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Large Eddy Simulation of Fluid-Elastic Instability in 
Square Normal Cylinder Array

Vilas Shinde, Elisabeth Longatte*, Franck Baj

IMSIA, Boulevard Gaspard Monge, Paris Saclay University, Palaiseau 91120, France

Large eddy simulations (LES) are performed at low Reynolds number (2000–6000) to investigate the dynamic fluid-
elastic instability in square normal cylinder array for a single-phase fluid cross flow. The fluid-elastic instability is 
dominant in the flow normal direction, at least for all water-flow experiments (Price, S., and Paidoussis, M., 1989, “The 
Flow-Induced Response of a Single Flexible Cylinder in an in-Line Array of Rigid Cylinders,” J. Fluids Struct., 3(1), pp. 
61–82). The instability appears even in the case of single moving cylinder in an otherwise fixed-cylinder arrangement 
resulting in the same critical velocity (Khalifa, A., Weaver, D., and Ziada, S., 2012, “A Single Flexible Tube in a Rigid 
Array as a Model for Fluidelastic Instability in Tube Bundles,” J. Fluids Struct., 34, pp. 14–32); Khalifa et al. (2013, 
“Modeling of the Phase Lag Causing Fluidelastic Instability in a Parallel Triangular Tube Array,” J. Fluids Struct., 43, pp. 
371–384). Therefore, in the present work, only a central cylinder out of 20 cylinders is allowed to vibrate in the flow 
normal direction. The square normal (90 deg) array has 5 rows and 3 columns of cylinders with 2 additional side columns 
of half wall-mounted cylinders. The numerical configuration is a replica of an experimental setup except for the length of 
cyl-inders, which is of 4 diameters in numerical setup against about 8 diameters in the experiment facility. The single-
phase fluid is water. The standard Smagorinsky turbulence model is used for the subgrid scale eddy viscosity modeling. 
The numerical results are analyzed and compared to the experimental results for a range of flow velocities in the vicinity 
of the instability. Moreover, instantaneous pressure and fluid-force profiles on the cylinder surface are extracted from the 
LES calculations in order to better understand the dynamic fluid-elastic instability. 

1 Introduction

Flow-induced vibration in heat exchangers is a subject of major
concern, especially in nuclear power plants. The recent advance-
ment of computing power has enabled to perform large-scale
numerical simulations and investigate the underlying physics of
such complex problems. Flow-induced vibration in cylinder
arrangement is characterized by several patterns. It depends on
numerous parameters such as arrangement of cylinders, pitch
ratio, mass-damping parameter as well as flow turbulence proper-
ties. Fluid-elastic instability in tubes array exists in laminar as
well as in turbulent flow regimes.

Large amount of research work is performed on this phenom-
enon to enhance understanding of the stability limit criteria in
order to prevent its occurrence. Many theoretical models have
been developed since the phenomenon was first brought to notice
by Roberts [1] and later by Connors [2]. The models proposed for
the phenomenon provide an insight into fluid-elastic instability by
means of different instability mechanisms such as “fluid flow
jet switching mechanism,” “stiffness-controlled mechanism,”
and “damping-controlled mechanism” [3–9]. In general, the theo-
ries are developed using empirical relations of the form
u�c ¼ Kðm�dÞa, where the critical reduced velocity u�c is directly
proportional to fractional power a of the mass-damping parameter
defined as the product of the mass ratio and the damping coeffi-
cient (m�d). K represents a constant. These empirical relations
may be derived from several approaches such as potential flow,
quasi-static, or unsteady approaches. In addition, dynamic features
of the instability such as phase lag between fluid force and

displacement as well as flow with boundary layer effect are con-
sidered while modeling the phenomenon. Although many
approaches exist, all fall short individually to predict the phenom-
enon for wide ranges of parameters.

In addition to experiments, computational fluid dynamics pro-
vides a recent possibility to simulate and better understand such
phenomena. From an industrial point of view, flow in cylinder
arrangement is often at high Reynolds numbers. This gives rise to
complex interactions between nonlinear instability due to solid
motion and near-wall unsteady turbulence developing around cyl-
inders. In order to correctly take into account these interactions
and efficiently predict the unsteady near-wall loads, it is necessary
to develop reliable approaches of turbulence macrosimulation to
separate effects due to low frequency motion associated with
structure response and random effects due to chaotic turbulence.

