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A HYBRID GRID-PARTICLE METHOD FOR MOVING BODIES IN
3D STOKES FLOW WITH VARIABLE VISCOSITY∗

ROBIN CHATELIN† AND PHILIPPE PONCET‡

Abstract. This article presents a new approach for the resolution of large three-dimensional
Stokes equations with variable viscosity fluids, coupled with transport equations. After building the
model, we will write these equations in the context of highly viscous flows and penalization, in order to
consider complex geometries moving in a fluid. From a mathematical point of view, the solutions show
nonlinear dynamics. Beside the use of standard tools such as finite differences and staggered grids,
we have built a new methodology based on large three-dimensional simulations, including operators
splitting for an efficient use of fast solvers, multi-index fixed point methods, Lagrangian methods
with fast and accurate grid-particle transfers, and the multiresolution description of variables. Among
the main original aspects of this method, both accurate incompressibility and variable viscosity are
treated in the same fixed point. Hence the computation costs for variable and constant viscosity
flows are similar. Several examples are given to validate the order of convergence and conservation
rates. Such models are used, among other examples, in biological computing at the cellular scale.
The present article eventually describes the ciliated epithelium cells covering a mammal’s lungs,
beating in a mucus film. This study of human lung diseases explores the efficiency of the mucociliary
clearance, a challenging problem in health sciences, especially for the investigation of cystic fibrosis
and various chronic obstructive pulmonary diseases.
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1. Introduction. The numerical resolution of three-dimensional (3D) Stokes
and Navier–Stokes equations has undergone significant advances in the last decades,
and is still a challenge for the understanding of fluid dynamics in both the industrial
and the academic worlds. Beyond the classical problems arising in fluid mechanics
of homogeneous media, there is now a need for efficient algorithms applied to more
complex flows, such as biological flows and medical flows, microfluidics, or porous
media. This study presents a new Lagrangian/Eulerian method for complex moving
geometries, applied to biological mucus flows in human lungs, at the scale of ciliated
epithelium cells.

To compute the coupling of Stokes or Navier–Stokes equations with other partial
differential equations, most numerical techniques consider a unique numerical method
for the whole set of equations. This article focuses on 3D Stokes problems in moving
geometry coupled with transport equations, which are of a very different nature. In
the spirit of what has been developed in particle methods for Navier–Stokes equations
since the early nineties [15, 32], we present a hybrid numerical method, mixing a novel
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efficient Eulerian method for the elliptic Stokes equations and a particle method for
the transport equation [17, 43].

The interaction between fluid and complex moving geometries is performed by
means of a penalization method [4]. This is obtained by giving a strong weight to
the terms dealing with objects immersed in the fluid, through their characteristic
function. There is consequently no need to get a precise mesh of obstacles and of
their surfaces (hence it is not necessary to remesh periodically if they are moving
in the computational domain). This is a good alternative to arbitrary Lagrangian–
Eulerian (ALE) formulations, Lagrange-multiplier methods, or immersed boundary
methods, especially combined with Cartesian grids and fast solvers (see [4, 14] for
discussion and comparison with other numerical methods).

The Lagrangian property of particles makes the transport terms vanish from the
equations so that the robustness of these methods is not subject to any transport
stability conditions [3, 6, 18]. This helps to perform numerical simulations with large
time steps without losing accuracy [42, 46], which is especially useful to study flows
beyond transient regimes [48]. In conventional vortex methods, the quantity trans-
ported and the velocity field are linked through Poisson equations, thus naturally
satisfying divergence-free conditions [15, 46]. Here we consider the problems of vari-
able viscosity fluids, and taking the curl of the momentum equation will exhibit stiff
second order derivatives of viscosity, so the velocity-pressure formulation is the correct
framework. It can also be coupled with Lagrangian transport methods.

Special attention is given to producing an algorithm giving divergence-free veloc-
ity fields while being sufficiently efficient to handle large 3D simulations without ruin-
ing the efficiency of particle methods. The projection on divergence-free fields usually
induces tangential spurious velocities [26]. Algorithms based on MAC schemes [44, 41],
integral methods using local [13, 47] or global incidence [45] are useful in the context
of parabolic partial differential equations, but are not valid for elliptic problems. No-
slip boundary conditions often require implicit formulations which leads to large and
full linear systems. In order to avoid implicit formulations and nonetheless satisfy
boundary conditions, we set up a novel fixed point algorithm to deal with residual
velocity at boundaries, divergence-free conditions, and at the same time, extra terms
from the nonhomogeneity of the fluid. The numerical resolution of 3D Stokes equa-
tions is reduced to a sequence of Poisson and Helmholtz equations. These equations
allow the use of fast solvers, and avoid the storage of matrices coming from large
linear systems, which would be prohibitive even with sparse storage.

In modern particle methods, there has been a controversy about how to compute
the solution of Poisson equations: is it preferable to use kernel methods [25] and
multipole decomposition [35, 53], or hybrid grid/particle methods [15, 42, 49] with
high order interpolation between grids and particles [16, 39]? While both approaches
have known dramatic improvements over the last twenty years, in the present study
we consider a variable diffusion coefficient μ, and there is no available Green’s kernels
associated with operators (−div(μ∇u)). Indeed, under some assumptions on the
mechanical laws considered, μ follows a transport or diffusion-transport equation [10,
55], which prevents using kernel methods (such as Stokeslets or Biot–Savart) since
any structure on μ can be supposed in a very artificial way.

In this article, a new Eulerian approach combining penalization and projection
methods is introduced for Stokes problem. A fixed point algorithm is used to split
the differential operators into parts allowing the use of fast solvers (multiscale it-
erative solver for Helmholtz equations [1] and Fourier–Chebyshev for Poisson equa-
tions [60, 59]). Another original aspect of this work is the nonhomogeneity of fluid
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Fig. 1.1. Sketch of human lungs at different scales, from trachea (� 1cm) to ciliated cells
(� 5μm). Courtesy of C. Daghlian, Dartmouth University, for original versions of right-hand
images.

viscosity, which adds some terms to the Stokes equation. The modern features of
this algorithm give similar computational costs for constant viscosity flows and for
variable viscosity flows (since the extra terms are also included in the fixed point).
The Stokes problem is coupled with transport equations for viscosity and solved with
Lagrangian methods, as they present a lot of advantages for such equations. The cou-
pling generates nonlinear effects, which are not contained in classical Stokes problem.
The resulting method is second order with a complexity O(n). Moreover, Lagrangian
methods allow the use of large time steps, without significant loss of accuracy (that
is to say the constants in error estimation are small in practice), and without unnec-
essary resorting to the Stokes solver.

