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Abstract—This paper presents a new algorithm for the fast,
shared memory, multi-core computation of augmented contour
trees on triangulations. In contrast to most existing parallel
algorithms our technique computes augmented trees, enabling
the full extent of contour tree based applications including data
segmentation. Our approach completely revisits the traditional,
sequential contour tree algorithm to re-formulate all the steps
of the computation as a set of independent local tasks. This
includes a new computation procedure based on Fibonacci
heaps for the join and split trees, two intermediate data struc-
tures used to compute the contour tree, whose constructions
are efficiently carried out concurrently thanks to the dynamic
scheduling of task parallelism. We also introduce a new parallel
algorithm for the combination of these two trees into the
output global contour tree. Overall, this results in superior
time performance in practice, both in sequential and in parallel
thanks to the OpenMP task runtime. We report performance
numbers that compare our approach to reference sequen-
tial and multi-threaded implementations for the computation
of augmented merge and contour trees. These experiments
demonstrate the run-time efficiency of our approach and its
scalability on common workstations. We demonstrate the utility
of our approach in data segmentation applications.

Keywords-Scientific Visualization, Topological Data Analysis,
Task Parallelism, Multi-core Architecture

I. INTRODUCTION

As scientific data sets become more intricate and larger in
size, advanced data analysis algorithms are needed for their
efficient visualization and interactive exploration. For scalar
field visualization, topological data analysis techniques [1]–
[4] have shown to be practical solutions in various contexts
by enabling the concise and complete capture of the struc-
ture of the input data into high-level topological abstrac-
tions such as merge trees [5]–[7], contour trees [8]–[11],
Reeb graphs [12]–[16], or Morse-Smale complexes [17]–
[21]. Such topological abstractions are fundamental data-
structures that enable the development of advanced data
analysis, exploration and visualization techniques, including
for instance: small seed set extraction for fast isosurface
traversal [22], [23], feature tracking [24], data simplifica-
tion [25], summarization [26], [27] and compression [28],
transfer function design [29], similarity estimation [30]–
[32], or geometry processing [33]–[35]. Moreover, their
ability to capture the features of interest in scalar data in
a generic, robust and multi-scale manner has contributed

to their popularity in a variety of applications, including
turbulent combustion [5], [36], [37], computational fluid
dynamics [38], [39], material sciences [40]–[43], chem-
istry [44], and astrophysics [45]–[47].

However, as computational resources and acquisition de-
vices improve, the resolution of the geometrical domains on
which scalar fields are defined also increases. This increase
in the input size yields several technical challenges for
topological data analysis, including that of computation time
efficiency, which is a critical criterion in the context of
interactive data analysis and exploration, where the respon-
siveness of the system to user queries is of paramount
importance. Thus, to enable truly interactive exploration
sessions, highly efficient algorithms are required for the
computation of topological abstractions. A natural direction
towards the improvement of the time efficiency of topolog-
ical data analysis is parallelism, as all commodity hardware
(from tablet devices to high-end workstations) now embeds
processors with multiple cores. However, most topological
analysis algorithms are originally intrinsically sequential
as they often require a global view of the data. Thus, in
this work, we focus on parallel approaches for topological
methods with the specific target of improving run times in
an interactive environment, where the response time of a
system should be as low as possible.

In this paper we focus on the contour tree, which is a
fundamental topology-based data structure in scalar field
visualization. Several algorithms have been proposed for its
parallel computation [48]–[50]. However, these algorithms
only compute non-augmented contour trees [11], which only
represent the connectivity evolution of the sub-level sets,
and not the corresponding data-segmentation (i.e. the arcs
are not augmented with regular vertices). While such non-
augmented trees enable some of the traditional visualization
applications of the contour tree, they do not enable them
all. For instance, they do not readily support topology based
data segmentation. Moreover, fully augmenting in a post-
process non-augmented trees is a non trivial task, for which
no linear-time algorithm has ever been documented to our
knowledge.

The new algorithm we present here allows for the ef-
ficient computation of augmented contour trees of scalar
data on triangulations. Such a tree augmentation makes our



output data-structures generic application-wise and enables
the full extent of contour tree based applications, including
data segmentation. Our approach completely revisits the
traditional, sequential contour tree algorithm to re-formulate
all the steps of the computation as a set of local tasks
that are as independent as possible. This includes a new
computation procedure based on Fibonacci heaps for the
join and split trees, two intermediate data structures used to
compute the contour tree, whose constructions are efficiently
carried out concurrently thanks to the dynamic scheduling
of task parallelism.

We also introduce a new parallel algorithm for the combi-
nation of these two trees into the output global contour tree.
This results in a computation with superior time performance
in practice, in sequential as well as in parallel, thanks
to the OpenMP task runtime, on multi-core CPUs with
shared memory (typically found on the workstations used
for interactive data analysis and visualization)

Extensive experiments on a variety of real-life data sets
demonstrate the practical superiority of our approach in
terms of time performance in comparison to sequential [51]
and parallel [52] reference implementations, both for aug-
mented merge and contour tree computations. We illustrate
the utility of our approach with specific use cases for the
interactive exploration of hierarchies of topology-based data
segmentations that were enabled by our algorithm. We also
provide a lightweight VTK-based C++ reference implemen-
tation of our approach for reproducibility purposes.

A. Related work

The contour tree [8], a tree that contracts connected
components of level sets to points (formally defined in
Sec. II-A), is closely related to the notion of merge tree,
which contracts connected components of sub-level sets to
points on simply connected domains. As shown by Tarasov
and Vyali [10] and later generalized by Carr et al. [11]
in arbitrary dimension, the contour tree can be efficiently
computed by combining with a simple linear-time traversal
the merge trees of the input function and of its opposite
(called the join and split trees, see Sec. II-A). Due to this
tight relation, merge and contour trees have often been
investigated jointly in the literature.

A simple sequential algorithm, based on a union-find data-
structure [53], is typically used for merge tree computa-
tion [10], [11]. It is both simple to implement, relatively
efficient in practice and with optimal time complexity. In
particular, this algorithm allows for the computation of both
augmented and non-augmented merge trees. An open source
reference implementation (libtourtre [51]) of this algorithm
is provided by Scott Dillard. Chiang et al. [54] presented an
output-sensitive approach, based on a new algorithm for the
computation of non-augmented merge trees using monotone
paths, where the arcs of the merge trees were evaluated by
considering monotone paths connecting the critical points

of the input scalar field. Among the popular applications of
the contour tree, interactive data segmentation is particularly
prominent with usages in a variety of domains, as mentioned
in the introduction. However, these applications of the con-
tour tree to data segmentation require the augmented contour
tree as they rely on the identification of the sets of regular
vertices mapping to each arc of the contour tree to extract
regions of interest.

Among the approaches which addressed the time perfor-
mance improvement of contour tree computation through
shared-memory parallelism, only a few of them rely directly
on the original merge tree computation algorithm [10], [11].
This algorithm is then used within partitions of the mesh
resulting from a static decomposition on the CPU cores, by
either dividing the geometrical domain [55] or the scalar
range [52]. This leads in both cases to extra computation
(with respect to the sequential mono-partition computation)
at the partition boundaries when joining results from differ-
ent partitions. This can also lead to load imbalance among
the different partitions [52].

In contrast, most approaches addressing shared-memory
parallel contour tree computation actually focused on re-
visiting the merge tree sub-procedure, as it constitutes the
main computational bottleneck overall (see Sec. VI-B).
Maadasamy et al. [48] introduced a multi-threaded variant of
the output-sensitive algorithm by Chiang et al. [54], which
results in good scaling performances on tetrahedral meshes.
However, we note that, in practice, the sequential version of
this algorithm is up to three times slower than the reference
implementation (libtourtre [51], see Tab. 1 in [48]). This
only yields eventually speedups between 1.6 and 2.8 with
regard to libtourtre [51] on a 8-core CPU [48] (20% and
35% parallel efficiency respectively). We suspect that these
moderate speedups over libtourtre are due to the lack of
efficiency of the sequential algorithm based on monotone
paths by Chiang et al. [54] in comparison to that of Carr et
al. [11]. Indeed, from our experience, although the extraction
of the critical points of the field is a local operation [56],
we found in practice that its overall computation time is
often larger than that of the contour tree itself. Moreover,
this algorithm triggers monotone path computations for each
saddle point [54], even if it does not yield branching in the
join or split trees (which induces unnecessary computations).
Finally, since it connects critical points through monotone
paths, this algorithm does not visit all the vertices of the
input mesh. Thus it cannot produce an augmented merge
tree and consequently cannot support merge tree based data
segmentation. Carr et al. [50] presented a new algorithm
available in the VTK-m library [57]. This approach is based
on massive, fine-grained (one thread per input vertex), data
parallelism and is specially designed for many-core architec-
tures (like GPUs). However, existing implementations only
support non-augmented trees and experiments have only
been documented in 2D [50]. In contrast, our approach is



based on coarse-grained parallelism (one thread at a time
per output arc) for multi-core architectures and benefits
from the flexibility of the dynamic load balancing induced
by the task runtime. Smirnov et al. [7] described a new
data-structure for computing the same information as the
merge tree. This structure can be computed in parallel by
using an algorithm close to Kruskal’s algorithm. However,
documented experiments report that this algorithm needs at
least 4 threads to be more efficient than a version optimized
for a sequential usage (without atomic variables). Moreover,
it has a maximum parallel efficiency of 18.4% compared to
this optimized sequential version on 32 CPU cores. Acharya
and Natarajan [49] specialized and improved monotone-path
based computations for the special case of regular grids.
Rosen et al. also presented a hybrid CPU-GPU approach for
regular grids [58]. In this work, we focus on triangulations
because of the genericity of this representation: any mesh
can be decomposed into a valid triangulation and regular
grids can be implicitly triangulated with no memory over-
head [59].

To compute the contour tree, two intermediate data-
structures, the join and split trees, need to be combined
into the global output contour tree [11]. Regarding this
combination step, the existing parallel methods to contour
tree computation use almost directly the reference sequential
algorithm [11]. Some parallel attempts for this combination
step have been described in [48]–[50], but no experimental
result concerning this step has been documented.