Turbulence models based on unsteady Reynolds-averaged
Navier–Stokes (URANS) approach are derived from the assump-
tions of turbulence in statistical equilibrium. They tend to under-
estimate the magnitude of global coefficients characterizing drag
and lift. Further, the dynamic coupling between fluid load and cyl-
inder motion has a major effect in the occurrence of fluid-elastic
instability, therefore, URANS models may not be appropriate.
However, in an industrial context, direct numerical simulation
involving a fully numerical modeling of all structure scales is
computationally expensive. Large eddy simulation (LES) over-
comes the shortcoming of URANS approach by capturing the
transient features of the flow physics and, contrary to direct
numerical simulation, LES enables the simulation of such prob-
lems by modeling the subgrid-scale turbulence. Some of the early
works on simulation of flow through tube bundles using LES
include the work of Ref. [10]. Later, the work of Refs. [11–13]
confirmed the benefits of LES over URANS for tube bundle geo-
metries. Although LES is still not reachable for high Reynolds
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numbers as it requires high computational resources, it is suitable
for low to moderate Reynolds numbers. Recently, similar benefits
of LES were illustrated for simulation of vortex-induced vibra-
tions (VIV) at moderate Reynolds numbers [14].

In the present work, LES is carried out to simulate single-phase
fluid cross-flow induced vibration in square normal cylinder
arrangements for several gap Reynolds numbers from 2000 to
6000 in order to improve the understanding of fluid-elastic insta-
bility. The length of computational domain in the spanwise direc-
tion is taken 4 diameter long, which provides enough space for
LES vortex dynamics as explained later [14]. Moreover, the flow
in tube array develops as it passes downstream through tube rows,
therefore, full tube array is considered instead of an elemental cell
of the array. In many experiments, it has been observed that the
fluid-elastic vibrations are predominant in the flow normal direc-
tion, especially in water-flow experiments [15]. Also, there are
several studies performed on a single cylinder oscillating in a
fixed cylinders arrangement [15–17]. It leads to different critical
velocities but of the same order as for the fully flexible array of
cylinders. Therefore, the central cylinder is only monitored and
allowed to oscillated in the flow normal direction. Although, in
some studies [18], the instability is found to be dominant in the
inflow direction for a wide range of mass-damping parameters
and the critical velocities predicted using a single cylinder in fixed
array are overestimated compared to the fully flexible array.
Therefore, an elementary configuration is involved in the present
work in order to split the physical effects.

The article is organized as follows. First, the experimental
and numerical configurations are described with details on the
computational methods involved for turbulence and fluid-structure
interaction modeling. Then, the results are compared between
experiments and LES calculations. Finally, an explanation is pro-
posed for the dynamical instability according to numerical solu-
tion analysis.

2 Configuration

In the present section, configuration is described and computa-
tional methods are presented.

2.1 Experimental Device. The experimental setup involves
15 full cylinders placed in a water channel path with 10 half cylin-
ders fixed on the either side walls. The central cylinder is flexibly
mounted and can oscillate in the flow normal direction only. All
other cylinders are rigidly fixed. Water flows from bottom to top
and the central cylinder can vibrate only in the horizontal (flow
normal) direction. A picture of experiment is provided in Fig. 1.
The same geometry is involved in Ref. [19].

The diameter of each cylinder is D ¼ 12:15� 10�3 m. The
cylinders are in square normal arrangement with a pitch of
P ¼ 1:44D in both streamwise and flow normal directions. Each
cylinder has a mass m¼ 0.298 kg/m. The channel has a depth of
100� 10�3 m, the cylinder length is L ¼ 100� 10�3 m, and the
channel is 70� 10�3 m wide. Reynolds number is defined by
using gap velocity and cylinder diameter. The natural frequency
of the central moving cylinder without fluid (i.e., in air) is
fn ¼ 14:39 Hz and the damping ratio is 0.25%.

The vibrations are measured in terms of the strain at the bottom
of the monitored tube and recorded during 1000 s. The temporal
modal analysis provides the values of damping and frequency of
the first predominant mode of the tube vibration.

