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Abstract

This article presents numerical analysis and practical considerations for three-dimensional
flow computation using an implicit immersed boundary method. The Euler equations, or
half a step of the Navier-Stokes equations when using fractional step algorithms, are inves-
tigated in their vorticity formulation. The context of flow computation around an arbitrarily
shaped body is especially investigated.

In conventional immersed boundary methods using vorticity, singular vortex are dis-
patched over the body surface. In the present study, one prefers using sources of potential
velocity field, dispatched on the body, whose nature is not vorticity. Such a formulation is
compatible to the Euler equations. In practice, these sources of potential flow produce a
velocity through this surface, aiming in practice at cancelling a flow-through velocity.

This article focuses on the use of the source-to-flow-through linear application, its prop-
erties being the key points for fast convergence. Its self-adjointness, or lack thereof, con-
ditioning and preconditioning aspects are investigated. It follows that computing a velocity
field with no-flow-through conditions in complex geometry, when using the source-to-flow-
through linear application, can be achieved for 4/3 of the computational cost of standard
Poisson equation in a Cartesian box.

The robustness of immersed boundaries is especially interesting when used together with
Vortex-in-Cell methods, well known for their robustness in time and their ability to compute
accurately convective effects. A few examples, based on real-world geometries, illustrate
the method capabilities.
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Computing fields satisfying a flux condition on an arbitrarily shaped body in three
dimensions of space is a challenge in many engineering and research fields, includ-
ing fluid dynamics, electromagnetism, acoustic. One of the main difficulties in the
numerical simulation of these problems is to efficiently and accurately take account
of body effects on surrounding environment.

In the present study, we are interested in the analysis of an immersed boundary
method for computing a flow satisfying no-flow-through boundary conditions on
an arbitrarily shaped body. Such a method concerns the three-dimensional Euler
equations with smooth boundaries, or half a step of Navier-Stokes equation, when
performing a time-splitting algorithm, possibly with edges on the geometry. Com-
putation of three-dimensional flow dynamics using vortex-in-cell methods will be
the main focus of the present article.

Immersed boundary methods consist in using a domain of simple geometry (typi-
cally a Cartesian box), in which a surface is set, whose impact on solution is com-
puted either by introducing sources on the body, with strength or distribution to
estimate.

One will show that in their velocity-vorticity formulation, the geometrical aspect
of such boundary conditions can be reduced to the resolution of a scalar Pois-
son equation, that is to say an elliptic problem. This is the opposite of usual im-
mersed boundary methods based on velocity-pressure formulations, which involve
parabolic or hyperbolic equations, for which time dependent jump relations are gen-
erally difficult to handle. Furthermore, to the opposite of conventional immersed
boundary methods for vorticity, the present approach does not consider sources of
vorticity, but a potential velocity.

In the present article, the following questions are addressed : Are spectrum and sin-
gular value decomposition sufficiently clustered to ensure fast convergence when
used as iterative method ? Are the properties observed in the cylindrical case also
valid for an arbitrarily shaped body, even with sharp edges ? Is it possible to recover
this good conditioning when the surface is spread over grid points instead of using
an approximated surface, such as methods inspired from [7] ? Should this method
be preferred to a boundary integral method ? Is it possible to consider real-world
geometries at lowest possible computational cost, using such immersed boundary
methods ? In this case, is it possible to exhibit, in practice, the properties obtained
theoretically, such as algebraically satisfied no-flow-through and circulation con-
servation ?

Despite the fact that immersed boundary methods have been intensively used and
improved during the last decade, little attention has been paid to the nature and
numerical analysis of the source-to-flow-through linear application (and the re-
lated linear system), such as its conditioning, spectra spreading and bounds, or
self-adjointness.



Section 1 defines the Navier-Stokes and Euler equations in their vorticity formula-
tion, and how Poisson equations are the only equations involves. Immersed bound-
ary technique is set up in section 2, where the source-to-flow-through application
is eventually defined. Theoretical numerical analysis is provided in section 3, and
practical considerations are developed in section 4, by means of two discretizations
and a convergence benchmark. Section 5 provide a coupling between vortex-in-cell
method and this immersed boundary technique.

1 Fluid dynamics and vorticity formulation

1.1 Navier-Stokes equations in vorticity-velocity formulation

One considers a fluid domain around a body B3, whose boundary is denoted I, and
the three-dimensional incompressible Navier-Stokes equations in their velocity-
pressure formulation, for a fluid of constant density o :

8fu—i—u'Vu—VAuzf—@ (1)
ot 0 0
where u is the divergence-free velocity field satisfying the no-slip condition u = 0
on I', p the pressure, v the kinematic viscosity, and f the external force, assumed to
derive from a potential (ie is the gradient of a scalar function). Taking the curl of
equation (1) and introducing the vorticity as w = curlu, one gets :

%;+u-Vw—w-Vu—yAw:O (2)

with kinematic boundary conditions u = 0.

When trying to integrate numerically such a dynamical system, it is common to use
a time-splitting algorithm [2] over a time step [t,,, t,, + dt]. On the one hand, one
considers the transport, or convective, effects :

0
—w+u-Vw—w-Vu:O 3)
ot

with no-flow-through condition u-n = 0 on I'. The final vorticity field at the end of

the time step is denoted w*. On the other hand, one considers the viscous effects :

0

ai; — vAw =0 @)
with full no-slip conditions u = 0 on boundaries, and with an initial condition
being the final vorticity w* obtained by solving equation (3). The vorticity obtained

at the end of the viscous step is consistent with the Navier-Stokes equations (2).



1.2 Treatment of viscous effects in vorticity formulation

Moreover, in practice, the viscous part can be itself split by linearity in two part,
thus without approximation. Basically, equation (4) is split into an equation in the
fluid whose solution is wf, and an equation “close to boundaries”, whose solution
is denoted w®

8w
v Aw!
ot ai —vAW’ =0
wl(t=t,) =w" (5) ot
. Wh(t=t,) =0 (6)
Arbirary boundary
conditions u® = —u’ on boundaries

Consequently, w’/ 4 w" is the exact solution of equation (4).