Morozov and Weber [6], [60] and Landge et al. [61]
presented three approaches for merge and contour tree-based
visualization in a distributed environment, with minimal
inter-node communications. However, these approaches fo-
cus more on the reduction of the communication between
the processes than on the efficient computation on a single
shared memory node as we do here with the target of an
efficient interactive exploration in mind.

B. Contributions

This paper is an extended version of a conference pa-
per [62], which made the following contributions.

1) A new local algorithm based on Fibonacci heap:
We present a new algorithm for the computation of
augmented merge trees. Contrary to massively parallel
approaches [48]–[50], our strategy revisits the optimal
sequential algorithm for augmented trees [11]. A major
distinction with the latter algorithm is the localized
nature of our approach, based on local sorting traversals
whose results are progressively merged with the help
of a Fibonacci heap. In this context, we also introduce
a new criterion for the detection of the saddles which
generate branching in the output tree, as well as an
efficient procedure to process the output arcs in the
vicinity of the root of the tree (hereafter referred to as
the trunk). Our algorithm is simple to implement and it

improves practical time performances over a reference
implementation [51] of the traditional algorithm [11].

2) Parallel augmented merge trees: We show how to
leverage the task runtime environment of OpenMP
to easily implement a shared-memory, coarse-grained
parallel version of the above algorithm for multi-
core architectures. Instead of introducing extra work
with a static decomposition of the mesh among the
threads, the local algorithm based on Fibonacci heaps
naturally distributes the merge tree arc computations
via independent tasks on the CPU cores. We hence
avoid any extra work in parallel, while enabling an
efficient dynamic load balancing on the CPU cores
thanks to the task runtime. This results in superior time
and scaling performances compared to previous multi-
threaded algorithms for augmented merge trees [52].

This extended version makes these additional contributions.

3) Complete taskification: We express every parallel
work for our entire approach using tasks and nested
parallelism. This complete taskification enables us to
overlap tasks arising from the concurrent computations
of the join and split trees. In practice this allows the
runtime to pick tasks from one of the two trees if the
other is running out of work, thus improving the parallel
efficiency.

4) Parallel combination of the join and split trees:
We present a new parallel algorithm to combine the
join and split trees into the output contour tree. First,
we describe a procedure to combine arcs in parallel
which exploits nested parallelism. Second, to further
speedup this step, we introduce a new original method
for the fast parallel processing of the arcs on the trunk
of the tree. Detailed performance results concerning this
parallel combination are given and analyzed.

5) Fine grain optimizations: We provide several opti-
mizations reducing the amount of work of our algorithm
in practice. First, we show how to trigger the efficient
trunk computation earlier using an improved detection.
Second, we show how to avoid the valence processing
on most vertices with lazy evaluation at saddle points
only. Finally, we document how switching form a
structure of arrays (SoA) to an array of structures (AoS)
contributes to performance improvement.

6) Implementation: We provide a lightweight VTK-based
C++ implementation of our approach for reproducibility
purposes.

II. PRELIMINARIES

This section briefly describes our formal setting and
presents an overview of our approach. An introduction to
topological data analysis can be found in [1], [4].



Figure 1: Topology driven hierarchical data segmentation. (a) Input field
f (color map), level-set (light green) and critical points (blue: minimum,
white: saddle, green: maximum). (b) Split tree of f and its corresponding
segmentation (arcs and their pre-images by φ are shown with the same
color). (c) Split tree of f and its corresponding segmentation, simplified
according to persistence.

A. Background

The input to our algorithm is a piecewise linear (PL)
scalar field f : M → R defined on a simply-connected
PL d-manifold M (i.e. a triangular mesh for d = 2, or
a tetrahedral one for d = 3). This scalar field generally
corresponds to the results of a numerical simulation or of
an acquisition evaluated on each vertex. Without loss of
generality, we will assume that d = 3 (tetrahedral meshes)
in most of our discussion, although our algorithm supports
arbitrary dimensions. An i-simplex of M denotes a vertex
(i = 0), an edge (i = 1), a triangle (i = 2) or a tetrahedron
(i = 3). Then, the star St(v) of a vertex v is the set of
simplices of M which contain v. The link Lk(v) is the set
of faces (i.e. sub-simplices) of the simplices of St(v) which
do not intersect v. Intuitively, the link of a vertex v in 2D
consists of the ring of edges immediately around v. In 3D,
it corresponds to the sphere of triangles immediately around
it. We will note Lki(v) the set of i-simplices of Lk(v). The
scalar field f is provided on the vertices of M and it is
linearly interpolated on the simplices of higher dimension.
We will additionally require that the restriction of f to the
vertices ofM is injective, which can be easily enforced with
a mechanism inspired by simulation of simplicity [63].

The notion of critical point from the smooth setting [64]
admits a direct counterpart for PL scalar fields [56]. Let
Lk−(v) be the lower link of the vertex v: Lk−(v) = {σ ∈
Lk(v) | ∀u ∈ σ : f(u) < f(v)}. The upper link Lk+(v) is
given by Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f(u) > f(v)}.
Then, given a vertex v, if its lower (respectively upper) link
is empty, v is a local minimum (respectively maximum).
If both Lk−(v) and Lk+(v) are simply connected, v is
a regular point. Any other configuration is called a saddle
(white spheres, Fig. 1a).

A level-set is defined as the pre-image of an isovalue
i ∈ R onto M through f : f−1(i) = {p ∈ M | f(p) = i}
(Fig. 1a). Each connected component of a level-set is called
a contour. In Fig. 1b, each contour of Fig. 1a is shown

with a distinct color. Similarly, the notion of sub-level set,
noted f−1−∞(i), is defined as the pre-image of the open
interval (−∞, i) onto M through f : f−1−∞(i) = {p ∈
M | f(p) < i}. Symmetrically, the sur-level set f−1+∞(i)
is defined by f−1+∞(i) = {p ∈ M | f(p) > i}. Let
f−1−∞

(
f(p)

)
p

(respectively f−1+∞
(
f(p)

)
p
) be the connected

component of sub-level set (respectively sur-level set) of
f(p) which contains the point p. The split tree T +(f) is
a 1-dimensional simplicial complex (Fig. 1a) defined as the
quotient space T +(f) =M/ ∼ by the equivalence relation
p1 ∼ p2: {

f(p1) = f(p2)
p2 ∈ f−1+∞

(
f(p1)

)
p1

Intuitively, the split tree is a tree which tracks the creation
of connected components of sur-level sets at its leaves and
which tracks their merges at its interior nodes (Fig. 1b). For
regular isovalues (colored surfaces in Fig. 1b), it contracts
components to points on the arcs connecting its nodes. The
join tree, noted T −(f), is defined similarly with regard to
an equivalence relation on sub-level set components (instead
of sur-level sets), and tracks the merges of these sub-level
set connected components. Irrespective of their orientation,
the join and split trees are usually called merge trees, and
noted T (f) in the following. The notion of Reeb graph [12],
noted R(f), is also defined similarly, with regard to an
equivalence relation on level set components (instead of sub-
level set components). As discussed by Cole-McLaughlin et
al. [65], the construction of the Reeb graph can lead to the
removal of 1-cycles, but not to the creation of new ones. This
means that the Reeb graphs of PL scalar fields defined on
simply-connected domains are loop-free. Such a Reeb graph
is called a contour tree and we will note it C(f). Contour
trees can be computed efficiently by combining the join and
split trees with a linear-time traversal [10], [11]. In Fig. 1,
since M is simply connected, the contour tree C(f) is also
the Reeb graph of f . Since f has only one minimum, the
split tree T +(f) is equivalent to the contour tree C(f).

Note that f can be decomposed into f = ψ ◦ φ where
φ :M → T (f) maps each point in M to its equivalence
class in T (f) and where ψ : T (f) → R maps each
point in T (f) to its f value. Since the number of connected
components of f−1−∞(i), f−1+∞(i) and f−1(i) only changes in
the vicinity of a critical point [1], [56], [64], the pre-image
by φ of any vertex of T −(f), T +(f) or R(f) is a critical
point of f (spheres in Fig. 1a). The pre-image of vertices of
valence 1 necessarily correspond to extrema of f [12]. The
pre-image of vertices of higher valence correspond to saddle
points which join (respectively split) connected components
of sub- (respectively sur-) level sets. Since f−1−∞(f(M)) =
M for the global maximum M of f , φ(M) is called the
root of T −(f) and the image by φ of any local minimum
m is called a leaf. Symmetrically, the global minimum of f
is the root of T +(f) and local maxima of f are its leaves.



Note that the pre-image by φ of C(f) induces a partition
of M. The pre-image φ−1(σ1) of an arc σ1 ∈ C(f) is
guaranteed by construction to be connected. This latter
property is at the basis of the usage of the contour tree
in visualization as a data segmentation tool (Fig. 1b) for
feature extraction. In practice, φ−1 is represented explicitly
by maintaining, for each arc σ1 ∈ C(f), the list of regular
vertices of M that map to σ1. Moreover, since the contour
tree is a simplicial complex, persistent homology concepts
[66] can be readily applied to it by considering a filtration
based on ψ. Intuitively, this progressively simplifies C(f),
by iteratively removing its shortest arcs connected to leaves.
This yields hierarchies of contour trees that are accompanied
by hierarchies of data segmentations, that the user can
interactively explore in practice (see Fig. 1c).

In the following, we briefly describe two data structures
used in the core of our algorithm. First, a Union-Find [53]
is a data structure implementing two operations (union and
find) and operating on disjoint sets to track whether some
elements are in the same connected component or not.
Internally, it relies on rooted trees and uses path compression
along with a ranking mechanism for improved efficiency,
leading to O

(
α(n)

)
time complexity per operation, where

α() is the extremely slow-growing inverse of the Acker-
mann function. Second, the Fibonacci heap data structure,
extensively used in our new approach, is a priority queue
introduced by M. Fredman and R. Tarjan [53], [67]. It is
based on a collection of (binomial) trees and offers constant
time operations thanks to an advanced laziness mechanism
(in particular for the merge of two heaps), except for the
pop operation which takes O

(
log(n)

)
steps.