At a scale between 100 nm and 10 μm, equations of continuum mechanics are still
valid, and the Reynolds number is small enough to be under the assumption of Stokes
flows [51]. The present work will focus on biological applications at the cellular scale,
but the methodology developed here is also valid for a wide range of applications such
as porous media (Darcy–Stokes or Darcy–Brinkman), heterogeneous microfluidics, or
plasma physics.

This numerical application investigates ciliated cells covering human (and mam-
mal) lung walls, and moving into pulmonary mucus, a fluid of variable rheology [33,
50], as displayed in Figure 1.1. Numerical simulations are used to study different
mechanisms separately and understand the phenomena occurring more specifically in
cystic fibrosis (mucoviscidosis) [40], but also in various chronic obstructive pulmonary
diseases. Indeed, understanding the contributions of different biological parameters
helps to identify the ones which are dominant or sensitive, and consequently identify
the alterations leading to pathological configurations.
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In section 2, we will build a model based on physical and mechanical considera-
tions, and discuss this set of partial differential equations in its penalized formulation
for complex moving geometries.

In section 3, we will focus on fast methods to solve the penalized 3D Stokes
equations, involving well-chosen fixed points and staggered interpolations in order to
use fast multiscale Helmholtz and Fourier solvers.

Section 4 will deal with particle methods for viscosity transport, and its coupling
with the previously introduced Eulerian Stokes solver. Both sections 3 and 4 will
contain numerical validation, convergence, and scalability. All these elements will
eventually be put together and validated with the simulation of a sphere moving in a
variable viscosity 3D Stokes flow at high resolution.

Finally, section 5 will describe the application to biological films, with a simulation
of mucus around a ciliated cell, in the context of a human lung.

2. Problem setup.

2.1. Model setup. The usual mathematical model for the dynamics of a 3D
flow are the Navier–Stokes equations. For a Newtonian fluid of velocity u : R3 ×
]0, T [ −→ R

3 and variable density ρ, they read as conservation equations of mass and
momentum:

(2.1)

⎧⎪⎨
⎪⎩

∂ρu

∂t
+ div(ρu⊗ u)− div(σ) = f,

∂ρ

∂t
+ div(ρu) = 0,

where u the velocity field is satisfying incompressibility condition divu = 0 all over
the domain, p is the pressure, σ = 2μD(u)− pI is the stress tensor, μ is the viscosity,
and the strain tensor D(u) is the symmetric part of ∇u, that is to say D(u) = (∇u+
∇uT )/2.

In the case of highly viscous flows and/or microfluidic scales, the Reynolds number
is sufficiently small to neglect convection div(ρu × u) and time dependency in (2.1).
The conservation of momentum reduces to the following Stokes quasi-static equation:

(2.2) −div(2μD(u)) = f −∇p.

In (2.2) the density ρ only remains in the external force f (in the barotropic
f = ρgz expression of gravity, for example). The simulations presented in the second
part of this paper will focus on microfluidics applications. At these scales, gravity
does not influence the flow, which is why the density will not appear in the equations
but the fluid is still nonhomogeneous and its density stays variable.

In order to model the medium with variable rheology, we can introduce a massive
fraction α quantifying the heterogeneity of the medium, which follows the same kind
of equation as density:

(2.3)
∂α

∂t
+ div(αu) = ηΔα,

where η is a diffusion coefficient of heterogeneity, corresponding to molecular diffu-
sion. In biological applications, the massive fraction can be the proportion of a given
protein (here mucins) in an aqueous medium. The viscosity of the medium can be
considered as a function of the massive fraction α, that is to say μ = φ(α). Under
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these assumptions, the medium considered here is still Newtonian. This model is a
good compromise between non-Newtonian constitutive laws of rheology and constant
viscosity fluid models.

For nonreactive Newtonian flows or nonmiscible media, η can be assumed to be
zero, and consequently the viscosity μ also follows a transport equation [10, 55] like
α and ρ, with adequate initial and boundary conditions. In some works, μ is directly
assumed to be a function of ρ, and/or reciprocally ρ a function of μ. In this case,
existence and uniqueness in adequate Sobolev spaces can be found in [8].

This assumption is made in the present study so μ follows a pure transport equa-
tion. This case is numerically more difficult than diffusion transport since there is
no regularization due to the Laplacian and consequently function μ can exhibit much
larger gradients.

Eventually density has disappeared from the equations but it is still variable and
can be computed (if needed) as a function of μ.

2.2. Governing equations. One considers (2.2) in a time-dependent domain
Ω(t) ⊂ R

3. This is the 3D Stokes quasi-static inviscid problem. It is completed by a
transport equation for viscosity:

(2.4)

⎧⎪⎪⎨
⎪⎪⎩

∂μ

∂t
+ u · ∇μ = 0 in Ω(t)× ]0, T [,

− div (2μD(u)) +∇p = f and divu = 0 in Ω(t)× ]0, T [,

u(x, t) = u(x, t) on ∂Ω(t)× ]0, T [,

where u is a given velocity at boundaries, with initial conditions and boundary con-
ditions on μ yet to be set.

To take into account the motion of a complex moving geometry immersed in this
Stokes fluid, a penalization method [4] is used. The goal of penalization is to satisfy
(up to an approximation) an equality of the type u = u inside a region B(t) (often
called a “solid region”), where u is a given divergence-free field.

Let Q denote the computational box and B(t) the penalized region: the fluid
domain is then Ω(t) = Q \ B(t). Let also function χ be the characteristic function
of B(t), ε the penalization parameter satisfying ε � 1, and u the velocity field inside
the solid which is assumed to be known at each time step. Penalization transforms
the momentum conservation equation of system (2.4) into the following equation:

(2.5) −div (2μD(u)) +
χ

ε
(u− u) = f −∇p in Q× ]0, T [,

where all the functions depend on time and space.
Using this method, the error produced on the computed solution has an order

√
ε

inside the fluid and a first order accuracy with respect to spatial discretization due to
an error present in a small layer around the interface. In order to improve accuracy,
interpolation with boundary condition on ∂Ω(t) can be done in the neighborhood of
the jump of χ(·, t), such as the one used in [7].