2.2 Computational Domain. The computational domain is
269:5� 10�3 m long and 70� 10�3 m wide. The domain exten-
sion is about 5D upstream and 10D downstream the cylinder array
as shown in Fig. 2. The depth of the channel is 48:6� 10�3 m.
Thus, the length of cylinders is 4D against about 8D in the experi-
mental setup. This approximation results from several considera-
tions extracted from the literature for VIVs of one single cylinder
in an infinite medium [14] and extrapolation to confined configu-
rations involving cylinder arrangements [20]. As far as single cyl-
inder VIVs are concerned, the law effect of increasing the length
of the domain from pD to 2pD is pointed out in Refs. [21] and
[22]. Since cross structure length is affected by transition in shear
layer [23], it is affected by the near-wake patterns and 2pD is not
sufficient for capturing length correlations and lift force coherence
functions for very long elongation. Simulating long cylinders
requires too large domains in the length direction which is not
reachable from a computational point of view. Therefore, the 4D
length approximation is not sufficient for predicting very long cyl-
inder behavior but it provides results close to a 8D geometry as in
the experiment [24]. The same comment can be made for cylinder
arrangements due to the correlation of confinement effect and
cross structure development [20]. Therefore, the assumption of
4D is reasonable as illustrated in the results below.

Fig. 2 Geometry of the computational domain with the inflow
direction Ox, the cross flow direction Oy, and the length direc-
tion Oz

Fig. 1 Experimental device featuring 15 cylinders distributed
in 5 rows and 3 columns with 2 additional side columns of half
wall-mounted cylinders as described in Ref. [19]
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Thus, using a two-dimensional length is sufficient to have span-
wise turbulent flow structures using LES. The pitch ratio is 1.44
with square normal arrangement of the cylinders as in the experi-
mental configuration. Mechanical properties are defined according
to experiment parameters for fluid, solid, and geometry too.

The computational domain is discretized by using a structured
grid. The mesh involves about 25.3� 106 cells to ensure that the
near-wall mesh refinement conditions are satisfied (yþ less than 1)
as shown in Fig. 3. The perimeter of cylinders is divided into
360 cells, while the first layer of computational cells is at a dis-
tance of 1:8� 10�5 m along the cylinder wall. The cells have
expansion ratio of 1.2 along the wall normal direction. The mesh
is relatively coarser (2� 10�3 m) far downstream in the wake
region. The mesh topology is built to optimize the compromise
between accuracy of near-wall resolution of flow fields and per-
formance capability.

2.3 Turbulence Modeling and Solution Method. In LES,
the large-scale structures from the fluid flow are directly captured,
whereas the smallest ones are modeled. The small scale turbulent
motion is assumed to be isotropic and simple Boussinesq type
relations are employed to model the filtered turbulence. In the
present work, standard Smagorinsky’s subgrid scale eddy viscos-
ity model is used since it was reported in Refs. [11] and [25] that
the subgrid scale model has a little influence on the results. The
incompressible Navier–Stokes equations in filtered form can be
written as follows:

@~u i
@xi

¼ 0

@~ui
@t

þ ~uj
@~u i
@xj

¼ � 1

q

@~p

@xi
þ @

@xj
� þ �tð Þ @~ui

@xj
þ @~uj

@xi

� �� � (1)

~ui is the filtered velocity component in direction i. q, �, and �t are
density, kinematic viscosity, and turbulent kinematic viscosity,
respectively. t and xi represent time and space, respectively. The
filtered pressure ~p includes the trace of the subgrid scale stress
tensor sij, which is given by the following equation:

sij ¼ �2�t ~Sij þ
1

3
skkdij (2)

Smagorinsky’s model provides a value of subgrid scale turbulent
viscosity �t. It is a Boussinesq type eddy viscosity relation given
by the following equation:

�t ¼ ðCslgÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2~Sij ~Sij

q

(3)

lg is the length scale which is the size of grid cells, ~Sij is the strain
rate tensor while Cs represents Smagorinsky’s constant. The value
of Cs varies with the type of turbulence. In shear flows, it is about
0.1 against higher value 0.18 for high Reynolds number flows.

For computations on SuperComputers, a co-located finite
volume method is involved with a second-order central difference
scheme for the space discretization and a second-order
Crank–Nicolson scheme for time steps. At first, the physical prop-
erties are calculated. The velocity field is computed in a predictor
step followed by a correction step to take into account the pressure
equation implicitly [26].