B. Overview

An overview of our augmented merge tree computation
algorithm is presented in Fig. 2 in the case of the join
tree. The purpose of our algorithm, in addition to construct
T (f), is to build the explicit segmentation map φ, which
maps each vertex v ∈ M to T (f). Our algorithm is
expressed as a sequence of procedures, called on each vertex
of M. First, given a vertex v, the algorithm checks if v
corresponds to a leaf (Fig. 2 left, Sec. III-A). If this is
the case, the second procedure is triggered. For each leaf
vertex, the augmented arc connected to it is constructed by a
local growth, implemented with a sorted breadth-first search
traversal (Fig. 2 middle left, Sec. III-B). A local growth may
continue at a join saddle s, in a third procedure, only if it
is the last growth which visited the saddle s (Fig. 2 middle
right, Sec. III-D). To initiate the growth from s efficiently,
we rely on the Fibonacci heap data-structure [53], [67] in
our breadth-first search traversal, which supports constant-
time merges of sets of visit candidates. A fourth procedure
(the trunk growth) is triggered to abbreviate the process
when a local growth happens to be the last active growth. In
this case, all the unvisited vertices above s are guaranteed

to map through φ to a monotone path from s to the root
(Fig. 2 right, Sec. III-E). Overall, the time complexity of
our algorithm is identical to that of the reference algorithm
[11]: O(|σ0| log(|σ0|)+ |σ1|α(|σ1|)

)
, where |σi| stands for

the number of i-simplices in M and α() is the inverse of
the Ackermann function (cf. Sec. II-A).

For the augmented contour tree computation, we present
a new parallel combination algorithm which improves the
sequential reference method [11]. Our algorithm processes
the arcs from the join and split trees in parallel, level by
level. Once the join and split trees only contribute one arc
each, the remaining work only consists in completing the
output tree with a set of arcs forming a monotone path.
We use the fourth procedure of our merge tree algorithm to
process in parallel these remaining arcs and vertices.

III. MERGE TREES WITH FIBONACCI HEAPS

In this section, we present our algorithm for the com-
putation of augmented merge trees based on local arc
growth. Our algorithm consists of a sequence of procedures
applied to each vertex, described in each of the following
subsections. In the remainder, we illustrate our discussion
with the join tree, which tracks connected components of
sub-level sets, initiated in local minima.

A. Leaf search

Alg. 1 Find minima of the input mesh

procedure LEAFSEARCH(Mesh: M)
for each vertex v ∈ M do . in parallel (tasks)

add v to leaves if |Lk−0 (v)| = 0
end for
return leaves

end procedure

The procedure LeafSearch is used to find the minima on
which local growths will later be initiated is shown in Alg. 1.
Minima are vertices with an empty lower link: |Lk−0 (v)| =
0.

B. Leaf growth

For each local minimum m, the leaf arc σm of the
join tree connected to it is constructed with a procedure
that we call ArcGrowth, presented in Alg. 2. The purpose
of this procedure is to progressively sweep all contiguous
equivalence classes (Sec. II-A) from m to the saddle s
located at the extremity of σm. We describe how to detect
such a saddle s, and therefore where to stop such a growth, in
the next subsection (Sec. III-C). In other words, this growth
procedure will construct the connected component of sub-
level set initiated in m, and will make it progressively grow
for increasing values of f .

This is achieved by implementing an ordered breadth-first
search traversal of the vertices of M initiated in m. At



Figure 2: Overview of our augmented merge tree algorithm based Fibonacci heaps (2D toy elevation example). First, the local extrema of f (corresponding
to the leaves of T (f)) are extracted (left, Sec. III-A). Second, the arc σm of each extremum m is grown independently along with its segmentation
(matching colors, center left, Sec. III-B). These independent growths are achieved by progressively growing the connected components of level sets created
in m, for increasing f values, and by maintaining at each step a priority queue Qm, implemented with a Fibonacci heap, which stores vertex candidates
for the next iteration (illustrated with colored dots). These growths are stopped at merge saddles (white disks, center left, Sec. III-C). Only the last growth
reaching a saddle s is kept active and allowed to continue to grow the saddle’s arc σs (matching colors, center right, Sec. III-D). The constant time merge
operation of the Fibonacci heap (to initialize the growth at s) enables a highly efficient execution for this step in practice. Last, when only one growth
remains active, the tree is completed by simply creating its trunk, a monotone sequence of arcs to the root of the tree which links the remaining pending
saddles (pale blue region, right, Sec. III-E). The task-based parallel model allows for a straightforward parallelization of this algorithm, where each arc is
grown independently, only requiring local synchronizations on merge saddles.

Alg. 2 Local growth computing one arc of T (f)
procedure ARCGROWTH(Qm: Fibonacci heap, uf:
Union-Find)

Open a new arc in T (f) at the first vertex of Qm

while not the last active growth do
Pop the first vertex of Qm in v
Process v
Add Lk+0 (v) into the Qm

Use Lk−0 (v) to check if v is a merging saddle
if v is a merging saddle then

if last growth reaching v then
SaddleGrowth(v)

end if
return

end if
end while

end procedure

each step, the neighbors of v which have not already been
visited are added to a priority queue Qm (if not already
present in it), implemented as a Fibonacci heap [53], [67].
Additionally, v is processed by the current growth: the vertex
is marked with the identifier of the current arc σm for
future addition. The purpose of the addition of v to σm
is to augment this arc with regular vertices, and therefore
to store its data segmentation. Next, the following visited
vertex v′ is chosen as the minimizer of f in Qm and the
process is iterated until s is reached (Sec. III-C). At each
step of this local growth, since breadth-first search traversals
grow connected components, we have the guarantee, when
visiting a vertex v, that the set of vertices visited up to this
point (added to σm) indeed equals to the set of vertices
belonging to the connected component of sub-level set of
f(v) which contains v, noted f−1−∞

(
f(v)

)
v

in Sec. II-A.
Therefore, our local leaf growth indeed constructs σm (with

its segmentation). Also, note that, at each iteration, the set
of edges linking the vertices already visited and the vertices
currently in the priority queue Qm are all crossed by the
level set f−1

(
f(v)

)
.

The Time complexity of this procedure is
O(|σ0| log(|σ0|) + |σ1|), where |σi| stands for the
number of i-simplices in M.

C. Saddle stopping condition

Given a local minimum m, the leaf growth procedure is
stopped when reaching the saddle s corresponding to the
other extremity of σm. We describe in this subsection how
to detect s.

In principle, the saddles of f could be extracted by using
the critical point extraction procedure presented in Sec. II-A,
based on a local classification of the link of each vertex.
However, such a strategy has two disadvantages. First not
all saddles of f necessarily corresponding to branching in
T −(f) and/or T +(f). Thus some unnecessary computation
would need to be carried out. Second, we found in practice
that even optimized implementations of such a classifica-
tion [59] tend to be slower than the entire augmented merge
tree computation in sequential. Thus, another strategy should
be considered for the sake of performance.

The local ArcGrowth procedure (Sec. III-B) visits the
vertices of M with a breadth-first search traversal initiated
in m, for increasing f values. At each step, the minimizer v
of Qm is selected. Assume that at some point: f(v) < f(v′)
where v′ was the vertex visited immediately before v. This
implies that v belongs to the lower link of v′, Lk−(v′).
Since v was visited after v′, this means that v does not
project to σm through φ. In other words, this implies that
v does not belong to the connected component of sub-level
set containing m. Therefore, v′ happens to be the saddle s
that correspond to the extremity of σm. Locally (Fig. 3), the
local leaf growth entered the star of v′ through the connected
component of lower link projecting to σm and jumped across



Figure 3: Local merge saddle detection based on arc growth (2D elevation
example from Fig. 2). The local growth of the arc σm (green) will visit
the vertex v′ at value 3 after visiting the vertex at value 1 (following the
priority queue Qm). At this point, the neighbors of v′ which have not been
visited yet by σm and which are not in Qm yet (dashed green edges) will
be added to Qm. The minimizer v of Qm (vertex 2) has a scalar value
lower than v′. Hence v′ is a merge saddle.

the saddle v′ downwards when selecting the vertex v, which
belongs to another connected component of lower link of
v′.

Therefore, a sufficient condition to stop an arc growth is
when the candidate vertex returned by the priority queue has
a lower f value than the vertex visited last. In such a case,
the last visited vertex is the saddle s which closes the arc
σm (Fig. 3).

D. Saddle growth

Alg. 3 Start a local growth at a join saddle

procedure SADDLEGROWTH(s: join saddle)
Close arcs in Lk−(s)
Qm ← union Qm0 ,Qm1 , . . .Qmn ∈ Lk−0 (s)
uf ← union uf0, uf1,. . . ufn ∈ Lk−0 (s)
ArcGrowth(Qm, uf)

end procedure

Up to this point, we described how to construct each
arc σm connected to a local minimum m, along with its
corresponding data segmentation. The remaining arcs can
be constructed similarly.

Given a local minimum m, its leaf growth is stopped
at the saddle s which corresponds to the extremity of the
arc connected to it, σm. When reaching s, if all vertices of
Lk−(s) have already been visited by some local leaf growth,
we say that the current growth, initiated in m, is the last
one visiting s. In such a case, the procedure SaddleGrowth
presented in Alg. 3 is called (see Algorithm 2) and the same
breadth-first search traversal can be applied to grow the arc
of T −(f) initiated in s, noted σs. In order to represent all the
connected components of sub-level set merging in s, such a
traversal needs to be initiated with the union of the priority
queues Qm0 ,Qm1 , . . .Qmn of all the arcs merging in s.
Such a union models the entire set of candidate vertices for
absorption in the sub-level component of s (Fig. 4). Since
both the number of minima of f and the size of each priority

Figure 4: Union of priority queues at a merge saddle (2D elevation example
from Fig. 2). Initially, each arc growth maintains its own priority queue
(illustrated with colored dots, left inset). When reaching a merge saddle s
(second inset), the growths which arrived first in s are marked terminated.
Only the last one (green) will be allowed to resume the growth from s to
construct the arc σs (last inset). To continue the propagation of the sub-
level set component which contains s, the priority queues of all growths
arrived at s need to be merged into only one (third inset) prior to resuming
the propagation. If done naively, this operation could yield a quadratic
runtime complexity for our approach overall. Since Fibonacci heaps support
constant time merges, they guarantee the linearithmic complexity of our
overall approach.

queue can be linear with the number of vertices in M, if
done naively, the union of all priority queues could require
O(|σ0|2) operations overall. To address this issue, we model
each priority queue with a Fibonacci heap [53], [67], which
supports the removal of the minimizer of f from Qm in
log(|σ0|) steps, and performs both the insertion of a new
vertex and the merge of two queues in constant time.