3. Numerical method for 3D Stokes equation in variable viscosity. In
this part we consider the momentum conservation equation at a given time t. This
means μ(·, t) is perfectly defined in the whole domain. A novel algorithm able to
handle accurate incompressibility, boundary conditions, penalization, and nonhomo-
geneous viscosity is developed. Problem (2.5) is split in order to have the best possible
performances and to perform large 3D simulations with a guaranteed order of conver-
gence and conservation.
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The first strategy is to use a projector on divergence-free fields: it splits (2.5)
into two coupled velocity-pressure equations. The main advantage of this strategy
is to avoid the assembly of a rigidity matrix for the global Stokes problem (2.5),
which usually leads to prohibitive computational cost for large 3D simulations, even
when using modern linear solvers (such as [5] for example). Indeed, when using such
splitting, we obtain four Laplace equations solved using fast solvers.

Projection on divergence-free fields generates a spurious tangential velocity on
the computational box boundary ∂Q. Thereafter, we will discuss how to satisfy the
correct boundary conditions.

3.1. Divergence-free projection algorithm and boundary conditions.
One can develop

(3.1) div (2μD(u)) = μΔu+
(∇u +∇uT

)∇μ+ μ∇divu

with ∇divu ≡ 0 since u is divergence free. The penalized Stokes problem is then
written:

(3.2)

⎧⎨
⎩

− μΔu− 2D(u)∇μ+∇p+
χ

ε
(u − ū) = f and divu = 0 in Q,

u(·, t) = g(·, t) on ∂Q,

where f and g are given functions.
To solve this velocity-pressure problem a projection method is used. It is an

alternative to Lagrange multiplier methods. In these methods, the solution to the
Stokes problem is seen as the solution to a saddle-point problem. It is very natural
to implement using finite element discretization as it is derived from the variational
formulation of the Stokes problem (for details, see [2, 52]). In [26] many variants of
Chorin’s original algorithm [13] are presented for unsteady Navier–Stokes equations
and a novel variant for quasi-static flows is now presented.

A projection on divergence-free fields is defined as follows: let v : Q → R
3 be a

vector field, and ζ : Q → R the solution (unique up to a constant) of the following
equation:

(3.3)

⎧⎨
⎩

−Δζ = −divv in Q,

∂ζ

∂n
= v · n on ∂Q.

P denotes the projection operator on the divergence-free fields of R3, that is to say,
the function of v given by P(v) = v −∇ζ.

The first step of the splitting algorithm consists in solving the previous equation
without a pressure term (and with an additional expression to guarantee consistency
with variable viscosity as explained below). u∗ is the solution of the following equation:

(3.4)

⎧⎨
⎩

− μΔu∗ +
χ

ε
(P(u∗)− ū) = f + [2D(P(u∗)) + (divu∗)Id]∇μ in Q,

u∗(x, t) = ϑ(x, t) on ∂Q.

The velocity field u∗ does not satisfy the relation divu∗ = 0, and is projected on
divergence-free fields by means of projection P: the solution of problem (3.2) is then
given by

(3.5) u = P(u∗) = u∗ −∇ζ

and immediately satisfies divu = divP(u∗) = divu∗ −Δζ ≡ 0.
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Indeed, using u = u∗ −∇ζ leads to

(3.6) div(2μD(u)) = μΔ(u∗ −∇ζ) + 2D(u)∇μ = μΔu∗ − μ∇Δζ + 2D(u)∇μ.

Noticing that μ∇Δζ = ∇(μΔζ) − Δζ∇μ, setting the pressure to p = −μΔζ, and
using that Δζ = divu∗, one gets

(3.7) div(2μD(u))−∇p = μΔu∗ + divu∗∇μ+ 2D(u)∇μ

and consequently

(3.8) −div(2μD(u)) +∇p = −μΔu∗ − [2D(P(u∗)) + (divu∗)Id]∇μ.

This gives the equivalence between (3.2) and (3.4), except for boundary condi-
tions. This is discussed below.

Here, it is necessary for boundary condition tr(u) = ϑ − tr(∇ζ) to be equal
to g (here tr(u) denotes the restriction of u on the boundary). The choice of ϑ to
satisfy this boundary condition is not obvious, even if ϑ = g is often chosen and
tr(u)− g = −tr(∇ζ) is then considered as a lack of accuracy of the scheme.

This lack of accuracy in tangential velocity in projection algorithms has been
reported in [26] and is more important in quasi-static problems than for unsteady
flows, for which projection is incremental in time so information from the previous
time step is used.

Furthermore, for time incremental problems (with increment δt), panel methods
can be used to satisfy boundary conditions, using the explicit solutions of integral
equations on the boundary neighborhood, scaling as

√
2μδt/ρ, and are consequently

very fast. By panel methods, we mean any linear method correcting the boundary
conditions by means of a flux on the boundary neighborhood, most of the time with
the potential solution of an integro-differential equation (see [47, 45, 15] for instance).
In the present situation, panel methods are not efficient since the Green’s kernel
support, for the Laplace equation, fills the whole domain. In that case the incidence
of correction on boundary conditions is not confined to the boundary neighborhood
and the computational efficiency is dramatically reduced.

Consequently, we prefer the implicit formulation of boundary conditions on ∂Q,
that is to say finding the correct ϑ of (3.4) such as tr(P(u∗)) = g. In this case, the
application ϑ 	−→ tr(u∗) is affine, which leads tr(P(u∗)) = g to be a linear equation
of variable ϑ, since u∗ is a function of ϑ through (3.4).

We have explored three ways to solve this problem: assembling its matrix in
order to use a direct solver, identifying the linear part of the affine function and using
an iterative method such as the GMRES algorithm, and finally using a fixed point
algorithm directly on the affine function. The second and third strategies are orders
of magnitude faster than the first one.

Moreover, we prefer using a fixed point algorithm, which can be mixed with an-
other fixed point treating the splitting of the sum div(μD(u)) = μΔu + D(u)∇u.
Indeed, using a GMRES algorithm embedded with a fixed point makes GMRES dra-
matically lose its efficiency, and using full GMRES would require a large Krylov space
dimension, which means a very large amount of memory.

