm (ds(xr , t)) . (13)

The misfit function to minimize is then

E fm (m) =
∑
r,s

∫ T

0

(
d fm

s (xr , t) − u fm (xr , t ; m|s)
)2

dt. (14)

where u fm is computed with the low-pass filtered source time func-
tion g fm

s = F fm (gs). For most media, a bounded dispersion relation
between the frequency f and the wavelength λ of the wavefield exists
(there are a few exceptions, see Section 7). For such media, intro-
ducing a maximum frequency fm to the recorded signal warrants

the existence of a minimum wavelength λmin. Using the assump-
tion that waves only see a blurred version of scales smaller than
λmin, and therefore that these scales can somehow be ignored in the
reconstruction process, introducing a maximum frequency fm has
an important consequence: it yields the possibility of using a finite
dimensional space approximation Mh of M. The superscript h

is a number that characterizes the discretization made in the finite
dimensional approximation and can be thought as a ‘resolution’
parameter. For example, if the elastic model is represented spatially
by constant velocity blocks, h can be the size of these blocks. In
general h is directly related to λmin but other information such as
the illumination angles, offset ranges or data coverage can influence
the choice of h.

In Mh , models do not contain arbitrarily small scale hetero-
geneities and, knowing that the data need to be modelled only in a
limited frequency band, the forward problem (eqs 6 and 7) can be
solved in a bounded computing time. Finally, replacing the original
minimization problem (12) by

m̄h = arg min
m∈Mh

E fm (m) (15)

makes the inverse problem solvable, Mh being a finite dimensional
space.

To solve (15), two classes of algorithms exist: local optimization
techniques or global search approaches (Tarantola 2005). While
Bayesian global search approaches would be ideal, yielding the
possibility to access the full posterior density function, they are still
too expensive, from a computational point of view, to be used for
realistic scale FWI problem. Only a few limited experiments have
been done in this direction so far (e.g. Käufl et al. 2013).

For practical applications, local optimization techniques repre-
sent the state-of-the art for solving the FWI problem, relying on
the gradient direction and different levels of approximation for the
inverse Hessian operator [identity, l-BFGS (Nocedal 1980; Byrd
et al. 1995), Gauss–Newton (Pratt et al. 1998); see Métivier &
Brossier (2016) for a review]. Provided that a linesearch algo-
rithm or a trust-region strategy is used, these methods converge
to the closest local minimum from the initial guess and hopefully
to the global minimum if that initial guess is good. Nevertheless, if
the global minimum is not unique, this is a problem. In practice, all
the FWI techniques based on local optimization approaches implic-
itly assume a unique global minimum exists and assume that the
initial guess lies within the ‘basin of attraction’ of the minimization.
This is the reason why the uniqueness of the solution of the inverse
problem is important. Even if, in M, minimizing E under perfect
conditions warrants a unique solution, it is not the case for E fm :
there may be an infinite number of fine scale models that can pro-
duce the same limited frequency data (there is a large null space).
In Mh , it can be different and the uniqueness can be recovered, but
it is not granted.

Independently of the global search versus local optimization
choice made to solve (15), many other choices may influence the
inverse problem solution m̄h , even for a perfect data coverage. The
resolution parameter h itself and the way it is implemented have a
strong effect. Depending on the authors and their chosen approach,
a wide range of solutions for the spatial approximation is used, from
spatially constant blocks to high degree polynomials (typically, the
same polynomial approximation as the one used for the waveform
forward modelling). Physical approximation choices made for the
constitutive parameters may also strongly influence the inversion
result. For instance, we might hope from fine scale prior informa-
tion that the true model is isotropic, in this case a common choice
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Homogenized FWI 1097

in seismology is to only invert for VP and VS (or even only one of
the two) instead of cijkl.

If the solution to the inverse problem m̄h depends on technical
choices to parametrize Mh , we know that it cannot be the true
model mt . Indeed, in general, mt does not belong to Mh : the sin-
gle fact that mt is multiscale while Mh is not prevents it. This is
expected: we know for instance, following the diffraction tomogra-
phy theory (Devaney 1984), that FWI can only reach a resolution
down to half the smallest propagated wavelength. Nevertheless, the
relation between m̄h and mt is unknown and this is a serious issue:
in particular it can be difficult to dissociate true high-resolution in-
formation and small scale artefacts coming from a combination of
noise, lack of illumination, and discretization setups. The knowl-
edge of a more formal relation between m̄h and mt would thus allow
a better interpretation of the FWI result m̄h .

The problem that m̄h strongly depends on the particular choice of
Mh and that the relation between m̄h and mt is unknown is not often
discussed in the literature. We feel that this discussion is missing,
as understanding these issues would help to better apprehend the
behaviour of the inversion schemes and therefore could open ways
to improve them. To us, this issue is directly linked to the question
of how scales relate to each other through the wave equation: it is a
homogenization problem.

3 H O M O G E N I Z AT I O N C O N C E P T S

In this section, we summarize the results obtained by Capdeville
et al. (2010a), Guillot et al. (2010) and Capdeville et al. (2010b)
about homogenization of complex deterministic media with no scale
separation for wave propagation problems. For limited frequency
band data, seismic waves do not ‘see’ the true Earth model, but a
blurred version of it. This blurred Earth model is called the effective
or the homogenized Earth model. For a given signal maximum
frequency fm, it can be computed thanks to the homogenization
technique.

As mentioned earlier, in most media, the maximum frequency
fm can be associated with a minimum wavelength λmin, and in the
following, we assume that a minimum wavelength λmin exists. We
moreover assume that a lower bound estimate of λmin can be found
as VSmin/fm where VSmin is the slowest velocity in the medium. This is
a strong assumption. However, to the best of our knowledge, natural
media always satisfies it (while synthetic complex meta-material can
break it: for instance, resonating media with Helmholtz resonator
inclusions (Zhao et al. 2016)).

We introduce λ0, a constant separating scales considered as
macroscopic (large scales) from the one considered as microscopic
(fine scales). We then introduce

ε0 = λ0

λmin
, (16)

a small parameter which measures the scale separation position with
respect to λmin. For example, when homogenization is used as a pre-
processing step to the forward modelling solver, in order to obtain
a precise agreement between true and homogenized waveforms,
ε0 = 0.5 is often a good choice for most geological media and a few
tens of wavelength of wave propagation (Capdeville et al. 2010b).

Two-scale homogenization techniques are asymptotic methods
that explicitly use two space variables: x for the macroscopic spa-
tial variations and y = x

ε0
for microscopic spatial variations. For

example, for a multiscale medium such as a geological medium, the
density ρ depends on both macroscopic and microscopic scales and

is written ρ
(

x, x
ε0

)
. Similarly, the solution of the wave equation with

a maximum frequency fm is written u fm
(

x, x
ε0

, t
)

. Although these

properties are written as if they depend on two independent scales,
it should be noted that these variables (and others to follow) only
have a physical meaning once evaluated on the axis y = x

ε0
. A func-

tion κ that would not depend upon the microscopic scale would be
written κ(x). For some quantity κ(x, x

ε0
) depending on both scales,

we may find an ‘effective’ version κ∗(x) that only depends on the
macroscopic scale. In the following, effective quantities are noted
with a ∗. In general, the relation between two scales and effective
quantities is complex and not just a simple linear smoothing. All
the effective quantities actually depend on the actual value of ε0 and
λmin. In the following, however, we drop this explicit dependency on
ε0 and λmin to simplify the notations. An effective quantity κ∗,ε0,λmin

is simply denoted by κ∗.
The main results of the homogenization theory are the following:

(i) to the first order in ε0, the relation between the true and effec-
tive displacement is

u fm

(
x,

x

ε0
, t

)
=u∗(x, t)+ε0χ

(
x,

x

ε0

)
: ε(u∗)(x, t)+O

(
ε2

0

)
, (17)

where u∗ is the effective displacement, χ is the first order corrector
and ε(u∗) is the strain related to the effective displacement (εi j (u∗) =
1
2 (∂xi u

∗
j + ∂x j u

∗
i )). This first-order corrector χ is a third order tensor.

