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EFFICIENCY OF MULTISCALE HYBRID GRID-PARTICLE
VORTEX METHODS∗

M. EL OSSMANI† AND P. PONCET‡

Abstract. This article presents a study of computational cost for the vortex method, a La-
grangian numerical scheme using particles of fluids for simulation of three-dimensional flows. Its
main features are to compute accurately transport effects and to be very robust, that is to say, often
without prohibitive stability condition. Special attention is given to hybrid grid-particle vortex meth-
ods. They are shown to scale as O(n logn), even when used in a multiscale context. Furthermore,
a discussion is provided on the best strategies for simulations in complex geometry. Computational
cost is shown to have the same efficiency when performing multiscale simulations of three-dimensional
flows in complex geometry.
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1. Introduction. The vortex-in-cell method is a numerical scheme introduced
for computation of fluid dynamics, using fully the Lagrangian feature of the method
in order to compute accurately transport and convection effects. It consists of a
discretization of the fluid domains by cells of fluids defined by their position, volume,
and amount of vorticity, expressed as a measure solution of the Navier–Stokes equation
in their velocity-vorticity formulation.

While its early developments involved mainly two-dimensional (2D) flows, using
random walks and raw Biot–Savart laws in order to compute, respectively, diffusion
and transport on particles (see [17], then later [21] and [2]), these methods have since
been dramatically improved. Nowadays, challenges on vortex methods deal with large
three-dimensional (3D), multiphysics and/or multiscale flows.

The state of the art for 3D simulations using particle methods involves either very
large simulations without multiscale (see [13], [37], and [15]) or multiscale simulations-
based velocity-pressure formulation of Navier–Stokes equations (see [5], [29], and [40]).
Problems involving complex geometry are not discussed in any of these studies.

In the present article, focus is given on multiscale 3D flow computation using vor-
tex methods. Indeed, the Lagrangian feature of vortex methods, based on velocity-
vorticity formulation of the Navier–Stokes equations, often allows the use of large
time steps, thus allowing the accurate study of flow over large time scales (see [34],
for example). This article brings new results on computational efficiency of multi-
scale vortex methods in both simple and complex geometries. Moreover, despite the
fact that parallelization is an important aspect when performing large simulations,
this article focuses on the numerical methods themselves rather than considering the
impact or efficiency of parallel computing.
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Well-known results and historically Lagrangian techniques for vortex methods are
described below in section 2. Section 2.1 presents the Biot–Savart laws. Section 2.2
describes the coupling between grids and particles and gives an estimation of the
computational cost for such hybrid vortex method. The scalability obtained for the
grid-particle coupling is extended to the multiscale context in section 3.

Section 4 contains a discussion on the most appropriate method used to perform
the multi-scale vortex method in complex geometry among the boundary integral
method, the implicit immersed boundary, Chorin’s algorithm, and penalization. The
penalization method is shown to be the most advantageous one, illustrated on the
simulation of a three-dimensional wake generated behind a sphere for a Reynolds
number Re = 500.

2. Conventional vortex-in-cell (VIC) methods. One considers the Navier–
Stokes equations, for an incompressible fluid in a domain Ω, of constant density ρ and
constant dynamic viscosity μ:

(2.1) ρ
∂u

∂t
+ ρu · ∇u− μΔu = f −∇p,

where u is the divergence-free velocity field satisfying the no-slip condition u = 0 on
Γ = ∂Ω, p the pressure, and the external force, assumed to derive from a potential
(that is to say, the gradient of a scalar function). Taking the curl of (2.1) and intro-
ducing the vorticity as ω = curlu, one gets the Navier–Stokes equation in its vorticity
formulation:

(2.2)
∂ω

∂t
+ u · ∇ω − ω · ∇u− νΔω = 0

with boundary conditions u = 0, where ν = μ/ρ is the kinematic viscosity. Two
nonlinear terms are present in this equation: u · ∇ω is a transport of vorticity, usu-
ally leading to the most restrictive stability condition, and ω · ∇u is a stretching,
responsible of evolution in vortex orientation.

Vortex-in-cell methods consist of discretizing the fluid domain Ω by a set of N
particles (or cells) of volume vp, position ξp, and vorticity ωp, p indexing the particles
from 1 to N . The mathematical formulation of this particle description consists of
writing the vorticity as a measure solution

(2.3) ω =

N∑
p=1

ωpδξpvp,

where δξp(ζ) = ζ(ξp), for any test function ζ, is the Dirac function in ξp.
The Lagrangian formulation of (2.2) can then be written as follows:

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dωp

dt
= [ω · ∇u+ νΔω](ξp(t), t),

dξp
dt

= u(ξp(t), t),

dvp
dt

= vp(t) divu(ξp(t), t) ≡ 0

for p = 1, . . . , N .
For problems involving a nonempty boundary, that is to say, Ω �= R

3, the velocity
field satisfies the no-slip boundary condition u = 0 on the domain boundary Γ, and
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the tangential part of this boundary condition is responsible for vorticity creation at
walls due to compatibility conditions between ω and u.

Among the main advantages of this Lagrangian formulation, the transport term
u · ∇ω vanishes as well as its related stability condition. In most Eulerian methods,
such a CFL reads ‖u‖∞δt/δx � C, where δt and δx denote the time and space
discretization steps and potentially lead to prohibitive small time steps as δx gets
small. Indeed, the convection part of the first line of dynamical system (2.4) induces
a stability condition of the form ‖ω‖∞δt � C, which does not depend on δx and
makes Lagrangian methods especially interesting (for 2D simulations, the stability
condition completely vanishes). Nevertheless, in some contexts involving very sharp
vorticity gradients, such as homogeneous isotropic turbulence, combustion, or multi-
fluids, the Eulerian and Lagrangian stability conditions can be equivalently restrictive
when ‖u‖∞/δx � 1/‖ω‖∞.