While it is easy to solve equation (5) with any standard scheme, equation (6) is
subject to kinematic boundary conditions. Such a boundary condition, involving ve-
locity, translates the problem and the difficulty of pressure estimation (in velocity-
pressure formulations of Navier-Stokes equations) in terms of vorticity.

An efficient way to solve equation (6) is to use Chorin’s algorithm [4], involving
only vorticity. Basically, Chorin’s algorithm consists in creating a vorticity flux at
boundaries, aiming at cancelling the spurious velocity u/. Using sources of vortic-
ity with Gaussian spreading (the heat kernel) on the surrounding environment of
body has been successfully used in the 90’s for two-dimensional problems [18,19],
and accurate formul@ in 3D has been recently established and analyzed [29]. In-
deed, w"’ can be written under its fundamental formulation

b(z,1) —y// &, exp( = (t__€|’2>>do(§)d7' (7)

where o is the measure on I'. Then, it has been shown in [29] that

—2n x u/(z,1) - ki(x)

pla,t) - Ki(x) =~ 1 2(i(x) — k() /vt/7

where k; and k, are the two tangential vector fields of I" (orthogonal to one an-
other), k; is the curvature in the direction k; and % is the mean arithmetic cur-
vature. Results on three-dimensional control, using such a technique, have fol-
lowed [27,30]. Some improvements have also been brought to ensure circulation
conservation [36].

®)

When using these two equations in the context of Lagrangian methods, one can
notice that vorticity flux at boundaries is natural when using particle of fluids, while
diffusion stencils for Lagrangian treatment of equation (5) are provided in [28].



1.3 Treatment of convection and Euler equations

Let the body B C R" be a sufficiently smooth bounded domain, connex or not.
The body and its boundary are included in a domain §2 possibly unbounded, but
of simple geometry, which means practically that a fast solver is available for the
geometry of €. One also considers the domain Q* = Q \ B complementing the
body closure B in €2, as displayed on figure 2.

As soon as it is possible to build the velocity u from the vorticity w, by means of a
linear operator .4, equation on convective effects (3) can written

0

5+ Aw - Vw —w - Vdw = 0 )
with no-flow-through condition u- n = Aw - n = 0 on I' = 9, which is no more
than the usual three-dimensional Euler equations.

A Lagrangian formulation of this equation, once the operator A is available, is
known as vortex-in-cell method and consists in discretizing the fluid volume €2 by
aset b = 1..K of cells of volume vy, at location £, and holding a quantity of
vorticity wy (see [10,5,8] for instance). Equation (9) is then written by means of
cell dynamics :

dwy
dt

= [w- V'A""]Eka Of; = [.Aw]gk, dd? = vk[diVAw]Sk =0 (10)
No additional boundary conditions are required on this dynamical system since the
condition u-n = 0 can be included in the definition of application .A. The evaluation
of [Aw] £, has been historically performed using Biot-Savart laws (see [16,10] for
example), but coupling between particles and grids has been proven to be more
efficient (see [8,9,27]).

A classical approach for defining u = Aw is to introduce the stream function
* : O — R3? in the fluid domain Q*, satisfying

—AY* =w in QF

with boundary conditions such as divep™ = 0 and curley™ - n = 0 on 92*. One gets
the velocity by u = curly™.

Unfortunately, these two boundary conditions are coupled. This leads to major dif-
ficulties, especially when implementation of rigidity matrix is needed. Some ge-
ometries allow to uncouple the stream components, such as the cube (see next sec-
tion for instance), the cylinder [9] or any conformal mapping of the cylinder (see
figure 1).



2 Immersed boundary method for vortical flows

The immersed boundary method consist in two main ideas. On the one hand, one
considers a domain §2 of simple geometry, containing both the body B and the fluid
domain Q* (see figure 2). The domain (2 is usually a cube in Cartesian coordinates,
for which a fast solver for Poisson equations is available. On the other hand, one
dispatches over the body surface I' sources in order to take into account the effect
of the body in its surrounding environment, that is to say in order to satisfy the
adequate boundary conditions on I'.

Immersed boundary methods have been dramatically improved and generalized
since 1974 [25], involving integral techniques, or joined to finite differences [13,21].
Most of improvements consists in providing more accurate formulations [14,36,15],
with a special challenge for three-dimensional fluid dynamic problems, either with
explicit [35] or implicit [32] formulations. Time discretization improvements for
time dependant problems have also been performed, focusing on the conserva-
tion aspects [6]. Some reviews of existing immersed boundary methods are avail-
able [26].

Numerical simulation involving Navier-Stokes or Euler equations, and immersed
boundaries, have mainly two features : their velocity-pressure formulation involves
complex numerical techniques for time and space jump estimations [20,37,22],
while velocity-vorticity formulation involves only elliptic problems [9,28] even
with non-stationary boundary conditions [27]. Moving bodies are also a challenge,
for which accurate schemes are now available, either in vorticity formulation [12]
or in pressure formulation [38].

2.1 Immersed boundary technique : problem setup

The vorticity being linked to stream and velocity by means of Poisson equation,
time is not involved, thus leading to algorithms easier to handle, compared to im-
mersed boundary methods developed in velocity-pressure context.

Conventional immersed boundary methods using vorticity use sources of vortic-
ity [17]. The present approach consists in using a Helmholtz decomposition of ve-
locity :

u = curlyy — Vo (11)
where the potential ¢ contains everything in order to satisfy the boundary condi-
tions. Indeed, the stream components satisfy

_A'l/)x = Wy, _Awy = wy7 _A'lvbz = W; (12)

The boundary conditions of these Poisson equations are homogeneous Dirichlet



conditions, except for the following components for which homogeneous Neumann
conditions are set :

e on planes for which z is constant, di, /0x = 0,
e on planes for which y is constant, 9, /0y = 0,
e on planes for which z is constant, 01, /0z = 0,

This way, for any face of the Cartesian box (2, the stream 1 satisfies divep = 0
everywhere on boundary 0f). Since w is supposed divergence-free, the quantity
divep satisfies the equation —Adivy) = divw = 0 and consequently divyp = 0
everywhere in €.