3.2. Fixed point algorithm. The fixed point iteration comes from rewriting
the term u − u = P(u∗)− u as a sum between u∗ − u of the present iteration on the
one hand, and ∇ζ of the previous iteration on the other hand. The algorithm is then
defined as follows:
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1. u∗
0 = u0 is provided for initialization;

2. fixed point loop:
(a) u∗

k is assumed to be known, as well as uk = P(u∗
k) and ∇ζk = u∗

k−P(u∗
k),

(b) u∗
k+1 is the solution of

⎧⎨
⎩

− μΔu∗
k+1 +

χ

ε
(u∗

k+1 −∇ζk − ū) = f − [2D(uk) + (divu∗
k)Id]∇μ in Q,

u∗
k+1 = g −∇ζk on ∂Q;

(c) compute projector ζk+1 and project uk+1 = P(u∗
k+1);

(d) if an exit test (such as ‖uk+1 − uk‖ � ε) is positive, then go to 3.,
otherwise increment k and restart 2;

3. the final numerical solution of (3.2) is given by uk+1.
In step 2(b), it is absolutely necessary to keep the term χε−1u∗

k+1 implicit. This
introduces the difficulty of the Helmholtz equation with coefficient jumps, while the
explicit version using χε−1(u∗

k − ∇ζk) = χε−1
P(u∗

k) would lead to a simple Poisson
equation. Nevertheless, there is no longer any convergence of such an explicit algo-
rithm as soon as ε is under a certain (insufficient) threshold (10−4 in the example
shown in section 3.3).

Furthermore, the boundary condition for u∗ can be relaxed into the expression

(3.9) u∗
k+1 = g − (1− θ)∇ζk − θ∇ζk−1.

Here a Cartesian discretization is considered: the computational box is a paral-
lelepiped Q = [xm, xM ]× [ym, yM ]× [zm, zM ] discretized using nx, ny, and nz points,
respectively, in the x, y, and z directions.

The main advantage in this formulation is that the equation in step 2(b) is a
Helmholtz equation, and projection equation (3.3) is a Poisson equation. For both
these equations, fast solvers can be used, thus avoiding matrix assembly since the
resulting linear systems are standard problems with explicitly known coefficients.
This leads to fast resolution with low storage memory, which suits for large three-
dimensional problems very well.

In practice, the Mudpack solver is used for the Helmholtz equation [1]. It relies
on multiscale formulation and allows the resolution of general elliptic partial differ-
ential equations with nonhomogeneous coefficients (this is very interesting for both
the penalization term and the viscosity gradients). Moreover, the Fishpack solver
is used for the Poisson equation [59, 60]. It is based on fast Fourier transforms and
Chebyshev polynomial decompositions. These solvers are sufficiently fast to offset the
number of fixed point iterations by orders of magnitude.

The projection step does not have sufficient accuracy if defined on collocated
grids, because it generates a red/black synchronization on discretized knots, as the
discretization of operators Δ and div∇ does not coincide on such grids. This usual
problem for velocity-pressure problems is solved by using staggered grids: the three
components of velocity do not reside on the same grids. Those grids have a half-step
space shift in one direction.

In our present study, instead of considering the centered and the three staggered
grids physically, we only consider centered grids and the values on the staggered grids
are computed by means of accurate interpolations, as suggested in [7]. We use the
third order kernel M ′

4 for these interpolations between centered and staggered grids,
which is defined by (4.5) in section 4.1.
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Two reasons justify this choice. First in the staggered direction, the physical
boundary does not match with the grid boundary so an extrapolation of bound-
ary condition have to be performed and results in the transformation of a Dirichlet
boundary condition into a Robin boundary condition. Thus the treatment of the
Robin boundary condition in the fixed point is nontrivial and some terms derived
from the Hessian of ζ have to be considered to guarantee the required accuracy in
tangential velocity. The second reason is also a consequence of the transformation
of the Dirichlet boundary condition into a Robin boundary condition. The Robin
boundary condition has to be imposed inside the domain to keep the right flux sign,
and consequently to keep the associated variational formulation coercive. It means
that if N denotes the number of grid points in the nonstaggered direction, there are
N − 1 grid points in the staggered one. This is a serious drawback in using the Mud-

pack solver (or any multiscale solver) which requires a number of grid points of the
form N = 2p + 1 in each direction to get optimal multigrid performances.

Furthermore, the algorithm’s efficiency and accuracy are measured by monitoring
the following four quantities:

• the divergence of the flow ‖divu(k)‖Q;
• the residual tangential velocity ‖u(k) − g(·, t)‖∂Q;
• the residual velocity inside solid ‖u(k) − ū‖B(t);

• the residual strain ‖D(u(k))−D(u(k−1))‖Q.
Convergence is analyzed in section 3.3, by means of a Green–Taylor vortex with

variable viscosity. It will be shown that the number of fixed point iterations, thus the
computation cost, can be reduced by using adequate preconditioning.

3.3. Scalability, convergence, and preconditioning. The convergence of
the Stokes solver is validated by means of a 3D generalization of the Green–Taylor
vortex. This is a divergence-free 1-periodic velocity field. It has homogeneous Dirichlet
boundary conditions on Q = [0, 1]3 and nonhomogeneous on Q = [− 1

2 ,
1
2 ]

3.
It enables us to test various kinds of boundary conditions. A pressure field is

arbitrarily defined. Then the right-hand side of (3.2) is forced with the exact value
of −div(2μD(u)) + ∇p and ū is set to the exact solution. This allows us to test
the Stokes solver for a variable viscosity, as well as penalization and the projection
iterative process. The expression of this theoretical solution is given by

(3.10)

u(x, y, z) =

⎧⎪⎨
⎪⎩

2(cos(2πx)− 1) sin(2πy) sin(2πz),

− (cos(2πy)− 1) sin(2πx) sin(2πz),

− (cos(2πz)− 1) sin(2πx) sin(2πy),

p(x, y, z) = sin2(2πx) sin2(2πy) sin2(2πz),

μ(x, y, z) = 2 + sin(2πx) sin(2πy) sin(2πz).

For a resolution of 2563, one can notice on Figure 3.1 that all fixed point residuals
reach a threshold of 5 × 10−6. Furthermore, the relative error with respect to this
solution is computed for various resolutions (using from (24)3 to (28)3 degrees of free-
dom) and is reported on Figure 3.2. The points are sufficiently aligned and the slope
is computed using mean square first order polynomial interpolation. As expected, the
slopes are very close to two, which is the expected value (that is to say compatible
with discretization orders). It validates the accuracy of the solver.

