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Topological aspects of three-dimensional wakes
behind rotary oscillating cylinders

By P H I L I P P E P O N C E T
Laboratoire MIP, Dept GMM, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France

(Received february 6th 2002 and in revised form april 2003)

The development of a three-dimensional viscous incompressible flow generated behind an in-
finitely long circular cylinder, impulsively started into rectilinear motion and rotationally oscil-
lating, is studied computationally. The numerical scheme, an hybrid vortex method, is used to
integrate the velocity-vorticity formulation of the Navier–Stokes equations. The Reynolds num-
ber considered is Re ������� , which is moderate though beyond the critical values Re ���
	�� � and
Re 
� ����� � for which the flow becomes spontaneously three-dimensional. The numerical method
is explained and its main points are developped. This scheme is then applied to solve a few
two-dimensional problems, both in order to validate the method and to compute a nominal two-
dimensional flow, required to measure the impact of three-dimensionality. The three-dimensional
flow past a steady cylinder is also compared to benchmark simulations. Once the flow has become
fully three-dimensional, beyond transient regime and saturation of instabilities, the cylinder be-
gins a rotary oscillation around its axis. Two kinds of rotations are considered, either at constant
amplitude and several frequencies, or at constant frequency and various amplitudes. When am-
plitude and frequency are high enough, the whole flow comes back to its two-dimensional state.
This result gives a justification for two-dimensional computations present in the literature related
to rotating cylinders. For the first super-harmonic frequency of the flow, a parametric study is
realized in order to get the impact of the amplitude on the topology of the flow. A bifurcation is
clearly identified. Eventually, the mechanisms involved in the return to a two-dimensional state
are explained : the interaction between transverse instabilities and von Kármán alleys is quanti-
fied by means of a correlation analysis.

1. Introduction and related work
The description of the wake behind bluff bodies in a viscous flow is of fundamental importance

in many engineering and scientific fields. The canonical case of the circular cylinder has been
reported in numerous works, concerning experimentations as well as numerical investigations,
in the simplified case of a plan or in the physical three-dimensional space. The interest of body
rotation is mainly motivated by the possibility of modifying the wake generated downstream and
the forces created by the wake on this body. Indeed, such studies throw light on mechanisms that
reduce reduce drag forces, which is a key point in aeronautics and other fields of application,
described for example in Sümer & Fredsøe (1997).

Most of prior works concerned either steady cylinder in three dimensions, or rotating cylin-
ders in two dimensions, mainly due to restrictive Courant-Friedrich-Levy conditions and com-
putational cost. Early three-dimensional measures, for a steady cylinder, are reported in Wiesels-
berger (1922), though the 3D cylinder has been a field of active research during the 90s.

For incompressible wakes generated by a circular cylinder, two of the governing non dimen-
sional parameters are the Reynolds number Re ����������� where � is the diameter of the
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cylinder, ��� the free stream velocity and � the kinematic viscosity, and the Strouhal number��� ����������� , where � � 	 �"! , ! being the natural period of the flow.
It is now well known that the wake of a circular cylinder becomes spontaneously three-

dimensional when Re # Re � � 	�� � . The instabilities and non-spanwise structures of the flow
have been exhibited experimentally by Williamson (1988), and later numerically by Tomboulides
et al. (1992). Several contributors, as Karniadakis & Triantafyllou (1992), Beaudan & Moin
(1994), Thompson et al. (1994, 1996), Persillon & Braza (1998) or Kravchenko et al. (1999),
have since studied the transition to turbulence and other aspects of these flows. Several diagnos-
tics of the 3D flows have been computed, by Henderson (1995a) and Mittal (1996), in order to
provide an analysis of 3D effects and comparison with experimental results such as Williamson
(1996). Higher Reynolds numbers have been also considered in latest works, for example Mittal
(1996) or Jordan (1997), who have considered sub-grid models.

Furthermore, it has been shown in Barkley & Henderson (1996) that two modes of transi-
tion, commonly called Mode A and Mode B, occur respectively at Re �$�%	�&�� and Re 
� �'��(�� .
Consequently, realistic numerical simulations have to be performed in 3D when Re #)	�� � .

When the cylinder is moving in steady or oscillating rotation, or oscillating in translation (i.e.
vibration), the condition of linear stability implies that time steps have to be very small (hence
the usual restriction to two-dimensional computations). The first 2D numerical simulations of a
more complex motion than a uniform translation have dealt with the steadily rotating cylinder,
initially with Coutanceau & Ménard (1985) and Badr & Dennis (1985), followed by Chang &
Chern (1991) and Chen et al. (1993) among others. Badr et al. (1990) joins both experiments
and numerical investigations in the range 	 �+*�, Re , 	 ��- . Oscillating flows, that is to say in
pure oscillating translation, unlike uniform or accelerated motions, have been and are still a huge
field of interest in naval research. Properties of these flows have been studied for wide ranges of
Keulegan-Carpenter numbers by many contributors, for example Bearman (1997). On the other
hand, studies on cylinders oscillating freely under crosswise translation and undergoing uniform
rectilinear motion have been performed during the last years, both numerically by Blackburn
& Henderson (1999) and experimentally by Govardhan & Williamson (2000). The same kind
of problem with forced oscillations is developed in Dütch et al. (1998), who joined numerical
simulation and experimentation.

The motion considered in the present paper is a uniform rectilinear motion with rotational
oscillation. This type of motion has been experimentally studied for low Reynolds numbers
by Taneda (1978), who has provided snapshots of streamlines, and by Tokumaru & Dimotakis
(1991) at Re � 	"( ����� . Numerical simulations corresponding to this case have been lately per-
formed by Lu & Sato (1996), Chou (1997) and Baek & Sung (1998). Accurate numerical simu-
lations can be found in the recent papers by Dennis et al. (2000) and He et al. (2000), which are
considered in the present paper as benchmarks for diagnostics. When rotations of higher ampli-
tude are considered, diagnostics can be compared to the two-dimensional study by Milano et al.
(2000) and Milano & Koumoutsakos (2002).

So far all the numerical simulations for rotating cylinders seem to have focused on 2D geome-
tries, probably due to the computational cost of 3D simulations and available numerical tools. In
order to be realistic, for long time scale and for Reynolds numbers above 	�� � , numerical sim-
ulations should take into account the three-dimensionality of the flow. In order to perform such
numerical simulations, a robust numerical method has to be used, i.e. which still converges when
used with large time steps, in order to reach large time scales.

The goal of the present paper is to describe 3D aspects of flows around a rotating cylinder,
infinitely long. This cylinder is steady until the flow is fully three-dimensional, at Re �.����� .
Then the cylinder begins to rotate, with an angular position given by the formula/103254 �7698;:=<�> 03?@�BAC254
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with
�BA

being the forced Strouhal number and 8 the peak angular position, called amplitude.
Consequently, the tangential velocity on the body is given by D �FE�G/ �F8 ?@�BA EH>5I J 03?@�BAK254 .
The ratio

�BA � ��� will be chosen among integers in order to consider only harmonic and super-
harmonic frequencies of the flow. This avoids to focus on locking phenomena and competition
between different frequencies.