Moreover, the body effects are contained in the harmonic potential ¢ satisfying

—A¢p=01in Q"
00 — curl - m on T = 98 (13)
n
¢ =0o0rd¢/0n = 0 on 0N

Consequently, the velocity field u satisfies all the required relations :

o divu=—A¢ =0,
e diveyp = 0 so curlu = curl(curlyy) = =AY + Vdivyy = Ay = w
eu-n=curlyy - n—n-Vep=0

Immersed boundary method is then applied to equation (13) by setting a scalar
source 1" over the body boundary I" only (so that —A¢ = 0 in the fluid domain Q*).
Equation (13) can then be replaced by

—Ap=T (14)

The main advantages of using an immersed boundary technique on this potential
are that the potential does not create artificial vorticity, is compatible with the Eu-
ler equation (for smooth domains), and is a scalar Poisson equation. The equation
(14) can be solved by using grid solvers of Poisson equation or equivalently by us-
ing integral methods and Biot-Savart laws [16], possibly improved with multipole
expansion.

Using immersed boundary technique on the potential velocity leads to four Poisson
problems (12,14) in a Cartesian box 2, for which fast solvers are available. Among
fast solvers, two efficient ones are FISHPACK and MUDPACK, which involve FFT,
standard finite difference stencils, and more sophisticated technique such as cyclic
reduction [1,33].

Furthermore, the robustness of immersed boundary methods, used for discretization



in space, is especially interesting when used together with vortex methods, renown
for their high stability in time [10,5,8].

In the present article, one shows how to compute the potential velocity source 7T’
in equation (14), which is the only unknown herein. The source 7' is equivalently
defined by means of a Poisson equation or by means of integral method (evaluation
of Green kernels).

The main question addressed in this article is why does it always work ? It will
be shown that the matrix of the discretized linear problem defining 7" is well-
conditioned. This is a key point in convergence of immersed boundary method,
especially when iterative methods are used to find the correct potential 7. More-
over, this will be illustrated by means of singular value distribution for several ex-
amples, such as the sphere, a NACA airfoil, and two real-life geometries (aircraft
and bridge).

2.2 A harmonic problem for no-flow-through condition

As described there above, Euler equations, or the convective half-step for Navier-
Stokes equations, is written as a dynamical system (9) :

%j—l—Aw-Vw—w-VAw:O

with no-flow-through condition u-n = 0 on I' = 9B, where A is the vorticity-to-
velocity linear application defined by

u=Aw = curlyp — Vo (15)

The stream function 1) and the potential velocity ¢ are defined by the Poisson
equations (12,14) :

—AYp=w, —-Ap=T (16)
with adequate uncoupled boundary conditions, in order to have four scalar Poisson
equations.

The goal of source 7' is to cancel flow through g = curly - n, and is defined as a
singular source over [', thus a generalized function (and not a convolution) given
by

7,(8) = [ m(s)E(s)da(s) (17

where 1 : [' — R is the source distribution over I', and £ : {2 — R a test function,
that is to say infinitely differentiable and compact supported in €.

The immersed boundary technique consists in finding a source distribution y such



as the solution of

—A¢ =T, 0n
(18)
¢ =0o0rd¢p/0n = 0 on O
satisfies
¢
n L (19)

for a given flow-through velocity ¢ = curly - n, where () is the computational
domain of simple geometry, typically a cube, for which a fast solver is available.
One can notice that the linear application g — ¢ is well defined, at least up to a
constant, and its trace R : g — ¢|. is the usual Neumann-to-Dirichlet operator.

Consequently, the key point is the use and the analysis of the linear application
A:,u|—>n-ngﬁ‘F (20)

called from now on the source-to-flow-through, with the normal field n pointing
toward the fluid domain €2*. It can be summarized by the following diagram :

piT >R — n-Ve|

]

T, — =R

In case of invertible application A, the source distribution of singularity 7}, is ;t =
A~1(g). Equations (18)-(19), equivalent to equation (13), read then

—A¢ =Th-14, on 2
L¢ =0 on 02

(22)

where £ = Id for far-field Dirichlet conditions, or £ = J/0n for far-field Neumann
condition. This equation can be solved with high efficiency when one has sufficient
knowledge on linear application A.

2.3 Potential immersed boundary or boundary integral method ?

The use of A is equivalent to evaluations of Green kernels and equation (22) is
equivalent to solve the usual boundary integral equation. Indeed, potential ¢ can be
expressed into its integral form

o(a) = | K(z.y)aly)doly) (23)



where K is a Green function, (47|z — y|)~! in R?, and ¢ the density defined on
domain boundary, solution of the integral equation

4 [ n V(2 9) a(s) doly) = gfa) (24)

Solving equation (24) is equivalent to build and invert operator A.

This gives satisfactory results when velocity is computed by means of integral for-
mulation, such as Biot-Savart laws, possibly with multipole expansion. Neverthe-
less, it is commonly admitted that in the context of fluid dynamics, especially vor-
tex methods, hybrid grid-particle methods are much faster than Biot-Savart laws
for large three-dimensional flows.

When computing a velocity field on a grid, one may prefer the use of equation (22).
Indeed, the application A is build to make the numerical solution satisfy alge-
braically the no-flow-through condition on the body, as shown in section 4.4 and 4.5.

Furthermore, boundary integral method is shown to be very sensitive to staircase
effects when the potential is computed on a grid, especially for the Navier-Stokes
equations, for which a strong and thin boundary layer is located in the body neigh-
bourhood. This makes the method developped in this paper an interesting alterna-
tive to boundary integral when performing flow computation on a grid.

