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ABSTRACT  
 

This paper discusses the control of cylinder wakes via tangential wall 

velocity modifications. The wall velocity is piecewise constant 

(corresponding to belt actuators) and its amplitude is optimized using a 

clustering real coded Genetic Algorithm.  This type of control 

significantly affects the vortical structures that are being shed in the 

wake and it is shown that the flow gets significantly modified resulting 

in a three dimensional body shedding two dimensional vortical 

structures.  

 

KEY WORDS: Shedding manipulation; genetic algorithms; 

three-dimensional wakes; vortex methods; hydrodynamic 

instabilities. 
 

INTRODUCTION 

 

We are interested in the manipulation of vortex shedding of three-

dimensional wakes and the associated drag reduction in the canonical 

case of a 3D cylinder. Control is performed by means of tangential 

velocities on the body, which in practice can be translated as wall 

parallel “belts-actuators” or tangential local jets. We develop suitable 

numerical methods to solve numerically the 3D Navier-Stokes 

equations and implement clustering genetic algorithms in order to 

optimize the actuator parameters. 

 

In order to compute accurately these flows a Vortex-in-Cell method 

using a coupling between grids and particles is developed. Vortex 

methods make the non-linearity of the transport terms vanish from the 

Navier-Stokes equation, and thus alleviate the related stability 

condition usually encountered in Eulerian schemes that can be very 

restrictive on the time-step. This advantage of Lagrangian method is 

counterbalanced by a lack of accuracy, especially for Vortex methods 

based on random walks. The coupling between particles and grids 

permits to overcome this difficulty and in addition to reduce the 

computational cost of evaluating the velocity field (even when 

compared to  multipoles methods for the Biot-Savart laws). The 

associated integrals and derivative operators can be computed with a 

good accuracy. This has been validated in Cottet and Koumoutsakos 

(2000), Cottet and Poncet (2002, 2003, 2004), Poncet (2002, 2004). 

 

 
Fig. 1 : Dynamics of the cylinder wake in 3D at Re=300. Two-

dimensional wake (above, to the left), first signature of instability 

(above, to the right), resultant 3D wake before saturation (middle) and 

post-transient established 3D flow with fully developed hydrodynamic 

instabilities (below, from Poncet (2004)). 
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In order to perform a control by means of a tangential wall 

velocity(“belts” actuators), we first consider  the two-dimensional 

problem. This has been obtained by Genetic Algorithm, whose 

histogram and most probable solution are provided in Milano and 

Koumoutsakos (2002) and in the present paper. 

 

This two-dimensional profile of velocity is then fitted by a smooth 

symmetric function, and applied on three-dimensional flows (see 

Poncet, Cottet and Koumoutsakos, to appear in C. R. Mécanique). On 

these 3D simulations one can observe the behavior of three-

dimensionality, the drag reduction and the shedding cancellation (in the 

sense of force oscillation, ie drag and mean vorticity variations). One 

can also check that the property of shedding reduction is still valid 

when a full 3D profile of velocity is applied on the body. 

 

NUMERICAL APPROACH 

 

We consider the three-dimensional Navier-Stokes equations in their 

velocity-vorticity formulation 
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where ω is the vorticity field, u the velocity field and ν the kinematic 

viscosity. This equation is defined over a cylindrical domain, around a 

cylinder of diameter D (R=D/2 will denote the radius) and spanwise 

length L. One considers L-periodic solutions. The far field condition on 

velocity is U→ U∞ ex where ex is the streamwise basis vector.  

 

Moreover, the relation  ω = curl u is satisfied for all time, as well as the 

incompressibility div u = 0 and the no-slip condition u = 0 on the body. 

 

The Reynolds number Re=U∞D/ν gives an information on the flow 

nature (steady, oscillatory, 3D unstable, turbulent, …). In the present 

simulations, one has Re=300 for 3D simulations and 500 for 2D 

simulations. 

 

The numerical method used to solve the Navier-Stokes equations (1) is 

an hybrid vortex method, joined to a time-splitting algorithm for 

convection and diffusion.  

One considers the vorticity field in its lagrangian formulation 
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where ωp(t) is the particle vorticity, xp(t) is the characteristic curve and 

vp the volume of the particle (which remains constant in time due to the 

incompressibility). The time-splitting algorithm is described below. 

 

Lagrangian convection step 
 

The convection part can thus be written : 
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which is a standard dynamical system (of size 6n, n being the number 

of particles) whose stability is only limited by 
11 −− ≅∇ ωu  .  

Such a strong stability is very useful to perform accurate simulations 

for long time, and its lagrangian features gives a natural approach of 

transport since the transport part of the Navier-Stokes equations is 

implicitly solved (simplified by the introduction of the characteristic 

curves). 