The main result presented herein is that the flow comes back to a two-dimensional state in the
neighbourhood of the body for high amplitudes. The question of the critical amplitude that leads
to a 2D flow is also considered in the case for which

�@A � ��� � � .
Furthermore, fast rotations can lead to a substantial drop of the drag coefficient. This fact

has been exhibited experimentally in Tokumaru & Dimotakis (1991) (at Re � 	�L (M	 �+- ) and
numerically in Milano et al. (2000). For medium-range frequencies of rotation, one can refer to
Dennis et al. (2000) and He et al. (2000).

An outline of the present paper is as follows. The numerical method is first described in sec-
tion 2, and a few two-dimensional diagnostics are computed in section 3, in order to provide
a validation the numerical scheme. The present results are compared to 2D computations by
Henderson (1995b), Henderson (1997), Utnes (1997), Blackburn & Henderson (1999), Den-
nis et al. (2000) and He et al. (2000). Section 4 shows the spontaneous development of three-
dimensionality. For Re �N����� # EPO 
� � ��� � , mode B is identified by means of spectrum
analysis, and diagnostics are compared to Barkley & Henderson (1996), Henderson (1995a) and
Wieselsberger (1922). The development of three-dimensionality is shown to be exponential. Sec-
tion 5 shows the effect of a high amplitude of rotation ( 8Q� ? � � ) for a few frequencies, and
exhibits representative phenomena due to the body rotation. The effect of the amplitude on the
topology of the flow is then discussed in section 6 for

�@A � ��� � � . Finally, in section 7, the
mechanism leading to a two-dimensional flow is identified and discussed in the case

�RA � ��� � �
and 8�� ? � � , and a correlation analysis is provided.

2. The three-dimensional Navier–Stokes equations
The present numerical method is a deterministic hybrid Vortex-In-Cell method (particles carry

vorticity, see Cottet & Koumoutsakos (2000) for general overview). Fields which are solutions of
Poisson or Helmholtz equations are computed on a cylindrical grid instead of considering a pure
lagrangian method. Recent developments in these methods for both two- and three-dimensional
flow computations are described in Cottet & Poncet (2003) and Cottet & Poncet (2002), based
on preliminary results presented in Cottet et al. (2002), Koumoutsakos & Leonard (1995) and
Ould-Sahili et al. (2000) for wake computations.

Let us consider the three-dimensional Navier–Stokes equations in their fully non-linear velo-
city-vorticity formulation S TS 2VUXWXY�Z T 6 T Y�ZVW 6[�]\ � T �^� (2.1a)

where Z is a gradient operator, � is the kinematic viscosity, T is the vorticity field and W is the
velocity field, satisfying ZQY_W �^�]` ZNaXW � T L (2.1b)

thus ZbY T �c� . One also considers a smooth three-dimensional body d , which is an infinitely
long circular cylinder. On this cylinder there is the no-slip boundary conditionW � D]e3f g h�ij1k (2.1c)

where D]e3f g h is the tangential body velocity. If the cylinder is not rotating, then D�e3f g h ��� .
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All along this paper, the far field condition isW 03l�4nmpo � as q l q mpr (2.1d)

and since the cylinder is infinitely long, all functions are periodic in the spanwise direction. This
period is denoted by s from now on. In order to simplify notations, these two last boundary
conditions will no longer be written.

The basis is written
0 ij]t ` ij]u ` ij]v 4 in Cartesian coordinates and

0 ij]w ` ij1k ` ijxv 4 in cylindrical coor-
dinates (see figure 1). The vector ij]t is the streamwise direction and ij]u the crosswise direction.
All along this paper, the body d is a circular cylinder, whose axis is the spanwise direction ij]v .
The computational domain is then y ��zC*|{ d .

2.1. Particle methods

In order to solve numerically the Navier–Stokes equations, one considers a Lagrangian ”Particle-
in-Cell” method. This method, described below, is based on an hybrid formulation of vortex
methods.

Indeed, particles carry cells of vorticity, and velocity reconstruction uses Helmoholtz and Pois-
son equations via back and forth interpolations on a grid, instead of a classical approach using
multipole methods or stochastic methods as Monté-Carlo. This leads to a gain of accuracy (com-
pared to Monté-Carlo methods) and speed (compared to the multipole approach, see Cottet &
Poncet (2002)).

Let the particles be indexed by } � 	�L~L~L�� . A particle is described by its position �C� 03254 , its
vorticity T � 03254 , and its volume �"� . This volume does not depend on time due to the incompress-
ibility. Thus one considers measure solutions such asT 03254 �����~�R� T � 03254��=���_� �3� ��� (2.2)

where
� ���

is the Dirac function at �R� .
The no-slip condition (2.1c) may be written in a scalar form, with a no-slip-through conditionWXY ij]w ��� (2.3a)

and the two tangential conditions WXY ij1k � D]e3f g h ` WXY ij]v �^� L (2.3b)

A fractional-step algorithm is then used to solve the Navier–Stokes equations (2.1a–c) with
the measure solution (2.2). Let TP� be a measure solution at time

2 � .
The first step is pure convection, which ensures the no-slip-through condition (2.3a) :���� ���

� T �� 2 �.� ZQY 0 WH� T 4�� ���_� �3�� �@�� 2 ��� 0 ��� 0325454 (2.4)

for
2���� 2 � ` 2 � U �"2�� , where fields W and T satisfy������ �����

ZNa[W � T ` ZQY_W �^� in y^� � 2 � ` 2 � U �"2��T 032 � 4 � T�� on yWXY ij]w ��� on

S y�� � 2 � ` 2 � U �"2�� (2.5)

The stretching tensor Z^Y 0 WP� T 4 is equal to T Y�Z;W when Z^Y T ��� . This last tensor makes the
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numerical scheme more stable when the vorticity is not algebrically divergence-free (see Cottet
(1996)). It remains to treat the diffusion and the tangential no-slip condition (2.3b). Moreover,
the main difficulty of step (2.4) is the computation of the velocity field, which is discussed in the
following subsection.

2.2. Velocity computation and Grid-Particle coupling

The initial data of step (2.4) is the vorticity field TP� . This field contains the position, the pointwise
vorticity and the volume of all particles. Thus step (2.4) is a classical dynamical system as soon
as the velocity field is known. This velocity must satisfy������ �����

ZNa[W � T on yZQY_W ��� on yWXY ij]w �^� on

S y (2.6)

The usual deterministic approach of vortex methods is to compute this velocity field with the
Biot-Savart laws :W 03l� ~4 � � ¡£¢n¤ T �¥03l� �4 �)¦+§ ¡£¢�03l�  6 l�4 T 03l�4x¨xl � � t � ¡£¢�03l�  6 l � 4 T 03l � 4 ���
given the particle description (2.2) of the vorticiy. Such an approach requires � � evaluations
of the mollified Green kernel

¡$¢
, � being the number of particles. This computation is not

yet technically possible for three-dimensional computations involving millions of particles (see
Cottet & Poncet (2003) and Cottet & Poncet (2002)) in time-dependent simulations, despite
recent advances in multipole methods by Strickland et al. (1999), Plouhmans & Winckelmans
(2000) or Lindsay & Krasny (2001).