It does not depend on time nor on sources, however, it depends on
the fine scales x/ε0, ε0 and λmin (see Appendix A).

(ii) The effective displacement u∗ is solution of the following
effective wave equation

ρ∗ü∗ − ∇ · σ ∗ = f ∗,

σ ∗ = c∗ : ε(u∗) , (18)

T(u∗) = ε0�
∗(u∗) on ∂�∗, (19)

where T(u∗) = c∗ : ε(u∗) · n∗, ∂�∗ is the effective boundary, n∗ its
outward normal and �∗ is a Dirichlet to Neumann operator (DtN)
for the effective boundary condition (Capdeville & Marigo 2008,
2013). It shall be noted that, to the leading order in ε0, the effective
wave eqs (18) and (19) is also a wave equation, comparable to the
original wave eqs (6) and (7), but with different elastic and density
coefficients. This remains true to the first order in ε0, but the original
Neumann boundary condition changes to become the DtN condition
(19).

(iii) The effective density ρ∗(x), elastic tensor c∗(x), the boundary
layer corrector �∗(x) as well as the corrector χ (x, x/ε0) can be
obtained thanks to the homogenization operator H:

(ρ∗, c∗, �∗, χ) = H(ρ, c) . (20)

The operator H depends on ε0 and λmin. As λmin is directly tied to fm,
H is a frequency dependent operator. For a fixed ε0, the roughness
of the effective medium ρ∗, c∗ increases with fm. The nonlinear
process behind the homogenization is summarized in Appendix A.

From eq. (17), two important conclusions can be drawn: to lead-
ing order in ε0, the displacement does not depend on the micro-
scopic scale x

ε0
. To the first order, the displacement depends on the

microscopic scale x
ε0

, but only through a ‘site effect’ χ , that is in-
dependent of time and sources and which needs to be known only
at the receiver positions.
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1098 Y. Capdeville and L. Métivier

(i) Finally, the effective source mechanism q∗
s can also be re-

quired. For moment tensor sources, the moment tensor has to be
corrected to the leading order in ε0 as

M∗
s = G(xs,

xs

ε0
) : M, (21)

where G is the strain concentrator and is defined in Appendix A.
The order 1 correction for vector forces can be found in Capdeville
et al. (2010a).

Effective models belong to a space that is more complex to define
than the fine scale models:

(i) the effective domain �∗ itself can be different from the original
domain �: a fine scale topography can be replaced by an effective
one (Capdeville & Marigo 2013);

(ii) E∗(�∗), the effective elastic properties admissible space gath-
ers all the possible effective elastic tensor and density. The main
difference with E is that it is a finite dimensional space and its
dimensions is proportional to (fm/ε0)d (see Appendix A);

(iii) the source parameter space remains unchanged, unless first
order correctors are introduced;

(iv) a new space, C gathering the receiver correctors χ at the
receiver locations is necessary. Its dimension is proportional to Nr;

(v) a new space, G∗ gathering all the possible boundary correctors
�∗ is also required. Its dimension is also finite and proportional to
(fm/ε0)d − 1;

(vi) finally, note that no new space is required for the source
correction term (21). To the leading order, the corrected moment
tensor is still a moment tensor and can be inverted as usual. This
also implies that only the corrected moment tensor can be retrieved
from the seismic data, not the true moment tensor (Burgos et al.
2016).

The effective model space

M∗ = E∗ ∪ S ∪ C ∪ G∗, (22)

is also a finite dimensional space. It is the image, or the projection,
of M through the homogenization operator H:

M∗ = H(M) . (23)

In general, M does not contain M∗

M∗ �⊂ M . (24)

This can be due to the receivers and boundary correctors, but this
might not be the only reason. Another important case where M∗ is
not included in M is related to the situation where M is restricted
to isotropic media. Because fine scale isotropic heterogeneities lead
to anisotropic effective heterogeneities, M∗ contains anisotropic
media, even for isotropic M: thus, M∗ might not be included in
M.

Finally, a model m∗ ∈ M∗ can be written as

m∗ = {
(ρ∗(x), c∗(x)), ∀x ∈ �∗ ; (xs, q∗

s ), s ∈ {1, ..., Ns};

χ

(
xr ,

xr

ε0

)
, r ∈ {1, ..., Nr }; �∗(x), ∀x ∈ ∂�∗} . (25)

4 T H E H O M O G E N I Z AT I O N F U L L
WAV E F O R M I N V E R S I O N ( H F W I )
P RO B L E M

Based on the homogenization framework, we can define another
misfit function: for any model m∗ ∈ M∗,

E∗(m∗) =
∑
r,s

∫ T

0

(
d fm

s

(
xr , t) − ũ∗(xr ,

xr

ε0
, t ; m∗|s

))2

dt, (26)

where

ũ∗
(

x,
x

ε0
, t ; m∗|s

)
=u∗(x, t ; m∗|s)+ε0χ

(
x,

x

ε0

)
: ∇u∗(x, t ; m∗|s)

(27)

is the zero order effective displacement plus the first order correc-
tor at x. The associated effective (or homogenized) minimization
problem is

m̄∗ = arg min
m∗∈M∗

E∗(m∗) . (28)

Eqs (26)–(28) define the homogenized FWI (HFWI) problem.
For a fine scale model m ∈ M and its homogenized version

m∗ = H(m), using (17), we have

E fm (m) = E∗(m∗) + O(ε2
0) . (29)

Knowing that mt minimizes E and obviously also minimizes E fm ,
we deduce from the last equation that m∗

t = H(mt ) is a solution
of the HFWI problem (28). The solution of the HFWI problem
therefore belongs to M∗ by construction. This fact is not true
for many Mh choices for classical FWI approaches. For example,
Mh is often limited to isotropic media whereas the solution of the
inverse problem is anisotropic due to upscaling effects, implying
the solution does not belong to Mh .

This is an important result: the homogenized version of the true
model is a solution of the HFWI problem. If we then assume that
the solution of the HFWI problem is unique, this leads to establish
the relation between the true model and the limited frequency band
inverse problem solution

m̄∗ = H(mt ) . (30)

Assuming the uniqueness of the solution of the HFWI problem is
a strong statement. Nevertheless, this uniqueness can be reached,
as it has been illustrated numerically in the layered media case
(Capdeville et al. 2013). We show in this study that uniqueness of the
solution is also possible in the case of 2-D spatially varying media,
at least for low noise and good data coverage. If this assumption
is not met, which can happen in many situations (bad coverage,
bad quality data ...), we fall back to a classical local minimum
problem. In such cases, similarly to most other local optimization
methods, little can be done apart from using better data coverage,
better quality data, relying on a better starting model, or introducing
a priori information.