 

This dynamical system is numerically solved by a Runge-Kutta scheme 

of second or fourth order. The velocity and its gradient is computed by 

an hybrid technique :  

 

• Vorticity carried by particle is interpolated on a grid, by 

means of a convolution based on a third order compact-

supported kernel (Monaghan’s M4’), 

• The stream is computed on this grid, by solving a Poisson 

equation (in the present case in cylindrical coordinates), 

satisfying the no-slip-through condition, 

• The velocity, ie the stream curl, is computed on the grid, in 

practice with fourth order centered finite-difference scheme, 

• The velocity gradient and its product with the vorticity (the 

stretching term) are computed on the grid, 

• Stretching and velocity are finally interpolated back to 

particles. Equation (3) can then be advanced in time. 

 

The details of this algorithm are fully developed in Cottet and Poncet 

(2003), and in its elementary formulation in Ould-Sahili, Cottet and El-

Hamraoui (2000). 

 

Diffusion step 

 

The diffusion part is a heat equation on vorticity, defined on the 

cylindrical domain Ω  , which reads 
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The initial condition ω~  is the final vorticity of the convection step. 

The boundary condition )~()( ufL =ω  aims at canceling the residual 

slip u~  obtained after the convection step. Function f is linear in u~  

and depends on time step and viscosity. Operator L is a tensorial 

differential operator of the vorticity and its flux on the body, developed 

in Cottet and Poncet (2003), and Poncet (2004)).  

 

Equation (4) is itself decomposed by linearity in two parts : 
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solved by a Particle Strength Exchange lagrangian scheme (Degond 

and Mas-Gallic, 1989) in its discreet formulation, and 
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whose solution is expressed under its integral form. The solution of this 

last equation has its significant values close to the body, and is actually 

the viscous effect creating the boundary layer (see Cottet and Poncet, 

2003 for further details). 

 

Validation 

 

This method and its immersed-boundary variant have been validated on 

numerous test cases in its early developments, including ring-vortex 

wall interaction (Cottet and Koumoutsakos, 2000), 2D wakes (Cottet 

and Poncet, 2002). The annular vortex and 3D cylinder interaction 

involves the ring propulsion, curved boundary layer and fusion between 

the main ring and the boundary layer, generating a secondary ring 

(Cottet and Poncet, 2003; Fig. 2). 

 

 

 

 
 

 

 

 

Fig. 2 : Annular vortex and cylinder interaction, fusion between main 

ring and boundary layer, generating a secondary ring-vortex  

(snapshots of vorticity at three different times). 

 

 

The main field of application of this numerical method was the 

computation of three-dimensional cylinder wakes, whose validation 

was mainly based on Williamson (1996) and Barkley and Henderson 

(1996) results. One can recover the main diagnostics for Reynolds 

numbers between 100 and 800, such as drag coefficient, Strouhal 

number (non-dimensional frequency), 3D instability wavelength and 

spectral profile (Cottet and Poncet 2003; Poncet and Cottet, 2003; 

Poncet 2004; Fig. 1). One can also recover drag curves of impulsively 

started cylinder in 2D up to Re=9500 in the early development of the 

wake (Cottet and Poncet, 2002). Some topological aspects of wakes 

behind cylinder into rotationally oscillations have also been shown 

(Poncet, 2002). The typical drag and lift coefficients for a unstable 

cylinder wake at Re=300 are plotted on figure 3. 

 

 
Fig. 3 : Typical drag () and lift (- - -) coefficient of a cylinder wake 

developing streamwise hydrodynamic instabilities at Re=300. 

 

 

OPTIMIZATION PROCESS 

 

In order to obtain a velocity profile on the body useful for 3D control, it 

is wise in a first approach to get a two-dimensional profile from 2D 

simulations. The algorithm presented herein aims at optimizing the 

drag reduction. 

 

Control of 2D flows 

 

One thus considers a 2D cylinder with 16 equally long panels on the 

body, segments numbered from 1 to 16 (see figure 4). Velocity profiles 

are thus elements in ]-b, b[16 , the range b being the maximum velocity 

allowed. This leads to an optimization problem in a control space of 

dimension 16, with a non-linear cost function, whose shape is basically 

unknown. Genetic Algorithms consequently seems a good approach in 

order to get close to the optimal solution. 

 

A population of profiles in generated and each element of the 

population is associated to a score based on drag reduction. Then a 

mutation process builds a new population whose each element requires 

a flow computation running until an established regime is reached in 

order to associate a score.  

 

 

 

 

 
Fig. 4 : Panel setup and flow example resulting  

from a belt actuators configuration. 



IJOPE WK-82  Poncet - Koumoutsakos 4 

 
Fig. 5 : Histogram of population: number of occurrences with 

 respect to velocity values for each segment 1-16 (see figure 4). 