This Lagrangian feature is even more interesting for computation of very slightly
viscous flows for which the (transport) CFL stability condition is dominant compared
to the diffusion stability condition and for which computing a long time scale is
interesting in order to characterize asymptotic behavior of the flow.

Furthermore, it is usual to split (2.2), over a time step, into a convective step and
a diffusive step [4]. The resulting Lagrangian formulation of convective step reads

(2.5)
dωp

dt
= [ω · ∇u](ξp(t), t),

dξp
dt

= u(ξp(t), t),

with conservation of particle volume vp for incompressible flows and subject to only
normal boundary conditions u·n = 0 on Γ, called usually a no-flow-through condition.
Moreover, the diffusion step then reads

(2.6)

{
∂ω

∂t
− νΔω = 0 in Ω×]t, t+ δt[,

u = 0 on ∂Ω×]t, t+ δt[

for which the initial condition is the vorticity obtained at the end of the convective
step. In this last equation the partial differential equation involves vorticity while the
boundary condition involves the velocity. Section 4.2 will describe how to deal with
such implicit boundary conditions.

A dynamical system, such as (2.4) or (2.5), can be integrated by any standard
numerical method for ordinary differential equations (such as Runge–Kutta, for ex-
ample), once one is able to compute u and ∇u at location ξp. The computation cost
of building u and ∇u from the set of vorticity ωp is of fundamental interest in the
study of vortex-in-cell performance. The most-used techniques to do so are on the
one hand the use of Biot–Savart, summarized in section 2.1, and on the other hand
the use of grid-particle coupling, developed in section 2.2.

2.1. Biot–Savart laws. Historically, velocity computation for dynamical sys-
tems (2.4) and (2.5) has been performed by Biot–Savart law:

(2.7) u(ξp) =

∫
R3

∇K(ξp − x)× ω(x)dx,

where K(x) = (4π|x|)−1 is the Green kernel of the Laplacian operator. Given the
particle description (2.3) of ω, formula (2.7) is equivalent to

(2.8) u(ξp) =

N∑
q=1

∇K(ξp − ξq)× ωqvq.
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This method has been intensively and successfully used for decades for flow compu-
tations, with evaluations of (2.8) performed with a mollified kernel.

The cost of velocity computation u(ξp) on the N particles scales as O(N2), which
is prohibitive for accurate simulations. This consequently requires the use of multi-
pole expansions of kernel ∇K (or its mollification) and fast algorithms for the hier-
archical structure of particle networks (for fast tree algorithms, see [25]). Such al-
gorithms have been successfully developed and implemented for 2D vortex methods,
making a consistent evaluation of formula (2.8) scale as O(N logN).

Nevertheless, it has been shown in [20] that the 3D case does not allow such an
improvement of computational cost, and this method based on grid-particle coupling
is generally more efficient. Indeed, a balance between the number of pairwise inter-
actions and the number of expansions has to be set. For example, a tree-code with
computational cost scaling as O(N3/2) has been constructed in [10], and this exponent
has been later dramatically reduced [39], down to O(N1.1) in [30], already mentioned
in [19]. The major drawback of such method, even in the low exponent case, is the
constant in front of this power law, which is in practice quite large. Moreover, pure 3D
particle description requires evaluation of ωp ·∇u(ξp). This term vanishes in 2D con-
text, but can be potentially difficult to compute accurately in a pure Lagrangian way.

Furthermore, in two dimensions as well as in three dimensions, computing dif-
fusion of vorticity with a pure particle description has been historically performed
by random walks. In order to improve the convergence rate, deterministic particle
diffusion has been introduced by means of a convolution formula known as particle-
strength-exchange (PSE), in the spirit of smoothed-particle-hydrodynamics methods.
Let ε and h be, respectively, the characteristic lengths of the kernel support used
in PSE methods and grid step. Convergence of PSE has been analyzed in [22] in
the context of O((h/ε)2) convergence and has been later analyzed in the context of
O (

h2
)
intrinsic convergence in [35], which is necessary, since in practice the kernel

size is adapted to the grid step (which means h/ε is constant).

2.2. Hybrid grid-particle vortex methods. A hybrid grid-particle vortex
method consists of computing the most possible quantities on a grid and at the same
time using the Lagrangian feature of vortex methods in order to compute accurately
transport without the restrictive stability condition on transport, such as for conven-
tional Eulerian methods. The computational domain considered herein is a Cartesian
box Ω, but such coupling has been successfully performed in the past in stretched
geometries [20].

At the beginning of a time step, only the quantities defining the cells are available,
that is to say, position ξp, vorticity ωp, and volume vp. The coupling consists of
interpolating the divergence-free vorticity field onto a grid, then computing the stream
function ψ satisfying the following vectorial Poisson equation:

(2.9) −Δψx = ωx, −Δψy = ωy, −Δψz = ωz.

The boundary conditions of these Poisson equations are homogeneous Dirichlet
conditions, except for the following components for which homogeneous Neumann
conditions are set:

• on planes for which x is constant, ∂ψx/∂x = 0,
• on planes for which y is constant, ∂ψy/∂y = 0,
• on planes for which z is constant, ∂ψz/∂z = 0.

