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Abstract

The method of Particle Strength Exchange, solving the viscous part of the Navier-Stokes
equations by a splitting time algorithm in the context Vortex Methods. This article presents
a few results on the numerical aspects of this Lagrangian diffusion scheme, that is to say
computation of the Laplacian of a measure function. The present work follows the classical
analysis by Degond and MasGallic whose formulas were obtained by means of integration of
continuous functions. One shows that one gets different operators when integration is discrete,
and leads to a substantial gain of accuracy. This scheme is then applied to several three-
dimensional flows to exhibit convergence rate, and impact on conservation laws at moderate
Reynolds numbers. A sensitivity analysis is finally provided in order to carry out the good
behavior of these schemes in both Eulerian and Lagrangian contexts.

1 Introduction

Estimation of particle diffusion is of fundamental interest for particle methods which aim at solv-
ing numerically equations containing a parabolic part, such as the heat transport, the Navier-Stokes
equations, Fokker-Planck equations and many others. In this paper, a new approach of Particle
Strength Exchange methods is proposed in order to provide a gain of accuracy compared to clas-
sical formulations, which holds for both Eulerian and Lagrangian contexts, that is to say for grids
as well as for sets of particles non uniformly dispatched.

Indeed, classical formulation of particle strength exchange, originally developed by Degond
and MasGallic [7], involves particles arbitrarily dispatched. This particle diffusion method per-
formed by means of a kernel technique has been successfully used in many high-resolution com-
plex flow computations (see [12, 13, 3, 15, 5] for instance).

The convergence of the method is obtained in the sense that the error is of order of(h/ε)2

whereh is the characteristic distance between particles andε the width of the diffusion kernel.
The convergence consequently holds ash/ε → 0. The main drawback of such a scheme is that
as resolution increases,i.e. ash decreases, one usually does not want to have the number of
connections between the knots involved in the scheme increasing, in order to focus on smaller
scales and to have a computational cost depending reasonably on the number of grid points or
particles. This comes to assume that the refinement process is performed withh/ε more or less
constant. Once again a major drawback is that PSE schemes are not intrinsically consistent inh
but only inh/ε, thus a lack of accuracy when grids or particle lattices are refined.

The present paper presents a technique of renormalization so that particle strength exchange
schemes are intrinsically consistent ash2 when grids are uniformly discretized. This approach is in
a first step totally equivalent to a finite difference scheme. In some cases of singular functions the
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renormalized PSE scheme, called discrete PSE scheme, exhibits a better behavior but in general
one reaches the same accuracy and the same convergence rate as with standard finite differences.

The main advantage of this discrete PSE scheme is that it also holds in a Lagrangian context,
that is to say when particles are dispatched in a non uniform grid. One obtains a self normalized
scheme which is numerically better than classical PSE when Lagrangian distribution of particles
is statistically uniformly dispatched. This is the case when used in conjunction with Vortex in Cell
methods for which frequent remeshing is performed. One then obtains an interesting scheme in
terms of accuracy that can be assimilated to a self adaptating finite difference scheme, based on a
spherically symmetric stencil generator function.

Such considerations are especially interesting when performing direct numerical simulations
of flows with a particle method (Smoothed Particle Hydrodynamics or Vortex in Cell methods) at
low and moderate Reynolds numbers. Indeed, in this case, viscous effects need to be computed
accurately since they are potentially of the same order as convective effects. Such accurate three-
dimensional DNS simulations has been successfully performed in the past (see [15, 12, 6]).

The paper outline is as follows. Section 2 presents basically the spirit of Hybrid Vortex in
Cell methods (2.1 and 2.2) and how diffusion is involved in the related algorithm in section 2.3.
The classical formulation of particle strength exchange is then presented in section 2.4 for the
computation of the diffusion process in the spherically symmetric and three-dimensional case. In
section 3, the renormalization technique is presented, and is proved to be second order convergent
on a Gaussian blob (in section 3.3).

A case presenting less regularity, the ring vortex, is developed in section 4. Indeed, the Lapla-
cian of the field of vorticity of the ring presents a rational singularity on the symmetry axis,
stronger as the ring core radius is smaller. Finite differences and discrete PSE are compared on
this static example. The ring is chosen as initial condition to run a full three-dimensional Navier-
Stokes simulation using the Vortex in Cell method presented previously. The impact on the kinetic
energy conservation law of the numerical scheme (discrete PSE or finite differences) chosen to
compute diffusion is then discussed.

In order to push further the lack of regularity of initial condition and study further the impact
of diffusion schemes on the conservation laws, the case of a Gaussian blob of random vorticity
field is presented in section 5. Random fields are indeed the worst imaginable case to study the
impact of lack of regularity of solutions.

The benchmarks presented above are defined in Cartesian coordinates, within periodic boxes
or with far field no-slip-through conditions, that is to say without boundary layers in both the
formalisms of boundary conditions. In order to check that the method presented herein is a valid
approach for more complex flows involving boundary layers and different from Cartesian coordi-
nates, one considers in section 6 the interaction between a vortical ring (self propagating) and a
solid cylindrical boundary on which the boundary layer interacts with the main ring of vorticity.

The discrete PSE being proved convergent and sufficiently accurate to run complex flow sim-
ulation in a general context, one discusses in section 7 the behavior of this scheme in a Lagrangian
context,i.e. when particles are not uniformly dispatched on a grid. To proceed, point locations on
a uniformly discretized grid are noised with a Gaussian random variable. Influence of the noise
amplitude, that is to say the standard deviation of the Gaussian law considered, is discussed on the
case of the scalar blob introduced in section 3.3. One considers several stencil width to show that
accuracy can be tuned easily with the discrete formulation of particle strength exchange, which
takes all its interest in this case.
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2 Fluid mechanics context and classical results

2.1 Hybrid Vortex in Cell methods

One considers the three-dimensional Navier-Stokes equations in their velocity-vorticity formula-
tion (u, ω) in a domainΩ whose boundary∂Ω, if it exists, is a body on which one has a no-slip
condition. One considers also that the flow is without stream, that is to say the far-field velocity is
zero. These equations reads :

∂ω

∂t
+ u · ∇ω − ω · ∇u− ν∆u = 0 in Ω×]0, T [

lim
|x|→∞

u(x, t) = 0 for all t ∈]0, T [

u(x, t) = 0 on ∂Ω×]0, T [

ω(x, 0) = ω0(x) on Ω

(1)

where the velocity fieldu is linked to the vorticity fieldω by the relations

curlu = ω and divu = 0 on Ω, u · ~n = 0 on ∂Ω (2)

where~n is the outward normal field to∂Ω in the no-slip-through relation, which is included in the
no-slip conditionu = 0 in equation (1).