3 Numerical Analysis of Source-to-Flow-Through application

In this section, one focuses on fundamental properties of the linear application A
described above. Its nature is exhibited below, in section 3.1, to be a jump-of-flux
to flux application : the unknown source distribution x is actually the jump of nor-
mal derivatives of the solution through the body I'. This proves that the original
harmonic problem (13) is equivalent to the surface singularity formulation (18,19).

Good conditioning properties are investigated and justified in section 3.2, using the-
oretical tools of functional analysis. Indeed, considering A as an harmonic operator
of degree zero allows to exclude large aspect ratio of spectrum.

Furthermore, since the coefficients of the matrix M encoding application A are by
scalar product with basis vectors, that is to say < Me;, e; >, it is interesting to
establish normality and self-adjointness properties of A is the L?(T") context. The
self-adjointness, and even normality, are shown to be unavailable in section 3.3.
Moreover, annex A establishes that self-adjointness holds in a fractional Sobolev
space.

10



3.1 Relations between source distribution, flux and jump

We are interested in proving that the source distribution p of surface singularity is
weakly equal to the jump of flux over I' of the solution harmonic on both sides of I
Let ¢1 : Q* — R and ¢, : B — R be respectively the solutions of :

—A¢p; =0 on Q*
—Aqbg =0onB
L¢1 =0 on 0f) and (25)
= onl'=08B
%: onl' =908 P2 = dilr
on

where the body B is supposed sufficiently smooth to avoid any drop of regularity
due to the normal field n.

If ones denotes by ¢ the extension of ¢; by ¢, in body B, the jump of flux of ¢ is
written :

0 0 0
I 06
on|. Ong-|. Ong|.
where n = ng« and ng = —ng- are respectively the normal fields on I' directed
toward the interior of (2* and 3. Moreover, there is no jump of ¢ through I" :
[925]1“ = ¢1‘r - (152’1“ =0 (27)

In the sense of generalized functions, one can write from equations (25) the follow-
ing Green formulae, in the spirit of boundary element methods :

[

for any test function v, where o is the measure on I' induced by the Lebesgue
measure A in (2. From these two equations, one gets

Uda:A*A¢1UdA+A*V¢1~VvdA (28)

T

and

vdo = /B Ao d + /B Vo - Vo d (29)

d9 _ _
/F[an]rvda_/gw Vod\ = /QAmdA (30)
and, since —A¢ = T},, one has finally
d9 _ _
/F [anlrvdo—Tu(v)—/F;u}da Yv € D(Q) (31)

and eventually the following weak equality i = [0¢/0n] .

11



Consequently, the inverse source-to-flow-through application A~ is the application
that takes a Neumann condition d¢/0n on a virtual boundary I" and associates
the jump of flux through I' of the solution, which coincides with the singularity
—A¢ = T),. This can be summarized with the following notation :

1, 0% ¢
AT G [8nL (32)

in the case of invertible source-to-flow-through linear application A.
3.2 Conditioning of source-to-flow-through

The good conditioning of source-to-flow-through represents the ability of its spec-
trum to be included in an annular domain, that is to say to avoid large aspect ratio
between eigenvalues, forbiding them to go to zero or infinity as the surface is re-
fined.

This section uses functional analysis, and this theoretical approach leads to quali-
tative result on the conditioning of the matrix involved in the discretized immersed
boundary method.

In term of harmonic analysis, avoiding large ratio between eigenvalues is inter-
preted as being close to identity. This means that if A : 4 — n - V¢|r is an integro-
differential operator of degree zero, one can expect a good conditioning.

In order to establish this property, one needs to introduce the fractional Sobolev
spaces H*. H' denotes the set of functions for which the derivatives are in L2,
functions of integrable square.

One considers equation (13) with a solution ¢ € H'(Q*), with H' proloungement
in body B, with no jump through I'. It follows that 7, = —A¢ € H*(Q) and

n-Ve| € H (T (33)

Furthermore, the jump of flux is the trace of two gradients of functions in H' on
both sides of I" :

0
L, 9%
r 8n3

o)~ o
r

= H-Y2(T 4
7 Ong, € (T) (34)

r

Since it has been established in last section that the source distribution y is the jump
of flux of ¢ through I', one gets

_ |99 12
u—[anLeH n) 35)

12



Finally, from equations (33,35), one gets that the source-to-flow-through linear ap-
plication is an homomorphism of H~'/2(T"), thus a zeroth degree integro-differential
operator, summarized as follow :

peVCHYAT) —25 n.VéeH VAT

| |

T,eH Y Q) CD(Q) — ¢ € HY(Q¥)

Furthermore, in case of non-convex bodies, one may have ¢ € H'~¢(Q2*) instead of
¢ € H'(Q2*), which does not alter the results presented in the present study.

3.3 Non-normality of source-to-flow-through application

One considers the interval [—1, 1] C R in which the interval | — «, [ is immersed.
The L2 scalar product is then defined in a discrete sense, by the Dirac measure
692 + 652, or equivalently :

(f,9) = f(=a)g(—a) + f(B)g(B) (37)

This leads to the following one-dimensional problem with two real parameters A
and B :

—u" =A)_,+ Bég in | —1,1]
u(—1) =u(l) =0
whose solution can be explicited as piecewise linear function. The application is

A(A,B) = (—u/(—a7),d/(81)) (sign in front of «’ comes from the normal point-
ing toward the exterior of interval | — «, /3[), and is represented by the matrix

(38)

1\/[:1 l—a pg-1 (39)
2la—1-(8+1)

In a spatially symmetric configuration, for example &« = [ = &, one obtains self-
adjointness, but as soon as one considers an arbitrary configuration, self-adjointness
and normality are broken. For example, in the case & = 0 and 3 > 0, the matrix M
is non-normal, that is to say MM £ MTM.