These kinds of boundary conditions allow us to satisfy no-through-flow, that is to say,
curlψ · n = 0 on boundaries, as described thereafter.
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ω on particles =⇒ ω on grid =⇒
⎧⎨⎩
−Δψ = ω
+Boundary
conditions

⇓ ⇓ ⇓
−νΔω on particles ω · ∇u on grid ⇐= u = curlψ on grid

⇓ ⇓
ω · ∇u u on

on particles particles

Fig. 1. Grid-particle coupling algorithm used to evaluate all terms of (2.4), (2.5), and (2.6).

Moreover, for any face of the Cartesian box Ω, the stream ψ satisfies divψ = 0
everywhere on boundary ∂Ω. Since ω is supposed divergence-free, the quantity divψ
satisfies the equation −Δdivψ = divω = 0, and consequently divψ = 0 everywhere
in Ω. Several other kinds boundary conditions could also be applied, such as periodic,
shearing-sheet, symmetric, or unbounded (see [15], for example).

The velocity is then provided by

(2.10) u = curlψ

and satisfies u · n = 0 on boundaries, thanks to the choice of boundary conditions
on stream ψ and the stretching by ω · ∇u, by means of fourth order finite difference
schemes on the grid. The relation u = curlψ gives that velocity satisfies divu = 0
and

curlu = curlcurlψ = −Δψ +∇divψ = ω.

The velocity and the stretching are then interpolated back to particles so that time
integration of (2.5) can be performed. If diffusion is considered, for (2.4) or (2.6),
the evaluation of the Laplace operator can be performed either on a grid followed by
interpolation of −νΔω to particles or directly on a particle using a PSE scheme [35],
[22]. This algorithm is summarized by the sketch on Figure 1.

The Runge–Kutta method and finite difference schemes used within the algo-
rithm described above correspond to a computational cost linear with respect to the
number of grid points. The overall method efficiency is consequently driven by the
computational costs of grid-particle interpolations and the method used to solve the
Poisson equation −Δψ = ω.

On the one hand, the Poisson solver used in Cartesian geometry is FishPack [42],
[41], whose scalability scales as O(n log n), n being the number of grid points. On
the other hand, let ω̃(x̃) denote the interpolation of the set of particle ωp on the grid
point x̃. The value on grid point is provided by the convolution formula

(2.11) ω̃(x̃) = Λε ∗ ω(x̃) =
N∑
p=1

Λε(x̃− ξp)ωpvp

with Λε(x) = ε−3Λ⊗3(x/ε) and

(2.12) Λ(x) =

⎧⎨⎩
(
3x3 − 5x2 + 2

)
/2 if 0 � x � 1,

(2− x)2(1 − x)/2 if 1 � x � 2,
0 if x � 2.
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This kernel is third order (in the sense that it preserves the 3 first moments of the
distribution), twice continuously differentiable (except in 0), and symmetric, also
known as M ′

4 Monaghan’s kernel [32].
Moreover, let {x̃k}k=1..n denote the location of grid points. One proceeds to

interpolation of vorticity on grid points onto particles as follows:

(2.13) ωp = Λε ∗ ω̃(ξp) =
n∑

k=1

Λε(ξp − x̃k)ω̃(x̃k)v̄,

where v̄ = δxδyδz and δx, δy, and δz are the grid step sizes in the three dimensions
of space.

The conservation of discrete integral is ensured by a spline-like property of this
kernel:

(2.14)
∑
j∈Z

Λ(x+ j) = 1 ∀x ∈ R.

Besides, this property can be used more appropriately by considering an anisotropic in-
terpolation kernel such as Λε(x) = v̄−1Λ (x/δx) Λ (y/δy) Λ (z/δz), where x = (x, y, z).

Since the support length of Λε is 4ε in all directions, the sum above is restricted
to the very neighborhood of ξp: index of the required grid points with a contribution
to this sum can be found by a simple integer division. It follows directly that the
computational cost of this sum (2.13) is independent of n; thus the global grid-to-
particle interpolation scales as O(N), N being the number of particles.

Reciprocally, the particle-to-grid interpolation (2.11) is performed by means of
a loop over grid points. The sum being a loop over particles, the two loops can be
swapped when implemented so that the particle-to-grid computational cost is the
same as particle-to-grid interpolation, that is to say, scaling as O(N).

Furthermore, in order to avoid clustering and holes of particles, a frequent remesh
of the particle lattice is performed: particles are interpolated to a new particle network
collocated to the grid points (or staggered), using again the kernel displayed above.
This remeshing procedure is nondiffusive and conservative since the kernel is third
order. Its computational cost is also O(N), and the number of particle scales as the
number of grid points, which means O(N/n) = 1.

These steps are not algebraically conservative on vorticity divergence. Even if in
practice vorticity divergence does not cumulate (see [20], [34]), some nonregular initial
conditions (see [35], for example) may require periodically a projection on divergence-
free fields. A solution is to replace ω by ω +∇β with a β solution of −Δβ = divω
in the fluid domain and ∂β/∂n = −ω · n on boundaries if ω · n has to be zero (on a
flat body on which the condition u ≡ 0 has to be satisfied). Another strategy simply
consists of computing u from ω and then setting ω = curlu (see [16]). This first
method has the same scaling as the Poisson solver, while the second is linear since u
is already available in the algorithm. Both can be performed at the same time as the
remeshing procedure.