Compared to more classical finite dimensional space approxima-
tion Mh used to solve the FWI, using M∗ and solving the HFWI
problem thus presents the following advantages:

(i) similarly to Mh , M∗ is a finite dimensional space (see Ap-
pendix A) rendering the HFWI problem solvable;

(ii) the relation between the solution of the HFWI problem and
the true model is known through (30). This point is very important
for the interpretation of the inverted model (also called ‘downscal-
ing’ step);

(iii) the solution of the HFWI problem exists and belongs to M∗.
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Homogenized FWI 1099

In the next section, we present how to practically solve the HFWI
problem.

5 H F W I P R A C T I C A L C O N S I D E R AT I O N S

5.1 The minimization scheme

We rely here on the least squares approach and local optimization
algorithms, a pragmatic and well adapted choice for the HFWI
problem. In this study, we implement the Gauss–Newton iterative
scheme (see for instance Tarantola & Valette 1982).

Given mi , the inverted model at iteration i, we obtain the model
at the iteration i + 1 as

mi+1 = mi + (
(Fi )

ᵀ · Fi + λi
)−1 [

(Fi )
ᵀ · (d − ũ∗(mi ))

]
, (31)

where d is the data vector for all sources, receivers and components,
ũ∗(mi ) is the effective synthetic seismograms computed in model
mi also for all sources, receivers and components, Fi is the partial
derivative matrix (matrix of the Fréchet derivatives)

Fi =
[

∂ũ∗

∂m

]
m=mi

. (32)

The damping parameter λi is used to stabilize the inversion of the
approximate Hessian (Fi )

ᵀ · Fi. We rely on the adjoint technique to
numerically evaluate the waveform partial derivative Fi (Tarantola
1984; Pratt et al. 1998). Practically, the full wavefields for each
source and adjoint source are stored on disk and the partial deriva-
tives are assembled afterward. For modest size 2-D tests, this solu-
tion can be efficiently implemented in terms of memory requirement
and computational resources. The damping λi is decreased while
the iteration number increases until convergence.

Whatever the technical choices made to solve (28), it implies
describing the homogenized model space M∗. The most direct
way to do so would be to set up an explicitly parametrization of this
space. We consider two cases: the layered media case, for which such
an explicit parametrization already exists, and the general case, for
which it is not yet available.

5.2 Parametrization: the layered media case

The layered media case is a special case in the sense that there exists
an analytical solution to the cell problem (A3). VTI layered media
can be described by five elastic parameters A(z), C(z), F(z), L(z),
F(z) (e.g. Stoneley 1949) where z is the axis perpendicular to the
layering. In such a case, the homogenization operator H consists
of the three following steps (Backus 1962; Capdeville & Marigo
2007):

(i) build the Backus parameter vector:

p(z) =
(

1

C
,

1

L
, A − F2

C
,

F

C
, N , ρ

)
(z); (33)

(ii) upscale the Backus vector with a simple spatial low-pass
filtering (see Appendix A; this low-pass filtering in space shall not
be confused with the time domain low-pass filtering used previously
to limit the data frequency band):

p∗(z) = F k0 (p)(z); (34)

(iii) build back the effective transversely isotropic coefficients:

(A∗, C∗, F∗, L∗, N ∗, ρ∗)(z)=
(

p∗
3 + p∗

4

p∗
1

,
1

p∗
1

,
p∗

4

p∗
1

,
1

p∗
2

, p∗
5 , p∗

6

)
(z) .

Figure 2. Flowchart used to apply the homogenization projection in the
Gauss–Newton scheme.

(35)

Note that eq. (34) is equivalent to muting coefficients in the
Fourier domain for spatial frequencies larger than k0. If p̃ are the
Fourier coefficients of p,

p̃k = 1

Lz

∫
Lz

p(z)e−ikzdz, (36)

where Lz is the layered domain, then, eq. (34) corresponds to

p∗(z) =
∑

|k|<k0

w̃k p̃k eikz, (37)

where w̃k are the Fourier coefficient of the filtering wavelet hidden
in F k0 . In such a case, we can define a parametrization based on
the Backus parameter in the Fourier coefficient domain. Forgetting
about receiver and boundary correctors, we can build M∗ as

M∗ = {all admissible p̃k, k ∈ {−k0, ..., k0}} , (38)

which defines a finite dimensional explicit parametrization of M∗.
A similar parametrization has been used by Capdeville et al. (2013)
(but with Lagrange polynomial instead of Fourier polynomial) to
numerically illustrate that an FWI model is indeed an homogenized
model in the layered media case.

5.3 Parametrization: the general media case

For more general media, an explicit parametrization of the homog-
enized model space is more difficult to set up. This is due to the
fact that the analytical solution to the cell problem (A3) used in
the layered media case does not exist for higher dimension cases
(2-D and 3-D heterogeneities). It could be nevertheless possible to
design an explicit M∗ parametrization and this is a possibility we
intend to study in the future. In this study, we rely on a simpler
idea: instead of searching for a solution directly in M∗, we rely on
an approximate M∗h and use the homogenization operator H to
project the solution back to M∗. For iterative schemes such as the
Gauss–Newton algorithm used in the present work, the projection
can be done at each iteration (see Fig. 2), or only at convergence,
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1100 Y. Capdeville and L. Métivier

as needed. If an increasing frequency band is used through the it-
erations (for frequency-grid continuation (Kolb et al. 1986; Bunks
et al. 1995)), the projection needs to be done at least at each fre-
quency band jump. This is a simple solution, which comes with the
following drawback: depending on the practical choices made for
M∗h , the iterative inversion scheme may fail to converge if M∗h

restricts too much the update from progressing toward the solution
once the new model is homogenized. Unfortunately, we are not able
yet to provide a precise criteria on M∗h to ensure the convergence.

Indeed, there are an infinite number of possibilities for practically
setting up an explicit parametrization for M∗h . In the following
examples, limiting ourselves to 2-D cases, we rely on a piece-wise
polynomial basis for the spatial parametrization. More precisely,
a square inversion sub-domain I ⊂ � is chosen and divided into
n × n non-overlapping elements:

I =
n2∑

e=1

In
e .

An example of inversion domain I and an associated inversion
mesh for n = 10 is shown in Fig. 3(a). Over each element In

e ,
similar to what is done for spectral elements, elastic parameters
and density are represented using a 2-D tensorial product polyno-
mial approximation of degree N in each direction. This defines the
parametrization P N

n (I) (n × n elements of degree N × N) that we
use for the numerical tests in the next section. We do not impose
the continuity of the fields between elements, which implies that
P N

n (I) has n2 × (N + 1)2 degrees of freedom for each scalar.

6 S Y N T H E T I C I N V E R S I O N T E S T S

In this section, we present a series of examples illustrating the
ideas presented above. More precisely, the objectives are to illustrate
through numerical experiments:

(i) the validity of eq. (30) in the presented case studies;
(ii) the influence of the practical choice of Mh for standard FWI;
(iii) the influence of the practical choice of M∗h for HFWI;
(iv) that the HFWI problem can be successful where a classical

FWI fails.

We run three synthetic inversions in the two heterogeneous mod-
els presented in Figs 3 and 4. In both ‘true’ elastic models, unknown
heterogeneities are embedded in a known homogeneous isotropic
background. The background density, P and S wave velocities are
denoted by ρ0, VP0 and VS0 respectively. We use 16 sources and 16
receivers, regularly located around the heterogeneities.