In order to solve equation (18,19), one can notice that the source-to-flow-through
application A is linear and consequently its matrix can be encoded. Non-normality
implies that the conditioning (in case of invertible source-to-flow-through linear
application) cannot be provided by eigenvalues of largest and smallest modules,
but only by extreme singular values.

13



4 Discrete Density-to-Flow-Through application

In this section, one describes properties and improvement of the discretization of
the source-to-flow-through application. The generalized function for body sources,
defined by equation (17), is naturally discretized as

K
T, = Z 1p0x, Sp (40)

p=1

for a surface described by a set of elementary surfaces s, pointwise located at X,
with a normal field denoted n,,. The set of sources values is then i,

Such a discretization is also easily implemented when points X, are located on grid
points, once again in order to use fast solvers for Poisson equations. Two ways of
setting these points to grid points, as displayed on figure 3, are as follows :

e The surface is the graph of a function, and normal field and elements of surfaces
are deduced from this function,

e The surface is more tortuous and is described only by a set of points, normals
and elementary surfaces, in which case geometry is interpolated on grid points.

In practice the first case (graph-defined surfaces) lead to one layer of points, while
the second case involves usually two grid-points layers. It is shown thereafter that
two-layer configurations do not lead to conditioning discrepancy. Nevertheless,
conditioning can be improved by means of an explicit weighting technique.

4.1 Graph-defined surfaces

One considers a domain ) =] — 27, 27[>C R? and a spherical body defined by the
Euclidean ball of radius R = 3 whose boundary is the sphere I' = 98, on which the
normal field is defined by n(X) = X/||X||>. One wishes to study the properties
of source-to-flow-through for the surface I', displayed with its normal bundle on
figure 4, in the discrete context.

Numerical derivations are provided by standard centred finite difference scheme,
except on singular points (on body) where schemes are naturally one-sided. The
domain (2 is discretized uniformly in each direction by N + 1 points, the spatial
step being consequently 4 = 47 /N and the elementary volume v = h?.

In order to define the discrete source-to-flow-through application, the sphere is dis-
cretized by its best approximation on grid points. One proceeds as follows : the top
half-sphere is defined as the graph of function z = f(z,y) = (R* — 22 — ?)'/2,

The sphere can be consequently approximated by the best approximant z; ; of

14



+f(x;,y,) over the two dimensional mesh z; = —27 + (i — 1)h and y; = —27 +
(j—1)h, which satisfies 27 +y? < R?, fori, j = 1... N+1. One denotes from now
on {X,},—1.x the set of points in R* approximating the sphere. The generalized
function TM, surface supported, of source distribution {/,},—1. x is consequently
defined in a discrete way as follows :

K
T =) 1p0x,5p (41)

p=1

where s, are the elements of surface defined thanks to the mapping :

h* with F(z,y) = (:my, \VR%2 — 22 — y2) (42)

which also reads s, = Rh?/(X,,-e,) where e, is the basis vector in which direction
the graph is made.

BFX AaF

%( p) @(Xp)

-
2

The potential ¢, such as —A¢ = TM in €, is computed in practice by the Poisson
solver FISHPACK. The discrete source-to-flow-through linear application is then
written

A RX — RE
{tptp=1.x — n(X,) - Vo(X,)

which is represented by a matrix M in the canonical basis.

(43)

As expected, the source-to-flow-through matrix M is not normal, as displayed on
figure 4. Indeed, normal matrix are in the kernel of the self-commutator M™M —
MM, which is not the case presently. Moreover, a normal matrix has its eigenvec-
tors orthogonal two-by-two (except for conjugate pairs of complex eigenvectors).
Furthermore, if one denotes by {Vp}pzln i the set of eigenvectors, M being nor-
mal would imply the matrix of Hermitian product of eigenvectors 4; ; = V; -V,
to be a three diagonal matrix. This brings a second proof that the source-to-flow-
through application is not normal. Consequently, conditioning is accessible by sin-
gular value decomposition, and not by of eigenvalues.

4.2 Conditioning and preconditioning

The discrete source-to-flow-through application A for a spherical body B or ra-
dius R = 3 immersed in the box 2 =] — 27, 27[*C R? uniformly discretized, is
represented by matrix M. The singular value decomposition of matrix M, for {2
discretized by N2 intervals with N = 24, 32,48, 64, 96, 128 and 192, are displayed
on figure 5, as well as their singular value distribution. One observes that singu-
lar value distribution tends to converge toward a law centred on a value close to
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1/2, while eigenvalue cloud tends to be more dense without spreading, as shown
on figure 6.

The densification of singular value distribution around the singular value 1/2 can be
illustrated by the very simplified case of one point immersed in the one-dimensional
interval [—1, 1]. This means that one considers the Poisson equation with the sin-
gular right hand side Adj :

—u" = A50 in ] — ]_, 1[
u(—1)=u(l)=0

(44)

whose solution satisfies A(A) = v/(07) = —A/2, which produces a unique singu-
lar value of 1/2. This provides a scaling for a trivial case, to be compared with the
more complex case of sphere immersion in R3.

Furthermore, the conditioning, obtained by the ratio of the largest by the smallest
singular values, is plotted on figure 7 with dashed lines. One can see that condi-
tioning value fluctuates close to 20. Oscillations of conditioning come from the
presence of unwanted fluctuation in the surface mapping defining the elements of
surface s,. Indeed, since s, = R/(X,, - e,), this quantity becomes artificially high
when point are dispatched close to the symmetry plane z = 0.

One can easily get rid of this problem by preconditioning on the source-to-flow-
through application, which can be improved by using a scaled source distribution
as follows. Indeed, definition of singularity T#, defined by equation (41), can be
modified into T, :

K
T, =Y ppox,h’ (45)
p=1
where h = 47 /N is the step of discretization of the grid. This is equivalent to a
preconditioning on source distribution, since

T,=T, with [, =p,h*/s,

Let this scaling factor be denoted H, so that A = Ao H is the preconditioned
application, an iso-weighted source-to-flow-through application (since all points
of discrete surface are weighted as h? instead of s,). The conditioning of the iso-
weighted application remains at a very low value (see left picture of figure 7), and
makes the distribution of singular value converge toward a Gaussian distribution,
as shown on figure 8. A lack of eigenvalue spreading is also observed on the eigen-
value clouds displayed on right picture of figure 6.