The overall algorithm computational cost scales consequently as O(n logn). The
following sections will show that this hybrid grid-particle method can be generalized
to multiscale computation (section 3) and complex geometry (section 4.4) with the
same scalability.
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3. Multiscale formulation and scalability of hybrid method. The present
section shows how the vortex method using grid-particle coupling, described above,
can be set up in the multiscale context and shows that it scales also as O(n log n), that
is to say, that there is no discrepancy in scalability due to the multiscale formulation.

3.1. Grid hierarchy and boundary condition inheritance. A hierarchical
grid structure is created, defined by a recursive sequence of patches, that is to say,
by the introduction of one or several child Cartesian grids embedded in their parent
grid, starting from a root-grid which is the uniformly discretized domain Ω.

The scale coupling is a two-way strategy specific to stream-vorticity formulation:
vorticity is interpolated from fine to coarse grids, and boundary conditions used for
Poisson equations are interpolated from coarse to fine grids, as shown on Figure 2.
This leads to the computation of stream ψ on a child grid Ωchild whose boundary
conditions inherited from parent grid as follows:

(3.1)

{−Δψ = ω in Ωchild × ]0, T [
ψ(x, t) = ψparent(x, t) on ∂Ωchild × ]0, T [.

Accuracy, convergence analysis, efficiency, and parallelization of this two-way coupling
are discussed in [9].

Implementation of fine-to-coarse update and coarse-to-fine boundary condition
transfer has been performed by the adaptive grid refinement in Fortran (AGRIF)
library [23]. Syntax analysis software Lex and Yacc, part of AGRIF, allow us to re-
place float arrays declared (defined for a standard one-grid computation) by multigrid
structured variables. In the grid tree, a grid is defined by its index and the index of its

Particles require

possibly outside fine grid
grid points to be assigned,

Mband

Points required for Dirichlet
conditions on the fine grid boundary

Fine grid − child
Coarse grid − parent(resolution factor is 4)

Fig. 2. Grid points at coarse level (◦) are used to assign value of grid points (�) at boundaries
of the fine grid. Particles are assigned from grid points (�) in the neighborhood of the particle
by means of interpolation formula 2.12, which may involve values outside fine grid: a number
of Mband grid point layers (×) are also interpolated from their coarser level in order to satisfy
interpolation and transport computations. Dotted lines stand for the kernel support, used for grid-
particle interpolations.
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parent grid, the node index in the parent grid of six box corners, and the three refine-
ment coefficients (for the three direction, in order to be able to consider anisotropic
refinement). Such Cartesian child grids also allow the use of fast Poisson solvers.

Since transfer between fine and coarse grids of boundary conditions scales as
O(n2/3) and transfer of grid contents scales linearly, the overall multiscale vortex
method computational cost is still O(n logn). In order to provide sufficient data to
subgrids for interpolation, two bands of grid points beyond boundaries are inherited
from their parent grid.

Furthermore, particles close to a subgrid boundary may be transported substan-
tially, thus creating an artificial and unwelcome hole of particles close to boundaries.
In order to avoid this, vorticity is interpolated from parent on the Mband first bands
inside the subgrid, after each transport/convection step (see Figure 2). This “feeds”
automatically the subgrid with particles containing a consistent value of vorticity,
whatever the direction of velocity. Nevertheless, this also introduces a sufficient con-
dition of continuity, that is to say, a condition avoiding creation of a region free of
particles, thus avoiding jumps of vorticity:

(3.2)
|u|∞δt
h

�Mband,

where h is the smallest grid step among the three dimensions of space.
This looks similar to a transport stability condition, but not satisfying it does not

lead to any lack of stability. However, in practice, Mband is chosen from 4 to 8, which
is much less restrictive than a transport CFL. Indeed, transport CFL usually leads to
a constant less than 2: for example, second order Runge–Kutta with centered second
order finite difference scheme leads to |u|∞δt/H �

√
3). Moreover, as one goes deeper

in the grid tree, it is noticeable that this condition becomes more and more restrictive
as h gets smaller. An alternative would be the use of time interpolation in subgrid
boundaries, which has not been investigated in the present work.

3.2. Grid generation and accuracy. Such multigrid simulations can be run
either with a stationary grid tree or with a periodic regridding procedure able to build
a new set of a grid hierarchy, taking into account the flow evolution. In this last case,
the new grid positions (and their number) is implemented in AGRIF and has been
based on the success ratio of α|ω| + β|curlω| larger than a given value (| · | denotes
the Euclidean norm of R3).

This is the algorithm developed in [6], [8], originally for hyperbolic equations. This
clustering algorithm minimizes the number of subgrids and maximizes the number of
grid points above a vorticity value. Consequently, the subgrid boundaries do not cut
the vorticity field at its strongest values or strongest gradients, avoiding spurious high
frequencies. This has been successfully used for computation of shocks in compressible
fluid [7], a kind a simulation very sensitive to the quality of grid cutting, and this
feature also applies to elliptic equations. We refer to [9] for further details.

Furthermore, since the boundary conditions are inherited from the coarser grid
values, the order of stream computation cannot be higher than the order of con-
vergence at the coarse level. Indeed, accuracy of the fine solution is driven by the
estimation of its boundary condition, which is the value of the coarse solution followed
by interpolation: if the coarse solution is computed at order p and interpolation is
performed at order q, then boundary conditions for the fine grids are set with an error
scaling as O (

hmin(p,q)
)
. In the present configuration, computations at the coarse level

are second order (the FishPack solver), and interpolation are third order (using the
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kernel given on (2.12)). There is consequently no gain of order due to refinement, as
in most, if not all, multiresolution methods.