An alternative to compute the velocity field is to use a stream function © . For any divergence-
free vorticity field and at any time

2
, the link between the stream function and vorticity is6�\ � © � T (2.7a)

with arbitrary boundary conditions which imply ZªY © �^� (thus © is globally divergence-free).
One also considers an harmonic potential « , that is to say\ � « �^� (2.7b)

which satisfies
SB¬S � � ZNa © Y ij]w

on the boundary

S y . Eventually the velocity is computed by the Helmholtz decompositionW � ZNa © 6 Z «
and verifies equations (2.6).

In order to solve the Poisson equations (2.7a,b), the vorticity is interpolated onto a grid. The
velocity is computed on this grid and interpolated back to particles. Such a method is called
hybrid due to the fact that it uses both particles and grids. The interpolation is a third order tensor
product formula (see Monaghan (1985)), except near the body where one-sided formulas are
prefered. Details of this strategy of interpolation can be found in Cottet & Poncet (2003).

2.3. Diffusion and boundary layer

Our approach is an extension to 3D of the method used by Koumoutsakos et al. (1994) to study
2D diffusion and vorticity boundary conditions. Diffusion in the fluid, the second step of the
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fractional-step algorithm, is performed through vorticity exchange among particles. The no-slip
condition (third step) is enforced by means of a vorticity flux at the boundary.

More precisely, let T � be the final value at
2 � 2 � U �"2 of the first step 2.4. The vorticity field

on the boundary can be written in cylindrical coordinates T � 0®­ w ` ­ k ` ­ v 4 . The diffusion is
given by the heat equation :

������������������ �����������������

S TS 2 ���]\ � T in y^� � 2 � ` 2 � U �"2��S ­ vS � ��� on

S y^� � 2 � ` 2 � U �"2��
¯ ­ k U S ­ kS � �^� on

S y^� � 2 � ` 2 � U �"2��­ w �^� on

S y^� � 2 � ` 2 � U �"2��T 032 � 4 � T � on y
(2.8)

where ¯ � 	 �_E is the curvature of the cylinder. For a small viscosity � , i.e. for a Reynolds
number high enough, this equation can be solved with an explicit scheme, a “Particle Strength
Exchange” algorithm, developped in Degond & Mas-Gallic (1989).

Let T � be the solution of (2.8). Furthermore, for any
2

between
2 � and

25° U �"2 , the velocity
produced by the solution of (2.8) is written W e±h5² 03254 and is commonly called spurious velocity.
This velocity W e±h5² 03254 is computed by solving equation (2.6).

The no-slip condition (2.3b) is enforced by means of the boundary layer. This viscous bound-
ary layer is the step 3 of the fractional-step algorithm, another heat equation :

������������������ �����������������

S TS 2 �^�]\ � T on y^� � 2 � ` 2 � U �"2��
� S ­ vS � �
6

S W e±h5²S 2³Y ij1k 6 S D]e3f g hS 2 on

S y^� � 2 � ` 2 � U �"2��
� ¯ ­ k U S ­ kS � �

S W e±h5²S 2³Y ij]v on

S y^� � 2 � ` 2 � U �"2��­ w �^� on

S y^� � 2 � ` 2 � U �"2��T 032 � 4 �^� on y
(2.9)

where D]e3f g h �NE´G/ is the velocity on the surface of the body due to the rotation. The Robin
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boundary conditions enforce

S � ZQY T �^� . Indeed, one hasSS¶µ 0 ZQY T 4 �Q·¶\ � ­ w 6 ­ wµ � 6 �µ �
S ­ kS / ¸¹U 	µ �

S ­ kS /ºU 	µ SS / S ­ kS¶µ U SS�» S ­ vS¶µ
� 0 \ � T 4K¼]½O w U 	µ SS / · 	µ ­ k ¸´U 	µ SS / S ­ kS¶µ U SS�» S ­ vS¶µ
� 	�

S ­ wS 2
U 	µ SS / · ¯ ­ k U S ­ kS¶µ ¸´U SS�» S ­ vS¶µ
� 	�

SS 2 S W e±h5² ¼ ij]vµ_S / 6 	�
SS 2 S W e±h5² ¼ ij1kS�»

� 	�
SS 2 0 Z¾aXW e±h5² ¼ ij]w 4 � 	�

SS 2 0 T � Y ij]w 4 ���
Consequently, divergence satisfies the well-posed heat equation����������� ����������

S 0 ZQY T 4S 2 6X�]\ � 0 ZQY T 4 �^� in y¿� �À2 � ` 2 � U �"2=�
ZQY T 032 � 4 �^� on ySS¶µ 0 ZÁY T 4 ��� on

S y¿� �À2 � ` 2 � U �"2=�
thus remains zero over time and space.

The solution of (2.9) can be computed in its integral form, see Friedmann (1964) and Koumout-
sakos et al. (1994) : T 03l ` 254 ��¦ ��3Â ¦xÃ §|Ä 03l ` 2ÆÅ5Ç `5È 4�ÉÊ03Ç `5È 4x¨xÇ�¨ È
where Ä is the three-dimensional heat kernel, with È Ë 2 :Ä 03l ` 2ÆÅ5Ç `5È 4 �ºÌ±� ? � 032 6HÈ 45Í�Î *ÐÏ �BÑ=ÒxÓ ·B6^Ô l 6 Ç Ô ��+� 032 6HÈ 4�¸
and
É

a weighted field defined on the physical boundary. The construction of this weighted field
is based on the first order development of the integral equation satisfied by

É
, and does not

create divergence as seen above (see Cottet & Poncet (2003)). This technique is a very robust
and flexible algorithm for boundary layer computation, and can be used in various situations
involving tangential velocities (see control strategies in Poncet (2003), Cottet & Poncet (2004)
and Poncet (2004)).

2.4. Conclusion related to the numerical scheme

A fractional step algorithm (2.4)-(2.8)-(2.9) has been developped in order to approximate the
solutions of the Navier–Stokes equations. The first step, given by equation (2.4), is a convection
step. The second one is the diffusion step, given by the heat equation (2.8). The third and last
step is the boundary layer computation, defined by equation (2.9). It enforces the no-slip condi-
tions (2.3b). Moreover, particles are periodically remeshed, mainly using the third order kernel
introduced by Monaghan (1985).