Similarly to the traditional merge tree algorithm [10],
[11], we maintain a Union-Find data structure to precisely
keep track of the arcs which need to be merged at a given
saddle s. Each local minimum m is associated with a unique
Union-Find element, which is also associated to all regular
vertices mapped to σm (Sec. III-B). Also, each Union-Find
element is associated to the arc it currently grows. When
an arc σ reaches a join saddle s last, the find operation
of the Union-Find is called on each vertex of Lk−(s) to
retrieve the set of arcs which merge there, and the union
operation is called on all Union-Find associated to these
arcs to keep track of the merge event. Thus, overall, the
time complexity of our augmented merge tree computation is
O
(
|σ0|log(|σ0|)+ |σ1|α(|σ1|)

)
. The |σ1|α(|σ1|) term yields

from the usage of the Union-Find data structure, while the
Fibonacci heap, thanks to its constant time merge support,
enables to grow the arcs of the tree in logarithmic time. The
time complexity of our algorithm is then exactly equivalent
to the traditional algorithm [10], [11]. However, comparisons
to a reference implementation [51] (Sec. VI) show that our
approach provides superior performances in practice.

E. Trunk growth

Time performance can be further improved by abbrevi-
ating the process when only one arc growth is remaining.
Initially, if f admits N local minima, N arcs (and N arc
growths) need to be created. When the growth of an arc σ
reaches a saddle s, if σ is not the last arc reaching s, the
growth of σ is switched to the terminated state. Thus, the
number of remaining arc growths will decrease from N to
1 along the execution of the algorithm. In particular, the last



Alg. 4 Compute the last monotone path

procedure TRUNK
Close arcs on pending saddles
Create a monotone path from the last visited vertex to

the global maximum
for each unvisited vertex vu do . in parallel (tasks)

Project vu into its arc on the monotone path
end for

end procedure

arc growth will visit all the remaining, unvisited, vertices
of M upwards until the global maximum of f is reached,
possibly reaching on the way an arbitrary number of pending
join saddles, where other arc growths have been stopped
and marked terminated (white disks, Fig. 2, third column).
Thus, when an arc growth reaches a saddle s, if it is the
last active one, we have the guarantee that it will construct
in the remaining steps of the algorithm a sequence of arcs
which constitutes a monotone path from s up to the root of
T −(f). We call this sequence the trunk of T −(f) (Fig. 2)
and we present the corresponding procedure in Alg. 4. The
trunk of the join tree can be computed faster than through
the breadth-first search traversals described in Secs. III-B
and III-D. Let s be the join saddle where the trunk starts. Let
S = {s0, s1, . . . sn} be the sorted set of join saddles that are
still pending in the computation (which still have unvisited
vertices in their lower link). The trunk is constructed by
simply creating arcs that connect two consecutive entries
in S. Next, these arcs are augmented by simply traversing
the vertices of M with higher scalar value than f(s) and
projecting each unvisited vertex vu to the trunk arc that spans
it scalar value f(vu).

Thus, our algorithm for the construction of the trunk does
not use any breadth-first search traversal, as it does not
depend on any mesh traversal operation, and it is performed
in O(|σ0|log(|σ0|)) steps (to maintain regular vertices sorted
along the arcs of the trunk). This algorithmic step is another
important novelty of our approach.

Finally, the overall merge tree computation is presented
in Alg. 5

Alg. 5 Overall merge tree computation for a mesh M
leaves ← LeafSearch(M)
for each v ∈ leaves do
Qm ← new Fibonacci heap containing v
uf ← new Union-Find
ArcGrowth(Qm, uf) . task

end for
Trunk()

IV. TASK-BASED PARALLEL MERGE TREES

The previous section introduced a new algorithm based on
local arc growths with Fibonacci heaps for the construction
of augmented join trees (split trees being constructed with
a symmetric procedure). Note that this algorithm enables to
process the minima of f concurrently. The same remark goes
for the join saddles; however, a join saddle growth can only
be started after all of its lower link vertices have been vis-
ited. Such an independence and synchronization among the
numerous arc growths can be straightforwardly parallelized
thanks to the task parallel programming paradigm. Also,
note that such a split of the work load does not introduce
any supplementary computation or memory overhead. Task-
based runtime environments also naturally support dynamic
load balancing, each available thread picking its next task
among the unprocessed ones. We rely here on OpenMP
tasks [68], but other task runtimes (e.g. Intel Threading
Building Blocks, Intel Cilk Plus, etc.) could be used as well
with a few modifications. In practice, users only need to
specify a number of threads among which the tasks will be
scheduled. In the remainder, we will present our taskification
process for the merge tree computation, as well as the
required task synchronizations.

At a technical level, our implementation starts with a
global sort of all the vertices according to their scalar value
in parallel (using the GNU parallel sort). This reduces further
vertex comparisons to comparisons of indices, which is
faster in practice than accessing the actual scalar values and
which is also independent of the scalar data representation.
Our experiments have shown that this sort benefits from a
better data locality, and is thus more efficient, when using
an array of structures (AoS) rather than a structure of arrays
(SoA) for the vertex data structures (id, scalar value, offset).
The remaining steps of our approach being unsuitable for
SIMD computing and mostly consisting of scattered memory
accesses, the shift to the AoS data layout did not affect their
performance.

A. Taskification

Parallel leaf search: For each vertex v ∈ M, the
extraction of its lower link Lk−(v) is makes this step
embarrassingly parallel and enables a straightforward par-
allelization of the corresponding loop using OpenMP tasks:
see Alg. 1. Once done, we have the list of extrema from
which the leaf growth should be started. This list is sorted
so that the leaf growths are launched in the order of the
scalar value of their extremum, starting with the “deepest”
leaves.

Arc growth tasks: Each arc growth is independent from
the others, spreading locally until it finds a saddle. Each leaf
growth is thus simply implemented as a task, starting at its
previously extracted leaf as shown in Alg. 2. All tasks but the
last one stop at the next saddle: this last task then proceeds
with this saddle growth.



B. Synchronizations
In the following, we present the task synchronizations

required for a parallel execution of our algorithm.
Saddle stopping condition: The saddle stopping con-

dition presented in Sec. III-C can be safely implemented in
parallel with tasks. When a vertex v, unvisited so far by
the current arc growth, is visited immediately after a vertex
v′ with f(v) < f(v′), then v′ is a saddle. To decide if
v was indeed not visited by an arc growth associated to
the sub-tree of the current arc growth, we use the Union-
Find data structure described in Sec. III-D (one Union-Find
node per leaf). In particular, we store for each visited vertex
the Union-Find representative of its current growth (which
was originally created on a minimum). Our Union-Find
implementation supports concurrent find operations from
parallel arc growths (executed simultaneously by distinct
tasks). A find operation on a Union-Find currently involved
in a union operation is also possible but safely handled in
parallel in our implementation. Since the find and union
operations are local to each Union-Find sub-tree [53], these
operations generate only few concurrent accesses. Moreover,
these concurrent accesses are efficiently handled since only
atomic operations are involved.

Detection of the last growth reaching a saddle:
When a saddle s is detected, we also have to check if
the current growth is the last to reach s as described in
Sec. III-D. For this, we rely on the size of Lk−0 (s), noted
|Lk−0 (s)| (number of vertices in the lower link of s). In
our preliminary approach [62], this size was computed for
every vertices during the leaf search to avoid synchronization
issues. In contrast, the current approach strictly restrict
this computation to vertices where it is necessary and we
address synchronization issues as follows. Initially, a lower
link counter associated with s is set to −1. Each task t
reaching s will atomically decrement this counter by nt,
the number of vertices in Lk−(s) visited by t. Using here
an OpenMP atomic capture operation, only the first task
reaching s will retrieve −1 as the initial value of s (before
the decrement). This first task will then compute |Lk−0 (s)|
and will (atomically) increment the counter by |Lk−0 (s)|+1.
Since the sum over nt for all tasks reaching s equals
|Lk−0 (s)|, the task eventually setting the counter to 0 will
be considered as the “last” one reaching s (note that it can
also be the one which computed |Lk−0 (s)|). We thus rely
here only on lightweight synchronizations, and avoid using
a critical section.

Growth merging at a saddle: Once the lower link
of a saddle has been completely visited, the “last” task
which reached it merges the priority queues (implemented
as Fibonacci heaps), and the corresponding Union-Find data
structures, of all tasks terminated at this saddle. Such an
operation is performed sequentially at each saddle, without
any concurrency issue both for the merge of the Fibonacci
heaps and for the union operations on the Union-Find. The

saddle growth starting from this saddle is performed by this
last task, with no new task creation. This continuation of
tasks is illustrated with shades of the same color in Fig. 2
(in particular for the green and blue tasks). As the number
of tasks can only decrease, the detection of the trunk start
is straightforward. Each time a task terminates at a saddle,
it decrements atomically an integer counter, which tracks
the number of remaining tasks. The trunk starts when this
number reaches one.

Early trunk detection: An early trunk detection pro-
cedure can be considered, in order for the last active task
to realize earlier, before reaching its upward saddle, that
it is indeed the last active task and therefore to trigger
the efficient (and parallel) trunk processing procedure even
earlier. This detection consists in regularly checking, within
each local growth, if a task is the last active one or not.
In practice, we check the number of remaining tasks every
10,000 vertices on our experimental setup to avoid slowing
down significantly the computation. This improvement is
particularly beneficial on data sets composed of large arcs. In
this case, a significant section of the arc previously processed
by only one active task is now efficiently processed in
parallel during the trunk growth procedure.