If a refinement criterion like α|ψ|+ β|curlψ| is used instead of the one based on
vorticity field ω, a multigrid method very similar to [11] would be obtained, except the
fact that they use cell-centered discretization, thus leading to a more complex error
analysis (that is to say, requiring a specific formulation to handle the truncation error).

An advantage of using a criterion based on stream such as α|ψ|+β|curlψ| is that
classical theory applies; that is to say, refining on a Sobolev norm H

1 on the solution
allows the same convergence as if the grid step of the finest grid was chosen everywhere.
Advantages of using a criterion based on vorticity are that there is refinement where
ω and curlω are strong. First, this allows us to refine the grid in boundary layers
(close to walls). Second, regions where ω is strong or exhibits strong variations need
to be refined in order to compute accurately diffusion −νΔω and stretching ω · ∇u.

These two quantities are specific to vortex methods. It has been shown that even
with a stream kept at its coarsest level, refining the quantity transported (in our case
the vorticity) improves the solution by means of a better conservation of momentum
and an improvement of energy spectrum [18]. Furthermore, one has to be clever on
fine/coarse interfaces effects, which are able to generate spurious sources. While a
solution can be to cancel it with as appropriate single layer potential (see [26]), we
have not observed such effects, which could appear only through stretching ω · ∇u.

As a first validation, one considers the one-dimensional problem involving the
logistic function ψ̄(x) = (1 + e−αx)−1 over interval [−1, 1], a solution of

(3.3)

{−Δψ = f in [−1, 1],
ψ(x) = ψ̄(x) for x = −1 or x = 1,

where f(x) = −Δψ̄(x) = α2(1 − e−αx)(1 + e−αx)−3. We set α = 80 and introduce a
subgrid over interval [−1/8, 1/8] with a refinement factor of 8. The global L2 error
on the solution is displayed on Figure 3 with respect to the number of grid points
involved in the computation, for the two-level grid tree, the uniformly coarse and
uniformly fine grids. Refinement in regions of large variations or values of source f in
(3.3) leads to a better convergence than if grids are uniform, whether they are coarse
or fine everywhere.

For validation using grid trees deeper than two levels or in dimensions of space
larger than one, we refer to the convergence of no-slip condition in the case of the 3D
wake developed behind a sphere, described in section 4.3.

3.3. Scalability. The algorithm has been firstly validated on two- and three-
dimensional flows using a 3-level grid hierarchy (displayed on Figure 4), with the
elliptic vortex used in [28] as an initial condition for 2D computation. The computa-
tional box is [−2.5, 2.5]d, where d is the number of spatial dimension, and the viscosity
is chosen as ν = 10−2. In the 3D case, the initial condition is a column vortex, that is
to say, ω(x, y, z) = ω2D(x, y)ez , whose support is restricted in the region −2 < z < 2.

In order to check the scalability within a wide range of grid points, one considers
a 3D ellipsoid divergence-free vortex defined from the stream by

(3.4) ω = curl2ψ with ψ(x) = exp

(
1

2
xTS−2x

)
ez, x ∈ R

3,

where S is a diagonal matrix of coefficients (0.4, 0.8, 0.8). In this case, the Euler
equation is considered (i.e., ν = 0), in order to have a flow generating small vorticity
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Fig. 3. Global L2 error on logistic function, solution of (3.3) with respect to the number of grid
points involved in the computation, for the two-level grid tree (∗), and the uniformly coarse (�) and
uniformly fine grids (�). Refinement factor is 8, and curves for uniform fine and coarse grids have
a ratio of

√
8 due to the L

2 norm expression. Dotted line is second order convergence.

structures and thus a complex grid hierarchy, able to exhibit the algorithm behavior
for large number of grid points. The computational box is [−5, 5]3, with a resolution
of 643 and 963 for the root-grid, the time step set at δt = 0.05, and the grid refinement
factor between child and parent grids set to 4.

The resulting CPU time with respect to the number of grid points, not constant
since the subgrid tree is refreshed every 5 iterations, is displayed on Figure 5.

The 3-level multigrid hierarchy and isosurfaces of the solution are displayed in
Figure 6.

First, this figure shows that scalability is linear and validates the theoretical
efficiency O(n logn) established in the previous section. The linear scalability is es-
tablished in the range of 106 to 3 108 grid points (or particles).

Second, when small vortex structures are generated as time increases, the sim-
ulation based on a 643 root-grid resolution requires us to create more subgrids in
order to capture the dynamics of small vortex. The number of grid points in this
case consequently reaches higher values than for the simulation based of 963 points
of root-grid. It follows from this fact that despite the strong adaptivity of multi-
scale simulation, the root-grid must nevertheless be chosen carefully in order to avoid
useless computational time.

4. Multiscale vortex method in complex geometry. When complex geome-
tries are involved, the no-slip condition u = 0 at walls (physical boundaries) Γ ⊂ ∂Ω
can be declined into two kinds of boundary conditions:

• The no-flow-though condition u · n = 0 (the fluid does not flow through the
boundary, whether it is viscous or not);

• The tangential no-slip conditions u ·τ i = 0, i = 1, 2, indexing the two vectors
tangent to Γ (the fluid, if viscous, is adherent to the wall).

While in velocity-pressure, these two boundary conditions are usually treated at the
same time as one; they are of very different nature in velocity-vorticity formulation.
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Fig. 4. 2D and 3D (respectively, top and bottom pictures), 3-level multiscale computation of the
dynamic of an elliptic vortex, with refinement ratio of 4 and refinement criterion based on ‖∇ω‖.
For 2D simulation, color is the vorticity level. Iso-surfaces of vorticity are displayed for the 3D
simulation, and color is the grid index (in order to identify easily different patches). Left pictures
show vorticity in the whole computational domain, and right pictures show level 2 and 3 subgrids.