If we write respectively T � and T * the solutions of (2.8) and (2.9) at
2 � 2 � U �"2 , then
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c) at

2 � 2 � U �"2 .
The computational domain y used for three-dimensional simulations at Re �Õ����� is an “O-

grid” defined by E
, µ ,¹E U � ? E and 6 � ? Ec, » , � ? E
The discretisation is ��(��M�¿	"��&M�¿	"��& for the variables

µ
,
/

and

»
respectively. The strong stability

of the lagrangian method allows to use a non-dimensional time step �M� �"2 �_E
��� L 	 . The solver
takes about 	 � ( seconds per time step with the resolution above, which means about Ö�(�× s per
grid point on a DEC- Ø server.

2.5. Mechanical diagnostics

The non-dimensional time
2

depends on the dimensional time
25Ù

by the relation2 � ��� 2¥ÙE
From now on only the non-dimensional time

2
will be used.

The Reynolds number is defined as

Re � ������
and the non-dimensional frequency of the flow, that is to say the Strouhal number, is defined as��� � ������ (2.10)

where �Ú� 	 �"! is the natural frequency of the flow. The drag and lift coefficients are computed
as in Koumoutsakos & Leonard (1995). The friction coefficients are defined by :Û�Ü�A �76 �� �� E s ¦xÃ § ­ v >5I J /�¨1Ý ` Û�Þ]A � �� �� E s ¦xÃ § ­ v :=<�> /�¨1Ý `
and the pressure coefficients byÛ�Ü�ß �
6 �� �� E s ¦ Ã §

S ­ vS¶µ µ >5I J /�¨1Ý ` Û�Þ]ß � �� �� E s ¦ Ã §
S ­ vS¶µ µ :=<�> /�¨1Ý L

Thus the expression of the drag coefficientÛ�Ü � Û�Ü�A U Û�Ü�ß (2.11a)

and the lift coefficient Û�Þ � Û�Þ]A U Û�Þ]ß (2.11b)

3. Drag coefficients of two-dimensional flows
In order to provide a validation of both the numerical scheme and study the behaviour of

the nominal 2D flow, we perform several 2D simulations. Since these 2D computations exhibit
the nominal state of forthcoming 3D simulations, the Reynolds number is chosen in the range
between � ��� and 	 ����� .

3.1. Drag coefficient of a flow past a steady cylinder at various Reynolds numbers

In this section, a few values of the drag and lift coefficients are computed in the case of a two-
dimensional flow.

The cylinder is impulsively started at
2 �^��à , and is slightly rotating during the early time with



Topological aspects of 3D wakes behind rotary oscillating cylinders 9

Re áCâ ãáCä å]æ Re áCâ ãáCä å]æ
200 1.3389 ç 0.0015 0.70 0.199 200 1.3412 0.700 è 0.1972, 0.196 è
300 1.3820 ç 0.0031 0.96 0.211 300 1.3769 – 0.2113
400 1.4080 ç 0.0043 1.08 0.2228 400 1.4142 – 0.2198
500 1.4433 ç 0.0050 1.23 0.230 500 1.4449 1.19 é 0.2254

1000 1.5264 ç 0.0097 1.45 0.241 1000 1.5191 ê – 0.2372, 0.2392 ê
TABLE 1. Diagnostics for Reynolds numbers between 200 and 2000. Left : Present computations. Right :
Henderson (1995b) and Henderson (1997), except é Blackburn & Henderson (1999), è Utnes (1997) andê He et al. (2000). The error on á�â is the ë�ì"í confidence interval of the mean drag coefficient.

a tangential velocity D1e3f g h �º>5I J 03?B2 � � 4 while
2 ,Õ� . This slight rotation is performed in order

to break the crosswise symmetry of the flow. This triggers on the first von Kármán instability,
which would appear later otherwise, thus a gain of computational time since this aspect of the
flow is not the topic of the present study. For

2 # � , the cylinder is steady, i.e. D�e3f g h ��� .
Figure 3 shows the drag and lift coefficient for various Reynolds numbers between 200 and

1000. Table 1 shows values of the mean value of the drag coefficient
Û9Ü

, denoted
Û�Ü

, the mean
of peak values of the absolute lift coefficient q ÛîÞ q , denoted ïÛ�Þ , and the Strouhal number

�B�
.

On this table, one can read the values found by the present method, and compared to the results
of Henderson (1995b) and Blackburn & Henderson (1999). Note that Blackburn & Henderson
(1999) gives a range of 1.18–1.20 for ïÛ�Þ , which emphases the sensitivity of this quantity. One
can notice a quite good agreement between present values and the related works. In order to get
such an accuracy, the computational domain has been radially extended up to

0 	 U & ?@4 E for these
two-dimensional simulations.

3.2. Drag coefficient of a flow past a rotationally oscillating cylinder

This discussion on two-dimensional flows can be found under several forms in the existing liter-
ature. Note that Dennis et al. (2000) provides a lot of diagnostics on a rotary oscillating cylinder,
especially on drag and lift coefficients.

The simulation begins exactly as described in the last section, i.e. the symmetry of the flow
is broken by a slight rotation before

2 ,Õ� , and then the cylinder stays steady. At
2 � � � , the

rotation is activated. Our formula of the tangential velocity on the body isD]e3f g h �^8 ?@�BA EV>5I J 03?@�BAC254 (3.1)

where
�BA

is the forced Strouhal number, 8 the rotation amplitude and E the radius of the cylin-
der. The quantity

��A
is defined in the same spirit as the natural Strouhal number

���
(see equation

2.10), that is to say �BA � ��ð5����
where ��ð is the frequency of the cylinder rotation.

If a point on the cylinder is initially set at
/10 � 4 �
698 , its location at time

2
is given by/103254 � /10 � 4 U 	E ¦ �� D]e3f g h 0 � 4x¨ � �7698;:=<�> 03?@�BAC254

since D]e3f g h �^E¹G/ . This makes the formula (3.1) especially interesting.
The forced Strouhal number

��A
is chosen as a multiple of the natural Strouhal number

���
.

Moreover, we will call high amplitude a rotation whose amplitude 8 is
? � � .

It is known that a rotation whose amplitude and frequency are high enough (at least
�RA �
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å1ñ�ò�å]æóì ô�õ ì ô�õ ö÷ô�õ ø_ùúô�õ ø_ùûö_õ ì ü�õ ìý
– þ�ò�öÿþ�ò�ö þ�ò�ö ü"ò=þ þ�ò�ö þ�ò�ö����� � ì ô�õ ôÆü"ù ô�õ ü��"öcô�õ �~ø	� ô ö_õ ö�
~ì
ü�õ ø"ì"ùáCâ ô�õ ø�ø"üúö_õ ��ì ô�õ ��� ô�õ ü���ô�õ ü�ì ô�õ ì�ë ì�õ �"ö

TABLE 2. Mean drag coefficients at Re �[ù~ì�ì for various rotation parameters (
�
��� � � ý þ�å1ñ ).