Vortex-in-Cell methods consist in introducing a set of particle (or cells) which are triplets of
location-vorticity-volume(xp, ωp, vp)p=1..n, which gives a Dirac expression for the vorticity field :

ω =
n∑

p=1

ωpδxpvp (3)

In the present paper, the Vortex in Cell scheme is based on those detailled in [2] and [5]. Be-
neath are developed essential points to understand how parabolic equations are involved in these
schemes.

At any time, the fieldu can be reconstructed fromω by a linear operatorAω = u which is
based on the resolution of a vectorial Poisson equation. A usual approach for vortex methods is to
writeA using the Biot-Savart laws

u(x) = Aω(x) = ω ∗Kε

∫
Ω

Kε(y − x)ω(y) dy =
n∑

p=1

Kε(xp − x)ωpvp dy

whereKε is a mollified Green kernel. In practice, the evaluation of these formulas is compu-
tationally improved by multipole or tree-code methods, but it appears that for large amount of
particles which are distributed volumically (that is to say not distributed on a sheet of vortex),
hybrid methods are faster and sufficiently accurate.

Hybrid method consists in interpolating the pointwise fieldω on a grid (or onR3) by means
of a kernelΛ of classCk (cf. [11]). This transfer reads as the convolution

ω = ω ∗ Λ : (R3 × R3 × R)n ≡ R7n → Ck(R3)3 (4)

Then the streamΨ is introduced, solution of a vectorial Poisson equation solved component
by component−∆Ψ = ω (equations are uncoupled in Cartesian coordinates).

One has to choose appropriate boundary conditions depending on the context : periodic cube
or a combination of homogeneous Neumann and Dirichlet conditions that imply bothdivΨ = 0
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andcurlu · ~n = 0 on boundaries (cf. [2]). This equation is solved either by a fast second or
fourth order finite differences solver or by fast Fourier transforms in the periodic case. In more
general systems of coordinates, a fourth component, called potential stream, is introduced in order
to obtain four uncoupled elliptic equations instead of three coupled (for more details see [5]). One
can notice that sinceω is supposed divergence free,divΨ = 0 everywhere andu = curlΨ (in the
case of Cartesian coordinates) satisfies all the conditions (2).

Numerically, the velocity fieldu is obtained on a grid of sizeN (containingN points). This
velocity is finally transferred onto particle with a formula of the same kind as (4) above :

u = u ∗ Λ : (R3 × R3 × R)N ≡ R7N → Ck(R3)3 (5)

In practice, transfers (4)-(5) plus solving the Poisson equations is faster than evaluating the Biot-
Savart formulas (see [4]).

Eventually, the numerical scheme solving the Navier-Stokes equations (1)-(2) with the La-
grangian formalism (3) comes to push particles using a second or fourth order Runge-Kutta scheme
to solve the following system of ordinary differential equations :

dωp

dt
= [ω · ∇u](xp) + ν∆ω(xp)

dxp

dt
= u(xp)

dvp

dt
= divu(xp)vp = 0

(6)

on a time step, where the stretchingω ·∇u is computed on the grid and also transferred to particles
by formula (5).

2.2 Time splitting algorithms

In the eighties a technique splitting apart convection and diffusion (see [9]) has appeared to
well adapted for flow computation since it separates the difficulties coming from hyperbolic and
parabolic parts of the Navier-Stokes equations.

One focuses on solving (6) over a time step. This technique, in the present Lagrangian context,
consists in solving successively the hyperbolic convection problem

dωp

dt
= [ω · ∇u](xp)

dxp

dt
= u(xp)

(7)

where the velocity field satisfies conditions (2) of no divergence and no-slip-through, and the
parabolic diffusion problem 

dωp

dt
− ν∆ω(xp) = 0

dxp

dt
= 0

(8)

whose initial conditions are the values obtained at the end of the time step by equation (7).
The velocity at boundary, if it exists, vanishes by the full no-slip conditionu = 0. This takes

into account that boundary layers are naturally viscous effects. The treatment of these kinematic
boundary conditions is performed by means of a panel method (see [8]), with direct a priori esti-
mates of density (see section 6).
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Finally the sum of solutions of (7) and (8) is a first order in time approximation of the solution
of (6) at the end of the time step. Second order approximation can be easily obtained (see [2]), but
the impact of this first order splitting algorithm has never been restrictive, even for complex flow
computations (see [14, 15]).

As any particle method, Vortex in Cell methods requires an distribution of particles as homo-
geneous as possible in order to avoid both accumulation points and hole of data (that is to say any
extreme behavior of particle density). Hence a frequent remeshing process is performed on the
particle lattice, that interpolates their values and rearranges it into a uniform lattice, in the spirit of
transfer formulae (4) and (5).

Consequently, one can either remesh between solving equation (7) and equation (8) and then
begin to solve the parabolic diffusion equation with a uniform lattice, or remesh the particle lat-
tice outside the time evolution algorithm, and then having a fully non-uniformly distributed set of
particles. In the first case, a pure finite differences scheme is sufficient to solve the diffusion equa-
tion. In the second case, a fully Lagrangian scheme, as accurate as possible, has to be introduced
in order solve equation (8).