The inlet of computation domain is Dirichlet boundary condi-
tion with specified constant inflow velocity. The outlet corre-
sponds to homogeneous Neumann boundary condition for
velocity, while a Dirichlet boundary condition for pressure is
employed at outlet such that ð@2P=@n@s ¼ 0Þ for any vector s col-
linear with outlet. P is the pressure and n is normal to boundary
face. The side walls with cylinders half-mounted have a no-slip
wall boundary condition while as periodic boundary condition is
employed for the domain closures in the z direction. Static case
simulations are carried out until the flow is established for each
reduced velocity and provide an initialization for dynamic case
simulations. Then, dynamical interaction between the central
moving cylinder and the flow takes place. The simulations are per-
formed for about 2 times the residence time in static configuration,
with all cylinders fixed. Once the flow is established, the central
cylinder is set for fluid-structure interaction using a moving-mesh
pseudo-eulerian method. A constant time-step of 2� 10�4 s is
used for all simulations. The simulations are performed for 40 s in
dynamic case, which is about 400 times the natural frequency of
cylinder in water and about 20 times the flow residence time.2

2.4 Fluid-Structure Interaction. The vibration of cylinder is
coupled with fluid load by means of an iterative procedure. To
reproduce real experiment, the external force of gravity is
also considered, although it has no influence on the instability.
Since the central cylinder is rigid and flexibly mounted, a simple
ordinary differential equation for motion of a single degree-of-
freedom is fitted with the dynamic unsteady fluid load as dis-
played in Fig. 4.

Therefore, the cylinder response is solution of the following
equation:

m
d2y

dt2
þ c

dy

dt
þ ky ¼ Fy (4)

Fig. 3 Near-wall mesh inside the tube array (left). Mesh details close to near-wall region
inside the tube array (right).

2LES computations are performed by using Code–Saturne on 768 MPI-cores of

computational processor units (CPU) which are Intel(R) Xeon(R) processors with

speed 2.93GHz [26].
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Fy is the fluid load in the flow normal direction, y is the displace-
ment of the cylinder in the same direction. c and k are, respec-
tively, the structural damping and stiffness coefficients of the
cylinder related to the natural frequency fn and damping ratio f as
k ¼ ð2pfnÞ2m and c ¼ 2f

ffiffiffiffiffiffi

mk
p

.
Equation (4) is solved using Newmark HHT algorithm. It uses

fluid force (Fy) to estimate the displacement (y). The updated posi-
tion of cylinder is used for fluid mesh actualization and next flow
iteration. The Poisson equation is solved for moving mesh in an
elliptic framework which is convenient in a small displacement
context. An artificial mesh viscosity is used to control the near-
wall cell deformations.

3 Results

3.1 Comparison. The experimental results are tabulated in
Table 1. The first column is volumetric flow of water through the
channel (in l/s). Columns 2 and 3 are intertube velocity in m/s and
intertube Reynolds number, respectively. The last column is the
response frequency (fn) of the central cylinder in Hz. The damping
ratio (f) tends to zero as the cylinder reaches stability limit. In
experiment, the maximum volume flow rate achieved is 1 l/s, for a
value of damping ratio (f) close to zero (0.05%). This gives a
maximum gap velocity of 0.467 m/s onset of the fluid-elastic
instability.

The experimental data enlisted (in Table 1) correspond to the
LES carried out at various reduced velocities (u*). The reduced
velocity is defined as u� ¼ ui=ðfnDÞ, where fn is the natural fre-
quency of cylinder in air (here 14.39 Hz). A time-domain modal
analysis is performed using a statistical method of maximum-
likelihood estimation. The characteristic modes are predefined by
means of a characteristic function. The parameters of the

characteristic function are treated using a Quasi-Newton type
method for nonlinear optimization. In addition, Prony’s method is
used to provide an initialization for the nonlinear optimization of
the parameters of characteristic function. Thus, the modal analysis
provides the modal frequency and damping ratio of the random
response of the cylinder.

Table 2 shows the results of LES for several intertube reduced
velocities. The values of reduced velocity are listed in the first col-
umn. The second and third columns contain the intertube velocity
ui and Reynolds number (Rei), respectively. The response fre-
quency (fn) of the cylinder at different reduced velocities is listed
in the fourth column.