The previous iterative method can be preconditioned if an accurate estimation
of ∇ζ(0) and D(u(0)) is provided. One way to obtain such an estimation is to first
solve the problem on a coarser grid and then to interpolate the resulting projector
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Fig. 3.1. Comparison of residuals between the preconditioned algorithm and the original one
using the same flow configuration as for Figure 3.2. Only two residuals are presented to improve
readability. Simulation resolution is 2563.
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Fig. 3.2. Convergence plot of Stokes solver for a nonhomogeneous flow. Different configurations
of boundary conditions are presented. The analytical solution is the Green–Taylor vortex and the
computation domain is Q = [− 1

2
, 1
2
]3. Penalization is tested forcing an exact solution in a sphere

of radius 0.1 centered at space origin. Second order accuracy is obtained for all configurations.

and strain. Interpolation kernels have to be accurate enough (see the next section for
details on interpolation kernels).

3D computations are performed using Cartesian grids with the number of intervals
in one direction set from N = 2p + 1. Solving the equation on a grid of 2p−1 + 1
intervals in each direction allows us to estimate ∇ζ accurately. The process can be
performed down to a very coarse grid such as 323, for example. For a coarse resolution
the preconditioning does not make a significant difference in computational time (see
Figure 3.3). However it leads to a substantial gain of iterations at a fine level and
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Fig. 3.3. Scalability of quasi-static Stokes algorithm based on fixed point. These results are
presented for the Green–Taylor vortex with variable viscosity, homogeneous Dirichlet boundary con-
ditions on z faces, and periodic boundary conditions in x and y directions. Results compare perfor-
mance using a coarser grid preconditioning (dotted line) or not using it (solid line). Computation
is performed on a single CPU Intel Xeon X5450 (3.00 GHz). Computation time is given in seconds.
15 simulations have been performed for each resolution to get an average.

consequently decreases the computational cost of the Stokes solver, up to a factor 3
for a 2563 simulation (also shown on Figure 3.1) and a factor 4 for a 5123 simulation.

4. Coupling particle-in-cell methods with 3D Stokes equation. This sec-
tion focuses on the resolution of the convection equation of viscosity,

(4.1) ∂tμ+ u · ∇μ = 0 in Q.

A particle-in-cell method is used to transform this partial differential equation
into a set of ordinary differential equations.

4.1. Conventional remeshed particle-in-cell methods. The particle-in-cell
method consists in a Lagrangian discretization of the computational box, as a set of
k = 1 . . .K particles of volume vk, located at position ξk, and holding a viscosity μk.

A measure solution of (4.1) is defined by

(4.2) μ(t) =

K∑
k=1

μk(t)δξk(t)vk(t),

where δξ is the Dirac function δξ(φ) = φ(ξ), so that (4.1) is rewritten using this
Lagrangian discretization:

(4.3)

⎧⎪⎨
⎪⎩

dξk
dt

= u(ξk(t), t),

dμk

dt
= 0 and

dvk
dt

= 0.

The volume equation’s right-hand side is zero because the velocity field u is a divergence-
free solution of the Stokes equations (the Jacobian of the flow in the volume integral
remains constant, with an initial condition being the identity matrix; see Annex A.2
of [15] for details).



B936 ROBIN CHATELIN AND PHILIPPE PONCET

No additional boundary conditions are required for this dynamics system; it is
implicitly contained in the definition of the velocity field u and interpolation kernels.

With this Lagrangian formulation the convection term u · ∇μ vanishes as well
as its related stability condition (CFL condition). Consequently, one of the main
advantages of such a Lagrangian method is the ability to use large time steps with no
significant loss of accuracy.

Coherence between the Lagrangian feature of the transport equation and the
Eulerian feature of Stokes equations has to be set up; a hybrid grid-particle algorithm
is used (introduced in [15, 17] for a similar transport equation). Details of a second
order midpoint scheme for temporal integration is summarized as follows:

1. viscosity μ is given on a grid, and grid points ξk define particles of viscosity
μk;

2. velocity u is computed on the grid by the Stokes solver;
3. particles are pushed along the velocity field, by means of an explicit Euler

scheme for (4.3) on half a time step. Values of μk are unchanged but particle
positions ξk are changed by ξ∗k = ξk + δtu(ξk)/2. We consequently have the

intermediate time-step measure solution μ∗ =
∑K

k=1 μkδξ∗kvk;
4. particles are then interpolated back to grid points by means of the convolution

formula Λε ∗ μ(x) = ∑K
k=1 Λ

ε(x− ξk)μkvk;
5. velocity u∗ is computed using this intermediate time-step viscosity on the

grid;
6. initial particles at position ξk are pushed along velocity field u∗ using an

explicit Euler scheme over a full time step by ξk + δtu∗(ξk).
This midpoint formula is second order in time. A key point is of course the choice

of interpolation kernel. As considered in [17, 42], we use Monaghan’s M ′
4 kernel [39].

Indeed, we set the following rescaling, tensorialized on the three variables of space:

(4.4) Λε(x) =
1

ε3
M ′⊗3

4 (x/ε),

where M ′
4 is defined as:

(4.5) M ′
4(x) =

⎧⎪⎨
⎪⎩

(3x3 − 5x2 + 2)/2 if 0 � |x| � 1,

(2 − x)2(1− x)/2 if 1 � |x| � 2,

0 if |x| � 2.

It keeps the three first moments of distribution, it is symmetric, continuously differ-
entiable two times (except at zero), and has a short compact support. Close to the
wall, the one-sided kernel given in [17] based on M ′

4 can be used. Rescaling parameter
ε is set at the same value as the grid step size, so that there are 4 grid points in each
direction interacting with a particle. Consequently, the scalability of interpolation be-
tween grid and particles is linear. Moreover the conservation of the discrete integrals
is ensured by the spline-like property of this kernel:

(4.6)
∑
k∈Z

Λ(x+ j) = 1.

The convergence and consistence order of hybrid grid-particle methods have been
discussed in [15, 17, 42] in the context of Navier–Stokes equations. Here we have
reformulated it to Stokes-transport coupling, where velocity is a solution of the 3D
Stokes equation.

Convergence, consistence, and conservation for the overall problem of coupling
3D Stokes and transport of viscosity are discussed in the next section.
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4.2. Convergence in the variable viscosity flow. In this section the coupling
between the Lagrangian transport for viscosity and the Stokes solver is tested: a
second flow configuration, the Poiseuille profile, is presented. The flow takes place
between two planes (located at z = zm and z = zM ) where the velocity is zero and a
time oscillating external force is generating a parabolic velocity profile between these
planes. On other faces of the computation domain, boundary conditions are periodic.
In this simplified test, viscosity is only transported as a passive tracer. Velocity is the
solution of the Poisson problem −Δu(x, y, z, t) = (2θ(t), 0, 0)T , so analytical solutions
of both velocity and viscosity are available for all time t.