The source mechanism is the same for all sources: it is an hori-
zontal vector force. The source time function gs(t) is a tapered door
function in the frequency domain (see Fig. 5) which has a maxi-
mum frequency fm. This source time function is the same for all the
sources. We define the background minimum wavelength as

λmin = VS0/ fm. (39)

In the following, all distances are measured as functions of λmin, the
frequencies as functions of fm and the time as a function of 1/fm.
For both settings, the domain size is 16 × 16 λ2

min with absorbing
boundary conditions around the domain. The inversion sub-domain
I is a square of dimension 12 × 12 λ2

min. The sources and receivers
are located around I leading to an excellent data coverage. Nev-
ertheless this coverage is still sparse as the distance between each
receiver and each source is equal to 3.2 λmin. Note that the sources
and receivers are located outside of I and that no free surface is

0 λmin

4 λmin

8 λmin

12 λmin

16 λmin

0 λmin 4 λmin 8 λmin 12 λmin 16 λmin

d

A

B

0 λmin

4 λmin

8 λmin

12 λmin

16 λmin

0 λmin 4 λmin 8 λmin 12 λmin 16 λmin

t=11.0/fm

1.5 km/s

2.0 km/s

2.5 km/s

3.0 km/s

3.5 km/s

4.0 km/s

4.5 km/s

0 λmin 4 λmin 8 λmin 12 λmin 16 λmin

Vs weak
Vs strong

a

b

c

Figure 3. Weak and strong contrast circular inclusion tests configuration.
(a) sketch of the elastic model and of the sources (stars) receivers (triangles)
geometry used to generate the synthetic data to be inverted. The square in
black dashed line represents the inverted domain I . The grey dashed lines
represent the elements I10

e of an inversion mesh example. The dotted line is
the cross-section line used for panel (c). (b) kinetic energy snapshot for one
of the source (star symbol), for t = 11/fm for the strong heterogeneity case.
The unstructured spectral element mesh used to solve the wave equation is
overlaid in grey. (c) VS cross-section along the dotted line in plot (a) for weak
and strong heterogeneity models. See Table 1 for a complete description of
the elastic material properties of those models.
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0 λmin

4 λmin

8 λmin

12 λmin

16 λmin

0 λmin 4 λmin 8 λmin 12 λmin 16 λmin

0 λmin

4 λmin

8 λmin

12 λmin

16 λmin

0 λmin 4 λmin 8 λmin 12 λmin 16 λmin

t=11.0/fm

2.0 km/s

2.5 km/s

3.0 km/s

3.5 km/s

4.0 km/s

0 λmin 4 λmin 8 λmin 12 λmin 16 λmin

a

b

c

Figure 4. Faulted layers test configuration. (a) sketch of the elastic model
and of the sources (stars) receivers (triangles) geometry used to generate
the synthetic data to be inverted. The square in black dashed line represents
the inverted domain I and the dotted line is the cross-section line used for
plot (c). (b) kinetic energy snapshot for one of the source (star symbol),
for t = 11/fm for the strong heterogeneity case. The unstructured spectral
element mesh used to solve the wave equation is overlapped in grey lines. (c)
VS cross-section along the dotted line in plot (a). See Table 1 for a complete
description of the elastic material properties of this model.

0 fm 0.5 fm 1 fm
frequency

0
0 1/fm 5 1/fm 10 1/fm

time

0

Figure 5. Left: source time function gs amplitude spectra. The frequency
axis unit is the maximum frequency fm. Right: source time function gs in
the time domain. The time axis unit is 1/fm.

Table 1. Material properties used in the different tests.

VP (km s−1) VS (km s−1) ρ (103 kg m−3)

Background 5.6 3.17 2.61

Circular inclusions, weak heterogeneities case:

A 6.27 3.48 2.73
B & d 4.85 2.69 2.47

Circular inclusions, strong heterogeneities case:

A 7.41 4.12 3.05
B & d 2.3 1.58 2.35

Layered inclusion test:

Slow layers: 4.67 2.6 2.45
Fast layers: 6.72 3.74 2.85

present in the inverted domain. The idea of such settings is to avoid
inverting for the receiver corrector χ , the source parameters as well
as the boundary corrector �∗ and to focus on the reconstruction of
ρ∗ and c∗.

For the first setting, (‘circular inclusions’, Fig. 3) two circular
inclusions, one faster and one slower than the background medium
are present. The faster inclusion is surrounded by a thin slow layer
representing a damaged layer. The thickness of this layer is λmin/8.
Both the sharpness of the circular inclusions and the thin damaged
layer are fine scale and can only be recovered in an effective way
by FWI. Two velocity contrasts are used for the inclusions in two
different experiments, one labelled as ‘weak contrast’, the other one
labelled as ‘strong contrast’ (see Table 1 and Fig. 3c).

For the second inversion setting, (‘faulted layers’, Fig. 4), a hori-
zontally layered medium is split by a tiled fault. The layer thickness
is also λmin/8. Both the layers and the tilted fault are fine scale which
can, again, only be recovered in an effective way by FWI.

Choosing λmin = O(1cm), the ‘circular inclusions’ model could
represent for instance a piece of concrete with an iron bar inclusion
(the fast inclusion ‘A’) and two damaged areas (the slow inclu-
sions ‘B’ and ‘d’), one circular and one around the bar. Choosing
λmin = O(10 m), the ‘faulted layered’ model could represent a more
geological situation where the sediments represented by the layers
are offset by a tilted fault. In both cases, imaging as best as possible
the heterogeneities is the challenge.

For the first situation, the acquisition setting could be thought as
‘realistic’, however this is not the case for the second. Nevertheless,
our objective here is to focus on the ideas developed in the previous
sections without mixing with other important issues such as the data
coverage. This will be the purpose of future works.

For each experiment, the data to be inverted are generated using
a 2-D spectral element solver (Komatitsch & Vilotte 1998), mesh-
ing all the interfaces of the heterogeneities (see Figs 3b and 4b).
Perfectly Matched Layers (PMLs; Festa & Vilotte 2005) are used
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1102 Y. Capdeville and L. Métivier

to absorb outgoing waves around the domain. No synthetic noise
is added to the synthetic data. The spectral element mesh used to
compute the approximate Hessian and the gradient in eq. (31) is a
simple regular mesh based on the inversion parametrization (on the
In

e elements).
In these synthetic tests, we avoid an ‘inverse crime’ by virtue of

the following: first, the fact that the spectral element meshes used
to generate the data to be inverted (d fm ) and to model the data
during the inversion process (u∗) are not the same implies that the
discretization errors are different. Second, the true model cannot
be accurately represented with the inversion parametrization, which
prevents us from injecting prior information about the inclusion
shapes into the inversion. Nevertheless, the PML error (remaining
small reflections from the domain boundaries) are the same for the
data generation and inversion, and this error might be used by the
inversion scheme.