For flexibility and accuracy considerations, it is thus interesting to build a scheme that has a
comparable accuracy with usual finite differences schemes when used on a grid (and presenting
also a comparable computational cost), and being more accurate than standard particle strength
exchange scheme on particle lattices in a full Lagrangian context. Flexibility is useful in the sense
that one scheme can be used with a part of the particles being dispatched on a grid and another
part evolving in a non-bounded domain (useful to ensure exact far field conditions), or using the
Lagrangian formalism as a local refinement technique.

2.3 Discretization of the diffusion process

Let f be a function solution of the following diffusion equation :

∂f

∂t
− νdiv(L∇f) = 0

where the diffusion operator can be written under the form

div(L∇f)(x) =
∑
i,j

∂

∂xi

(
Lij(x)

∂f

∂xj

)
(9)

which does not depend on time, in order to simplify notations in the current analysis.
One considers an-particle approximation of functionf

fh =
n∑

i=1

fi vi δxi where fi = f(xi) (10)

whereh is the characteristic distance between particles (see [7] for instance), and an approximation
of the diffusion operator (9) :

Qε · f(x) =
∫

Ω
σε(x, y)

(
f(y)− f(x)

)
dy (11)

which can be written in its duality form withQε · f(x) =
〈
f − f(x), σε(x, ·)

〉
D′(Ω),D(Ω)

Such a particle approximation, calledParticle Strength Exchangeor PSE, leads to the quadra-
ture formula :

Qε · fh(xk) =
n∑

l=1

σε(xk, xl)
(
fl − fk

)
vl (12)
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The goal is to exhibit the relation between the kernelσε of equation (11) and the diffusion
matrixL in equation (9), in order to make formula (12) operational. The classical approach of [7]
in three dimensions is summarized in section 2.4, while the discrete formulation is explained in
section 3.

2.4 Classical formulation of PSE methods

In this section, one summarizes the method given in [7] in order to get the relation betweenσε and
L.

The diffusion kernelσε, in the spherically symmetric formulation, can be written

σε(x, y) =
1
ε7

Θ
(

y − x

ε

)
M(x, y) : (x− y)⊗2 (13)

which also reads

σε(x, y) =
1

ε2+3+2

3∑
i,j=1

Mij(x, y) (x− y)i (x− y)j Θ
(

y − x

ε

)
(14)

whereΘ, called herein the stencil generator, is a smooth spherical-symmetric function, with fast
decreasing, typically such as

Θ(x) =
1

1 + |x|q

where | · | denotes the Euclidean norm inR3. Note that one should multiply this function by
a smooth partition of unity in order to provide a compact supported function inD(Ω) and to be
consistent with the dual formulation shown above. Anyway, in practice, only a finite neighborhood
is considered in these sums, so the partition of unity is naturally introduced and acts as a cut-off
filter, and the dual formulation still holds.

It remains to find the relation betweenM, Θ andL, which would define the kernelσε and
consequently the diffusion operatorQε.

A usual approach is to consider the matrixMij(x, y) under the form

Mij(x, y) = mij

(
x + y

2

)
where the matrixm(x) depends only on one variable. The matrixA = (akl) of second moments
of Θ is also introduced :

akl =
∫

R3

x2
kx

2
l Θ(x) dx k, l = 1..3 (15)

A fundamental result of [7] is that (12) is a second-order approximation of (9) when the
following conditions are satisfied :

mkl(x) = (akl)−1Lkl(x) for k, l = 1..3, k 6= l

3∑
i=1

aki mii(x) = 2Lkk(x) for k = 1..3
(16)

If, for Θ(x) = Θ̃(|x|) (i.e. for a spherical-symmetric funtionΘ), one defines the coefficientγ
by

γ =
4π

15

∫ +∞

0
Θ̃(r)r6 dr
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Thenakk = 3γ andakl = γ for k 6= l. The solution of problem (16) is then explicitly given
by

mkl = γ−1Lkl et mkk = γ−1Lkk −
γ−1

5
Tr(L)

thus finally

m = γ−1L− γ−1

5
Tr(L)Id3 (17)

Equation (17) is the conclusion sincem gives a construction ofM, thus ofσε and finally of
Qε. The numerical scheme (12) is then well-defined.

Furthermore, one may notice that ifΘ(x) = (1 + ‖x‖14)−1, there is an easy computation
of γ :

γ =
4π

15

∫ +∞

0

r6

1 + r14
dr =

4π

15

[
1
7

arctan
(
r7

)]+∞

0

=
2π2

105

One can notice thatγ−1 can be factorized in equation (17), and consequentlyγ can be tuned
in order to gain accuracy after a measurement of dissipation errors. An other way to proceed,
which does not involve tuning, is to re-establish these formula in a discrete formulation. The next
section will show that two integral parametersγ1 andγ2 are actually involved when rebuilding the
formulas, and will lead to a more complex but more accurate numerical scheme.

3 Discrete Particle Strength Exchange scheme

The classical theory of PSE methods described above has been proved to be second order con-
sistent in the senseh/ε → 0, that is to say the error isO[(h/ε)2]. This formulation is valid for
arbitrary distribution of particles, and its accuracy can be improved by taking a larger diffusion
kernel widthε. Nevertheless, engineering concerns lead to chose usuallyh/ε constant in order to
take in account strong variation of the solution from a particle to its neighborhood (thus the ne-
cessity to avoid large stencil). This fact is especially important for large three-dimensional direct
numerical simulations that are often to the limit of under-resolution.

This section focuses on a kind of renormalization of the particle strength exchange scheme
when particle are distributed over a uniform grid (or a mapping thereof). We will show that the
renormalized scheme comes to be fully second order consistent asO[h2] instead ofO[(h/ε)2].