Viscosity at initial time t = 0 has the same expression as in the previous configu-
ration and the characteristic method enables a theoretical solution of viscosity for all
times t > 0. The expression of the velocity field, pressure gradient and viscosity at
time t for this oscillating Poiseuille flow is the following:

(4.7)

Q = [xm, xM ]× [ym, yM ]× [zm, zM ],

u(x, y, z, t) =

⎧⎨
⎩

θ(t)(z − zm)(z − zM ),

0,

0,

∇p(x, y, z) = 0,

μ(x, y, z, t = 0) = μ0(x, y, z) = 2 + sin(2πx) sin(2πy) sin(2πz),

μ(x, y, z, t) = μ0(x0(t), y0(t), z0(t)),

x0(x, y, z, t) = x−Θ(t)(z − zm)(z − zM ) with Θ′(t) = θ(t),

y0(x, y, z, t) = y, z0(x, y, z, t) = z.

The transport equation of viscosity is discretized using the measure formulation,
and the midpoint formula is used for the resulting ordinary differential equations. The
velocity field is computed with the Stokes solver of section 3.

Results are presented for different space step sizes on Figure 4.1. If the grid is
too coarse, the error from spatial discretization (committed performing interpolations

Fig. 4.1. Convergence of the Lagrangian method using the Stokes solver for computing the
velocity field. The error is plotted with respect to time step size. Results are presented for different
values of spatial resolution. Second order accuracy is reached using fine grids so that the time
discretization error dominates the spatial discretization error.
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and computations of velocity) dominates. Using a fine enough spatial discretization
shows second order accuracy.

In addition, in order to get accurate interpolations and to handle viscosity gra-
dients carefully, one can discretize viscosity on a particle cloud with a resolution two
times finer than that of velocity [16]. This selective refinement is used and discussed
in conservation benchmarks described in the next section.

One can notice that the error never reaches an unphysical high value, featuring
numerical instabilities. Indeed, the Lagrangian formulation of the transport equa-
tion has no stability condition, which leads to a robust method, that is to say, with
unconditional stability.

4.3. Conservation in the transport equation and scalability. This test
case is a sphere spinning in the computational box, starting in a stratified viscosity
field. The goal is to let it spin for several cycles, as displayed in Figure 4.2, to check
whether viscosity is conserved or not. Indeed, in the resolution of the transport
equation, diffusion phenomena can appear and viscosity can be numerically depleted.

The sphere is moving in the computation box Q =] − 1/2, 1/2[3, following the
trajectory X̄(t) with the velocity Ū(t) = X̄ ′(t) defined by

(4.8) X̄(t) =

(
1

4
cos 2πt, 0,

1

4
sin 2πt

)
and Ū(t) =

(
−π

2
sin 2πt, 0,

π

2
cos 2πt

)
.

Viscosity is initially stratified as

(4.9) μ(x, y, z, t = 0) = μ0(x, y, z) = 1 + z

and is then transported using the Stokes flow in its full variable viscosity formulation
(2.4) with no external forces on the right-hand side.

Homogeneous Dirichlet boundary conditions are set on velocity for the left, right,
top, and bottom boundaries (that is to say x = ±0.5 and z = ±0.5), while periodic
boundary conditions are set for front and back planes (y = ±0.5). Boundary condi-
tions on viscosity are also periodic in the y direction, and no boundary condition is
required in other directions since u = 0 on these boundaries (so the domain entrance
boundary is the empty set).

One can introduce the mean value of viscosity

(4.10) Γ(t) =
1

meas(Q)

∫
Q

μ(x, y, z, t)dxdydz.

No exact solution to the flow defined above can be analytically found, but the
viscosity has to satisfy the conservation law Γ(t) = Γ(0).

The ratio
(
Γ(t)− Γ(0)

)
/Γ(0) is consequently computed at each time step and is

presented on Figure 4.3. Computations are performed with δt = 0.01 s and 15 cycles
are performed (one cycle is the unit of time). Results are presented for two different
refinements: 64 and 128 points in each direction for velocity, and viscosity is double
resolution (128 and 256).

One can notice on Figure 4.3 that viscosity is conserved throughout the simulation
with an error decreasing when the refinement is finer: the smallest accumulation is
0.005% which is very small for such configurations exhibiting large gradients for μ
and u as time increases. A usual finite difference discretization of this equation would
have led to a CFL number of 1.92 (which is not stable by a factor of 4), and smaller
time steps would have been required.
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2.1=t9.0=t

1.2=t6.1=t

t=3.2

Fig. 4.2. Sphere spinning in a variable viscosity Stokes flow, at different times. The coupling
between the Stokes and transport equations generates strong nonlinear effects. The pictures show
isosurfaces of viscosity at level 1.5 Pa · s (in red) and the velocity norm (in blue) at level 0.5 m · s−1

for a 2563 simulation.
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Fig. 4.3. Evolution of the ratio (Γ(t) − Γ(0))/Γ(0) during the simulation, using δt = 0.01 s
time steps. The sphere is performing 15 turns according to (4.8).

Fig. 4.4. Scalability of the quasi-static Stokes algorithm based on fixed point transporting a
viscosity field using Lagrangian methods. These results are presented for the spinning sphere in
a stratified viscosity field. Computation cost per time step is considered for the fifteen first steps.
Results compare performances using a twice refined viscosity field (dotted line) or not twice refined
(solid line). Abscissa indicates this refinement. Computation performed on single CPU Intel Xeon
X5450 (3.00 GHz). Computation time is given in seconds.

Figure 4.4 presents the computation time of this turning sphere simulation for
one Runge–Kutta 2 step of Lagrangian convection (so it represents two calls of the
Stokes solver) using different spatial refinements. Results present a simulation using
the same grid size for both viscosity and velocity, and a simulation where viscosity
has a refinement two times finer than that of velocity. It shows the computation
time is quite similar: the most expensive part of the algorithm is the computation of
velocity. With this technique we gain a more accurate computation of interpolations
and viscosity gradients for almost the same computation time.

5. Applications to biological films. In this section we are interested in the
dynamics of mucus film flow around ciliated epithelium cells covering mammal lungs.
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Epithelial cells are of fundamental importance in human lung efficiency (see Figure 1.1
for the anatomical configuration), as mucus acts as a barrier to protect bronchial walls
from inhaled dust and pathogen agents [40].