C. Parallel trunk growth

During the arc growth step, we keep track of the pending
saddles (saddles reached by some tasks but for which the
lower link has not been completely visited yet). The list of
pending saddles enables us to compute the trunk in parallel
as described in Alg. 4. Once the trunk growth has started,
we only focus on the vertices whose scalar value is strictly
greater than the lowest pending saddle, as all other vertices
have already been processed during the regular arc growth
procedure. Next, we create the sequence of arcs connecting
pairs of pending saddles in ascending order. At this point,
each vertex can be projected independently of the others
along one of these arcs. Using the sorted nature of the list of
pending saddles, we can use dichotomy for a fast projection.
Moreover when we process vertices in the sorted order of
their index, a vertex can use the arc of the previous one
as a lower bound for its own projection: we just have to
check if the current vertex still projects in this arc or in
an arc with a higher scalar value. We parallelize this vertex
projection procedure using tasks: each task processes chunks
of contiguous vertex indices out of the globally sorted vertex
list (see e.g. the OpenMP taskloop construct [68]). For each
chunk, the first vertex is projected on the corresponding arc
of the trunk using dichotomy. Each new vertex processed
next relies on its predecessor for its own projection. Note
that this procedure can visit (and ignore) vertices already
processed by the arc growth step.



Alg. 6 Overall contour tree computation for a mesh M
LeafSearch(M)
Compute JT
Compute ST

}
. using 2 concurrent tasks

Post-processing of the two merge trees
ArcsCombine()
TrunkCombine()

V. TASK-BASED PARALLEL CONTOUR TREES

As described in Sec. I-A, an important use case for the
merge tree is the computation of the contour tree. Our task-
based merge tree algorithm can be used quite directly for
this purpose. First, as shown in Alg. 6 a single leaf search
can be used to extract both minima for the join tree and
maxima for the split tree in a single traversal instead of
having each tree performing this step, thus avoiding one pass
on the data as done in our preliminary work [62]. Once the
two merge trees are computed (Sec. IV) while taking here
advantage of their concurrent processing, a post-processing
step, explained below, is required. Then, the two trees can
be combined efficiently into the contour tree using a new
parallel combination algorithm.

A. Post-processing for contour tree augmentation

Our merge tree procedure segments M by marking each
vertex with the identifier of the arc it projects to through
φ. In order to produce such a segmentation for the output
contour tree (Sec. V-C), each arc of T (f) needs to be
equipped at this point with the explicit sorted list of vertices
which project to it. We reconstruct these explicit sorted
lists in parallel. For vertices processed by the arc growth
step, we save during each arc growth the visit order local
to this growth. During the parallel post-processing of all
these vertices, we can safely build (with a linear operation
count) the ordered list of regular vertices of each arc in
parallel thanks to this local ordering. Regarding the vertices
processed by the trunk step, we cannot rely on such a local
ordering of the arc. Instead each thread concatenates these
vertices within bundles (one bundle per arc for each thread).
The bundles of a given arc are then sorted according to their
first vertex and concatenated in order to obtain the ordered
list of regular vertices for this arc. Hence, the O(n log n)
operation count of the sort only applies to the number of
bundles, which is much lower than the number of vertices
in practice. At this point, to use the combination pass the
join tree needs to be augmented with the nodes of the split
tree and vice-versa. This step is straightforward since each
vertex stores the identifier of the arc it maps to, for both
trees. This short step can be done in parallel, using one task
for each tree.

B. Tasks overlapping for merge tree computation

As discussed in Sec. III-E, during the arc growth step,
the number of active tasks decreases monotonically and is
driven by the topology of the tree. When the number of
remaining tasks to process becomes smaller than the number
of available threads, the computation enters a suboptimal
section, where the parallel efficiency of our algorithm is
undermined as some threads are idle. During the contour
tree computation the two merge trees are computed using
our task-based algorithm (Sec. IV). Contrary to [62], we
perform here a complete taskification of our implementation,
by always relying on tasks even when not required (see e.g.
the loop parallelization of the trunk growth in Sec. IV-C). It
can be noticed that, in order to mitigate the cost of creating
and managing the tasks, a task is created in the different
steps of the algorithm only when the computation grain size
is large enough (according to empirical thresholds). As an
example, each task is given a chunk of 400,000 vertices in
the parallel leaf search (Sec. IV-A).

This complete taskification enables us to lower the per-
formance impact of the suboptimal sections by computing
the join and split trees concurrently: see Alg. 6. Indeed,
when the computation of one of the two merge trees enters
a suboptimal section, the runtime can pick tasks from
the other tree computation (from its arc growth step, or
from subsequent steps). By overlapping the two merge tree
computations, we can thus rely on more tasks to exploit at
best the available CPU cores. In order to introduce such task
overlap only when required, and thus to benefit from it as
long as possible, we also impose a higher priority on all
tasks from one of the two trees.

C. Parallel Combination

Figure 5: A join (a) and a split (b) tree augmented with the critical nodes of
the final tree. The combination of these two trees results in the final contour
tree (c). The notion of level (length of the shortest monotone path to the
closest leaf) is emphasized using the blue and green boxes, corresponding
respectively to the levels 0 and 1. The last monotone path can be filled using
our highly parallel trunk procedure and is highlighted in red. In (d), we
illustrate the list of regular vertices corresponding to the arc segmentation.

For completeness we sketch here the main steps of the



reference algorithm [11] used to combine the join and split
trees into the final contour tree. According to this algorithm,
the contour tree is created from the two merge trees by
processing their leaves one by one, adding newly created
leaves in a queue until it is empty:

1) Add leaf nodes of T −(f) and T +(f) to a queue Q.
2) Pop the first node of Q and add its adjacent arc in the

final contour tree C(f) with its segmentation.
3) Remove the processed node from the two trees. If this

creates a new leaf node in the original tree, add this
node into Q.

4) If Q is not empty, repeat from 2.

During phase 2, the arc and its list of regular vertices (shown
in Fig. 5d) are processed. The list of regular vertices is
visited and all vertices not already marked are marked with
the new arc identifier in the final tree. As a vertex is both
in the join and split trees, each vertex will be visited twice.
In phase 3, when a node is deleted from a merge tree, three
situations may occur. First, if the node has one adjacent arc:
remove the node along with this adjacent arc. Second, if
the node has one arc up and one down: remove the node
to create a new arc which is the concatenation of the two
previous ones. Finally in all other situations, the node is
not deleted yet: a future deletion will remove it in a future
iteration.

We present here a new parallel algorithm to combine
the join and the split trees, which improves the reference
algorithm [11]. First, we define the notion of level of a node
in a merge tree as the length of the shortest monotone path
to its closest leaf. For example, in Fig. 5 the blue nodes are
the leaves and correspond to the level 0, while the green
ones at a distance of one arc correspond to the level 1.

During the combination, all the nodes and arcs at a
common level can be processed in arbitrary order. This
corresponds to the ArcsCombine procedure of Alg. 6 We
use this for parallelism, by allowing each node (and its
corresponding arc) to be processed in parallel. Moreover,
processing an arc consist of marking unvisited vertices with
an identifier. This can be done in parallel, using tasks,
by processing contiguous chunks of regular vertices. In
summary, we have two nested levels of task-parallelism
available during the arc combination. First we can create
tasks to process each arc, then we can create tasks to
process regular vertices of an arc in parallel. We use this
to create tasks with a large enough computation grain size,
and to avoid being constrained by the (possible) low number
of arcs to process. In our experimental setup, we choose
10,000 vertices per task. These two levels of parallelism
are a novelty of our approach, improving both the load
balancing and the task computation grain size tuning while
also increasing the parallelism degree. However, we note
that two synchronizations are required. First, the procedure
needs to wait for all nodes of a given level to be processed

before going to the following level. Second, data races
may occur if the node deletion is not protected in the
merge trees as several nodes can be deleted along a same
arc simultaneously. A critical section is added around the
corresponding deletions. In practice, since most of the time
is spent processing arcs and their segmentations, this does
not represent a performance bottleneck.

Finally, similarly to the merge tree, there is a point where
all the remaining work is a monotone path tracing, when
the contribution of the join and split trees is reduced to
one node each. We can interrupt the combination and use
the same trunk procedure than described in Sec. III-E for
the merge tree to process the remaining nodes, arcs and
vertices in parallel. This trunk procedure (corresponding to
the TrunkCombine in Alg. 6) will indeed offer a higher par-
allelism degree at the end of our combination algorithm. This
procedure ignores already processed vertices and project the
unvisited ones in the arcs of the remaining monotone path.
Note that the size of this trunk does not depends on the task
scheduling (as it is the case for the merge tree), but is fixed
by the topology of the join and split trees.

VI. RESULTS

In this section we present performance results obtained
on a workstation with two Intel Xeon E5-2630 v3 CPUs
(2.4 GHz, 8 CPU cores and 16 hardware threads each) and
64 GB of RAM. By default, parallel executions will thus
rely on 32 threads. These results were performed with our
VTK/OpenMP based C++ implementation (provided as ad-
ditional material) using g++ version 6.4.0 and OpenMP 4.5.
This implementation (called Fibonacci Task-based Contour
tree, or FTC) was built as a TTK [59] module. FTC uses
TTK’s triangulation data structure which supports both tetra-
hedral meshes and regular grids by performing an implicit
triangulation with no memory overhead for the latter. For
the Fibonacci heap, we used the implementation available
in Boost.

Our tests have been performed using eight data sets from
various domains. The first one, Elevation, is a synthetic data
set where the scalar field corresponds to the z coordinate,
with only one connected component of level set: the output is
thus composed of only one arc. Five data sets (Ethane Diol,
Boat, Combustion, Enzo and Ftle) result from simulations
and two (Foot and Lobster) from acquisition, containing
large sections of noise. For the sake of comparison, these
data sets have been re-sampled, using single floating-point
precision, on the same regular grid and have therefore the
same number of vertices.

A. Merge Tree performance results

Tab. I details the execution times and speedups of FTC
for the join and the split tree on a 5123 grid. One can first
see that the FTC sequential execution time varies greatly
between data sets despite their equal input size. This denotes



Figure 6: FTC scalability on our 5123 regular grid data sets for (a) the join tree, (b) the split tree and (c) the contour tree computation. The gray area
represents the usage of two threads per core with SMT (simultaneous multithreading).

Table I: Running times (in seconds) of the different steps of FTC on a 5123

grid for the join and split trees (white and gray backgrounds respectively).
|T (f)| is the number of arcs in the tree.