One considers a non-derivable geometry with the NACA-2412 airfoil (displayed on
figure 9), in order to focus the impact of lack of surface regularity on the source-to-
flow-through application. This surface is, as well as the spherical geometry, built
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as the graph of a function immersed in 2 =] — 27, 2x[>. The discretization is the
surface best grid approximant in a grid containing (N + 1) points, uniformly dis-
cretized, with a grid step h = 47/N. The boundary conditions on box boundaries
are homogeneous Neumann condition except on top and bottom boundaries (ie
z = £27) where periodic conditions are set.

The resulting spectra is displayed on figure 9 in the case of iso-weighted source-
to-flow-through application in the 96 box, and the I.? conditioning is found to
be CondM = 9.98. Consequently, the geometrical singularity at the body rear
side does not break the well-conditioning of source-to-flow-through application.
Furthermore, the grid approximation leads to a slight displacement of the surface,
but still defines correctly the angle of trailing edge.

4.3 Density-to-Flow-Through application for interpolated surfaces

The goal of this section is to study the behaviour of the source-to-flow-through
application for a body described only by a set of points on its surface, and not by
the graph of an explicit function f as described above. The main drawback of this
configuration is that spreading surface point among grid points by convolution leads
to multiple layers of point in the grid, as shown on figure 3. But the advantages are,
on the one hand, that no multiple point can be introduced (the matrix is full rank,
so systematically invertible), and on the other hand, that no knowledge of the graph
defining the surface is required.

One considers a surface defined by a set of points X, € R?, indexed by p = 1..N,
the surface normal vector n,, € R?, and the elementary surface s, € R related to
this point. The global surface measure is then

N
S=>"s, (46)
p=1

These elements of surface are interpolated on a grid, in the spirit of [7,8], by means
of a kernel ¢ : R — R whose support is [—¢, €]. This kernel satisfies the moment
properties [8], or even better the discrete moment properties such as kernels based
on B-splines [23,9]. This allows to transfer the normal field n a points {Xp}pzln N
on a grid point X; by means of the convolution n * (®3, that is to say :

N
n; = > 0, (X; - X,) (47)
p=1
where ¢ is in practice chosen equal to the grid step h.

One can notice that this sum can be restricted to points X,, located only in the e-
neighbourhood of X; (ie such as || X, — X, ||oc < ¢€), thanks to the support size of
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kernel (.

In order to keep the normal orientation, one restricts kernels to functions of posi-
tive values (thus limited to second order kernels), in a similar way of hybrid par-
ticle methods for probabilistic equations (such as Vlasov or Fokker-Plank equa-
tions [31]), and to the opposite of fluid equations for which positivity is less impor-
tant than accuracy (such as Euler or Navier-Stokes equations [9]).

The impact of multi-layer structured grid points on conditioning is very limited.
The non-alteration of singular values is shown by the comparison of their distribu-
tion between graph defined and interpolated surfaces, plotted on figure 10 for the
spherical body of radius R = 3.

This property can be understood on the simplified case of a one-dimensional prob-
lem : two points are immersed in the interval at location £¢ holding two Dirac
functions, similar to equation (38) :

—u" =Ad_.+Bj. in]|—11]
u(—1)=u(l)=0

(48)

The application A(A, B) = (u/(—e7),u/(¢7)) is then associated to the following
non-normal matrix :

1|1—e—(1—-¢)

M=—— (49)
211—¢ 1+c¢
The two singular values S.. are given by
2 2 2\ 1/2
25 =1-c+e’+e(2-2e+¢%) (50)
and leads, by means of Taylor expansion, to the conditioning
S, )
CondM:S—:1+\/§5+O(s) (51)

as long as ¢ is sufficiently small, and satisfies lir% CondM = 1.
e—

This technique is consequently robust and allows to handle easily very general
geometries since only a set of points on the surface and their normal vectors are
required to make the algorithm valid.
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4.4 Convergence and sphere potential

In order to check convergence of the global algorithm, the harmonic potential ¢ :
R3 — R satisfying n - V¢ = 0 on the sphere of radius R = 1 and

lim Vo(X) =K € R?

|X|—o0

is computed numerically using the immersed boundary method with interpolated
surface. Vector K = e, is consequently the streamwise direction. The well known
exact solution of this problem, up to a constant, is

R3
- 2XP

»o(X) = (1 ) K -X (52)

By setting £(X) = ¢(X) — K- X, the potential ¢ is solution of the following partial
differential equation :

—A¢ =0on

23

%n(x) =—-K-nonl =0B (53)
€ _

a—n—()on@Q

which is a particular case of equation (13), where I' = 0B is the sphere.

The immersed boundary formulation of problem (53) can be written under the form
of equation (18), which is as a Poisson equation in a Cartesian box :

—Af = TAfl(_K‘n) in ()
¢ (54)

0
%—OonaQ

where the singular right hand side 7" is defined by equation (17).

The function £ is computed numerically, and the solution ¢ is recovered by ¢(X) =
¢X)+ K- X.

Solving equation (54) numerically is equivalent to solve a 7-diagonals linear sys-
tem. Such standard linear systems, here a discretized 3D Laplacian in a Cartesian
box, can be solved with very efficient methods like cyclic reduction and/or Fourier
decomposition, implemented for example in software FISHPACK [33]. The com-
putational time for solving such systems behaves linearly with the number of grid
points [9].