Let Ω denote a Cartesian box that includes a body B of boundary Γ = ∂B with
the fluid domain Ω∗ = Ω\B around, in which the flow is computed. The goal, in order
to handle complex geometry, is to find appropriate boundary conditions on stream,
find an alternative formula providing velocity, or add an adequate source of vorticity
(right-hand side of the Navier–Stokes equations).

The few sections thereafter give a description of such methods, for vortex methods,
in order to satisfy these boundary conditions. A discussion on the best strategy for
multiscale computing is also provided.

4.1. Boundary integral methods and implicit immersed boundaries. In
this section, focus is made on the computation of a velocity field, subject only to
no-flow-through condition u · n = 0 on body boundary Γ = ∂B.

Getting the velocity from the stream by means of u = curlψ and the Poisson
equation (2.9) requires us to be able to satisfy both divψ = 0 and curlψ · n = 0 at
wall Γ.
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Fig. 5. CPU time (in seconds) with respect to the total number of grid points. ∗ and ◦
correspond, respectively, to root-grids of resolutions 643 and 963. −− is O(n) scalability.

Nevertheless, these two conditions are coupled as soon as geometry is more com-
plex than a flat wall or cylindrical body. It follows that in arbitrary geometry, the
vectorial Poisson equation (2.9) has its components coupled through its boundary
conditions: this leads to an elliptic problem whose discretization is a matrix of large
dimension and nonstandard kind (that is to say, forbidding the use of fast PDE
solvers). The problem consequently reaches the computational complexity obtained
if the domain was meshed around the body and the matrix assembled, thanks to a
finite element discretization. Such a strategy would ruin the efficiency of the vortex
method described.

In order to avoid this coupling, it has been shown (see [20] for instance) that it
is useful to extend formula (2.10) to

(4.1) u = curlψ −∇φ,
where ψ is solution of (2.9) on the Cartesian box Ω, i.e., with boundary conditions
only at the box faces as if the body B did not exist. The geometry is taken into
account by means of the potential stream φ, solution of

(4.2)

{−Δφ = 0 in Ω∗,
∂φ

∂n
= curlψ · n on Γ.

When the computation deals with unbounded domains, that is to say, Ω∗ = R
3\B,

the usual boundary integral method consists of expressing the solution of the equation
above under its fundamental form

(4.3) φ(x) =

∫
Γ

q(ξ)K(x− ξ)dσ(ξ),

where K(x) = (4π|x|)−1 is the Green kernel and σ is the Lebesgue measure induced
on Γ. Its integral density q : Γ → R is then solution of the integral equation

(4.4) −q(x)
2

+

∫
Γ

n · ∇K(x− ξ) q(ξ) dσ(ξ) = curlψ(x) · n(x).
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Fig. 6. Multiscale grid hierarchy for ellipsoid vortex dynamics (a) Snapshot of iso-vorticity
surface at time t = 12 (root-grid, level 1); (b) Same as (a) with all subgrid positions (all levels); (c)
All subgrids; (d) All level 2 subgrids (children grids of root-grid); (e) All level 3 subgrids (children
grids of level 2 grids); (f) Zoom on one particular level 2 grid with its level 3 children.

This integral equation can be solved, for example, by using a boundary element
method (using a mesh of Γ) leading to a full linear system, sizing as the mesh of
Γ, and thus quite efficient. Nevertheless, the main drawbacks of this method are
the computational cost for building the potential φ and the nonconformity of meshes
between the surface neighborhood and particle lattice.

Indeed, the computational cost for building the potential φ from the integral
density q over the whole domain has the same complexity as Biot–Savart laws (2.7),
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(2.8) when evaluated on a surface instead of a volume. Despite its heaviness, this
method has been successfully used in a lightly different context for computation of
three-dimensional flows in moderate domain size [15]: formula (2.8) has been used to
carry out values of outer boundary conditions on a computational box.

Moreover, when using nonconformal meshes, that is to say, when the mesh of
Γ does not coincide to the grid points on which φ is defined, a major discrepancy
is observed on the accuracy of φ. A high order boundary element method is then
required in order to resolve the singularity correctly. This implies that if a method
accelerating the computation of sum (2.8) is used, using an integral boundary method
in order to compute the velocity field u can be possible (though hardly possible), but
the non-conformal context between mesh of Γ and grid points of Ω remains a major
drawback of using the integral technique.

An alternative to the boundary integral method, formally equivalent but numeri-
cally more appropriate to the present configuration, is the implicit immersed boundary
method described in [38]: one considers (4.2) with Ω∗ = Ω\B and Ω a Cartesian box.
The integral density q, defined on Γ, induces the generalized function

Tq(ζ) =

∫
Γ

ζ(ξ)q(ξ)dσ(ξ),

where ζ ∈ D(Ω) is a test function, so that solving (4.2) is equivalent to solve

(4.5)

{−Δφ = Tq in Ω,
∂φ

∂n
= curlψ · n on ∂Ω.

Let Ξ be the immersion integro-differential operator that takes integral density q and
gives the normal derivative of φ on the fluid side Ω∗ of Γ. This operator is defined on
H

1/2(Γ) onto itself (when body B is convex and with a light discrepancy on regularity
otherwise, see [38], for instance).