The numerical time response signals are short for the accurate
statistical analysis of damping ratio (f) except for a reduced veloc-
ity u� ¼ 2:00. The damping ratio estimated using the response of
cylinder in LES at u� ¼ 2:00 is 2.05% against an experimental
value of 2.37%. The response frequency (in experiment, Table 1)
shows a slight decrease at u� � 1:25 and a sudden increase at
u� � 1:50. It is followed by a monotonous decrease up to reduced
velocity u� � 2:50. Similarly, in LES calculations, the response
frequency (Table 2) observes a decrease at u� ¼ 1:25 but a grad-
ual increase up to u� ¼ 1:75. The trend slightly differs after a sud-
den decrease at the reduced velocity of u� ¼ 2:00 (Fig. 5 shows
the comparison).

Although, the experiments are carried out at low range of
Reynolds numbers (2000–6000), the time response of the cylinder
oscillations is already chaotic and modulated. Figure 6 shows
comparison between the time signals of vibration in central cylin-
der for the LES (top) and experiment (bottom).

Figure 7 shows power spectral density (PSD) of the signals
displayed in Fig. 6. The spectra show distinct peaks at about the
natural frequency of the cylinder in water for both, LES and
experiment solutions.

3.2 Analysis. The theoretical development on fluid-elastic
instability has been studied by many researchers by modeling

Fig. 4 Schematic of the fluid-structure coupling for the central
moving cylinder

Table 1 Experimental results

Q ðlit=sÞ ui ðm=sÞ Rei fn (Hz)

0.35 0.164 1988 11.86
0.45 0.210 2556 11.71
0.55 0.257 3124 11.93
0.65 0.304 3692 11.91
0.75 0.351 4260 11.62
0.85 0.397 4828 11.57
0.95 0.444 5396 11.55

Table 2 Numerical results

u* ui ðm=sÞ Rei fn (Hz)

1.00 0.175 2124 11.80
1.25 0.219 2655 11.05
1.50 0.262 3186 11.45
1.75 0.306 3717 12.15
2.00 0.350 4248 10.96
2.25 0.393 4779 11.30
2.50 0.437 5310 11.46

Fig. 5 Comparison of the modal frequency of cylinder
response: LES versus experiment
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Fig. 6 Response of the central cylinder at u�
5 2:00: numerical (left) versus experimental (right) signals

Fig. 8 An instantaneous vorticity (absolute) plot at reduced
velocity u�

5 2:00

Fig. 9 Iso-surfaces of the instantaneous velocity (magnitude,
m/s) at 0.2 (large spread region), 0.3 (interstitial regions), and
0.4 (localised interstitial regions)

Fig. 7 Power spectral density of the cylinder response at

reduced velocity u� 
5 2:00: numerical (0.1 £ fn (0.1 £ 2000) ver-

sus experimental (0.1 £ fn £ 20) spectra

different mechanisms [2,3,5,6,8,9,15]. All theories are based on
empirical relations and the fluid force coefficients measured
experimentally. Further, no unique theory holds good for all range
of parameters, indicating the deceptive nature of the instability. In
spite of the ambiguous nature of the instability, some features are
commonly observed about the instability such as the dominance
of vibrations in the flow normal direction. The phase lag between
fluid force and cylinder displacement is often considered as an
important parameter too Refs. [16] and [17]. In this section, we
analyze the results to better understand fluid flow through the
array and fluid force on the surface of the monitored vibrating
central cylinder.

Figure 8 shows an instantaneous vorticity magnitude field at a
mid-plane in the LES computational domain. The turbulence in
the flow gradually develops through the cylinders array. The shear
layers formed at first row of cylinders (inline cylinders with same
X coordinate) start breaking down after second row, resulting in
increased level of turbulence through the tube array.

The flow periodicity, or shear layer vortex shedding, attachment
and separation of the flow on the cylinder surface plays an impor-
tant role [18,27] in the fluid-elastic instability. The time-averaged
pressure profile on the surface of oscillating cylinder is shown in
Fig. 10. The pressure profile shows two maxima and two minima
in the azimuthal direction (h). It infers that the length of the flow

structures in the Z direction is approximately 2:5D. The pressure
profile shows asymmetry about h ¼ 180 deg in the plot. This
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could be attributed to “flipping” of the fluid flow at a fairly low
frequency as observed experimentally by Mahon and Meskell
[27,28]. The time-length averaged pressure and total force in the Y
direction (Fy) on the cylinder surface is plotted in Fig. 11. Clearly,
it is indicating two locations for attachment (h � 55deg and
h � 305deg) of the flow and two locations for separation
(h � 90deg and h � 270deg) of the flow on the surface of the
cylinder.