Sequential Parallel (32 threads on 16 cores)
Leaf Arc Trunk

Data set |T (f)| Overall Sort search growth growth Overall Speedup

1 11.44 0.84 0.14 0 0.20 1.19 9.57Elevation 1 18.71 0.84 0.65 0 0.20 1.71 10.89
17 35.13 1.31 0.28 5.16 0.62 7.38 4.75Ethane Diol 19 30.79 1.31 0.30 2.58 0.62 4.82 6.38

5,426 29.72 1.24 0.24 0.07 0.64 2.21 13.41Boat 1,715 29.59 1.24 0.40 0.59 0.63 2.88 10.27
26,981 37.20 1.23 0.37 3.04 0.61 5.27 7.04Combustion 23,606 32.38 1.23 0.29 0.53 0.63 2.69 12.03
96,061 129.62 1.35 0.36 12.79 0.69 15.20 8.52Enzo 115,287 43.23 1.35 0.36 4.06 0.77 6.55 6.59

147,748 31.21 1.28 0.37 0.42 0.70 2.78 11.19Ftle 202,865 35.85 1.28 0.31 0.60 0.70 2.91 12.31
241,841 25.06 1.04 0.26 0.80 0.55 2.67 9.38Foot 286,654 48.59 1.06 0.55 7.82 0.53 9.97 4.87
472,862 96.34 1.07 0.30 3.59 0.73 5.71 16.86Lobster 490,236 36.64 1.05 0.62 5.45 0.78 7.91 4.62

a sensitivity on the output tree, which is common to most
merge tree algorithms. Moving to parallel executions the
embarrassingly parallel leaf search step offers very good
speedups close to 14. The key step for parallel performance
is the arc growth. On most of our data sets this step is indeed
the most-time consuming in parallel, but its time varies in
a large range: this will be investigated in Sec. VI-C. The
last step is the trunk computation, which takes less than
one second. Overall, with a minimum speedup of 4.62, a
maximum one of 16.86 and an average speedup of 9.29
on 16 cores, our FTC implementation achieves an average
parallel efficiency greater than 58%. These speedups are
detailed on the scaling curves of the join and split tree
computation in Fig. 6a and Fig. 6b. The first thing one can
notice is the monotonous growth of all curves. This means
that more threads always implies faster computations, which
enables us to focus on the 32-thread executions. Another
interesting point is the Lobster data set presenting speedups
greater than the ideal one when using 4 threads and more.
This unexpected but welcome supra-linearity is due to the
trunk processing of our algorithm.

As highlighted in Tab. II, in sequential mode, the trunk
step is indeed able to process vertices much faster than the
arc growth step, since no breadth-first search traversal is

Table II: Process speed in vert/sec for the arc growth and trunk procedure
in sequential and in parallel (join tree, grid: 5123).

Sequential Parallel
Data set Arc growth Trunk Arc growth Trunk

Elevation 0 113,217,189 0 468,537,720
Ethane Diol 472,861 13,862,083 1,003,125 202,175,593
Boat 446,981 13,941,128 933,281 193,274,082
Combustion 453,784 14,104,274 1,416,082 196,810,503
Enzo 344,129 11,170,128 2,514,479 138,666,543
Ftle 594,694 14,007,046 3,198,233 154,453,693
Foot 447,270 27,073,541 2,257,674 182,413,262
Lobster 734,705 19,884,438 2,534,264 135,125,845

performed in the trunk step (see Sec. III-E). In parallel, the
performance gap is even larger thanks to the better parallel
speedups obtained in the trunk step than in the arc growth
step. The trunk processing step is 30x faster than the arc
growth in sequential execution, and 110x faster in parallel.
The arc growth is indeed 3x faster in parallel than in sequen-
tial while the trunk is 10x faster in parallel than in sequential.
This enforces the benefits from maximizing the trunk step
in our algorithm to achieve both good performances and
good speedups. However, for a given data set, the size of
the trunk highly depends on the order in which arc growths
(leaves and saddles) have been processed. Since the trunk
is detected when only one growth remains active, distinct
orders in leaf and saddle processing will yield distinct trunks
of different sizes, for the same data set. Hence maximizing
the size of this trunk minimizes the required amount of
computation, especially for data sets like Lobster where the
trunk encompasses a large proportion of the domain. That
is why we launch the leaf growth tasks in the order of the
scalar value of their extremum (Sec. IV-A). Note however,
that the arc growth ordering which would maximize the size
of the trunk cannot be known in advance. In a sequential
execution, it is unlikely that the runtime will schedule the
tasks on the single thread so that the last task will be the
one that corresponds to the greatest possible trunk. Instead,
the runtime will likely process each available arc one at a
time, leading to a trunk detection at the vicinity of the root.



Table III: Stability of the execution time of FTC in parallel (join tree, 10
runs, 5123 grid).

Data set Min Max Range Average Std. dev

Elevation 1.17 1.19 0.02 1.18 0.01
Ethane Diol 7.37 8.67 1.29 8.00 0.42
Boat 2.11 2.21 0.09 2.14 0.02
Combustion 4.61 5.27 0.65 4.89 0.17
Enzo 14.44 15.82 1.38 15.29 0.53
Ftle 2.75 2.82 0.07 2.78 0.02
Foot 2.63 2.70 0.07 2.67 0.02
Lobster 5.36 5.71 0.34 5.53 0.13

Table IV: Sequential join tree computation times (in seconds) and ratios
between libtourtre (LT), Contour Forests (CF), our preliminary Fibonacci
Task-based Merge tree (FTM) [62] and our extended Fibonacci Task-based
Contour tree (FTC), on a 2563 grid.

Data set LT CF FTM FTC LT / FTC CF / FTC FTM / FTC

Elevation 5.81 7.70 3.41 1.44 4.01 5.31 2.35
Ethane Diol 11.59 17.75 7.21 3.61 3.20 4.91 1.99
Boat 11.84 17.11 7.81 3.06 3.86 5.57 2.54
Combustion 11.65 16.87 7.96 4.05 2.87 4.15 1.96
Enzo 14.33 17.99 18.00 13.62 1.05 1.32 1.32
Ftle 11.32 15.62 7.24 3.55 3.18 4.39 2.04
Foot 9.45 12.72 5.94 3.20 2.95 3.97 1.85
Lobster 11.65 14.80 14.20 10.05 1.15 1.47 1.41

On the contrary, in parallel, it is more likely that the runtime
environment will run out of leaves sooner, hence yielding a
larger trunk than in sequential and thus leading to increased
(possibly supra-linear) speedups.

As the dynamic scheduling of the tasks on the CPU cores
may vary from one parallel execution to the next, it follows
that the trunk size may also vary across different executions,
hence possibly impacting noticeably runtime performances.
As shown in Tab. III, the range within which the execution
times vary is clearly small compared to the average time
and the standard deviation shows a very good stability of
our approach in practice.

Finally, in order to better evaluate the FTC performance,
we compare our approach to three reference implementa-
tions, which are, to our knowledge, the only three public
implementations supporting augmented trees:
• libtourtre (LT) [51], an open source sequential reference

implementation of the traditional algorithm [11];
• the open source implementation [59] of the parallel

Contour Forests (CF) algorithm [52];
• the preliminary version of our algorithm [62]: the

Fibonacci Task-based Merge tree (FTM) algorithm.
In each implementation, TTK’s triangulation data struc-
ture [59] is used for mesh traversal. Due to its important
memory consumption, we were unable to run CF on the
5123 data sets on our workstation. Thus, we have created
a smaller grid (2563 vertices) with down-sampled versions
of the scalar fields used previously. For the first step of this
comparison we are interested in the sequential execution.
The corresponding results are reported in Tab. IV. We note
that in sequential, Contour Forests and libtourtre implements

Table V: Parallel join tree computation times (in seconds) and ratios
between libtourtre (LT [51]), Contour Forests (CF [52]), our preliminary
Fibonacci Task-based Merge tree (FTM [62]) and our extended Fibonacci
Task-based Contour tree (FTC) (2563 grid).

Data set LT CF FTM FTC LT / FTC CF / FTC FTM / FTC

Elevation 5.00 2.33 0.35 0.18 27.19 12.67 1.95
Ethane Diol 8.95 4.54 1.24 0.85 10.52 5.33 1.46
Boat 8.24 4.40 0.61 0.29 28.02 14.96 2.09
Combustion 7.96 5.82 0.86 0.54 14.62 10.69 1.59
Enzo 12.18 8.92 1.91 1.60 7.60 5.56 1.19
Ftle 8.19 4.98 0.97 0.54 15.12 9.19 1.80
Foot 7.60 6.94 1.12 0.86 8.78 8.02 1.30
Lobster 8.40 9.02 1.69 0.92 9.03 9.70 1.82

the same algorithm. Our sequential implementation is about
3.90x faster than Contour Forests and more than 2.70x faster
than libtourtre for most data sets. This is due to the faster
processing speed of our trunk step. Thanks to our fine grain
optimizations, computing a merge tree using FTC is faster
than with FTM, by a factor of 1.93x on average in our
test cases. As far as this improvement is concerned, up
to 40% is due to the early trunk detection for data sets
with large arcs (cf. Sec. IV-B), 40% to the lazy valence
computation (cf. Sec. IV-B) and 20% is due to the use of
an array of structure (cf. Sec. IV). The parallel results for
the merge tree implementation are presented in Tab. V. The
sequential libtourtre implementation starts by sorting all the
vertices, then computes the tree. Using a parallel sort instead
of the serial one is straightforward. Thus, we used this
naive parallelization of LT in the results reported in Tab. V
with 32 threads. As for Contour Forests we report the best
time obtained on the workstation, which is not necessarily
with 32 threads. Indeed, as detailed in [52] increasing the
number of threads in CF can result in extra work due
to additional redundant computations. This can lead to
greater computation times, especially on noisy data sets. The
optimal number of threads for CF has thus to be chosen
carefully. On the contrary, FTM and FTC always benefit
from the maximum number of hardware threads. In the end,
FTC largely outperforms the other implementations for all
data sets: libtourtre by a factor 15.11x (in average), Contour
Forests by a factor 9.51x (in average) and our preliminary
approach [62] by a factor of 1.63x. We emphasize that
the two main performance bottlenecks of CF in parallel,
namely extra work and load imbalance, do not apply to FTC
thanks to the arc growth algorithm and to the dynamic task
scheduling.