 

 

Histograms plotted on figure 5 have been obtained by the Genetic 

Algorithm described in Milano and Koumoutsakos (2002), itself based 

upon the 2D Navier-Stokes solver on a stretched O-grid by Mittal 

(1995). An example of the resultant flow and drag coefficient are given 

on figures 4 and 6.  

 

On figure 6 is also plotted (dashed line) the drag coefficient resulting 

from an optimization using only the four most significant actuators of 

the global optimization process, in the present case the actuators 3, 4, 

13 and 14. This technique is called Clustering Genetic Algorithm 

(usually abbreviated by “CGA”, from Milano and Koumoutsakos, 

2002), and provides an important gain of energy with only a minimal 

loss of drag reduction, thus a gain of efficiency. 

 

 
Fig. 6 : Resulting drag coefficient for the best populations,  

using all actuators () and only the four most  

significant actuators (clustering technique, - - -). 

 

 
Fig 7 : Most probable velocity profile obtained with the genetic 

algorithm (�) (above, absolute velocity with respect to  

segment number),  and plot of the fitting continuous smooth  

function  f(θ)  from formula (7) (below, velocity versus angle). 

 

 

 

Control of 3D flows 

 

In order to apply this two-dimensional result to three-dimensional 

simulations, one needs to use a smooth symmetric function fitting the 

most probable distribution of velocity obtained by the GA and CGA. 

Indeed, all the elements of profile population are zero mean value (and 

consequently the best population), but not necessarily the most 

probable, which is only the distribution of highest values on the 

histogram. The property of zero-circulation (to avoid the drag changed 

into lift) is required and thus the symmetry of the smooth velocity 

distribution. Moreover, the main values of the clustered population 

have been used to get the smooth profile (whose some significant 

values are plotted on figure 6), given in Cottet and Poncet (2004) by :  
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with [,] ππθ −∈ .  

The tangential velocity profile is then given by 

 

)()( θθ fC
slip

V =                   (8) 

 

where C is a coefficient (equal to 1 for the fitting profile, see figure 7) 

to tune the energy level involved in the control.  

This smooth profile is then applied to a 3D flow for a Reynolds number 
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Re=300, with streamwise hydrodynamic instabilities fully developed. 

In order to quantify the flow shedding, a interesting quantity is the total 

spanwise vorticity in a neighborhood of the body (basically the sum of 

the von Kármán alleys, ie eddies aligned with the cylinder axis), given 

by 

∫
Ω

=Γ vtzyx
z

t
z

d),,,()( ω                  (9) 

The effect of the 2D smooth velocity profile on the global spanwise 

vorticity of the 3D flow, with C=1, is plotted on figure 9, and snapshots 

of the 3D iso-vorticity levels are given on figure 8. One can see that the 

shedding vanishes almost completely in the neighborhood of the body. 

 

Moreover, since the residual shedding occurs far from the body, it does 

not affect the boundary layer anymore, thus also a cancellation of 

oscillations in the drag forces (resulting drag coefficient is plotted on 

figure 10). 

 

Fig. 8: Isovalues of vorticity after control activation with 

smooth velocity profile, at different times ((a) to (f) respectively at  

t=270, 280, 290, 300, 310 and 320), from Cottet and Poncet (2004). 

 

 

 
Fig. 9 : Shedding (mean spanwise vorticity) before and after control 

activation (at t=60) for a 2D control of 3D flow. 

 
Fig. 10 : Drag reduction and drag oscillation cancellation for  

2D flows (  uncontrolled, - - - controlled, activation at t=230) 

 and 3D flows (− − uncontrolled, ⋅ ⋅ ⋅ ⋅  controlled, activated at t=270). 

 

 
Fig. 11 : Shedding (mean spanwise vorticity) before and after control 

activation (at t=270) for a 3D control of 3D flow. 

 

 

Another interesting property of applying tangential velocity is that the 

shedding reduction does not depend on the fact that the profile is 2D or 

not. Indeed, when one modifies the profile into  

 

)()sin1(
5

2
),( θθ fz

C
z

slip
V +=                (10) 

 

then the shedding also vanishes almost completely (see figure 11), here 

with a full three-dimensional profile (z being the spanwise component). 

This last 3D profile uses the same energy as the previous 2D profile 

given by formula (8), hence a fair comparison between the two results. 

 

 

 
 

Fig. 12 : Effect of 3D control of 3D flow at large energies  

and large wavelength (locked on mode A). 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 13 : Drag coefficient reduction versus kinetic energy, for 

various values of C (left to right : 0, 0.25, 0.5, 0.75, 1, 1.17,  

1.35, and 1.5), and its square-root regression. 