The following inversion tests often involve the full elastic ten-
sor cijkl and its six independent coefficients (in 2-D). To present
the results, we choose to first project anisotropic c to the nearest
isotropic tensor ciso following Browaeys & Chevrot (2004). Then,
P- and S-wave velocities are defined as

VP (x) = √
(ciso

1111(x)/ρ(x)) , (40)

VS(x) = √
(ciso

1212(x)/ρ(x)) , (41)

and the total anisotropy as

aniso(x) =
√∑

i jkl (c
iso
i jkl (x) − ci jkl (x))2

√∑
i jkl (c

iso
i jkl (x))2

. (42)

6.1 Circular inclusion weak heterogeneity test

In this Section, we present a first test using the circular inclusion
model with the ‘weak’ heterogeneities (see Fig. 3 and Table 1). The
heterogeneities are chosen to be weak enough so that the Gauss–
Newton scheme can converge without projecting to the homog-
enized model space at each iteration. In other word, the Gauss
–Newton scheme is applied classically without using homogeniza-
tion.

The fine scales of the model such as the layer ‘d’ and also the sharp
velocity jumps between the background media and the inclusions
cannot be recovered by the inversion. Indeed they are below the
resolution limit, and, technically, they cannot be represented in a
spatial parametrization without prior knowledge about their shape
(i.e. without explicitly meshing the discontinuities). This situation
is realistic: in general, the heterogeneity geometry is unknown.

We perform three different inversions each using a different
model space Mh parametrization:

(i) M1,iso
30 : P1

30(I) with ρ, VP and VS;
(ii) M3,ani

10 : P3
10(I) with ρ and c;

(iii) M1,ani
20 : P1

20(I) with ρ and c;

where the notation P N
n (I) for the decomposition of the domain

I in n × n elements of degree N × N is defined at the end of
Section 5.3. These three parametrizations have roughly the same
number of free parameters (unknowns), 302 × 22 × 3 = 10800 for
M1,iso

30 , 102 × 42 × 7 = 11200 for M3,ani
10 and 202 × 22 × 7 = 11200

for M1,ani
20 .

The three inversions are carried out and the Gauss–Newton
scheme is stopped when a 98 per cent reduction in the square-root

of the misfit function is reached. In each of the three cases, the
inversion converges in about 10 iterations.

The raw results of the inversions are presented in Figs 6 and 7.
By raw results, we mean the inversion results before any homoge-
nization. From these figures, it can be noted that the three inversions
qualitatively retrieve the location and signs of the reference model
heterogeneities. Nevertheless, quantitatively, the models are differ-
ent from each other and all include a significant amount of noise.
Indeed, from the VS maps (Fig. 6), the heterogeneous circles can
be roughly located and the sign of the heterogeneity contrast (slow
or fast) can be guessed. Even the slow layer around the inclusion
‘A’ seems to be reconstructed. Nevertheless, from the cross-sections
(Fig. 7), it appears that the results are not accurate. The actual veloc-
ity values in each inclusion are not recovered. Moreover, the results
strongly depend on the parametrization choice: the imprint of the
inversion mesh is clearly visible and, for example, it is difficult to
measure the value of the actual thickness and the VS value of the
thin slow layer ‘d’.

We next follow the main idea of this paper and project all the
inversions result as well as the reference model to the homogenized
space using the homogenization operator H. To this purpose, we
need to give a value to the ε0 parameter (see eq. 16). As mentioned
earlier, when dealing with forward modelling problems, ε0 = 0.5
is often a good choice. However, for this projection step any value
can be chosen in practice. To focus on long wavelength results, we
choose ε0 = 2, to study results at the resolution limit, ε0 = 0.5 is
used while for intermediate results we choose ε0 = 1. The homog-
enized reference model and those resulting from the three inver-
sions are presented in Figs 8 and 9. From the 2-D maps obtained
for ε0 = 1, it appears clearly that the four models are the same
once homogenized. This is quantitatively confirmed with the model
cross-sections (Fig. 9) plotted for three different values of ε0 (2,
1 and 0.5). For large ε0 (low resolution), the models are all the
same within a small error. For small ε0 (high resolution), the mod-
els are still in good agreement, but with a larger dispersion. The
fact that the error becomes larger with smaller ε0, for a fixed maxi-
mum frequency fm, is expected: when reaching the resolution limit
(	 λmin/2, which corresponds to ε0 = 0.5), the wavefield sensitivity
to the heterogeneities is lower, leading to a poor constraint on their
amplitude. A good compromise between resolution and accuracy
seems to be here ε0 = 1.

It is interesting to note that the isotropic inversion (M1,iso
30 ) is

able to retrieve the expected anisotropy once homogenized (even
if its amplitude is slightly too low). It implies that the inversion is
able to find an isotropic model, that is not the true model, but that
once homogenized is in good agreement with the true homogenized
model.

Finally, it can also be noted that the density is retrieved relatively
accurately (the density results seem to be more noisy, but this should
be related to the fact that the density contrast is quite small compared
to the velocity contrasts associated with VS and VP).

From this first experiment, we can conclude that the elastic mod-
els resulting from FWI are definitively not unique: they depend
on the particular choice of parametrization for Mh . However, the
homogenized versions of these models are actually all the same.

6.2 Faulted layers test

A case study similar to the previous one is presented here, with
the faulted layers model described in Fig. 4. Only two parametriza-
tions are tested: M1,ani

20 and M1,iso
30 . The inversions are carried out
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Homogenized FWI 1103

Figure 6. Weak contrast circular inclusion test raw inversion results. VS for the reference model (upper left panel), raw VS inversion results for the M1,ani
20

parametrization (upper right panel), M3,ani
10 (lower left panel) and M1,iso

30 (lower right panel) parametrizations are plotted. For M1,ani
20 and M3,ani

10 , VS is
defined following eq. (41).

using the same settings as the one defined for the previous case
study, with the same misfit reduction stopping criteria. The M1,ani

20

inversion converges within 20 iterations, but the M1,iso
30 inversion

stops progressing after four iterations and only a 50 per cent misfit
reduction is achieved. As it can be seen in the raw inversion results
(Figs 10 and 11), it is not possible to find a model explaining the
data in M1,iso

30 , at least with a local optimization algorithm such as
the Gauss–Newton scheme used here.

To test if the homogenized inversion principle can help in this
case, we use the algorithm presented in Fig. 2: at each Gauss–
Newton iteration, we project the obtained model to the homogeniza-
tion space with the H operator using ε0 = 1/3. We therefore use
M1,iso

30 for M∗h . In the following, we refer to this inversion as the
M1,iso,∗

30 parametrization inversion. Inserting this projection step,
the inversion almost converges (a 96 per cent misfit reduction was
obtained) after about 50 Gauss–Newton iterations. Of course, there
is here a little interest in using the homogenized inversion com-
pared to inverting in M1,ani

20 (the inversion convergence is slow),
but it shows that projecting to the homogenized space can help to
recover a failing inversion. At this stage, we cannot conclude if
this observation goes beyond what could be obtained with simple

Tikhonov regularization (see e.g. Brenders & Pratt (2007)) and this
will need to be investigated deeper in future works. This M1,iso,∗

30

inversion is the first presented example of the HFWI algorithm.
The raw results for the M1,ani

20 and M1,iso
30 inversions are the ones

presented in Figs 10 and 11. There is no raw results for the M1,iso,∗
30

inversion because each iteration is homogenized. From these raw
results, we see that, differently to the circular inclusions test, it is
only possible to tell that an heterogeneity is present in the layered
area, without any visible or qualitative detail on it. We can only tell
that, for the M1,ani

20 inversion, the layered area appears as a slow
velocity area. It is not possible to guess anything about the layering
and even less about the fault.