The fluid-elastic instability is known to occur with a self-
excitation mechanism. The motion of the cylinder disturbs the
flow field around, and in response, the fluid forces further increase
the vibration in cylinder. The transient development of the insta-
bility is difficult to visualize experimentally, in terms of the fluid
forces and displacement, hence less understood. These transient
interactions are considered in theoretical models in terms of phase
lag between the fluid force and the displacement as well as tempo-
ral variation of the boundary layer of the cylinder. In Fig. 12, we
shed light on the time evolution of pressure profile on the cylinder
surface at all reduced velocities considered for analysis. The time
duration considered is about one period of the cylinder oscillations
(i.e., �0:1 s)

The time varying instantaneous pressure on the cylinder surface
is shown in Fig. 12. The subplots show influence of increasing
reduced velocity on the pressure. The pressure magnitudes
observed increase from u� ¼ 1:00 up to u� ¼ 1:50. It decreases
for reduced velocity u� ¼ 1:75 and follows a monotonous increase
thereafter. The changing pressure magnitudes are also accompa-
nied with change in the time-evolved pressure profiles at
each reduced velocity. The pressure time-evolutions for one
period of cylinder oscillation (Fig. 12) are either symmetric
(u� ¼ 1:00; u� ¼ 1:75, and u� ¼ 2:00) or nearly antisymmetric
(u� ¼ 1:25; u� ¼ 1:50; u� ¼ 2:25, and u� ¼ 2:50). This indicates

the way fluid force acts on the cylinder surface changes with
increasing reduced velocity. The symmetrical pressure profiles
(such as u� ¼ 1:00; u� ¼ 1:75, and u� ¼ 2:00 in Fig. 12) imply
that the adjacent flow streams exert a balanced force on the cylin-
der at the same time, thus limiting its movement. On the contrary,
in case of the reduced velocities u� ¼ 1:25; u� ¼ 1:50; u� ¼ 2:25,
and u� ¼ 2:50, the time evolution of the pressure is not symmetri-
cal. The adjacent flow streams exert an unbalanced force on the
cylinder at a time, resulting in higher amplitudes of the vibration.
The increase or decrease of the vibration amplitudes is also asso-
ciated with the change in response frequency (fn) of the cylinder
in Fig. 5. The response frequency (fn) decreases up to reduced
velocity u� ¼ 1:25, then follows an increase up to reduced veloc-
ity u� ¼ 1:75. The trend tends to differ (in experiment with
numerical results) for higher values of reduced velocity.

The difference in the time-evolving pressure profiles from
Fig. 12 can be correlated to the instantaneous flow field at reduced
velocities u� ¼ 2:00 and u� ¼ 2:25. Figure 13 shows the instanta-
neous velocity fields at u� ¼ 2:00 (top) and u� ¼ 2:25 (bottom).
The flow streams adjacent to the central oscillating cylinder
observe a high velocity patch whenever the cylinder is displaced
toward it. The high velocity patches are marked in Fig. 13 on the
adjacent flow streams of the oscillating cylinder. These high
velocity disturbances caused by the cylinder movement are carried
downstream with the flow. The high velocity patches shown for
the reduced velocity u� ¼ 2:00 (Fig. 13 top) show symmetry in
appearance on the flow channels. In contrasts, at reduced velocity
u� ¼ 2:25 (Fig. 13 bottom), the high velocity patches on the flow
streams appear alternatively, resulting in the antisymmetrical time
evolution of the pressure profile on the cylinder surface.

Figure 9 shows a three-dimensional velocity plot at reduced
velocity u� ¼ 2:00. It shows the iso-surfaces of instantaneous
velocity at 0.2 m/s (in aqua color), 0.3 m/s (in green color), and
0.4 m/s (in brown color).