 

DEPENDENCY OF DRAG OSCILLATION VERSUS ENERGY 

 

In the last section, the tangential velocity profile given formula (8) has 

led, in the case C=1, to a substantial reduction of shedding in the sense 

of the spanwise vorticity integral in the body neighborhood (figure 10), 

accompanied by a large drop of the drag coefficient (figure 9), that is to 

say a large difference between controlled and uncontrolled drag 

coefficients. The reference is the drag coefficient of the three-

dimensional uncontrolled flow, 1.262 from Cottet and Poncet (2003). 

Moreover, one can notice that large energies may lead to a complete 

loss of the von Kármán eddies structuring the uncontrolled flow (see 

figure 12). 

 

Since the drag and lift forces are given by the drag and lift coefficients, 

a study of oscillations of these quantities, especially the drag 

coefficient, would clarify how the shedding reduction is linked to the 

energy involved in the control. Formula (8) implies 

∫∫
ΩΩ

== θθθθ dfCdVE slipc

222 )()(               (11) 

thus kinetic energy involved to enforce the velocities on body behaves 

as C2. It has been noticed in the past that the pressure part of the drag 

coefficient is a linear function of the radial derivative of vorticity 

(Cottet and Koumoutsakos, 2002; Cottet and Poncet, 2003), itself a 

linear function of the residual velocity at the end of the convection step 

given by formula (3). This spurious velocity is in practice a fraction of 

the velocity imposed on boundary. 

 

Consequently, one can expect a linear behavior between the drop of 

drag coefficient and the boundary velocity amplitude C.. Moreover, the 

kinetic energy is quadratic in C, by means of formula (11). It is thus 

highly expected to observe a square-root regression of the drop of mean 

drag coefficient with respect to the kinetic energy involved in the 

control. This fact is indeed observed and plotted on figures 13 and 14, 

in standard and logarithmic scales, for various values of C. 

 

Once the behavior of drag reduction with respect is identified, it is thus 

possible to study the deviation of the drag coefficient (force oscillation) 

from its mean value. For small energies, this deviation is plotted of 

figure 15, on which the oscillation follows seemingly an inverse 

polynomial law for energies lesser than 1 : 

( ) 1
5.41033.0

−+≅∆ cD ECMax               (12) 

For larger energies (up to 4, see figure 16), one observes a slower 

decreasing property : 

( ) 9.0
13106.0

−+≅∆ cD ECMax               (13) 

 

 
Fig. 14 : Drag coefficient reduction versus kinetic energy in logarithmic 

scale, for various values of C (left to right : 0.01, 0.1, 0.2, 0.25, 0.5, 

0.75, 1, and 1.5), and its square-root regression. 

 

 
Fig 15 : Shedding reduction : drag coefficient (deviation from mean 

value) versus kinetic energy in low-energy control  

(small values of C), and its fitting curve. 

 

 
Fig 16 : Same as figure 15 for larger values of C. 

 

Nevertheless, for both the cases, the oscillation amplitude is roughly 

proportional to the inverse of kinetic energy involved in the control. 

Furthermore, one can also check that the drag oscillation is a good 



IJOPE WK-82  Poncet - Koumoutsakos 7 

representative of force oscillation. Indeed, as shown on figures 17 and 

18, the lift oscillations decrease as the drag no longer oscillates.  

 
Fig 17 : Attractor : Drag coefficient / Lift  

coefficient / Energy (formula 11). 

 
Fig 18 : Same as figure 17 without uncontrolled data. 

 

 

CONCLUSION 

 

A clustering genetic algorithm has been used to build a quasi-optimal 

two-dimensional profile of tangential velocities on a cylindrical body. 

The optimality is in the sense of the drag coefficient optimization.  

 

This profile is then applied to a three-dimensional flow in order to 

study the effect of such a control on three-dimensionality and realistic 

drag coefficient. In order to avoid a lack of regularity (and thus a lack 

of accuracy), the profile obtained by the genetic algorithm is smoothed. 

The flow is computed by a robust vortex-in-cell method in order to 

reach long time scales, computed over a large domain, with small 

wavelength instabilities to compute accurately.  

These simulations have shown that the mean drag coefficient behaves 

as a square-root function of the energy involved in the control, and the 

force oscillations (shedding) decrease as the inverse of energy.  

An other quantity measuring the shedding is the amount of spanwise 

vorticity in the body neighborhood. This quantity is intrinsic to the flow 

and is not related to forces, but gives a good idea of how the flow 

oscillates. It exhibits a sharp drop when control is activated, and shows 

that shedding almost completely vanish. The same behavior has been 

observed when control is fully three-dimensional, which means that the 

shedding reduction may not depend on the spanwise-constant property 

of the tangential velocity profile, but only on the energy involved, at 

least for large energies. 

 

Tangential actuators, such as the model belt actuators proposed herein, 

offer the advantage that when inactive they do not add to the drag of 

the system. The incorporation of such actuators in engineering systems 

can offer a multitude of synergetic control possibilities, through their 

spatial arrangement and the time dependence and schedule of their 

activation. 
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