Solving Ξ(q) = curlψ · n is formally equivalent to solving the integral equa-

tion (4.4), but it can easily be defined in a tubular neighborhood of Γ by Ξ̃:

(4.6) Ξ̃(f) = Λε ∗ (Ξ ◦ � ◦ (Λε ∗ f)),
where � is the trace on Γ (that is to say, the restriction) and Λε is the local interpolation
kernel (2.12). This allows the definition of immersion operator Ξ on grid points close
to Γ, natural since (4.5) is numerically solved on the grid discretizing the Cartesian
box Ω.

This leads to a very fast algorithm to compute the velocity from the vorticity,
satisfying the no-through-flow boundary condition u · n = 0: one gets 4 Poisson
equations (2.9), (4.5) in Cartesian box Ω:

(4.7) −Δψx = ωx, −Δψy = ωy, −Δψz = ωz, −Δφ = TΞ−1(curlψ·n)

with homogeneous boundary conditions on faces of the box Ω, which can be solved
by a last solver in Cartesian coordinates, such as FishPack or MudPack.

Nevertheless, this method requires us to build the matrix which is the discretiza-
tion of operator Ξ, whose size scales as the number of points discretizing the surface Γ.
On the multi-scale point of view, the method is consequently very efficient for a fixed
grid hierarchy (i.e., still scaling as O(n logn)), but in practice requires too much time
to build the matrix of Ξ when the grid tree is time dependent. Indeed, the number
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of points of Γ scales as m = n2/3 (n being the total number of grid points in box Ω),
while the matrix of Ξ inversion scales as O(m3) = O(n2): it is interesting when done
once a run, since Ξ−1 is reused every time step, but the method is not suitable if Ξ−1

has to be computed often, at every change of grid tree.

4.2. Chorin–Lighthill method. To the opposite of the last section, one fo-
cuses on how to enforce the full no-slip condition u = 0 on Γ, that is to say, tangential
boundary conditions on velocity. The idea is to split the Navier–Stokes equation into
a convection time step (2.5), performed in complex geometry by one of the methods
described in the last section, and a diffusion time step (2.6). The diffusion step com-
putes viscous effects, responsible of adherence condition and creation of a boundary
layer, generating a flux of vorticity at walls. Chorin’s [14] and Lighthill’s [31] methods
consist of setting appropriate singular sources of vorticity on the wall and diffusing it
in the fluid.

Chorin’s algorithm consists of replacing, over a time step [t0, t0 + δt], the implicit
equation (2.6) into a standard heat equation with Robin–Fourier boundary (adjusted
Neumann) condition

(4.8)

⎧⎪⎪⎨⎪⎪⎩
∂ω

∂t
− νΔω = 0 in Ω×]t0, t0 + δt[,

Lω = g on ∂Ω×]t0, t0 + δt[,

ω(x, t0) = ω
c(x) on Ω,

where L is a first order vectorial differential operator whose components on the tangent
bundle can be locally written as Li = κiId + ∂/∂n, κi being the curvature of Γ in
direction τ i. The initial condition ω

c is the value obtained at the end of the convection
step.

In practice, (4.8) is split by linearity into

(4.9)

⎧⎪⎪⎨⎪⎪⎩
∂ω

∂t
− νΔω = 0 in Ω×]t0, t0 + δt[,

ω(x, t0) = ω
c(x) on Ω,

+ arbitrary boundary condition at walls,

with a posteriori setting ḡ = Lω, ū the consequent spurious velocity [19], and

(4.10)

⎧⎪⎪⎨⎪⎪⎩
∂ω

∂t
− νΔω = 0 in Ω×]t0, t0 + δt[,

Lω = g− ḡ on ∂Ω×]t0, t0 + δt[,

ω(x, t0) = 0 on Ω.

The sum of solutions of (4.9), (4.10) is a solution of (4.8).
The only difficulty so far is to have an accurate estimation of g that makes the

velocity field satisfy the no-slip boundary condition. While aspects of the 2D problem,
which does not involve curvature, have been investigated in the 1990s [27], consistent
estimations of g for the 3D problem and accuracy analysis (in both two dimensions
and three dimensions) have been proposed only recently [36].

A wide range of numerical methods are available to solve (4.9) since no bound-
ary condition is required. Moreover, the solution of (4.10) can be written under its
fundamental formulation [24] involving the Gaussian heat kernel (with only boundary
source due to the zero initial condition)

(4.11) ω(x, t) =

∫ t

t0

∫
Γ

μ(ξ, s)Gx,t(ξ, s)dσ(ξ)ds,
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where

(4.12) Gx,t(ξ, s) = exp

(
− |x− ξ|22
4ν(t− s)

)
is the Gaussian heat kernel and the density μ is solution of an integro-differential
equation

(4.13) −1

2
μ(x, t) + ν

∫ t

t0

∫
Γ

n(x) · ∇Gx,t(ξ, s)μ(ξ, s)dσ(ξ)ds = g(x, t)− ḡ(x, t).

On the one hand, the flux of vorticity at wall is

(4.14) g(x, t) = n× ∂ū

∂t
(x, t),

which is a natural extension from [14] and [19]. On the other hand, it has been shown
in [36] that a consistent approximation (up to order 5/2) of the integral density μ is
given directly by

(4.15) μ(x, t) · τ i(x) � −2(g(x, t)− ḡ(x, t)) · τ i(x)

1− 2(κ̄(x)− κi(x))
√
ν(t− t0)/π

,

where κ̄ is the mean arithmetic curvature.
Such a formula, when compared to the vortex method without boundary, requires

only the computation of ū and the evaluation of formula (4.11), which scales as
O(n2/3), due to the numerical compactness of the Gaussian heat kernel support. Such
an efficiency has been successfully used in the past for 3D flow control (see [34] and [37],
for instance). One can notice that formula (4.15) can be dramatically improved by
performing a symbolic integration on panels (see the part of [33] related to no-slip
conditions), with or without the use of an adjacency matrix in order to compute the
density leading to algebraic no-slip flow.