The numerical solution is computed in the box 2 =] — 8, §[?, with value fixed to the
exact value on boundaries. In order to check consistency, and thus convergence by
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means of stability of source-to-flow-through application, the conventional method
of applying the discrete scheme to the exact solution is used. This means that one
proceeds as follows :

e One considers the flux of the exact solution over the points of the discrete surface
X, thatis to say F, = n, - V¢o(X,), withp = 1.. P,

e The resulting source distribution p is obtained by the inverse discrete source-to-
flow-through matrix 1 = A~*(F), as described by equation (43).

e The final potential ¢ is the potential generated by the source over the spherical
body, with a source distribution 1 : —A¢p =T,.

The overall relative error ||¢||2/||dol|2 is then computed over the part of the com-
putational box €2 outside the spherical body. The convergence is first order (see
figure 11) as expected.

The resulting velocity U, which is the quantity used in practice when computing
fluid dynamics, is then compared to the exact velocity V¢y. It appears that the
relative error on velocity in this volume |[|[U — Vo ||2/ ||V dol|2, is also first order,
as shown on figure 11. One can also notice that first order accuracy is related to
the Euler equations, but second order is reached when the Navier-Stokes equations
with full no-slip conditions are considered, due to the velocity that tends to zero in
the surface neighbourhood (see [9] for instance).

4.5 No discrepancy in conditioning for more complex geometry

In order to show that the matrix involved in this immersed boundary technique is
always well conditioned, one considers the same problem as in the last section 4.4,
but using an aircraft geometry for the body surface I'.

The numerical parameters are as follows : the aircraft is immersed by interpolation
in the box Q2 = [0, 4] x [—2,2] x [0, 1] and discretized by 128 x 128 x 32 intervals,
leading to a step h = 277 in all directions. The aircraft is defined by 5617 points
with their body normal vectors. Points and normals of the body boundary I" are dis-
patched over P = 3428 grid points X, (and normals n,) by means of convolution
formula (47), using the piecewise linear interpolation kernel {(x) = [1—|z/h|]* /h
(where [z]" is z if x > 0 and 0 otherwise).

One can notice that the size of M, representing the discretized source-to-flow-
through linear application, is the size of the body, which is much less than the size
of the computational box (here 3428 compared to 549153). Moreover, this matrix
is not normal, as expected, and the distribution of singular values is still grouped,
following a bi-Gaussian regression law, as shown on figure 12. This gives the ex-
pected good conditioning of the source-to-flow-through application, found to be
CondM = 16.42.
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As shown on figure 12, it is then easy to compute potential fields around the aircraft
geometry, here plotted for various pitch and roll angles, that is to say for several
directions of vector K.

5 Coupling with Vortex-in-Cell methods and practical considerations

Vortex method is used to descritize in a Lagrangian way the convective sub-step for
Navier-Stokes equation (9), equivalent to the Euler equations for smooth geometry.
The resulting dynamical system is given by equation (10), for which the veloc-
ity field is computed by equations (15,16) solved in practice by FISHPACK [33].
This dynamical system is solved by RK2 method, grid/particle interpolation and
particle remeshing are performed by standard interpolation techniques for vortex
methods [9,8,23], here with the kernel M. This leads to a globally second order
scheme in time and space, without any stability condition depending on time and
space steps, due to its Lagrangian feature, thus allowing in practice the use of large
time steps.

The initial vorticity field is then given by :

w(t=0,§) = > curl(Fi(€)e.) + Bi(€)e: — ePi(§)e, (55)

i=1,2

where 5” = (&, &y, 0) is the projection on plane z, y. The Batchelor vortices, their
core-jets generating swirl, and streamwise pertubation are respectively given by :

L'y
~ 952

Bi(€) o8 -Gt 7 = iel§ -Gt ) = Lol -G
T

(56)

2mo

It is noticeable, as mentioned above, that the immersed boundary technique in-
volves only one more Poisson equation in the velocity computation than standard
vortex methods in a uniform Cartesian box without body. The computational cost
of a velocity computation in a VIC algorithm using this immersed boundary tech-
nique is then 4/3 of a velocity computation in an empty Cartesian box (that is to
say without body), which has already been proved to behave linearly with respect
to the number of particles, with a theoretical evolution scaling as O(n logn).

On the one hand, interaction between vortex and the aircraft geometry of sec-
tion 4.5 is considered. Parameters are {; = (1,0.7,0), {, = (1,—0.7,0), Iy = 1,
Vi =V, =01,7= 0 = 0.1 and ¢ = 0.07. The large perturbations induce a
strong interaction between this vortex and the aircraft, with non trivial dynamics of
the vorticity field, as shown on figure 13. The effective residual penetration is the
numerical zero at all iterations, as shown on middle picture of figure 12. Less than
12 minutes have been required to perform the global computation on a sequential
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Opteron 245 processor, involving 200 time steps and 5.5 10° grid points, with a
second order accuracy in time and space.

On the other hand, one considers a hollow mechanical structure, here a bridge,
inside and around which vorticity evolves. Formula (55) is used again as initial
condition, with the parameters V; = 0.5, Vo, = 0, ¢ = 0 and {; = (25,0,0),
'y = 10, 7 = 0 = 4. The computational box is 2 = [—40, 40, —40, 40, —160, 160]
where 2 is the axis aligned to the road over the bridge, discretized by 27 x 27 x 2°
cells. Solution is computed incrementally up to 7" = 300 by steps of 4t = 0.1. The
isovorticity surface at time ¢ = 28 is displayed on figure 13, as well as spectrum of
the source-to-flow-through application associated to this geometry, which is shown
to be still well-grouped. Circulation is well conserved in its three components with
a maximum error lower than 0.6%, and 0.22% in the vortex main direction.

6 Conclusion

The technique of immersed boundaries, involving singular sheets of sources, has
been revisited, focusing on its implicit formulation in order to satisfy no-through-
flow boundary condition on a body of arbitrary geometry.

In the context of vorticity formulation, taking into account body geometry leads to
invert the source-to-flow-through linear application, or at least to solve the associ-
ated linear system. Essential properties of this application have been given, such as
its non-normality with respect to the standard scalar product, its good conditioning
and its ability to be used easily, even for complex geometries.