Indeed, when particles are dispatched on a uniform grid (in mapped coordinates, the stretch-
ing being provided by the operatorL, for example cylindrical or spherical coordinates), one can
introduce a discrete evaluation of integral (15), that is to say the matrix of discrete second order
moments of kernelΘ :

akl =
∑

x∈hZ3

x2
kx

2
l Θ(x)h3 for k, l = 1..3 (18)

Using discrete integration allows more compatibility between summations in (12) and leads
to a more conservative scheme, hence a gain of accuracy. But the loss of continuity breaks the
relationakk = 3akl = 3γ, and relation (17) does not hold anymore. In the following section 3.1
one builds a discrete scheme based on discrete integration and one takes into account this loss of
symmetry. Then, in section 3.3, one will exhibit convergence rate on a benchmark.
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3.1 Discrete formulation

In order to give a sense to discrete computations and find a formulation in the same spirit of (17),
one introduces the coefficients 

γ1 =
∑

x∈hZ3

x4
kΘ(x)h3

γ2 =
∑

x∈hZ3

x2
kx

2
l Θ(x)h3

Thusγ1 6= 3γ2, and the matrixA is then given by :

A =

 γ1 γ2 γ2

γ2 γ1 γ2

γ2 γ2 γ1


The first relation of (16) reads

mkl(x) = a−1
kl Lkl(x) =

1
γ2

Lkl(x) for k, l = 1..3, k 6= l (19)

One can thus define a vector for diagonal components ofm, asm̃k = mkk andL̃k = Lkk.
The second relation of (16) readsAm̃ = 2L̃ which means̃m = 2A−1L̃.
One getsdet A = γ3

1 − 3γ1γ
2
2 + 2γ3

2 and

A−1 =
1

γ2
1 + γ1γ2 − 2γ2

2

 γ1 + γ2 −γ2 −γ2

−γ2 γ1 + γ2 −γ2

−γ2 −γ2 γ1 + γ2


Let F be the matrix whose coefficients are all equal to 1. The last expression then reads :

A−1 =
1

γ2
1 + γ1γ2 − 2γ2

2

(
(γ1 + 2γ2)Id3 − γ2F

)
thus

m̃ =
2(γ1 + 2γ2)

γ2
1 + γ1γ2 − 2γ2

2

L̃− 2γ2

γ2
1 + γ1γ2 − 2γ2

2

F L̃

One can notice that vectorF L̃ has all its components equal toTrL. Consequently, one gets a
relation similar to (16) which is consistent with discret integration :

mkk =
2(γ1 + 2γ2)

γ2
1 + γ1γ2 − 2γ2

2

Lkk −
2γ2

γ2
1 + γ1γ2 − 2γ2

2

TrL (20)

In order to write this in a compact and matrix formulation, one has to introduce the matrix
H = Hij

Hij =
(

γ2
1 − γ1γ2 − 6γ2

2

γ2(γ2
1 + γ1γ2 − 2γ2

2)

)
(1− δij) Lij (21)

whereδij is the Kronecker symbol. This matrixH is zero whenL is diagonal or whenγ1 = 3γ2

(i.e. in the continuous case).
Finally, relations (19) and (20) can be written in the same spirit of (16) as

m =
2(γ1 + 2γ2)

γ2
1 + γ1γ2 − 2γ2

2

L − 2γ2

γ2
1 + γ1γ2 − 2γ2

2

Tr(L)Id3 + H (22)
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Furthermore,γ1 = 3γ + O(h) andγ2 = γ + O(h), which implies thatH = O(h), thusm of
equation (22) satisfies

m = γ−1L− γ−1

5
Tr(L)Id3 +O(h) (23)

The discrete formulation is thus at least a first order approximation of the classical scheme,
but is intrinsically second order, fact discussed in next section.

3.2 PSE scheme in Cartesian coordinates

The stencil chosen to study convergence is under the formΘ(x) = (1 + |x|p)−1 where| · | is the
Euclidean norm inR3, which leads to

γ =
4π

15

∫ +∞

0
Θ(r)r6 dr =

4π2

15n sin(7π/n)

and gives, for our choicep = 10, the valueγ = 0.32532. For the computation of discrete mo-
ments, one chooses the one-particle neighborhood, which gives a kernel cut-off value ofΘ(2) =
9.756 10−4.

One considers a sub-latticeJ of the three-dimensional latticehZ3 whose knots are uniformly
distributed. The pointsx ∈ J are indexed in a set of indexesI (this meansxk ∈ J with k ∈ I).
This gives the particle estimation of a functionf as

Phf =
∑
x∈J

f(x)δxh3

which can be described itself intrinsically as a measure function

fh =
∑
k∈I

fkδxk
vk

whereh is the characteristic length between knots of the latticeJ, each pointxk being associated
to a volumevk = h3 and a valuefk = f(xk).

The PSE scheme, that is to say the evaluation of the Laplacian offh, reads

Qε · fh (xk) =
1
ε7

∑
l∼k

fl − fk

1 +
∣∣xl−xk

ε

∣∣p
 3∑

i,j=1

mij

(
xl + xk

2

)
(xl − xk)i(xl − xk)j

 vl (24)

where the sum overl ∼ k means the sum over particles of indexl in the 1-neighborhood of particle
of indexk in the latticeJ ⊂ hZ3.

In Cartesian coordinates, on hasL = Id3, anddiv(L∇f) = ∆f , and consequently the matrix
m is given, respectively for the continuous (standard) case and the discrete case, by

m =
2
5γ

Id3 and m = 2
γ1 − γ2

γ2
1 + γ1γ2 − 2γ2

2

Id3 (25)

Since in both these cases the matrixm is diagonal with constant coefficients, the scheme (24)
reads

Qε · fh (xk) =
α

ε7

∑
l∼k

|xl − xk|2

1 +
∣∣xl−xk

ε

∣∣p (fl − fk)vl (26)

whereα is the diagonal coefficient ofm and| · | the Euclidean norm inR3.
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Figure 1:Second order convergence of Discrete PSE scheme (red) for a Gaussian scalar function : error
in shown to be of orderh2 with h/ε constant, compared to standard PSE (green), and standard 7 points
centered finite difference scheme (blue). Dashed black line isn−2/3, n being the number of grid points.