Consequently, when coupling together the implicit immersed boundary method
described above in section 4.1 and the vortex flux at wall described in the present
section, the vortex method in complex geometry scales with the same efficiency as
without geometry, that is to say, as O(n logn), whether it is multiscale or not. Nev-
ertheless, in this case, the limitations exhibited in section 4.1 still apply, which means
that this method is efficient for a fixed hierarchy of grid. For a time-dependent grid
tree, one may prefer the penalization described thereafter.

4.3. Penalization. An alternative to the methods presented above, in order
to deal with complex geometry, is the penalization introduced and analyzed in [3]
and [12] and revisited recently in [16]. This consists of penalizing the Navier–Stokes
equations (2.2) by a term hold with the characteristic function χB of body B:

(4.16)
∂u

∂t
+ u · ∇u− νΔu+ λχBu =

f −∇p
ρ

,

which gives, by taking the curl of this equation

(4.17)
∂ω

∂t
+ u · ∇ω − ω · ∇u− νΔω = −λχBω − λδΓn× u,

where δΓ is the Dirac function of surface Γ, that is to say, the derivation of the
characteristic function χB.
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In practice, a three-step splitting convection/diffusion/penalization is performed.
Surface Γ is discretized by a P0 mesh, that is to say, a set of points γk associated to
a surface element sk, so that the discretization of term δΓn × u is

∑
k n × u(γk)sk,

itself interpolated on grid points, thanks to transfer formula (2.12). Furthermore, it
has been observed that a good choice for the penalization parameter is λ = 2/δt.

The main advantage of this method is that it is not a grid-dependent partial
differential equation to solve, and hence a natural feature for multiscale computing.
As for its drawbacks, there is eventually a penalization parameter λ to tune and some
sensibility of solution accuracy to this parameter, but the choice λ = 2/δt has been
satisfactorily used in [16] and in our computations.

4.4. Scalability of multiscale VIC using penalization. Given advantages
and drawbacks of the methods listed in the previous section, the penalization method
has been chosen to perform 3D flow computation around a sphere with a time-
dependent grid hierarchy.

Indeed, the penalization algorithm has been used to compute the wake behind a
sphere of radius R = 1, at a Reynolds number ReR = U∞R/ν = 500. The far field
velocity is chosen as U∞ = 1, and the root-grid as

Ω = [−5, 25]× [−5, 5]× [−5, 5]

discretized by 192 × 64 × 64 grid points, such as when the grid step is constant in
all directions h = δx = δy = δz. The time step δt = 0.1, and the grid hierarchy is
updated every five time steps in order to follow the vorticity evolution. Two kinds of
multiscale configurations have been used:

1. level 2 grid hierarchy with refinement coefficient 4;
2. level 3 grid hierarchy with refinement coefficient 2,

so that the maximum refinement factor between root-grid and finest child grids is four.
The underresolution nondimensional parameter δ+ =

√
4νδt/h is slightly larger

than 1 so that the simulation is fully resolved on fine grids. Snapshots for both the
configurations are displayed on Figure 7. As expected, refinement is provided close
to the body were vorticity reaches its highest values and gradients.

Since the singular terms of (4.17) require only an additional computation of ve-
locity field, the overall algorithm still scales as O(n log n), as shown on Figure 8 for
both the configurations.

Furthermore, accuracy of penalization is not well established, to the opposite of
boundary integral method, immersed boundaries, and vorticity flux at walls. In order
to provide a fair comparison to the other methods listed above, Figure 9 shows that
penalization is second order in space by plotting the residual velocity on the body,
that is to say, the L

2(Γ) norm of velocity as t→ ∞.

5. Conclusion. In this article, the computational cost of the vortex method,
coupling particles and grids, has been checked to scale as O(n log n), n being the
number of grid points and/or particles involved in the simulation. The method has
been shown to keep this scalability for a multiscale formulation of such hybrid vortex
methods.

Furthermore, a discussion has been made on the methodology in order to handle
complex geometries. The discussion has compared boundary integral methods and
implicit immersed boundary methods in order to satisfy a no-flow-through condition,
Chorin’s algorithm for the full no-slip condition related to viscous flows, and the
penalization method for both kinematic boundary conditions. It appears that coupling
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Fig. 7. Surfaces of iso-vorticity for the wake developed behind a sphere of radius 1: For level
2 grid hierarchy with refinement coefficient 4 (at time t = 110 (a) and t = 126 (b)), and for level 3
grid hierarchy with refinement coefficient 2 (c).

Fig. 8. CPU time (seconds) versus the number of grid points for the sphere wake simulation;
(+): Level 2 grid hierarchy with refinement coefficient 4; (◦) : Level 3 grid hierarchy with refinement
coefficient 2; (- -) : O(n) scalability.
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Fig. 9. Residual velocity, plotted with respect to grid step, shows that the penalization method
is second order.

implicit immersed boundary and Chorin’s algorithm may be satisfactory when the
hierarchical grid structure is not time dependent, but the penalization method is
better (that is to say, more affordable computationally) when time adaptivity of grids
is required.

Finally, the scalability as O(n logn) is shown to be still valid, theoretically and
practically, for a multiscale hybrid grid-particle vortex method in complex geometry.
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