� ��� ) leads to a substantial drop of the drag coefficient (cf. numerical investigations of He et al.
(2000), Milano et al. (2000), Dennis et al. (2000)). The drag coefficient may even decrease by
a factor 2 for high Reynolds number, as stipulated in the experimental work by Tokumaru &
Dimotakis (1991) at Re � 	"( ����� .

The table 2 shows the mean drag coefficients at Re � ( ��� for a few forced Strouhal numbers
from

�BA � ��� up to
�BA � Ö ��� , with 8 � ? � � . When

��A , 	�L � ( ��� , the mean drag decreases.
Moreover, the drag coefficient decreases by ��(�� for

�@A � � ��� and by � Ö�� for
�BA � Ö ��� .

A special case with
��A � 	 � Ö and 8N� Ö � ? has been performed in order to be compared

with Dennis et al. (2000), whose cylinder is initially rotating. The present computation givesÛ�Ü � 	�L Ö � which somehow disagrees with Dennis et al. (2000) who find a value close to 	�L 	�	 .
Given the wide range of values for

ÛMÜ
presented herein and in Dennis et al. (2000), He et al.

(2000) and Milano et al. (2000), and given the sensitivity of the same quantity in Tokumaru &
Dimotakis (1991), the accuracy of the present values of

ÛîÜ
is questionable when the cylinder is

rotating at high frequency. Nevertheless, present computations and those provided by He et al.
(2000) are compatible and seem to be converged.

4. Three-dimensional flow past a steady cylinder
It is now well known that the wake of a circular cylinder becomes spontaneously three-

dimensional when Re �)	�� � . This fact is well investigated and analysed in Barkley & Henderson
(1996) for the linearized Navier-Stokes equations, or in the survey paper by Williamson (1996),
for the experimental aspects. After this transition, the von Kármán alleys are no longer spanwise
invariant. If Re �^��� � , thinner structures appear as links between the alleys, sometimes referred
as “fingers” of vorticity (cf. Jordan (1997)). These thin structures corresponds to the mode of
instability called mode B, and Barkley & Henderson (1996) show that their wavelength is � L &�� � ,
and that they appear at Re � ��(����´� .

Since the present computations are performed at Re �N����� , the mode B is the dominant
mode of instability and we will focus our attention on its wavelength. One considers the Fourier
transform of the velocity iW�� 03l `�� 4 �)¦ Þ� W 03l `���` » 4 O Î ��� � � v Ï Þ ¨ »
which corresponds to a non-dimensional wavelength � v �_�'� s �	�@� . The axial energy spectrum
is defined by Ô iW�� Ô �� �)¦��! q iW�� 03l `�� 4 q � ¨xl¶¨ �
with respect to the non-dimensional wavelength � v �_� .

This spectrum is plotted on figure 5, which exhibits a strong resonance around � v �_� � ? � & ,
that is to say around � L "_� . Furthermore, near the transition at Re 
� � ��� � , wavelength of mode B
has been predicted close to � v �_�'�^� L &�� by Barkley & Henderson (1996). This wavelength can
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change as Re increases since the domain of unstable wavelength becomes larger. One can even
find several wavelengths of mode B instability for a same Reynolds number, depending on the
streamwise position, when Re �c� ��� (see Barkley & Henderson (1996) and Persillon & Braza
(1998)). The mode B is the main mode of turbulence, at least until Re � 	�� ��� (see Unal &
Rockwell (1988)), where turbulence begins to govern the flow.

On the one hand, these properties justify the comparisons between flows at Re � ��� � and
Re �Õ����� . On the other hand, this explains why the velocity spectrum � m Ô iW�� Ô �� plotted on
figure 5 is exponential and does not exhibit a 6 ( � Ö power behaviour. Indeed, in the range 	�� �¿,
Re , � ����� , cylinder wakes are three-dimensional but not turbulent. Moreover, figure 5 shows the
velocity spectra related to the development of the instabilities (

2 � � � ), the saturation of these
instabilities (

2 � 	 ��� ), and when the three-dimensionality is fully developed (at
2 � 	"( � ).

The evolution of the three-dimensionality inside the computational domain can be exhibited
by means of the transverse enstrophy #%$ � defined as follows :

# $ � 	� Ì Ô ­ t Ô �� U Ô ­ u Ô �� Í � 	� ¦+§ ­ �t 03Ç�4x¨xÇ U 	� ¦+§ ­ �u 03Ç�4x¨xÇ
which is plotted with respect to time on figure 6. This gives the quantity of transverse vorticity
(vorticity which is not spanwise), which means a measure of the three-dimensionality of the flow
in the neighbourhood of the body. The figure 6 exhibits in more details the phenomenon shown
on the spectra of figure 5 : at

2 � ��� , the non-axial noise get structured and the flow enters in an
exponential development of mode B, i.e.	� Ì Ô ­ t Ô �� U Ô ­ u Ô �� Í �'& O � Ï �)( *
with & � "+L 	 � 	 � Î ��� . At

2 �
	�	 � , these instabilities saturate and the three-dimensionality is then
fully developed. One may notice that this exponential behaviour is not noisy.

Moreover, the spectral profile + is introduced in order to catch the spanwise structures for a
given wavelength. This spectral profile is defined by

+-, Ï Ü 03l `�� 4 � q iW Þ Ï , 03l `�� 4 q � (4.1)

Figure 7 shows this profile at the resonance wavelength, compared to the profile of Barkley &
Henderson (1996) found at Re � ��� � . Once again the two results are in good agreement.

The effect of three-dimensionality on the drag coefficient
ÛîÜ

is plotted on figure 10, as well
as the friction coefficient

ÛMÜ�A
, the 2D mean value at 	�L � 	 from table 1, coherent with Henderson

(1995b), and eventually the value 	�L 	�� , coherent with the 3D experimental results by Wiesels-
berger (1922) and Jordan & Fromm (1972). Moreover, the friction coefficient

Û9Ü�A
does not

seem to be much affected by the strong three-dimensionality of the flow in the neighbourhood of
the cylinder.

In addition of these diagnostics, one can also notice, on an more observational level, the
high similarity between the present results and experimental snapshots provided by Williamson
(1996). Indeed, a surface of isovorticity obtained beyond the transient is plotted on figure 8 and
compared to an experimental picture by Williamson (1996). The similarity concerns the spac-
ing between von Kármán alleys (due to the small dependency of the Strouhal number on the
Reynolds number above EPO 
� ), the topology of fingers of vorticity, the location and the size of
knots, and local dislocations of spanwise alleys.

5. 3D flows past a rotating cylinder with high amplitude rotation
This section focuses on flows behind a cylinder rotating by half a revolution, i.e. 8ª� ? � � ,

with various rotation frequencies. The last section has shown that the three-dimensionality of the
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flow past a steady cylinder and its effects on diagnostics have been well resolved at Re �c����� .
Figure 6 shows that the saturated regime is reached around

2 ��	 ��� . In order to avoid any
transient effect, one waits for

2 � 	�� � before activating the rotation. Then the cylinder begins to
oscillate around its axis according to formula (3.1).