Modeling ciliated cells in motion in a complex fluid (the mucus), on biological
interfaces (lung/mucus and mucus/air), is a very challenging problem [9] and the
complexity of the full model, that is to say involving all the physics, is still out of
reach despite recent dramatic advances in mucus and cilia modeling [58]. Nevertheless,
several paths can be followed toward this goal. Some models focus on the mucus itself
as a visco-elastic and/or shear-thinning fluid, with the no-slip boundary condition
at flat walls [36], or with a continuous boundary condition that mimics a propulsive
motion [30]. Another approach is experimental reproduction of ciliated structures
beating in a fluid [63, 29]. Yet another strategy is to mesh cilium with accurate laws
of elastic beams with three-dimensional [38] or one-dimensional [20] models moving
in a homogeneous fluid of constant viscosity [31, 56]. Variable viscosity problems
have been explored without geometry [37, 21] or using one-dimensional (1D) or two-
dimensional computations [57, 27, 34]. Finally some other works focus on surfactant
transport in reduced models compared to experimentations [19] and interaction with
branching networks of airways [28].

Mucus is a highly viscous gel essentially composed of polymers and proteins. Out
of these proteins, mucins play an important role: they are released by goblet cells [62]
situated on bronchial walls. The film is hydrated at the bottom whereas lung air flow
dehydrates the top of the film. Thus it is much less viscous at the bottom (where the
viscosity is very close to water’s) than at the top (where it can be 10 to 10000 times
more viscous when pathologies such as cystic fibrosis occur). Hence the rheology of
mucus is mainly driven by mucin concentration and quantity of water.

Mucus is a 7–12-μm-thick variable viscosity film covering the lungs, where 4–7-
μm-long ciliated cells vibrate at 4 to 20 Hz [61]. This results in a complex geometry
in motion (a network of beating cilia) surrounded by a variable viscosity fluid.

The numerical method introduced in the previous sections is especially useful for
this kind of large three-dimensional computation, with complex rheology and moving
geometry. We consider a fluid with variable viscosity and a set of beating cilia with
one way fluid-structure interaction. Indeed, cilia beating is produced by a strong
polymerization which makes the one-way coupling acceptable.

Furthermore, shear-thinning and visco-elasticity properties of mucus are not con-
sidered here. It will be the focus of future work. These rheology constitutive laws
can be brought to the model as supplementary terms in equations. It is much less of
a challenge than building efficient algorithms for variable viscosity flows. It will be
possible to use the method developed presently for the numerical simulation of mucus
in human lungs immediately.

In practice, an average displacement of a few micrometers per second of the mucus
film has been observed clinically [61]. So the characteristic Reynolds number of this
flow is about 10−7 close to the wall and decreases as viscosity increases (in pathological
situations).

Computation and characterization of displacement and nonreversibility are im-
portant matters in physics and mechanics of propulsion. Nonreversibility is almost
systematic in slightly viscous flows since convection terms in Navier–Stokes equations
give a naturally nonlinear equation in velocity u. For highly viscous flows, nature has
to find specific movements with time-symmetry breaking strategies [51].

Thereafter the model for cilium beating is developed and used for computation of
a mucus film with stratified viscosity. The cell is composed of 36 cilia. The beating
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model of each cilium is shown to follow a different path on the way back, which
induces a positive mean velocity of fluid. This is a crucial point to avoid stagnation
of mucus and proliferation of pathogen agents. The resulting velocity is also shown
to be comparable with clinical observations.

5.1. A first order hyperbolic model for cilia dynamics and one-way
coupling. A cilium beating cycle contains two phases:

• stroke, resulting from a polymerization of microtubules inside the cilium;
• recovery, resulting from the inverse mechanism (depolymerization).

Polymerization is a sufficiently strong chemical reaction to assume a one-way solid-
fluid interaction [61, 11].

To compute cilium motion a 1D transport equation is set up along a parameterized
curve which describes the cilium. Let us call P (ζ, t) the curve position describing the
cilium at time t at a length l from the cilium basis with P :]0, 1[−→ R

3. Then L = ∂ζP
is the solution to a first order partial differential equation

(5.1)
∂L

∂t
+ v(t)

∂L

∂ζ
= 0.

The solution to this first order hyperbolic equation is also the solution to the
following damped wave equation:

(5.2)
∂2L

∂t2
− v(t)2

∂2L

∂ζ2
= −v′(t)

∂L

∂ζ
.

Here v(t)2 is an oscillating Young’s modulus, quantifying elasticity.
Boundary conditions of this equation are naturally induced by the physics of the

problem. P (0, t) = 0 ensures that the cilia basis is not moving as it is built into
the bronchial wall, and L(0, t) = ∂ζP (0, t) = g(t) generates an oscillating motion
up to an angle of π/3 (from [61]). This combination of boundary conditions ensures
that P (1, t) is free to evolve; there is no need for a boundary condition for the outer
boundary of a transport equation. This is guaranteed by the positivity of transport
field v.

The unconditionally stable implicit Euler method is used for temporal discretiza-
tion, and upstream finite difference schemes are used for spatial derivatives, since v
is positive.

The solution obtained with the first order differential model is very close to the
motion obtained by other numerical models and experimental measurements on cul-
tured cells, from the literature. A comparison with 4 different works is displayed on
Figure 5.1 (see caption references for instance). Such a reduced 1D beating model is
computationally very cheap.

5.2. Full ciliated cell in stratified film. In the following simulation, mucus
motion is computed around one epithelial cell assuming periodic boundary conditions
with respect to the x and y directions. This states identical cells are periodically
located on the Oxy plane, beating in a coordinated manner, following the equations
of the last section.

The curvature of the bronchial wall is neglected as computations focus on very
small characteristic sizes: a cell width is a few micrometers, while characteristic airway
diameter is several millimeters to a centimeter. The computational box is 22× 22×
10 μm, with a resolution of 256× 256× 128. The top of the box can be considered as
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)d()c(
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Fig. 5.1. Trajectory followed by cilia motion. The present model is figure (e), in which different
states of recovery are displayed in blue, and states of stroke are in red. For a qualitative compari-
son, figures (a) to (d) are, respectively, models from Fauci and Dillon [23], Gheber and Priel [24],
Sanderson and Sleigh (culture of rabbit cells) [54], and Mitran (3D elastic beams model) [38].

the top of the biofilm. As the dynamic viscosity ratio between air and mucus is very
high, surface tension is also very high, and the curvature of the biofilm surface is very
small.