B. Contour Tree performance results

Tab. VI details execution times for our contour tree
computation. As for the merge tree, the sequential times
vary across data sets due to the output sensitivity of the
algorithm. A single leaf search is performed for both merge
trees (corresponding to a 25% performance improvement for
this step, both in sequential and in parallel). Focusing on
parallel executions, most of the time is spent computing the
join and the split trees as reported under the MT column. We



Table VI: Contour tree computation times (in seconds) with FTC on the
5123 grid. Extremum detection is reported under the Leaf Search column.
The concurrent computation of the two merge trees is reported under the
MT column. The parallel combination of these trees is in the Combine
column.

Sequential Parallel (32 threads on 16 cores)

Data set |T (f)| Overall Sort Leaf search MT Combine Overall Speedup

Elevation 1 20.92 1.07 0.61 1.08 0 2.77 7.54
Ethane Diol 35 70.63 1.48 0.44 9.29 0.61 11.84 5.96
Boat 7,140 59.33 1.39 0.48 2.55 2.78 7.21 8.22
Combustion 50,586 76.00 1.37 0.49 5.22 1.57 8.66 8.76
Enzo 211,346 215.08 1.47 0.58 15.63 1.99 19.68 10.92
Ftle 350,602 73.42 1.46 0.56 3.32 1.73 7.08 10.36
Foot 528,494 83.44 1.15 0.77 10.06 3.01 14.99 5.56
Lobster 963,068 143.15 1.21 0.89 9.80 6.77 18.68 7.66

Table VII: Merge tree processing time during the parallel contour tree
computation (5123 grid). JT then ST reports results obtained by separately
computing first the join tree then the split tree, leading to the successive
execution of two distinct suboptimal sections. In Task overlapping, the two
trees are concurrently computed and overlap occurs in their task scheduling.

Data set JT then ST Task overlapping Overlap speedups

Elevation 2.25 1.73 1.30
Ethane Diol 12.80 10.14 1.26
Boat 3.90 3.11 1.25
Combustion 6.49 5.55 1.17
Enzo 21.34 17.69 1.21
Ftle 4.74 3.86 1.23
Foot 12.14 10.48 1.16
Lobster 14.45 10.81 1.34

further investigate this step later with Tab. VII and Fig. 7.
As for the combination, it takes longer to compute for larger
trees, with the exception of the Boat data set having a
particularly small trunk. This illustrates the output sensitivity
of our combination algorithm, as detailed in Tab. VIII.
Our contour tree computation algorithm results in speedups
varying between 5.56 and 10.92 in our test cases, with
an average of 8.12 corresponding to an average parallel
efficiency of 50.75%.

The evolution of these speedups as a function of the
number of threads is shown in Fig. 6c. These speedups are
consistent with those of the merge tree (Fig. 6a and Fig. 6b).
Our algorithm benefits from the dynamic task scheduling
and its workload does not increase with the number of
threads. This also applies to the our combination algorithm.
Therefore in theory, the more threads are available, the
faster FTC should compute the contour tree. In practice,
this translates into monotonically growing curves as shown
in Fig. 6. For the contour tree computation, curves shown
Fig. 6c have lower slopes than those of the merge trees
(Fig. 6a and Fig. 6b). This is mainly due to the combination
procedure which has a smaller speedup than our merge tree
procedure as detailed below in Tab. VIII.
Task overlapping. Tab. VII presents speedups obtained
by computing both trees concurrently, allowing tasks to
overlap in their scheduling during the merge tree parallel
computation, thanks to the complete taskification of our im-
plementation. This overlap reduces the size of the suboptimal
section, as shown in Fig. 7. This strategy results in speedups

Figure 7: Number of remaining tasks over time for a parallel execution
on the Enzo data set. Each step of the algorithm is shown with a distinct
color. The suboptimal sections are shown with areas stripped in gray. At
the top, the join and split trees are computed separately (join tree first).
At the bottom, they are computed concurrently (hence, at a given time, the
number of remaining tasks is the sum of the overlapping curves).

up to 1.34x (1.24x in average) compared to a successive
computation of the two trees.

Indeed, as mentioned in Sec. V-B, during the arc
growth computation, the number of remaining tasks becomes
smaller than the number of threads. As illustrated Fig. 7 this
leads to a suboptimal section, where some available threads
are left idle. On this chart, the suboptimal section is shown
using the stripped gray area. If the join and split trees are
computed one after the other, (Fig. 7, top chart) we observe
two distinct suboptimal sections: one for the join tree and
one for the split tree. In contrast, when the join and split
trees are computed simultaneously (Fig. 7, bottom chart) the
OpenMP runtime can pick tasks among either trees, hence
reducing the area of the stripped section. Moreover, at the
bottom chart of Fig. 7, when the arc growth procedure of
the split tree finishes, that of the join tree is still processing.
The remaining steps of the split tree computation (trunk
processing and regular vertex segmentation) continues in
the meantime, which contributes to reducing the suboptimal
section (blue and red columns in Fig. 7). At the end, this task
overlapping strategy results in a smaller stripped area and
so in an improved parallel efficiency. In the same manner,
the total time of the leaf search plus merge tree computation
reaches 21.34 seconds when merge trees are computed one
after the other and 17.69 seconds in an overlapped merge
trees execution (cf. Tab. VII).
Parallel Combination. For the combination step, we report
in Tab. VIII comparisons between various versions of our
algorithm and the reference algorithm [11] implemented



Table VIII: Combination procedure times for sequential and parallel exe-
cutions with and without the trunk processing, compared to the sequential
combination procedure of our preliminary version (FTM [62], 5123 grid).
The 0 values for the Elevation data-set are due to the filiform nature of its
merge trees (which implies instantaneous combinations).

Sequential Parallel FTM / parallel
Data set FTM no trunk trunk no trunk trunk FTC + trunk

Elevation 0 0 0 0 0 N.A.
Ethane Diol 3.23 3.82 6.40 2.51 0.54 5.98
Boat 3.11 3.99 3.60 2.63 2.64 1.17
Combustion 3.29 3.63 5.62 3.30 1.49 2.20
Enzo 4.72 4.52 7.03 4.18 1.90 2.48
Ftle 4.79 5.13 7.62 5.01 1.70 2.81
Foot 4.63 4.46 5.15 5.04 3.14 1.47
Lobster 7.11 7.22 7.46 8.33 6.72 1.05

Table IX: Sequential contour tree computation times (in seconds) and ratios
between libtourtre (LT [51]), Contour Forests (CF [52]), our preliminary
Fibonacci Task-based Merge tree [62] adapted for Contour trees (FTM-CT)
and our current Fibonacci Task-based Contour tree FTC, on a 2563 grid.

Data set LT CF FTM-CT FTC LT / FTC CF / FTC FTM-CT / FTC

Elevation 10.84 8.15 6.25 2.82 3.83 2.88 2.21
Ethane Diol 21.54 17.73 12.06 6.61 3.25 2.67 1.82
Boat 21.10 16.63 12.55 5.68 3.71 2.92 2.20
Combustion 21.52 16.92 13.35 7.38 2.91 2.29 1.80
Enzo 27.79 19.71 26.23 19.33 1.43 1.01 1.35
Ftle 23.05 15.89 13.17 7.33 3.14 2.16 1.79
Foot 19.24 13.41 14.25 9.77 1.96 1.37 1.45
Lobster 23.39 51.32 22.96 17.04 1.37 3.01 1.34

in our preliminary approach [62]. Note that our parallel
algorithm executed sequentially, without triggering the fast
trunk procedure, corresponds to the reference sequential
algorithm [11]. According to this table, enabling the trunk
on a sequential execution of our new algorithm is slower
by 33% in average. We believe this is due to two reasons.
First, each regular vertex additionally checks if it should
be added to the current arc (Sec. V-C). Second, the trunk
procedure may re-visit some vertices already visited by the
arc combination procedure, which results in redundant visits
(Sec. V-C). In our test cases, this redundant work affects less
than 1% of the total number of vertices. In contrast, enabling
the trunk procedure in a parallel execution is necessary to
achieve significant speedups, by an average factor of 1.98x in
Tab. VIII, with respect to the sequential reference algorithm
implemented in FTM. Indeed, in the parallel combination
algorithm the number of arcs at each level decreases, induc-
ing a decreasing trend in the number of vertices processed
(and tasks created) at each leave, and leading to another
suboptimal section. The trunk procedure occurs at a point
where the arcs combination is likely to use a small number
of tasks and replace it by a highly parallel processing, thus
improving parallel efficiency. Finally, according to these
observations, we choose to trigger the trunk processing only
for parallel executions.
Comparison. For the contour tree computation we compare
our approach with the three public reference implementa-
tions computing the augmented contour tree. Results are
shown in Tab. IX. Due to the important memory consump-
tion of Contour Forests [52], we were unable to run these
tests on our 5123 regular grid. Results are reported using a

Table X: Parallel contour tree computation times (in seconds) and ratios
between libtourtre (LT [51]), Contour Forests (CF [52]), our preliminary
Fibonacci Task-based Merge tree [62] adapted for Contour Tree (FTM-CT)
and our current Fibonacci Task-based Contour trees (FTC), on a 2563 grid.

Data set LT CF FTM-CT FTC LT / FTC CF / FTC FTM-CT / FTC

Elevation 5.00 2.33 0.73 0.40 12.31 5.73 1.79
Ethane Diol 8.95 4.54 2.13 1.23 7.24 3.67 1.72
Boat 8.24 4.40 1.39 0.92 8.93 4.77 1.50
Combustion 7.96 5.82 1.73 1.15 6.86 5.01 1.49
Enzo 12.18 8.92 3.90 2.87 4.23 3.09 1.35
Ftle 8.19 4.98 2.55 1.35 6.03 3.66 1.87
Foot 7.60 6.94 4.38 3.10 2.44 2.23 1.40
Lobster 8.40 9.02 6.86 4.66 1.80 1.93 1.47

down-sampled 2563 grid. Our implementation in sequential
mode outperforms the three others for every data set. FTC is
in average 2.70x faster than libtourtre and 2.29x faster than
Contour Forests. In sequential, these two implementations
correspond to the reference algorithm [11]. As shown with
the merge tree in Sec. VI-A, our algorithm is able in practice
to process vertices faster thanks to the trunk step, hence
the observed improvement. FTC is also 1.75x faster than
FTM thanks to the fine grain optimizations introduced in
this paper.