Following the main idea of this study, Figs 12 and 13 depict
the homogenized true model, the homogenized M1,ani

20 , M1,iso
30 and

M1,iso,∗
30 inverted models, for ε0 = 1. Similarly to the previous

test, the M1,ani
20 inverted model is, once homogenized, in very good

agreement with the homogenized true model. These plots also con-
firm that the M1,iso

30 has failed to converge to a correct model. Nev-
ertheless, when the homogenization is used at each Gauss–Newton
iteration, the same inversion M1,iso,∗

30 result is, once homogenized
with ε0 = 1, in very good agreement with the homogenized true
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1104 Y. Capdeville and L. Métivier

Figure 7. Weak contrast circular inclusion test raw inversion results. Cross-sections along the dotted line shown in Fig. 3(a), for the reference model (‘ref’)
and for the raw inversion results for the M1,iso

30 , M1,ani
20 and M3,ani

10 parametrizations. VS, VP, ρ and the total anisotropy are presented. For anisotropic
parametrizations, VP, VS and the total anisotropy are defined in eqs (40)–(42).

model. For the M1,ani
20 and M1,iso,∗

30 inversions, the position of the
fault can also be guessed from the total anisotropy 2-D plot (Fig. 12,
bottom panels).

From this test, we conclude that, depending on the model we want
to retrieve, the choice of Mh can influence the convergence of a
classical FWI. In particular, choosing an anisotropic parametriza-
tion is a good option, even if it seems apparently more difficult. This
example illustrates the advantage of projecting to the homogenized
space at each iteration of the inversion.

Finally, Fig. 14 depicts horizontal cross-sections in the ε0 = 1
homogenized reference and M1,ani

20 inverted models for the c1112

elastic coefficient. In a vertically transverse isotropic (VTI) model,
we have c1112 = 0. Knowing that a horizontally layered model be-
comes a VTI model through homogenization and that the faulted
layers test model is horizontally layered everywhere but near the
fault, we expect c1112 to be zero except near the fault. This is indeed
what is observed in Fig. 14 from both the homogenized reference
and inverted models. It implies that, provided that we have the prior
information that there is potentially a fault in the medium, it would
be possible to identify it from the inversion, even at this low reso-
lution. Such an interpretation of the inverted results can be seen as
a downscaling inverse problem and is discussed in Section 7.

6.3 Circular inclusion strong heterogeneity test

Finally, for the last test, we come back to the circular inclusion
configuration already used in Section 6.1, with stronger velocity
contrasts, especially for the slow regions (see Fig. 3 and Table 1).
The effect of the heterogeneity on the waveforms is large and none
of the parametrizations already used, with or without homogeniza-
tion at each step, is able to converge and to avoid falling in a
local minimum. To resolve this problem, we rely on the classical
frequency-grid continuation solution (Kolb et al. 1986; Bunks et al.

1995). We first perform the inversion in a low frequency band [0,
fm/2] and use the homogenized inversion results to start the inver-
sion in the full frequency band [0, fm]. Applying these two succes-
sive frequency band inversions, the simple Gauss–Newton scheme
(without homogenization) systematically proposes a non-physical
model after a few iterations and fails to converge. We therefore rely
on the homogenized Gauss–Newton scheme and use M0,ani,∗

20 for
the low-frequency band step and then M1,ani,∗

20 for the full-frequency
band step. In this framework, the convergence rate is slower than
for the first experiments (about 20 iterations for the first step and
40 for the second), however the misfit function is decreased down
to the 99 per cent objective and the convergence is reached.

The final results of the inversion, homogenized with ε0 = 1,
are summarized in Fig. 15. Once again, a very good agreement
between the homogenized true and the homogenized inverted mod-
els is obtained. The high amplitude of the effective anisotropy (up
to 30 per cent), knowing the isotropy of the underlying thin scale
model shall be noted. The different anisotropy pattern between het-
erogeneities with or without a slow layers around them could help
to find their finer scale characteristics in a downscaling process.

From this last case study, we conclude that the homogenization
can help FWI to successfully converge in this difficult case.

7 D I S C U S S I O N

One of the objectives of this paper is to extend the results obtained in
the layered media case (Capdeville et al. 2013), to higher dimension
cases (here 2-D), which illustrates the fact that the model obtained
from FWI are, at best, an homogenized version of the true model.
It establishes the relation between the inverted and true models for
limited frequency band data. Even if this relation might not always
be true, the tests performed here seem to confirm this assump-
tion: in cases where the inversion converges without homogenizing
at each Gauss–Newton step, the inverted raw models are clearly
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Homogenized FWI 1105

Figure 8. Weak contrast circular inclusion test reference model and three different inversion results, all homogenized with ε0 = 1 (see Section 6.1). VS, VP, ρ

and the ‘total anisotropy’ are presented (lines of panels from top to bottom, respectively ). Reference, M1,ani
20 , M3,ani

10 and M1,iso
30 inverted models are plotted

(left to right columns of panels, respectively). VS, VP and the ‘total anisotropy’ are obtained following eqs (40)–(42).

parametrization dependent. Nevertheless, once homogenized, the
different models are all the same and consistent with the homog-
enized true model. We interpret this observation in the following
way: the differences between raw inversion results depend on fine
scales in the parametrization that are not uniquely constrained by the
data. In other words, these fine scales may be necessary to explain
the data, but they are not unique and depend on the parametrization.
For example, using an isotropic parametrization (such as M1,iso

30

in Section 6.1), knowing that the effective medium behave in an
anisotropic way, might not prevent the convergence of the inver-
sion. But this strategy may find isotropic fine scales allowed by the
parametrization which will try to emulate the correct anisotropy in
the effective sense. Depending on the parametrization, these fine
scales will be different, but they will all have the same effective
effect. We conclude that FWI, indeed, finds the homogenized model
and not the true model.

The next related important point is to ensure that the assumption
that the solution to the homogenized inverse problem is the homog-
enized true model (eq. 30) is true. Once again, for all the examples

tested here, this relation seems to be satisfied. A corollary of this
observation is that, in the homogenized space, the FWI inversion
has a unique solution. This is true at least in the presented example
and all the other tests we have done so far. This is definitely not a
proof but, at least, it shows that it is a reasonable assumption. Cases
breaking the uniqueness are more likely to be found for poor data
coverage or noisy data. In such cases, the relation between the true
and inverted models through homogenization is broken which is a
serious issue for the interpretation stage. But this is not specific to
HFWI.

This framework gives some new insight about the FWI pro-
cess, even if the homogenization is not used. For example, many
FWI inversion scheme makes use of spatial smoothing to regular-
ize their gradient update, especially near the sources and receivers
(Williamson et al. 2011; Trinh et al. 2017). Based on our results,
knowing that, for low-velocity contrast, the homogenization oper-
ator H is close to a simple low-pass spatial filtering F , it makes
sense to low pass-filter results from an FWI: for weakly contrasted
models, this is equivalent to homogenizing the inverted model.
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1106 Y. Capdeville and L. Métivier

Figure 9. Weak contrast circular inclusion test reference and homogenized inversion results. Cross-sections along the dotted line in Fig. 3(a) for the reference
model (‘ref’) and for the inversion results for the M1,iso

30 , M1,ani
20 and M3,ani

10 parametrizations are represented. Three different values of ε0 are used (ε0 = 2,
1 and 0.5). VP, VS and the ‘total anisotropy’, obtained following eqs (40)–(42), are represented.