3.3 Numerical convergence of the discrete scheme

One considers as a first benchmark a spherical Gaussian scalar blob

f(x) =
1

(2πσ2)3/2
e−x2/2σ2

(27)

with x ∈ R3, whose isovalues are concentric spheres. This function satisfies

∆f(x) =
(

x2

σ2
− 3

)
f(x)
σ2

To exhibit convergence rate one considers theL2 relative error defined by

‖QεPhf − Ph∆f‖2

‖Ph∆f‖2
=


∑
x∈J

(
QεPhf(x)−∆f(x)

)2
h3

∑
x∈J

∆f(x)2h3


1/2

(28)

One uses the computational domain[−3, 3]3 with several discretizations of grid sizeN ×N ×
N containing thusn = N3 points, with a grid steph = 6/N = 6n−1/3. the standard deviation
of the blob is chosen asσ = 1/2, and the PSE kernel width locked on the grid stepε = h, which
should prevent the standard PSE scheme from converging since its error is of order(h/ε)2.

On figure 1 is plotted theL2 relative error on∆f with respect to the number of grid pointsn,
and shows that the Discrete PSE scheme is of order 2, that is to say converges ash2 (or equivalently
n−2/3), with the same rate of the standard 7 points finite difference scheme also plotted on this
figure. Moreover, as expected the standard PSE does not converges sinceh/ε is constant.

One will now show that it can provide a gain of accuracy for three-dimensional flow compu-
tations, with or without the presence of boundary layers.
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Figure 2:Surfaces of isovorticity ofω2 (red at10−1 and green at10−3) of a vortical ring at different times
(left to right0, 50, 60) for a Reynolds numberRe = 2000.

4 Vortical rings

One considers, in the coordinates(x, y, z), a vortical ring of axisex, which depends on several
parameters : its strengthΓ, the distanceα between the ring center and the origin, a radiusR and a
standard deviationσ. Posingφ(x, y, z) = −

√
y2 + z2, eφ = curl[φ(x, y, z)ex] and

ρ(x, y, z) = (R + φ)2 + (x− α)2

one considers the vorticity field given byω = ωφeφ with

ωφ(x, y, z) =
Γ

2πσ2
e−ρ(x,y,z)/2σ2

eφ

Furthermore, the vectorial Laplacian in cylindrical coordinates(x, r, φ) is given by
er ·∆ω = ∆ωr −

ωr

r2
− 2

r2

∂ωφ

∂φ

eφ ·∆ω = ∆ωφ −
ωφ

r2
+

2
r2

∂ωr

∂φ

ex ·∆ω = ∆ωx

Since for vortical ring defined above, componentsωr andωx are identically equal to zero andωφ

is independent ofφ, one gets

∆ω =
(
∆ωφ −

ωφ

r2

)
eφ =

(
ρ

σ4
− 2

σ2
− 1

r2
+

β − r

rσ2

)
ω (29)

One can immediately notice that the singularity inr−2 is stronger whenωφ has a large value
at r =

√
y2 + z2 = 0, that is to say whenβ is small. This phenomena is shown on figure 3 on

which are plotted contours of two vortical rings and their Laplacian for two core radiusβ = 1.4
andβ = 2, other parameters being set toα = 0 andΓ = 1 in the boxΩ = [−2π, 2π]3.

These two rings provide two other benchmarks to study convergence rate. Indeed, one pro-
ceeds as in last section for the scalar Gaussian function : the box is discretized into a grid
N × N × N containingn = N3 points with a grid steph = 2π n−3. One can then compare
the difference between the exact value of∆w and the numerical solution obtained by the stan-
dard PSE (which does not converges sinceh/ε does not tends to zero), the discrete PSE and the
standard 7 points finite differences scheme.
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Figure 3:Contours of‖ω‖ (top) and‖∆ω‖ (bottom) in the slicey = 0 of vortical rings for two core radius
β = 1.4 (left) andβ = 2 (right). ∆ω exhibits a stronger singularity for smaller core radius (bottom left).

These comparisons are provided on figure 4, one which one can see that both Discrete PSE
and finite differences converges ash2 without noticing the singularity in the case of a large core
radiusβ = 2 (left picture).

Furthermore, when the singularity becomes stronger in the case of a smaller core radius
β = 1.4, then the finite difference scheme tends to give an error which is an order or magni-
tude higher than discrete PSE. This comes from the fact that the whole neighborhood is involved
in the computation of the diffusion, while usual finite difference schemes use only points on axis
around the base point.

This feature of PSE schemes is especially interesting when large variation of vorticity are
present in the flow or in neighborhood of hyperbolic points which are numerous in wakes for
example (see [15]).

The dynamic of these rings and thus the behavior of conservation laws using these schemes
when several grid sizes will now be discussed. The Reynolds number for tubular shaped vortex
structures is commonly defined byRe = Γ/ν. At low Reynolds numbers, the typical dynamics of
these rings is purely translative until diffusion reduce enstrophy sufficiently to reach a steady po-
sition where the ring finishes to diffuse. At higher Reynolds numbers, a tail and vortex dislocation
can appear, as shown on figure 2 atRe = 2000, which provides a non-trivial benchmark to carry
out dissipation rates. The parameters used herein areα = 4, R = 1.4, Γ = 1 andν = 1/2000, in
the boxΩ = [−2π, 2π]3.

The usual law followed by the kinetic energy is

dE

dt
= −νZ (30)
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Figure 4:Convergence of Discrete PSE scheme (red) for two vortical rings (large core radiusβ = 2 on left
picture and small core radiusβ = 1.4 on right picture) :L2 error with respect to the number of grid points
n = h−1/3 compared to standard PSE (green), and standard 7 points centered finite difference scheme
(blue). Dashed black line isn−2/3.

whereZ is the enstrophy andE the kinetic energy, given respectively by

Z =
∫

Ω
ω2(x) dx = ‖ω‖2

2,Ω and E =
1
2

∫
Ω

u2(x) dx =
1
2
‖u‖2

2,Ω

Hence the introduction of numerical estimation of viscosity, called effective viscosity, based on
numerical values of energy and enstrophy, defined by

νeff = − 1
Z

dE

dt
(31)

This diagnostic (31) is difficult to manage due to small divisorδt when computed numerically,
and also sinceZ tends to0 for large times, which is specially significant at low Reynolds numbers
because of fast diffusion.