For the comparison in parallel, results are presented in
Tab. X. For libtourtre, a naive parallelization is achieved
by using the GNU parallel sort and by computing the two
merge trees concurrently. For contour forests, we present
the best time using the optimal number of threads (not
necessarily 32). Again, FTC is the fastest for all our test
cases. It outperforms libtourtre by an average factor of 6.23x
(up to 8.93x for real-life data sets), our naive parallelization
of libtourtre having a maximum speedup of 2.81x on 16
cores. FTC is also faster than Contour Forests by a factor
3.76x, taking benefits from the dynamic task scheduling and
from the absence of additional work in parallel. Finally,
FTC outperforms FTM by a factor 1.58x in average on our
data sets thanks to our fine grain optimizations, to our task
overlapping strategy for the merge trees, and to the parallel
combination, all introduced on this paper.

C. Limitations

The main limitation of the preliminary version of our
work [62] is the presence of so-called suboptimal sections.
Two contributions presented in this paper aim at reducing
their performance impact. First, the early trunk detection
stops the arc growth processing sooner, increasing the trunk
size, as explained in Sec. III-E. Second, for the contour
tree computation, tasks of both merge trees are created
concurrently (allowing them to overlap), thus reducing the
suboptimal section (cf. Fig. 7).

We have considered using task priorities to maximize the
task overlapping, or to minimize the suboptimal sections.
We have first studied simple heuristics (based e.g. on the
higher number of extrema) to choose which tree will be
computed with the high task priority (Sec. V-B). However
no simple heuristic led to the best choice for all our data sets.



Figure 8: Worst case data set with the initial scalar field (top left, blue to
green), with 50% (top middle), and with 100% of randomness (top right).
The red circle indicates a saddle point induced by the Elevation scalar field,
called hereafter “natural saddle”. Vertices processed by the trunk procedure
are shown in red (bottom).

Figure 9: FTC contour tree computation time for 2 and 32 threads on our
worst case data set as the random part progresses form 0 to 100% (plain
lines, left axis) and percentage of vertices processed by the trunk procedure
(dashed lines, right axis).

We thus arbitrarily assign the high priority to the split tree
tasks. Second, we have also considered using task priorities
to maximize the number of active tasks at the end of the
arc growth step. However this would likely reduce the trunk
size, which would lead to lower overall performance results
since the trunk processing is two orders of magnitude faster
than the arc growth one (Sec. VI-A). Finally, we have also
tried using distinct task priorities for the successive steps of
our algorithm (and still for the two merge trees), but to no
avail.

In order to illustrate the performance impact of these
suboptimal sections, we have created a worst case data set
composed of only two large arcs as illustrated on the left
of Fig. 8. As expected, the speedup of the join tree arc
growth step on this data set does not exceed 2, even when
using 32 threads (results not shown). Then we randomize
this worst case data set gradually, starting by the leaf
side as illustrated in Fig. 8 and report the corresponding
contour tree computation times with 2 and 32 threads in
Fig. 9. As the random part progress (from 0 to 90%) the
execution time increases. This is due to the output sensitive
nature of contour tree algorithms, but also to the smaller
trunk size when the percentage of random vertices increase.
Fig. 8 shows the vertices processed by the trunk procedure
(in red, bottom) for different percentages of randomness.
Increases in the level of randomness (from left to right)

(a) (b) (c)

Figure 10: The Foot data set is a 3D scan of a human foot on which the
scalar field is the density. We use the split tree segmentation to extract
bones. (a) One contour corresponding to the skin of the foot. (b) The
different bones highlighted using the segmentation of the deepest arcs of
the tree. (c) Using topological simplification enables us to identify bones
belonging to a same toe.

decrease the number of vertices processed by the efficient
trunk procedure. When the level of randomness goes beyond
the natural saddle of the data set (red circle, Fig. 8), the
specifically designed 2-arc worst-case structure disappears
and the data set becomes similar to a fully random data set.
Interestingly, such a random data set is no longer the worst
case for our algorithm (see the execution time drop at 100%,
Fig. 9), as the set of vertices processed by the efficient trunk
procedure remains sufficiently large (Fig. 8, right).

VII. APPLICATION

The merge tree is a well known tool for data segmentation
used in various applications. It is especially used in the
medical domain [23] as illustrated by Fig. 10 which shows
a 3D scan of a human foot. The scalar field is the matter
density, different densities corresponding to different tissues.
The skeleton is easy to detect as it corresponds to the highest
density. We can extract the corresponding regions using the
segmentation of the deepest arcs of the split tree (the arcs
adjacent to the leaves) as shown in Fig. 10b. By using
topological simplification we can merge regions of interest
to identify bones belonging to the same toe as illustrated by
Fig. 10c. Thanks to our approach this processing can now
be done in a handful of seconds, even for 5123 grids. In
particular, the 10x speedups obtained by our approach over
a sequential execution (Tab. I) have been shown to be highly
relevant for such interactive data exploration tasks [69].

VIII. CONCLUSION

In this paper, we have presented a new algorithm to
compute both the augmented merge and contour trees on
shared-memory multi-core architectures. This new approach
makes use of the Fibonacci heaps to completely revisit the
traditional algorithm and compute the contour tree using
independent local growths which can be expressed using
tasks. This work is well suited for both regular grids and
unstructured meshes. We also provided a lightweight generic
VTK-based C++ reference implementation of our approach,
based on the OpenMP task runtime. This implementation is
the fastest to our knowledge to compute these topological



data structures in augmented mode, both sequentially and
in parallel. Moreover, we presented a task overlapping
strategy obtained thanks to the complete taskification of
our implementation, as well as fine grain optimizations and
a novel parallel algorithm for the combination of the join
and split trees into the output contour tree. This makes our
overall approach clearly outperform previous work in all our
test cases.

As future work, we plan to extend our approach in two
different ways. While our efforts focused so far on time
efficiency, we would like to further improve the memory
footprint of our implementation, to be able to address signif-
icantly larger data sets. We also believe that our task-based
approach may be especially relevant for in-situ visualization,
where the analysis code is executed in parallel and in
synergy with the simulation code generating the data.
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complètement intégrable ou d’une fonction numérique,”
Comptes-rendus de l’Académie des Sciences, vol. 222, pp.
847–849, 1946.

[13] Y. Shinagawa, T. Kunii, and Y. L. Kergosien, “Surface cod-
ing based on morse theory,” IEEE Computer Graphics and
Applications, 1991.

[14] V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas,
“Robust on-line computation of Reeb graphs: simplicity and
speed,” ACM Trans. on Graph., 2007.

[15] S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno,
“Reeb graphs for shape analysis and applications,” TCS, 2008.

[16] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, “Loop
surgery for volumetric meshes: Reeb graphs reduced to con-
tour trees,” IEEE TVCG, vol. 15, pp. 1177–1184, 2009.

[17] A. Gyulassy, P.-T. Bremer, B. Hamann, and P. Pascucci,
“A practical approach to Morse-Smale complex computation:
scalabity and generality,” IEEE TVCG, pp. 1619–1626, 2008.

[18] V. Robins, P. Wood, and A. Sheppard, “Theory and algorithms
for constructing discrete morse complexes from grayscale
digital images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2011.

[19] K. Weiss, F. Iuricich, R. Fellegara, and L. D. Floriani, “A
primal/dual representation for discrete morse complexes on
tetrahedral meshes,” Comp. Graph. For., 2013.

[20] A. Gyulassy, D. Guenther, J. A. Levine, J. Tierny, and
V. Pascucci, “Conforming morse-smale complexes,” IEEE
TVCG, 2014.

[21] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo, “Morse
complexes for shape segmentation and homological analysis:
discrete models and algorithms,” Computer Graphics Forum,
2015.

[22] M. v. Kreveld, R. v. Oostrum, C. Bajaj, V. Pasucci, and
D. Schikore, “Contour trees and small seed sets for isosurface
traversal,” in SoCG, 1997.

[23] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying
flexible isosurfaces using local geometric measures,” in Proc.
of IEEE VIS, 2004.

[24] B. S. Sohn and C. L. Bajaj, “Time varying contour topology,”
IEEE TVCG, 2006.

[25] J. Tierny and V. Pascucci, “Generalized topological simplifi-
cation of scalar fields on surfaces,” IEEE TVCG, 2012.

[26] G. H. Weber, P. Bremer, and V. Pascucci, “Topological
Landscapes: A Terrain Metaphor for Scientific Data,” IEEE
TVCG, 2007.



[27] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, “Multi-
resolution computation and presentation of contour trees,” in
VIIP, 2004.

[28] M. Soler, M. Plainchault, B. Conche, and J. Tierny, “Topo-
logically controlled lossy compression,” in Proc. of PacificVis,
2018.

[29] G. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann,
“Topology-controlled volume rendering,” IEEE TVCG, 2007.

[30] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii,
“Topology matching for fully automatic similarity estimation
of 3D shapes,” in Proc. of ACM SIGGRAPH, 2001.

[31] J. Tierny, J.-P. Vandeborre, and M. Daoudi, “Partial 3D
shape retrieval by reeb pattern unfolding,” Comp. Graph. For.,
vol. 28, pp. 41–55, 2009.

[32] D. M. Thomas and V. Natarajan, “Multiscale symmetry
detection in scalar fields by clustering contours,” IEEE TVCG,
2014.

[33] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. Hart,
“Spectral surface quadrangulation,” ACM Trans. on Graph.,
vol. 25, no. 3, pp. 1057–1066, 2006.

[34] J. Tierny, J. Daniels, L. G. Nonato, V. Pascucci, and C. Silva,
“Interactive quadrangulation with Reeb atlases and connec-
tivity textures,” IEEE TVCG, 2012.

[35] A. Vintescu, F. Dupont, G. Lavoué, P. Memari, and J. Tierny,
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