In order to know the effect of the rotation on the topology of the flow, one plots several surfaces
of isovorticity, at several levels and different times, for

�@A � ��� and
�BA � � ��� . This chronology

is shown on figure 13, on which one can see the evolution of the three-dimensionality in the
neighbourhood of the body by means of the transverse vorticity :­ $ � Ì ­ �t U ­ �u Í � Ï �
One can see on figure 13 that the three-dimensionality tends to disappear (see also Poncet
(2002)). Indeed, only a small quantity of transverse vorticity remains at

2 � � ��� when
�RA � ��� ,

i.e. when the rotation frequency is locked at the natural frequency of the flow
�@� �N� L ����Ö .

Moreover, one can also notice that no visible three-dimensionality remains at
2 � � ��� at higher

frequency
��A � � ��� , i.e. when the rotation frequency is the first superharmonic of the nominal

flow.
This phenomenon is quantified on figure 11, which shows the transverse enstrophy #.$ , that is

to say half the mean square of transverse vorticity over the computational domain. One can see
that the superharmonic rotation makes the transverse enstrophy decrease down to (M	 � Î0/ , which
corresponds to �M	 � Î � * per particle (and roughly half per grid point). Consequently we can say
that the flow is totally two-dimensional in a large neighbourhood of the cylinder. Besides, when�BA � ��� , the transverse enstrophy tends to a mean value of Ö]L � ( , which means that the global
three-dimensionality is divided by ��( , i.e. decreases by ��&]L (�� .

Since the flow comes back to a two-dimensional state when
�@A � � ��� , the drag coefficientÛ�Ü

should be compared to the drag coefficient of the two-dimensional rotating cylinder. This
comparison is shown on figure 12, where we can see that both the 2D and 3D computations lead
to a mean drag coefficient value of 	�L � ( . The nominal two-dimensional drag coefficient is 	�L � 	 ,
and the 3D unforced drag coefficient is 	�L 	�� : this means a drop of 	"��� from the 3D flow and����� from the 2D flow.

6. Effect of the amplitude on three-dimensionality
In order to study the effect of the amplitude on the three-dimensionality of the flow, one has

to consider a constant frequency. Indeed, for a given frequency, for example
�RA � � ��� , we

have seen in last section that an amplitude of 8%� ? � � makes the flow come back to its two-
dimensional state. This is not the same situation for 8'� ? � ( , in which case the flow remains
3D, as it can be seen on figure 14.

The question addressed in this section is to find a critical value 8 � which makes the separation
between 2D and 3D flows. This critical amplitude depends on the rotation frequency

�RA
and on

the Reynolds number : given the computational cost of these simulations, it is way too ambitious
to consider a parametric study of the bifurcation.

Consequently, we focus on the case Re �c����� and
�@A � � ��� , and search a small interval of

values of 8 for which the top of the interval leads to a 2D flow and the bottom of the interval leads
to a 3D flow. The tool which allows to decide whether the flow is 2D or 3D in the neighbourhoody of the body is the same as in last section, i.e. the transverse enstrophy :

# $ � 	� Ì Ô ­ t Ô �� U Ô ­ u Ô �� Í � 	� ¦ § ­ �t 03Ç�4x¨xÇ U 	� ¦ § ­ �u 03Ç�4x¨xÇ
As a first approach, one can plot #1$ for a wide range of amplitudes 8 . Figure 15 shows
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these curves for amplitudes from 8Q� ? � ( up to 8Q� ? � � with a logarithmic scale. On this
figure, three curves, corresponding to 8b� ? � � , 8b� � ? � ( and 8b� ? � Ö , lead clearly to a
two-dimensional flow. The two curves above, i.e. 8 � ? � Ö]L ( and 8 � ? � Ö]L "�( , do not seem
to decrease down to zero. Nevertheless, between the activation of the rotation at

2 ð|� 	�� � and2 � Ö ��� , the mean transverse enstrophy has been divided by more than ����� , thus one can consider
that this flow is two-dimensional. In order to clarify this property, the same quantity is plotted
without logarithmic scale on figure 16. One checks that 8p� � ? � " � ? � Ö]L ( can indeed be
considered as a two-dimensional flow. The two last curves of figure 15 show that amplitudes8
, ? �"� allow the flow to stay 3D in the neighbourhood of the body. Once again, as an example,
figure 14 shows such a flow, for 8)� ? � ( .

The bifurcation can then be tracked between 8 � � ? � " and 8Õ� ? �"� . In order to locate the
critical value, five amplitudes 87� ? � Ø have been tested, Ø being Ö]L ( , Ö]L "�( , Ö]L & , Ö]L � and � . The
result is plotted on figure 17, and by means of this figure, the critical value 8 � is located in the
interval

? � Ö]L & ,c8 � , ? � Ö]L � : figure 18 shows the transverse enstrophy for these two values.
One could notice that this critical value is slightly depending on the computational domain,
because at this amplitude a larger domain would contain a small amount of three-dimensional
structures of vorticity. Indeed, one must keep in mind that we focus on the amount of three-
dimensionality in the (large) neighbourhood

µ , 0 	 U � ?@4 E of the body.
An open question is the dynamic of these three-dimensional structures. Indeed, they can either

follow the potential stream and leave infinitely far away from the body, or, as suspected but not
proved, reach a critical distance where three-dimensionality is stable. The computational cost
required to prove this is currently by far out of reach.

To summarize on all these computations, one can plot the mean residual transverse enstrophy
between

2 � � ��( � and
2 � � Ö ��� , that is to say

# $ � 	2 � 6 2 � ¦
�  �32 # $ 03254x¨x2 � 	� 032 � 6 2 � 4 ¦

�  �32 Ô ­ t 03254 Ô �� U Ô ­ u 03254 Ô �� ¨x2
� 	� 032 � 6 2 � 4 ¦

�  �32 ¦ § ­ t 03Ç ` 254 � U ­ u 03Ç ` 254 � ¨xÇC¨x2
with respect to the amplitude 8 . This curve, plotted on figure 18, gives the mean remaining
amount of non-axial vorticity, and its behaviour when the rotation amplitude 8 varies. This figure
shows that this critical value makes a clear transition between 2D flows (to the right of the critical
value) and 3D flows (to the left of the critical value).

7. Mechanisms involved in the return to a two-dimensional flow
From the numerical investigations performed above, one can identify two kinds of residual

transverse vorticity (the present study is still performed at Re ������� ).
These two states of residual three-dimensionality are described as follows. When frequency

is low (here at the natural frequency
��A � ��� ), a small amount of three-dimensionality remains

close to the body, where gradients of vorticity are the strongest. When frequency is higher (here
at
�BA � � ��� ), residual 3D structures are carried by the stream, and seem to loose any significant

values, at least up to an hypothetic critical distance, which is in any case outside the present
computational domain. Snapshots of these two cases are shown on figure 19, which exhibits a
low level of transverse isovorticity. Note that these levels are low, thus these two flows are close
to a two-dimensional state.