Two kinds of discretizations have been investigated : a description of the immersed
surface as the graph of a function on the one hand, and a set on points and normals
dispatched on neighbour grid points on the other hand. The second technique is
more general and easier to handle at an engineering level, without noticeable dis-
crepancy on the conditioning. An explicit preconditioning technique has also been
described, provided at no computational cost.

The size of such linear systems is the number of discretization points of the surface,
which means much smaller than the number of grid points. For discretization of
moderate size, direct inversion of the source-to-flow-through matrix is possible.
This makes the method valid for much refined surfaces, using subgrid multiscale
modelling techniques (such as [3]).

Coupling this method to Euler or Navier-Stokes solvers in their vorticity formu-
lation has been shown to be natural, especially the coupling with vortex methods,
which allows to manage three-dimensional flow computations in complex geome-
tries at a computational cost close to the cost in simple Cartesian box.
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Figures

Fig. 1. Case of a viscous wake behind an airfoil, for which adding vorticity at the trailing
edge is unneeded when solving the convective part of the Navier-Stokes equations.

Q" =Q\B

Body B

\89

Fig. 2. Different domains and notations involved in definition of immersed boundaries.
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z= f(z,y) (@ =988 (b)

/ Kernel support

Fig. 3. Two different ways to immerse a surface : Surface I' is defined as the graph of a
function z = f(x,y) (a), or surface is defined by a sequence of points spread over the grid
by means of a convolution with a kernel whose support size scale as the grid step (b). Case
(b) shows a point on the surface I" denoted by e and spread over the 4 neighbour points on
the grid, involving a kernel which support size is h X h.
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Fig. 4. Non-normality of source-to-flow-through linear application for a spherical body
(displayed with its normal bundle on top picture), and Hermitian product of eigenvectors
(bottom picture).
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plication for a spherical body immersed in a grid with various refinements, and its best
Gaussian fit in the grid 1283.
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Fig. 9. Complex spectrum of source-to-flow-through application (bottom picture) for a
NACA?2412 airfoil (top picture) in a 963 grid.
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Fig. 10. Singular Values distribution over 60 classes of source-to-flow-through application
for a spherical body immersed in a grid 963, in the cases of graph defined surface (+) and
interpolated surfaces (), and their best Gaussian fits (respectively —— and —).
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Fig. 11. Potential flow around a sphere with far field velocity (displayed on top picture),
and its residual flow-through (middle picture) close to numerical zero. Consistency of the
potential computation (+, bottom picture), and convergence of resulting velocity (o, bottom
picture), with respect to the number of grid points (first order line is plotted as ——).
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Fig. 12. Aircraft discretized by 5617 points spread over 3428 grid points (top left picture,
colored by streamwise component of normal field one aims at cancelling). Top right picture
shows isosurfaces of potential ¢ for the aircraft geometry immersed in a 128 x 128 x 32 box
for a pitch angle 0° and roll angle 10°. The resulting absolute error on penetration condition
is displayed on middle picture. Bottom picture shows the distribution of the 3428 singular
values of source-to-flow-through application, dispatched over 60 classes (x), and its best
bi-Gaussian fits (—) with its two Gaussian components (——).
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Fig. 13. Vorticity isovalue at level ||w| = 0.05 at ¢ = 17 for the aircraft (top picture)
and ¢ = 28 for the hollow bridge geometry (bottom left picture), and spectra of its related
iso-weighted source-to-flow-through application (bottom right picture).

35



A Self-adjointness of source-to-flow-through

The goal of the present annex is to show that the Sobolev space H~'/2(Q) is the
natural space where the source-to-flow-through linear application is self-adjoint,
which suggests that defining it in other spaces would lead to a lack of self-adjointness
and even normality.

One introduces the product of duality as a bilinear form over a topological space, in
practice H*(I") x H~*(T"), which can be written as follows for regular generalized
function :

(f0), = /F Fl@)o(z)do(z) A1)

One also considers the Neumann-to-Dirichlet operator :

R:V CH(TI) — HTYT)
(A.2)
g — 1lp
such as ¢, is solution of equation (25).

The adjoint takes its sense by means of the scalar product in H~/2(12), defined
using the product of duality and the Neumann-to-Dirichlet operator for s = —1/2:

(f, g>H*1/2(F) = (R/, 9)1/2,_1/2 = /F Rf(z)g(z)do(x) (A.3)

which is commutative (see [24]).

One considers the application that associates to € H~'/2(T) the solution ¢ €
H' () of the following harmonic problem with a no-jump-through condition :

—A¢p =T, on()
Lo =0 on 0N (A4)
(¢l =0onT

with T, = (i,-) 4 /2,1/2- AAS shown in section 3.1, the definition of A using the jump
relation (32) allows to write RA as a source-to-Dirichlet operator :

RA:V C HV3(T) — HY(T)

0
u HRA(M):R<£

(A.5)
) =¢lr
I

Let ¢ and 1) be respectively the solutions of problem (A.4) for right hand side
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densities . and v. This leads the following calculus of adjoint linear application A* :

<A*(V)7,U>H—1/2(r) = <A(N)7V>H—l/2(r) = T,(9) (A.6)
with

L(9) = [ ~Ap@)sx)dAa) = | V() Vo(a) dAa)= | oa)n-Vi(a) do(a)

Since far-field conditions are homogeneous, the integral at the right of the expres-
sion above vanishes and the equation above is commutative in ¢ and ). Conse-
quently, one gets

<A*<V)7,U>H—1/2(F) = (A(p), V>H—1/2(p) =T,(¢) =T.(¢) = <A(V)7N>H—1/2(r)
for aln couple of densities (u, v) € H~'/2(I")2, which finishes the proof that source-

to-flow-through application A is self-adjoint in H~/2(I"). This suggests that I.? is
not the natural space to have the source-to-flow-through application self-adjoint.
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