3.3 Comparison Between Static and Dynamic Configura-
tions. The comparison is done using the spectra of Y velocity (u2)
at probe locations P1 and P3 for increasing reduced velocity (u�).
Furthermore, the velocity spectra at these upstream and down-
stream locations are compared with the spectrum of cylinder
vibration (y) in Fig. 14. In the static case simulations, the red
curves in Figs. 14(a) and 14(b), the shear layer frequency at gap
reduced velocity u� ¼ 1:00 is f �sh ¼ 0:56. There are higher har-
monics of this frequency in the spectra computed at the down-
stream location P3. In the dynamic case computations, the green
curves in Figs. 14(a) and 14(b), there appears an extra frequency
peak at both the upstream and downstream locations, which corre-
sponds to the response frequency of cylinder. On the other hand,
the response spectrum of cylinder, the blue curve in Figs. 14(a)
and 14(b)), shows a peak at f � ¼ 0:56. Figures 14(c) and 14(d)
show similar comparison for the intertube reduced velocity
u� ¼ 1:50. The red curves of the static case simulations show two
frequency peaks, one at 0.79 and its first harmonic at about 1.63,
at both P1 and P2 locations. On the contrary, the velocity spectra
in the dynamic case (green curves in Figs. 14(c) and 14(d)) show
a distinct frequency at the cylinder response frequency (f �n ¼ 1).
Furthermore, the cylinder response spectrum at this reduced
velocity u� ¼ 1:50 is elevated, in terms of the spectral power,
compared to the response spectra at both u� ¼ 1:23 and u� ¼ 2:47
reduced pitch velocities, which may be due to a possible synchro-
nization between the shear layer frequencies and the cylinder
response frequency. The flow velocity spectra at the gap velocity
u� ¼ 2:00 show wider peaks at frequency 1.92, at the upstream
(P1) location only. The frequency peak corresponding to the cyl-
inder vibration is not distinctly reflected in the velocity spectra
(Figs. 14(e) and 14(f)). The shear layer frequencies increase with
further increase in the Reynolds number. The fluid-elastic instabil-
ity in the dynamic calculations occurs at Reynolds number
Rep¼ 5310, where the flow frequency at the upstream locations

Fig. 10 The time-averaged pressure (Pa) profile on the cylinder
surface at u�

5 2:00

Fig. 11 The azimuthal pressure and total force (in the Y direc-
tion) profiles (time-length averaged)
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Fig. 12 The instantaneous pressure (Pa) profiles on the cylinder surface, evolving with time for approximately one period of its
frequency at various reduced velocities (u*): u�

51:00, u�
51:25, u�

5 1:50, u�
5 1:75, u�

5 2:00, u�
5 2:25, u�

5 2:50

Fig. 13 The instantaneous velocity fields at u�
5 2:00 and u�

5 2:25, depicting the correspondence with the time evolution of
pressure profiles in Fig. 12
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coupling of fluid flow and motion of cylinder. The root-mean-
squared displacement, time response of the cylinder vibration, the
PSD as well as the damping ratio show a good agreement with the
experimental results for reduced velocity u� ¼ 2:00. In addition,
the response frequencies of the cylinder for the range of reduced
velocities are in agreement with the experimental values of the
frequencies. This shows that the dynamic unsteady interactions
between fluid load and cylinder vibration are well captured
by LES. Turbulence develops gradually as the flow passes down-
stream through tube rows. The intertube fluid flow has the

Fig. 14 Power spectral densities of Y velocity in static and dynamic cases at an upstream (P1) and a downstream (P3) location,
respectively, upstream and downstream the moving cylinder, in comparison with the cylinder response spectrum for increasing
reduced velocity: (a) location P1, u�

5 1; (b) location P3, u�
5 1; (c) location P1, u�

5 1:50; (d) location P3, u�
5 1:50; (e) location

P1, u�
5 2:00; and (f) location P3, u�

5 2:00

(P1, P2) is about 3.3 with no distinct frequency peaks at the 

downstream locations (P3, P4). Therefore, the mechanism of the 

fluid-elastic instability must be different from the classical “lock-
in” phenomenon.

4 Conclusion

Large eddy simulation carried out to study fluid structure 

interaction in an in-line cylinder array. An arbitrary-
Lagrangian–Eulerian (ALE) approach is adapted to simulate the
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attachment location at an azimuthal angle of �55 deg (�306 deg
on the other side) on the cylinder and a separation point at
�90 deg (�270 deg on the other side). In the analysis, we shed
some light on the dynamic interactions of the cylinder vibration
and the adjacent flow streams. The time evolution of the pressure
profiles on the cylinder surface is indeed linked with flow stream
perturbations induced by the cylinder vibration.
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