In this section, one can focus on the case
�@A � � ��� (since the harmonic case remains slightly

three-dimensional). The return to a two-dimensional flow has already been quantified above by
means of the transverse enstrophy #1$ (see section 5 and figure 11).
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Before quantifying the mechanism leading to a two-dimensional flow, one can describe it
qualitatively. Indeed, one can guess in reading figure 20 that transverse eddies (non-spanwise
structures of vortices) are carried down the stream by the spanwise von Kármán alleys. The
strength of the von Kármán alleys becomes higher when the cylinder is rotating, because the
vorticity created in the boundary layer is

­ v �F6 � ? E s D slip and tends to give strength near the
body.

In order to quantify this phenomenon, i.e. the fact that spanwise von Kármán alleys carry the
transverse eddies downstream, one can define two quantities, still based on partial values of the
enstrophy. They are the streamwise distribution of transverse vorticity

4 $ 0 µ ` 254 �)¦ Þ� ¦ ���� ­ �t 0 µ ` / ` » 4 U ­ �u 0 µ ` / ` » 4 µ ¨x/�¨ » (7.1)

and the streamwise distribution of spanwise vorticity

4 v 0 µ ` 254 �)¦ Þ� ¦ ���� ­ �v 0 µ ` / ` » 4 µ ¨x/�¨ » (7.2)

which satisfy ¦ 5765 4 $ 0 µ ` 254 U 4 v 0 µ ` 254x¨ µ � �8#
Indeed, isovalues of these quantities gives a good idea of the dynamics of transverse and span-

wise eddies, providing a link between streamwise position and time. Moreover, a curve of low
value of

4 $ gives the evolution of the front of three-dimensionality, as plotted on figure 21. This
figure shows both the curves

4 $ 0 µ ` 254 �%� L ��( (evolution of the front of three-dimensionality)
and

4 $ 0 µ ` 254 � � � (evolution of the front of strong transverse eddies).
In order to study quantitatively the evolution of the front of transverse eddies, it is interesting

to compare their dynamics with spanwise von Kármán alleys dynamics. This comparison is pro-
vided by means of the isovalue

4 v 0 µ ` 254 � ( , plotted on figure 22, which shows the evolution of
the positions von Kármán alleys. Both curves

4 v 0 µ ` 254 � ( and
4 $ 0 µ ` 254 � � L ��( are plotted on

the right picture of figure 22, on which it is rather clear that after
2 � 	�"�( , the front of transverse

eddies is locked on von Kármán alleys and is brought away downstream.
Consequently, in this section, from now on, one aims at proving the following assertion : the

three-dimensional instabilities decrease in strength and are brought away in the stream when
rotation frequency and amplitude are high enough. They finally disappear due to this transport
phenomenon. The fact that they decrease in strength and eventually disappear is already proved
because 4 $ 0 µ ` 254 6 m ��:9 �
for any

µ
, as shown on figure 21.

In order to quantify the transport phenomenon, one takes out the von Kármán alley on which
the front of instabilities seems to lock on, and one defines the front location of spanwise eddies; v 03254 �=<�>�?A@�I JCB µ such as

4 v 0 µ ` 254 � (
D
and the front location of transverse eddies; $ 03254 �=<�>�?A@�I JCB µ such as

4 $ 0 µ ` 254 ��� L ��(
D
as shown on figure 23.

These quantities are useful in the present case, because the assertion above claiming that insta-
bilities are captured by von Kármán alleys is equivalent to have a linear correlation between

; v
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and
; $ over time. Figure 24 shows

; $ with respect to
; v , and the dependency is clearly lin-

ear when

µ
�E" E . One eventually gets a correlation coefficient of ���]L ����� . The assertion is then

proved to be valid, and the mechanism making the instabilities disappear in the wake is identified.
To conclude the present analysis, a comment on the domain of return to a two-dimensional flow
is needed. An hypothetic critical distance from the body where the flow stays three-dimensional
has been mentioned above. Indeed, the enstrophy distribution, as a function of the distance from
the body, is exponentially decreasing, thus reaching a value for which transverse vortex struc-
tures are stable. Such a stability analysis recquires very large domains with a control of cells’
aspect ratio, which is not currently technically possible.

8. Conclusions
A lagrangian numerical method has been built to solve the fully non-linear three-dimensional

Navier–Stokes equations. The stability due to the implicit resolution of transport terms allows the
use of large time steps. This means one can compute and study the asymptotic behaviour in time
of three-dimensional flows. The numerical scheme has been validated on both two-dimensional
and three-dimensional diagnostics of flows behind a steady cylinder, and on two-dimensional
flows past a rotating cylinder. The results obtained are consistent with some of the existing liter-
ature, numerically as well as experimentally.

It has been shown, at Re �'����� , that in a large neighbourhood of the body, the flow comes
back to its nominal two-dimensional state all over the domain when the amplitude and frequency
are high enough (presently 8Q� ? � � and

��A � ��� � � ). In this case, a substantial drop of the
drag coefficient is exhibited, though not as dramatic as for experimentations by Tokumaru &
Dimotakis (1991) performed at Re � 	"( ����� .

When the forced and natural Strouhal numbers coincide, a small amount of three-dimensiona-
lity remains very close to the body (figures 13 and 19). The present results also validate 2D
numerical simulations of previous works, depending on the amplitude values.

A parametric study of the topology of flow has been then performed at the first super-harmonic
frequency

��A � ��� � � . A bifurcation diagram (figure 18) shows a clear transition between the 2D
and 3D resulting flows. The different kinds of residual three-dimensionality have been exhibited
and the mechanism leading to a two-dimensional state has been identified. This behaviour has
not previously been exhibited numerically and seems to make a quite new contribution to the
physics of the problem.

In summary, it has been shown by means of a parametric study that the wake generated by a
translating and rotationally oscillating circular cylinder can lead either to a 2D or a 3D flow for
the same Reynolds number, depending of on the rotation parameters.

The author would like to acknowledge the invaluable help of Georges-Henri Cottet (Univer-
sity J. Fourier, Grenoble, France) and Petros Koumoutsakos (Institute of Computational Science,
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would also like to thank Michele Milano (California Institute of Technology) for his helpful sug-
gestions is the early development of this work. The computational resources have been provided
by the joint CEA-UJF CIMENT-MIRAGE project, by the CEA-CENG (cluster IXIA), by the
Department of Mathematics and Modelisation (INSA Toulouse, France) and CALMIP (CICT,
Toulouse, France).
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FIGURE 1. Cartesian and cylindrical basis.
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FIGURE 2. Comparison of 2D drag coefficients between Henderson’s benchmark values (—) and table 1
with ë�ì"í confidence intervals. Right picture is a zoom of left picture.
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FIGURE 3. Drag and lift coefficients at Re �´ö~ì�ì , ü�ì�ì , ø"ì�ì , ù~ì�ì and ôÆì�ì�ì .
—— áCâ , – – áCä , K	K�K values from table 1.