5 Random vortical blob

For this study one will consider initially a Gaussian blob of random field of vorticity, built as
follows. LetsX1, X2 and X3 be three independent and dimensionless random real variables
following a centered Gaussian lawN (0, σ) of standard deviationσ. These Gaussian variables
Xi are generated by the usual Box-Muller method, that is to say ifY andZ are two independent
random variables following a uniform law on[0, 1] (which is obvious to implement), then

X = σ
√
−2 ln Y cos(2πZ)

follows the centered Gaussian lawN (0, σ).
One defines the vectorial random variableW = 3−1/2(X1, X2, X3) whose square has the

expectation

E[W 2] =
1
3

3∑
i=1

E[X2
i ] = σ2

13



Figure 5:Absolute error on effective viscosity with respect to time of discrete PSE scheme (to the left) and
standard finite difference scheme (to the right) for the flow generated by a vortical ring, at resolutions963

(blue),1283 (green) and1923 (red) andRe = 1000.

Figure 6:Effective viscosityνeff versus time, for several Reynolds numbers, of a flow created by a vortical
ring in periodical domain using discrete formulation of PSE scheme and a resolution1283. Left picture is
absolute error and right picture is relative error (——Re = 2000, – – –Re = 1000, - - - - Re = 400).

and then the following random field of vorticityω(ξ) of strengthΓ, with ξ ∈ R3, by

ω(ξ) = Γ W (ξ)
e−ξ2/2s2

(2πs2)3/2

The associated Reynolds number based on circulation in the quadratic meaning is defined as

Re =

〈
E[ω(ξ)2]1/2

〉
ν

=
1
ν

∫
R3

E
[
ω(ξ)2

]1/2 dξ =
Γ σ

ν

Moreover, this vorticity field has no reason to be divergence free so one proceeds to the projec-
tion ω = curl2∆−1ω on divergence-free fields. The dynamics of such a flow is qualitatively given
by surfaces of isovorticity, plotted of figure 7 forΓ = 1.7, σ = 1, s = 1 andν = 1/2000, which
leads toRe = 2000, with a time stepδt = 0.1. Figure 9 also exhibits the surfaces of isovorticity
obtained for the same parameters unlessΓ = 170, which givesRe = 2 105 and leads to a much
shaky evolution.

The main analysis that can be carried out from these simulations is that the effective viscosity,
plotted on figure 8 for the two Reynolds numbers mentioned above, is always closer to the theo-
retical viscosity than the standard PSE scheme, but in a much less sensible manner than for flows
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Figure 7: Surfaces of isovorticity ofω2 (red at10−3 and green at10−4) of a random spherical blob of
vorticity at different times (left to right and top to bottom at0, 2, 6, 10, 20, 30, 40 and50) for a Reynolds
numberRe = 2103 (with Γ = 1.7).

which do not involve small scale structures, such as the vortical rings described in last section.
Furthermore, one can also notice that the improved PSE scheme has no significant effect of energy
spectra, as shown on figure 10 for a Reynolds numberRe = 2000. One also notice on this figure
the development of a short inertial range featuring the power lawk−5/3.

6 Flow around a cylinder

In the previous sections, one has considered flows in Cartesian coordinates without any physical
boundary on which there would be no-slip conditions. One now considers the case of a vortical
ring moving toward a cylindrical body on which is created a boundary layer. The strong interaction
between the main ring and the boundary layer creates successively a secondary ring that quits
the boundary layers to reconnect to the main vortical structure. The dynamic is qualitatively
represented on figure 11 by surfaces of isovorticity.

The cylindrical coordinates induce an anisotropic diffusion operation in mapped coordinates
(r, θ, z). Indeed, the diffusion equation reads

∂ω

∂t
− ν

r
div(L∇ω) = 0 (32)

wherediv(L∇ω) = r∆ω and

L(r, θ, z) =

 r 0 0
0 1/r 0
0 0 r


whose condition at boundaries is of kinematic type, that is to sayu = curl∆−1ω = curlΨ = 0,
and its initial conditionω0 being the vorticity field obtained at the end of the convection step,
developped in sections 2.1 and 2.2 (see [5] or [6] for more details on this algorithm).

In this case the trace of operatorL is no longer constant and the PSE schemes (standard or
discrete) given by formula (24) cannot be written as simply as in Cartesian coordinates, that is
to say formula (25). Nevertheless, diffusion operatorL is diagonal, and consequently matrixH
defined in formula (21) is zero.
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Figure 8:Effective viscosity (left picture) and absolute error with theoretical viscosity (right picture) for a
random vortical field at Reynolds numbersRe = 2103 (standard PSE is dark blue, improved PSE is green)
andRe = 2 105 (standard PSE is cyan, improved PSE is magenta). Black dashed lines on left picture
indicates the theoretical viscosityν = 5 10−4 and±5% deviation level.

Figure 9: Surfaces of isovorticity ofω2 (red at10−1 and green at10−2) of a random spherical blob of
vorticity at different times (left to right at2, 6, 12 and 24) for a Reynolds numberRe = 2105 (with
Γ = 170).