Figure 10. Faulted layers test raw inversion results. VS for the reference model (left panel), raw VS inversion results for the M1,ani
20 parametrization (middle

panel) and M1,iso
30 (right panel) parametrizations are plotted. For the anisotropic parametrization, VS is defined following eq. (41).

Another example where the presented work gives a better under-
standing about common practice is the frequency-grid continuation
methods (Kolb et al. 1986; Bunks et al. 1995). Using lower fre-
quencies reduces the homogenized model space dimensional (see
eq. A9), and, if low enough frequencies are present in the data,

a misfit function with a single global and local minimum can be
reached.

Our work also raises questions about other practices: for instance,
inverting for fine scales, such as sharp interfaces, based on limited
frequency band data, appears to be counterproductive. Indeed, even
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Homogenized FWI 1107

Figure 11. Faulted layers test raw inversion results. Cross-sections along the dotted line shown in Fig. 4(a), for the reference model (‘ref’) and for the raw
inversion results for the M1,iso

30 and for M1,ani
20 parametrizations. VS, VP, ρ and the total anisotropy are presented. For anisotropic parametrization, VP, VS and

the total anisotropy are defined following eqs (40)–(42).

if, for instance, the true model contains sharp interfaces, invert-
ing for these interfaces makes the problems strongly nonlinear.
More importantly, the imprint of these interfaces in the bandpassed
seismic data is very weak, making the inverse problem poorly con-
strained. It thus appears more reasonable to invert for a smooth
anisotropic media and leave the interpretation of the inverted model
(such as the detection of sharp interfaces) to a second-step down-
scaling inversion.

The resolution of FWI or HFWI is directly linked to λmin and to
the choice of ε0. In the forward modelling context, for a fixed λmin

value, depending on the desired accuracy, the number of propagated
wavelengths and on the model velocity contrast, a good choice for
ε0 lies between 0.5 and 0.25 (Capdeville et al. 2010b). We could
thus deduce that the FWI resolution can reach λmin/2 to λmin/4
resolution. Nevertheless, the different tests performed here show
that with ε0 = 0.5, the noise on the results is significant, increasing
the uncertainty on the reconstruction (leading to large error bars).
It is therefore probably best to limit the results to larger ε0, such
as ε0 = 1, for which the error appears lower. This could be poten-
tially improved by increasing the number of sources and receivers,
but this observation testifies that the sensitivity of the waveforms
to heterogeneities decrease strongly for ε0 close to 0.5, and that
the resolution limit should be set closer to 1 than 0.5. Note that
these numbers actually depend on where the actual maximum fre-
quency fm is placed: in Fig. 5, fm is really the maximum frequency,
but its position could have been chosen at the end of the plateau
(	 0.8 of the current fm). This would give an apparent more opti-
mistic value for the resolution limit of the inversion, but it would
not change the final images. This should be kept in mind when
discussing the FWI resolution limits as, due to possible difference
in the definitions, the λmin/2 resolution of one can be the λmin/4 of
another.

One important notion, both for the homogenization and for the
inverse problem, is the minimum wavelength λmin. Here, we have
assumed that λmin is roughly constant all over the domain. For more
realistic situation, especially for geological media, λmin may vary
dramatically over the inverted domain, especially with depth. Such a
case is not a real issue but an adaptive homogenization, that already
exists for layered media (Capdeville et al. 2013,appendix B), would
be needed for 2-D and 3-D media. Media that do not present a
minimum wavelength for some frequencies are more problematic
and cannot be inverted with any FWI methods (FWI or HFWI).
Media with Helmholtz resonator inclusions (Zhao et al. 2016), but
also with fluid or void inclusion of size comparable or larger to the
minimum wavelength are among those. Being able to apply FWI
or HFWI schemes to such media would require to use very low
frequencies only (such that a minimum wavelength exists anyway)
or a drastically different approach.

Another difficulty related to λmin is that, in the presented algo-
rithm and examples, it has been assumed to be known a priori. For
realistic situations, this often will not be true. Indeed, if the starting
model is far enough from the homogenized true model, the true λmin

can be significantly different from the initial estimate and therefore
the homogenization may be poorly tuned. In such a case, the λmin

is part of the unknown which makes the whole process implicit. An
iterative scheme is therefore necessary to find the correct λmin. This
is probably not a great difficulty but it will need to be tested in a
future work.

As it has been shown in the examples, the parametrization
choice for Mh or Mh,∗ has an influence on the raw results,
but not on the homogenized results, if the inversion has con-
verged. It appears that, for relatively weak velocity contrast tar-
get models, this choice is not critical as long as there are
enough degrees of freedom in the parametrization. For intermediate
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1108 Y. Capdeville and L. Métivier

Figure 12. Faulted layers test reference model and inversion results, all homogenized with ε0 = 1 (see Section 6.2). VS, VP, ρ and the ‘total anisotropy’ are
presented (lines of panels from top to bottom, respectively ). Reference, M1,ani

20 , M1,iso,∗
30 and M1,iso

30 inverted models are plotted (left to right columns of
panels, respectively). VS, VP, and the ‘total anisotropy’ are obtained following eqs (40)–(42).

velocity contrast target models, classical FWI still converge, but
using a fully anisotropic parametrization (MN ,ani

n ) is necessary. In
any case, we found it is safer to use a fully anisotropic parametriza-
tion than a isotropic parametrization. Once the fully anisotropic
tensor is inverted for, the spatial parametrization is not really crit-
ical as long as it provides between 3 to 4 degrees of freedom per
wavelength in one direction. We nevertheless observe a slightly bet-
ter stability of the inversion for low polynomial degree (e.g. using
P1

20 is more stable than P3
10 for the same number of degree of

freedom). An interesting consequence is that a rough parametriza-
tion, such as square blocks containing constant elastic proper-
ties, performs very well in terms of stability and convergence,
better than a high order polynomial parametrization, as long as
there are enough degrees of freedom per wavelength. In any case,
once homogenized, the results correspond to the homogenized true
model.

As we saw above, the model resulting from HFWI are homog-
enized models and cannot be true models. Such models are well
suited for data prediction. This could be very useful in many situa-
tions, such as source localization and moment tensor inversions. But
they are poorly suited to geological interpretation. Indeed, because
true interfaces are blurred and apparent anisotropy is introduced,
interpretation can be difficult and misleading (for an example, see
Capdeville et al. 2013). Note that this issue is not specific to HFWI:
any seismic inversion based on limited frequency band data is sub-
jected to this issue. At least, with HFWI, it is made clear that
the results should be interpreted with care. To properly interpret the
homogenized model obtained through HFWI, we propose a second-
step inverse problem: the downscaling or de-homogenizing inverse
problem. The idea of such a new inverse problem is to find all
the finer scale models both compatible with some a priori infor-
mation and the HFWI model. Such an inversion solution is highly

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/213/2/1093/4838985 by C

N
R

S - ISTO
 user on 19 O

ctober 2021



Homogenized FWI 1109

Figure 13. Faulted layers test reference and inversion homogenized models. Cross-sections along the dotted line in Fig. 4(a) for ε0 = 1 are plotted. VP, VS and
the ‘total anisotropy’ are obtained following eqs (40)–(42).