FIGURE 4. Streamlines at Re �[ù~ì�ì for
ý �Xü"ò=þ and å¶ñL�¹ô=ò~üNM¹ô�õ ø_ù�å]æ , obtained by Dennis et al.

(2000) (to the left), and present work (to the right). Left picture kindly provided by S.C.R. Dennis.
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FIGURE 7. Isovalues of spectral profile at main growth mode. Left picture : vCw q xQT of Barkley &
Henderson (1996) at Re �[öX��ì . Right Picture : v.w q yzr of present work at Re ��ø"ì�ì .
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FIGURE 8. Visual comparison of three-dimensional structures of vorticity between experimentation (left
picture, Williamson (1996) at Re �^ö�
~ì ) and present work (right picture, at Re �¹ø"ì�ì , doubled spanwise
by periodicity, \7�¹ôl��ì ).

FIGURE 9. Three-dimensional structures of vorticity, present work at Re �Xü�ì�ì , doubled spanwise by
periodicity ( \7�Xü"ù~ì ), with transparency of axial vorticity on the right part.
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FIGURE 10. Effect of three-dimensionality on the drag coefficient á�â at Re ��ø"ì�ì . The friction
coefficient áCâ@ñ is plotted with dashed lines. Dotted lines show values at ô�õ ø�ô and ô�õ ôÆë .
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FIGURE 11. Transverse enstrophy _ ` at Re ��ø"ì�ì with respect to time, for a rotation amplitudeý ��þ�ò�ö . – – : å1ñL�[ö�å]æ , K�{|K : å1ñL�[å]æ .
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FIGURE 12. Effect of body rotation on the drag coefficient á�â at Re ��ø"ì�ì , with å1ñL�[ö�å]æ and
ý ��þ�ò�ö .

— : Steady and 3D, KA{}K : Steady and 2D, – – : Rotation 2D (dashed line to the left), - - - : Rotation 3D
(dashed line to the right). Dotted lines show values at ô�õ ì"ù , ô�õ ôÆë and ô�õ ø�ô .
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{�~ {�~

\7�¹ôÆì Signature of instability at \7�¹ôÆì�ì , e ` �¹ô�õ ö\7�´ù~ì , e�`��Xü�õ ùKôÆì�s��
�

\7�¹ôl��ì , e�`��¹ô�õ ù , rotation begins� �

{�~

å1ñL�[å]æ , \7�¹ôl�"ù å1ñL�[ö�å]æ , \7�¹ô)
~ì , e ` �¹ô�õ ö å1ñL�[ö�å]æ , \��¹ô)
�ù , e ` �¹ô�õ ö� �

å1ñL�[å]æ , \7�[ö=ø"ì å1ñL�[ö�å]æ , \7�[ö=ø"ì
FIGURE 13. Effect of half a full rotation on the shape of the flow at Re �ºø"ì�ì . Surfaces of spanwise
isovorticity ehV|�Qç�ô�õ ö and transverse vorticity e ` �.ì�õ ö�ù unless written otherwise, for frequencieså1ñL�[å]æ and å1ñ��[ö�å]æ .
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FIGURE 14. Isovorticity surface at \7�[ö�ù�ù , Re ��ø"ì�ì , å¶ñL�[ö�å]æ and
ý ��þ�ò�ù .

_8`

1e-08

1e-06

0.0001

0.01

1

100

10000

100 150 200 250 300

T
ra

ns
ve

rs
e 

en
st

ro
ph

y

Time

Time

FIGURE 15. Transverse enstrophy _a` at Re �^ø"ì�ì with respect to time, for several rotation amplitudes,
in logarithmic scale. From bottom to top :

ý �7þ�ò�ö , ý �cö=þ�ò�ù , ý �7þ�ò~ü , ý �cö=þ�ò�
 , ý �7þ�ò~ü�õ 
�ù ,ý ��þ�ò=ø , ý ��þ�ò�ù and
ý �Xì (steady).
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FIGURE 16. Transverse enstrophy _ ` at Re ��ø"ì�ì with respect to time, for several rotation amplitudes.
From bottom to top :

ý ��þ�ò�ö , ý ��þ�ò~ü�õ ù , ý ��þ�ò=ø and
ý ��þ�ò�ù .
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FIGURE 17. Transverse enstrophy _a` at Re �bø"ì�ì with respect to time, for several rotation ampli-
tudes close to the bifurcation value. Left picture, from bottom to top :

ý �QôÆì~þ�ò~ü"ù , ý �.ôÆì~þ�ò~ü	
_õ ù ,ý �¹ôÆì~þ�ò~ü�� , ý �¹ôÆì~þ�ò~ü�ë and
ý �¹ôÆì~þ�ò=ø"ì . Right picture : only amplitudes

ý ��þ�ò~ü�õ � and
ý ��þ�ò~ü�õ ë .
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FIGURE 18. Mean residual transverse enstrophy _ ` (defined in text) with respect to the rotation
amplitude

ý
, at Re ��ø"ì�ì , å1ñL�[ö�å]æ . i : Computations, — : Curve linking the points by interpolation.
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å1ñL�[å]æ and
ý ��þ�ò�ö , e�`��Xì�õ ö�ù å1ñ��[ö�å]æ and

ý �[ö=þ�ò�
 , e�`��Xì�õ ô
FIGURE 19. Localisation of residual transverse vorticity, at \7�[öX��ì .

\7�¹ôl�"ù \7�¹ô)
~ì

\7�¹ô)
�ù
FIGURE 20. Motion of transverse eddies, Re ��ø"ì�ì , ý ��þ�ò�ö and å¶ñL�[ö�å]æ .
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FIGURE 21. Dynamics of streamwise distribution of transverse vorticity � ` cp�X�3\ k at levels ì�õ ö�ù and ö~ì ,
for Re �Xø"ì�ì , ý ��þ�ò�ö and å1ñL�[ö�å]æ , rotation activated at \7�¹ôl��ì . Colour bar : �h�)� t wl��`�cp�X�z\ k .

FIGURE 22. Dynamics of streamwise distribution of spanwise vorticity �!V�cp�X�z\ k . The isovalue �0V	cp�X�z\ k �[ù
is plotted on left picture. On right picture, the streamwise distribution of vorticity � ` cp�X�z\ k (from figure 21)
is added. Same parameters as fig. 21.

FIGURE 23. Definition of front location of spanwise ( �.V�c�\ k ) and transverse ( �-`�c�\ k ) eddies, respectively
at level ù and ì�õ ö�ù (same parameters as fig. 21).
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FIGURE 24. Front locations �-`�c�\ k with respect to �%V�c�\ k (right picture is a zoom of left picture,
parameters are the same as for figure 21).
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