The PSE scheme (24) can be written, in mapped coordinatesx = (r, θ, z) of physical point
x = (r cos θ, r sin θ, z), as

Qε · fh (xk) =
1
ε7

∑
l∼k

fl − fk

1 +
∣∣∣xl−xk

ε

∣∣∣p
[

3∑
i=1

mii

(
rl + rk

2

) [
(xl − xk)i

]2

]
vl (33)

where coefficientsmii are given by relation(16), which reads for this diffusion operator :

m11(r) = m33(r) =
2

γ2
1 + γ1γ2 − 2γ2

2

(
γ1r −

γ2

r

)
and

m22(r) =
2

γ2
1 + γ1γ2 − 2γ2

2

(
γ1 + γ2

r
− 2γ2r

)
A way to proceed kinematic boundary condition is use Chorin’s algorithm, described in the

case of three-dimensional circular cylinder in [5]. This consists in splitting equation (32) in two
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E(k)

k

Figure 10:Energy spectra at timest = 0, 2, 4 and6 (top to bottom) for standard (red) and improved (blue)
PSE method, atRe = 2 103. Green dashed line exhibitsk−5/3.

parts with Robin-Fourier boundary conditions divergence-free compatible, in this case :

T ω =


wr

r
wθ

r
+

∂wθ

∂r
∂wz

∂r

 (34)

In practice, pure Neumann conditions are often used and can nevertheless lead to nicely accurate
results (cf. [13]), especially when Reynolds number increases.

The first part is homogeneous and writes
∂ω

∂t
− ν

r
div(L∇ω) = 0 in Ω×]0, T [

νT ω = 0 on ∂Ω×]0, T [

ω(x, 0) = ω0(x) on Ω

(35)

which leads to a vectorial slipping velocityus(t) for any timet 6 T . The second part is non-
homogeneous and writes

∂ω

∂t
− ν

r
div(L∇ω) = 0 in Ω×]0, T [

νT ω = J
∂us

∂t
on ∂Ω×]0, T [

ω(x, 0) = 0 on Ω

(36)

whereJ is the rotation matrix of angleπ/2 in tangential bundle. The solution of equation (36) has
significant value only close to boundary and there exist integral techniques able to solve this equa-
tion with a linear complexity, that is to say with a computation time proportional to the boundary
lattice number of points (see [10] for examples). The sum of solutions of equations (35) and (36)
is then a first order of equation (32) with kinematic boundary conditions (see [2] for instance).
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t = 0

t = 30 t = 60 t = 90

t = 130 t = 160 t = 190

Figure 11:Isovorticity surfaces at different times for a vortical ring self-propulsed on a cylindrical body,
and interacting with the boundary layer.

The first part (35) is consequently the step that requires most resources for such a computation,
especially since this vectorial heat equation has its components coupled either with the evolution
law or at boundaries. A way to run a fast evaluation of its solution is to split it in two again, but this
time playing with linearity of the heat equation, thus not introducing any other approximations :

∂ω

∂t
− ν

r
div(L∇ω) = 0 in Ω×]0, T [

ω(x, 0) = ω0(x) on Ω
(37)

with arbitrary boundary conditions, and whose solution is denotedω∗.
If the vorticity fieldω is itself written in Cartesian coordinates, but its three variables in cylin-

drical coordinates, equation (37) can be uncoupled in three scalar heat equation and solved using
the discrete PSE scheme defined by formula (33), for example joint to an explicit Euler scheme
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(a) (b)

(c) (d)

Figure 12:Diagnostics.From left to right and top to bottom:
(a) Numerical viscosity (coarse and fine simulations, theoretical values at1/400 and+1%),
(b) Global circulations (coarse and fine simulations),
(c) Maximum residual tangential velocity (fine simulation),
(d) Helicity (fine simulation).

(or implicit if viscosity is too high). Note that this is possible only because of the lack of bound-
ary condition, because as defined herein, PSE schemes do not control values of the solution at
boundaries (but could be assimilated to be a flux).

In order to enforce homogeneous boundary conditions, one has to consider the following equa-
tion : 

∂ω

∂t
− ν

r
div(L∇ω) = 0 in Ω×]0, T [

νT ω = −νT ω∗ on ∂Ω×]0, T [

ω(x, 0) = 0

(38)

One can notice that this equation is of the same kind as equation (36), allowing fast estimations
of the solution, and that the sum of solutions of equations (37) and (38) is solution of equation
(35) with homogeneous boundary condition. Consequently, the sum of solution of equations (37),
(38) and (36) is an approximation of the initial problem (32) with kinematic boundary condition,
most computation time being used by the computation of PSE schemes in equation (37) and the
estimation of the velocity fieldus after having solved equation (38).

Diagnostics for this simulation of a vortical ring interacting with a cylindrical body are plotted
on figure 12. One can notice on this figure that indeed, the no-slip condition is not algebraically
satisfied but maximum residual velocity on the body stays small (on graph (c)). The global circu-
lation and helicity are globally conserved accurately, despite the strength and the evolution of the
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boundary layer (respectively graphs (b) and (d)).
Furthermore, the kinetic energy conservation law is investigated by means of te effective

viscosity νeff defined and used in previous sections. Only two resolutions were carried out,
64× 128× 64 and128× 256× 128, called respectively coarse and fine simulations in legend of
figure 12. Indeed, considering coarser grids would give hazardous results while finer grids were
not easily manageable on standard computer resources at the time these simulations were done
due to the large number of vectorial grids to store (velocity, vorticity, volumes, stream, potential
stream, stretching, some of same at any sub-step of the Runge-Kutta scheme for time evolution).

Nevertheless, for these two simulations, one notices that error on effective viscosity is reduced
by a factor 4 while the grid step size is reduced by 2, which is compatible with the intrinsically sec-
ond order of discrete particle exchange scheme. One can conclude that for this kind of simulation,
the discrete PSE scheme is once again an accurate tool and one completes the results presented in
previous sections in Cartesian coordinates (thus with isotropic diffusion) without physical bound-
aries by an analysis in cylindrical coordinates (with anisotropic diffusion in mapped coordinates)
with a cylindrical body on which one has satisfied numerically the no-slip condition.

7 Sensitivity to perturbation of knot location

One has proved in the last section the renormalized particle strength exchange scheme can be
assimilated to a finite difference stencil on uniformly discretized grid, and leads to the same order
of accuracy on various problems.