The bottom plane of the computational box is identified as the bronchial wall
inducing a no-slip boundary condition. At the top of the computational box mucus
is authorized to displace in a tangential direction; it is done using a homogeneous
Dirichlet boundary condition for uz and a homogeneous Neumann boundary condition
for both the other components.

To match microscopic observations, the cell is composed of several cilia organized
in an elliptic pattern—see Figure 5.2. Each cilia has a different inclination (controlled
by initial conditions) and the beating is coordinated.

At initialization, the fluid is two times more viscous at the surface with strong
gradients concentrated around cilia tips during recovery. It is expressed with a logistic
function of z:

μ(x, y, z, t = 0) = μwater

(
1 +

1

1 + exp(−10(z − 6))

)
.



B944 ROBIN CHATELIN AND PHILIPPE PONCET

Fig. 5.2. A scanning electron microscope image of lung trachea epithelium (left, courtesy of C.
Daghlian, Dartmouth University), and a snapshot of cell geometry involving 36 cilia (right).

Several snapshots of full cell simulation are displayed on Figure 5.3. Velocity at
the biofilm surface is plotted on Figure 5.4, for one cilium and this full ciliated cell.

The mean velocities found are, respectively, 1.6 and 3.2 μm/s. The beating of
the full cell generates much more displacement of the mucus film, which is consistent
with medical observations [61]. The model presented in this paper, combining both
asymmetric beating and variable viscosity, enables us to model mucociliary clearance
with a positive net displacement (in the direction of the trachea). The simplicity
of our beating model and fast algorithm developed for both velocity computing and
convection enable us to perform 3D computations in a sequential way on a single CPU
with a good treatment of nonlinearities.

From a stability point of view, the Lagrangian method enables us to perform very
large time steps as there is no transport CFL constraint. For the full cell simulation a
standard explicit straightforward discretization of this convection equation with these
characteristic time steps would have led to a CFL number of 19. The robustness of
Lagrangian methods, even with explicit time integration, make them very reliable for
these simulations, where transport is dominant.

Previous simulations have used parameters corresponding to healthy lung condi-
tions with a thin (but not excessively so) mucus film, and reasonable viscosity val-
ues. Experiments have shown that mucociliary clearance fails when these parameters
change too much: if the mucus film is too thin pathogens can reach the bronchial
wall and infections develop whereas stagnation situations (with pathogen prolifera-
tion) can occur when both biofilm thickness and viscosity are too large. The next
paragraph presents the influence of viscosity gradients and future simulations using
various parameter ranges will enable us to identify these pathologic situations, based
on the resulting velocity of the mucus film.

Preliminary results discussing the influence of the viscosity gradient on mucocil-
iary clearance with this numerical algorithm are now presented. A stratified initial
viscosity field is used:

μ(x, y, z, t = 0) = μwater

(
1 + β

z

zM − zm

)
.

So the fluid is β times more viscous at the top of the computational box (z =
zM ) than at the bottom (z = zm). The mean velocity over four cilium beating
periods is computed and presented on Figure 5.5. This result is also compatible with
medical observations: when mucus becomes more viscous (in pathologies like cystic
fibrosis [12]) mucociliary clearance is less effective.
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t = 0.23 ts = 0.25 s

t = 0.27 ts = 0.3 s

t = 0.36 ts = 0.39 s

t = 0.42 ts = 0.43 s

t = 1.75 s

Fig. 5.3. Velocity norm during the beating of a ciliated epithelium cell composed of 36 cilias in
a variable viscosity mucus at different times. At initialization fluid is ten times more viscous at the
surface than at the bottom (where it is equal to the viscosity of water: 10−3 Pa · s). The legend is
using micrometers as the length unit and micrometers per second as the velocity unit. The bottom
picture at time t = 1.75 s (after 7 cycles) contains an additional gray isosurface of viscosity at a
level of 4 · 10−3 Pa · s.
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Fig. 5.4. Surface velocity with respect to time over four periods, for 1 cilium (dotted line)
and one cell containing 36 cilia (solid line). Average velocity over simulation at biofilm surface is
reported in the legend.

Fig. 5.5. Influence of viscosity gradient on mean surface velocity over four beating periods.
Computations performed for one cell containing 36 cilia.

6. Conclusion. In this article, we have built a new numerical scheme dedicated
to the 3D Stokes equations with variable viscosity, coupled with moving geometries.
Viscosity follows the transport equation, and consequently solutions to these coupled
equations can produce a wide range of nonlinear behaviors.

The method introduced is a hybrid scheme combining an Eulerian scheme for
the Stokes equations and a particle method for transport equations. The Stokes
equations are split into a pressureless part and a divergence-free projective part. With
a structured discretization, fast solvers are used to solve resulting Helmholtz and
Poisson equations. An original fixed point algorithm aims at satisfying divergence-
free, accurate Dirichlet boundary conditions and nonlinearity induced by variable
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viscosity. A penalization method is also coupled with the Stokes momentum equation
and a one-way interaction between a moving solid geometry and nonlinear viscous flow
is computed. The particle method used for transport equations has good conservation
properties, and is very robust as characteristic curves are computed accurately using
this novel Stokes solver. The resulting method has been proved to be overall second
order. Moreover, the lack of stability conditions due to the Lagrangian feature of the
scheme allows the use of large time steps.

Such an efficiency allows us to perform these simulations using sequential com-
puting with a good treatment of nonlinearities. This feature in especially interesting
for future developments: massive parallel use of this method for data assimilation.

This scheme allows us to consider large 3D numerical simulations of nonhomoge-
neous highly viscous flows driven by a moving geometry: here, up to 5123 simulations
over thousands of time steps have been performed. The set of equations is a realistic
model for biological flows on the scale of cells, here the ciliated cells of lungs. The
resolution of a set of 1D equations generates an asymmetric beating motion used to
model the cilia dynamics of a full epithelial cell. By coupling this geometry motion
with the Stokes flow, nonreversibility of this system can be studied through the mean
velocity of the mucus film. Our results are shown to be coherent with observations; a
net displacement of the film surface in the direction of proximal airways is observed,
ensuring an efficient mucociliary clearance.

This novel model will be used in order to distinguish different mechanisms of
mucus propelling, aiming to identify dominant factors in mucociliary clearance, par-
ticularly in the context of cystic fibrosis and aerosol therapy. Non-Newtonian aspects
will also be considered in these models without altering the efficiency of the numerical
strategy developed here.

This numerical tool could be useful for any simulation of highly viscous flows,
where viscosity is transported by the flow, such as for porous media, many biological
configurations, or process engineering.
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