Figure 14. Faulted layers test inversion result. Cross-sections along an hor-
izontal line for y = 4λmin in c∗

1112 for the reference model and the M1,ani
20

inverted model, both homogenized with ε0 = 1.

non-unique and needs to be carried out with a global search ap-
proach. The idea has already been successfully tested in the layered
model case (Bodin et al. 2015) and its development for higher
dimension problems needs to be done. Combining HFWI and a
downscaling inversion is an indirect way to address the full wave-
form inverse problem with a fully probabilistic approach.

If the overall context of this work is seismology at all scales, our
results can be extended to other domains, such as non-destructive
testing at all scales with (almost) no modifications. Furthermore,
although we have limited ourselves to the elastic case, the acoustic
case is probably very similar and most of our conclusions would
probably remain valid. Nevertheless, there are some important dif-
ferences between the two cases related to the non-uniqueness of the
inverse problem that would deserve a particular attention.

8 C O N C LU S I O N S A N D P E R S P E C T I V E S

We have confirmed numerically that an FWI based on limited fre-
quency band data can retrieve, at best, the homogenized version of
the true model. The relation between the true and inverted mod-
els is known through eq. (30). This is an important progress as,
for classical FWI scheme, this relation is not known. This relation
opens the door to a proper interpretation of the inverted model with
a downscaling inverse problem.

To make the principle exposed here applicable to more realistic
geological cases, many aspects still need to be explored. Because,
in general, the source and receivers are in the inverted area, their
associated correctors need to be inverted. Similarly, the free surface
boundary corrector needs to be inverted. The fact that, in general, the
minimum wavelength strongly varies over the domain also needs
to be accounted for. The adaptive homogenization is potentially
a good solution for such a problem. An explicit parametrization
instead of the implicit one used here should be attempted. The
general downscaling problem needs to be addressed and, finally,
these works need to be extended to 3-D. All these aspects will be
explored in future works.
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1110 Y. Capdeville and L. Métivier

Figure 15. Strong contrast circular inclusion test reference model and inversion results, both homogenized with ε0 = 1 (see Section 6.3). On the left column
panels are presented maps of VS (top panel) and the ‘total anisotropy’ (bottom panel) of the reference model and, on the middle column, the one for the inverted
model with the M0,ani,∗

20 parametrization. On the right column are plotted cross-sections along the dotted line seen on the maps presented in the panel from
right and left columns for VS (top panel) and the ‘total anisotropy’ (bottom panel).
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A P P E N D I X A : T H E H O M O G E N I Z AT I O N
O P E R AT O R H
In this appendix, we summarize the practical steps necessary to
build the homogenization operator H. The complete development
and theory can be found in Capdeville et al. (2010b, 2015).

To practically implement the user-defined λ0 scale separation,
we need to introduce a low-pass filter operator F k0 , such that, for
any quantity g(x), F k0 (g)(x) does not contain any spatial variation
smaller than λ0 = 1/k0. This low-pass filter operator can be written
as

F k0 (g)(x) = (wk0 ∗ g)(x), (A1)

where ∗ is the spatial convolution and wk0 is the filter wavelet. Once
λ0 is chosen, it sets the value of ε0 through (16).

The different steps allowing us to build the upscaling operator H
such that

c∗ = H(c) , (A2)

and to find the correctors are the following:

(i) Step 1. We first solve the so-called cell problem to find the
initial guess correctors χ lm

s (x). It consists in solving the following
elastostatic set of problems (3 in 2-D, 6 in 3-D) in �:

∇ · c : ε
(
χ lm

s

) = Flm ,

Flm = −∇ · (c : (el ⊗ em)) , (A3)

with periodic boundary conditions on ∂�, where the ei , i ∈
{1, ..., d}, are the Cartesian unit basis vectors.
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(ii) Step 2. Once the initial corrector guess χ lm
s is obtained, we

compute

[Gs]i jlm (x) = 1

2

(
δilδ jm + δ jlδim

) + [
ε
(
χ lm

s

)]
i j

,

Hs(x) = c : Gs. (A4)

The ε0 effective tensor can be directly obtained as

c∗(x) = F k0 (Hs) : F k0 (Gs)
−1(x). (A5)

At this stage the upscaling operator H, defined in eq. (A2), is known.
The effective density is simply

ρ∗(x) = F k0 (ρ)(x); (A6)

(iii) Step 3. Finally, the strain concentrator is obtained as

G(x, y) = I + (
Gs − F k0 (Gs)

)
(ε0y) : F k0 (Gs)

−1(x), (A7)

and the first-order corrector χ (x, y) is obtained solving, for each x
(fixed),

∇χ(x, y) + (∇χ )ᵀ(x, y) = 2(G(x, y) − I), (A8)

where the ∇ operators here applies on the y variable and I is the
identity operator.

Solving the cell problem (A3) usually requires a numerical solver.
In practice, we can use two different schemes, one based on finite
elements (Capdeville et al. 2010b) and one based on an iterative
FFT scheme (Capdeville et al. 2015), derived from Michel et al.
(1999). Here, in the examples, the first has been used to compute
the m∗

t , the second to compute m̄h∗ and the homogenized projection
of the Gauss–Newton updated model at each iteration.

It can be seen that the homogenization operator actually depends
on both the maximum frequency fm (which determines λmin through
the medium dispersion relation) and on ε0 (which determines λ0

through (16)).
The main assumption behind the homogenization is the existence

of a minimum wavelength λmin. For most media, this is usually the
case. Nevertheless, note that some synthetic media can break this
assumption and they cannot be homogenized (at least in the sense

used here) and they probably cannot be imaged (at least not with
the scheme presented here). Media with fluid or void inclusions of
size comparable to λmin break the assumption that c is positive def-
inite and such media cannot be homogenized either without doing
a domain decomposition. Such media cannot be imaged this way
either, unless fluid–solid boundaries are previously known and ex-
plicitly taken into account. But media with void or fluid inclusions
of size significantly smaller than λmin can still be homogenized and
therefore inverted.

One important consequence of the homogenization theory is that
the effective model space M∗, image of the model space M
through H (M∗ = H(M)) is a finite dimensional space (even
prior to any discretization that could be necessary for practical rea-
sons). Indeed, from eq. (A5), it can be seen that both F k0 (Hs) and
F k0 (Gs) belong a finite dimensional Fourier space and therefore c∗

can be describe with a finite number of parameters. The exact di-
mension of M∗ as a function of fm and ε0 is difficult to measure
precisely, but it scales as

dim(M∗) ∝
(

fm

ε0

)d

. (A9)

The fact that dim(M∗) cannot be measured precisely is because, as
any space-wavenumber problem, it is not possible to be precise on
both on frequency (fm) and space (λmin) at the same time.

Finally, we said nothing about the boundary conditions. This is a
more complex issue that requires two matched asymptotic expan-
sions (Capdeville & Marigo 2008; Capdeville et al. 2013). At the
order 0 in ε0, nothing special needs to be done and any smooth
boundary and a free surface will be correct. At order one in ε0,
it appears that an effective domain boundary ∂�∗ needs to be in-
troduced. It transforms a potential rough topography in a smooth
effective one. Moreover, the free boundary condition needs to be
replaced by a Dirichlet to Neumann condition (see eq. 19). The
coefficients involved in the Dirichlet to Neumann operator �∗ only
depend on the macroscopic scale (they vary smoothly) and are
therefore not a problem for an inverse problem (but the effec-
tive parameters imbedded in �∗ would still need to be inverted
for).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/213/2/1093/4838985 by C

N
R

S - ISTO
 user on 19 O

ctober 2021