Now one can discuss the advantage of PSE over finite difference schemes. Indeed, the particle
strength exchange has been introduced to treat diffusion in a Lagrangian context, where particles
are not necessarily dispatched on a grid. One has shown that PSE is not accurate when the sup-
port width of diffusion kernelε is adjusted to the grid steph, to the opposition of its discrete
formulation.

One will now focus on the behavior of discrete particle strength exchange scheme when par-
ticle are not dispatched on a grid, and compare it to standard PSE. In this case standard centered
finite differences are pointless but are computed anyway to carry out their sensitivity to location
accuracy.

To proceed, one considers the uniform gridhZ and a random variableX following the centered
Gaussian lawN (0, λh) of standard deviationλh which gives the noised gridX + hZ whose
perturbation amplitude is linked to the grid steph by means of the parameterλ.

Whenλ is small enough toward unity, one can expect the discrete PSE and finite differences
are still comparable. Nevertheless, whenλ increases, one will show below that discrete PSE is
exhibits better quality than both standard PSE and standard finite difference scheme, until the noise
is of order of size step.

This test is performed with the Gaussian scalar blob (27) of standard deviationσ = 0.5 in-
troduced in section 3.3. One considers the discrete PSE scheme defined by formula (24) with
the spherically symmetric stencil generatorΘ(r) = (1 + rp)−1 which gives more weight than
previously to points outside the standard 7 point finite difference scheme.

Left pictures of figure 13 exhibits the relativeL2 error on Laplacian of the blob described
above on a grid1283 with respect to the noise amplitudeλ, for finite differences, standard PSE
and discrete PSE using the 1-, 2- and 3-neighborhood.

Two stencil generators for the PSE schemes are investigated on this figure 13, of the kind
Θ(x) = (1 + |x|p)−1 with p = 8 (top pictures), which gives a discrete PSE scheme with coef-
ficients close to the standard finite difference scheme, andp = 2 (bottom pictures). Note that

20



Figure 13:Relative errors on Laplacian of the Gaussian function (27) on a noised 3D lattice of size1283

(on left pictures) with respect to to noise standard deviation, and deviation of this error from the non-noised
lattice (on right pictures). The curves concerns standard finite differences (dashed black), standard PSE
(cyan), and discrete PSE with various stencil width (h/ε = 1 is dark blue,h/ε = 2 is red andh/ε = 3 is
green). The PSE stencils are generated by two functions of the kindΘ(x) = (1 + |x|p)−1 with p = 8 (top
pictures) andp = 2 (bottom pictures).

the casep = 2 gives much more weight to particles in the neighborhood, due to the fact thatΘ
decreases much slower than forp = 8, but does not allow to define the classical formulation of
particle strength exchange since the functionr6/(1 + r2) is not integrable overR+. Though the
standard PSE is not plotted on bottom pictures of figure 13.

The right pictures of figure 13 exhibits the differences between errors with and without noise,
i.e. the deviation from the relative non-noised error, which extracts the effects of noise on accuracy,
thus defines a good criteria of sensitivity of the scheme to noise.

One can read on this figure that the error obtained when using discrete PSE using the 1-
neighborhood is always smaller than finite differences of a factor3 but exhibits an evolution of
same rate as the noise amplitude factorλ increases, especially on the casep = 8. One can note
the standard PSE is the less sensitive to noise but gives errors orders of magnitude higher, and
becomes comparable to other schemes when the lattice is highly noised (top left picture of figure
13).

Furthermore, to increase accuracy, one can play with the stencil width to increaseε/h and
then reduce the error shown to be of orderO[(h/ε)2]. Indeed, one can see that if one uses the
2-neighborhood (or more), then accuracy is better than both standard PSE and finite differences.
Indeed, it appears that the strongly weighted PSE (casep = 2, bottom pictures of figure 13) used
with the 2- or 3-neightborhood is more accurate the finite differences as soon as particle positions
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Figure 14:Same legend as figure 13 on a noised lattice of size2563 with the discrete PSE scheme generated
by Θ(x) = (1 + |x|2)−1.

are noised with a standard deviationσ > 10−3h, (i.e.λ > 10−3), and this with a lower sensitivity
to noise.

To push further this conclusion, the casep = 2 has been reinvestigate on a finer grid of size
2563, and the results displayed on figure 14. The conclusions for this more refined simulation
are the same, and exhibits that accuracy of the discrete PSE scheme is 10 times better the finite
differences as soon as the noise is sufficient (λ > 10−4). Another formulation of this assertion is
that the discrete PSE scheme provides the same accuracy for a noise ten times stronger.

8 Conclusion

In the present paper, one has defined a method of renormalization of particle strength exchange
scheme whose resulting scheme can be assimilated to a finite difference stencil on uniformly
discretized grid. One has shown that the same order of accuracy and convergence rate as standard
7 point finite difference scheme are reached, and this on various problems involving smooth and
strongly discontinuous (random) fields of vorticity, scalar an vectorial problems, Cartesian and
cylindrical coordinates, with and without boundary layers, and with various Reynolds numbers.

After exhibiting the same convergence rate than finite differences schemes, one has put the
PSE schemes in their natural Lagrangian context and shown that discrete PSE is more accurate
than finite differences. They appear to be faster and much easier to implement than adaptative
(thus implicit) finite difference schemes. In other words, one gets an explicit one-pass scheme,
to the opposite of renormalization process satisfying algebraic conservation of first moments (see
[1]). One has also shown that standard PSE comes to be of the same order of accuracy for particle
lattices strongly inhomogeneous.

As a conclusion one has built an easy to implement and accurate scheme which is effective
both on uniformly discretized and Lagragian distribution. It can thus be used on both problems
or with mixed Euler/Lagrangian formalism, used together or using Lagrangian scheme as a local
refinement technique. The accuracy has been shown to be better than both finite differences and
standard PSE for lattices moderately noised, which is the standard case in remeshed vortex in cell
methods. This fact is especially interesting when viscous effects needs to be computed accurately,
such as DNS of flows using particle methods at low and moderate Reynolds numbers.
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