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Abstract

We consider the problem of segmentation in noisy, blurred astronomical hyperspectral images (HSI). Recent methods based on an
hypothesis-testing framework handle the problem, but do not allow to use a prior on the result. This paper introduces a pairwise
Markov field model, allowing the unsupervized Bayesian segmentation of faint sources in astronomical HSI. Results on synthetic
images show that the segmentation methods outperform their state-of-the-art counterparts, and allow the detection at very low SNR.
Besides, results on real images provide encouraging detections with respect to the application.
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1. Introduction

This paper considers the problem of astronomical Hyperspec-
tral Image (HSI) segmentation, which consists in estimating
the classes X from an observation Y = y. This kind of images
can be provided, e.g., by the Multi-Unit Spectroscopic Explorer
(MUSE) instrument [3]. Among others, the MUSE instrument
targets the distant Universe to study very faint objects. Consider-
ing that these objects are blurred by a spread function and buried
in the noise, both originating from the observational setting
(instrument and atmosphere), their segmentation is particularly
difficult.

The problem of faint source detection in astronomical HSI was
recently addressed by dedicated methods within an hypothesis
testing framework [7, 2, 1], in which the absence and presence
of signal are two competing hypothesis. In [7], we accounted for
spatial and spectral priors to perform a local contextual detection,
and errors were handled locally with the expected Probability
of False Alarm (PFA). In [2, 1], the authors use a matched-filter
preprocessing to tackle the spatial structure, and the errors are
globally handled through robust False Discovery Rate (FDR)
control. Both methods perform locally, and the handling of the
Field Spread Function (FSF) relies on contextual information.
An alternative can be found in [18], where the authors use a
point marked process modeling within a Monte Carlo Markov
chain procedure to detect sources in astronomical HSI. This
model however relies on the expected shapes of objects (ellipses),
which does not matches the general cases of sources detection.

In a more general fashion, the detection can bee seen as a
segmentation task. For this purpose, a Markov field modeling
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is relevant in order to bolster the regularity of the segmentation
results. Numerous works were published for Bayesian HSI
segmentation, using hidden Markov fields (HMF) models [23,
21, 14, 12, 15, 25]. Other works specifically handle astronomical
multi-spectral images [22, 24]. However, as far as we know,
there is no existing work on the Bayesian segmentation of faint
objects in astronomical HSI handling the FSF. The FSF cannot
be modeled within an HMF framework. This is why we turn,
in this paper, to the pairwise Markov field (PMF) model [20]
which is a generalization of HMF models.

The contributions of this paper are the following. We intro-
duce a PMF model which allows the modeling and the unsu-
pervized Bayesian segmentation of blurred images. This model
is applied for the detection of signals in extremely noisy HSI
(Section 2 and Section 3). The proposed model is evaluated
on synthetic images, and it is shown that it outperforms the
state-of-the-art methods from [7, 2, 1] shows that these latter are
outperformed by the proposed method (Section 4). Finally, the
segmentation of real MUSE images provide satisfying results
with regards to the target application (Section 5).

2. Modeling

Along this paper, a random variable (resp. vector) is noted
A (resp. A), its realization a (resp. a), and its distribution p(a)
(resp. p(a)).

Let Y = (Ys)s∈S and X = (Xs)s∈S be respectively the observa-
tion process and the class process, which has to be retrieved by
the segmentation task. S is the lattice of the sites s in the image,
which is ruled by a 8-neighborhood system denoted (Ns)s∈S and
associated to two-elements cliques. For all s ∈ S, Xs takes
values in the finite set Ω and Ys ∈ RΛ, Λ being the number of
spectral channels of Y.
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Figure 1: Dependency graph corresponding to the CoPMF models introduced in this paper. The graphs represent the distribution of (X,Y) given the center node
(Xs,Ys). Roughly speaking, eliminating a graph edge is equivalent to not account for a variable in one of the conditional distributions ruling the process (X,Y). The
graph correspond to a local neighborhood, restricted to 4 sites for clarity purpose.

Within the pairwise Markov field (PMF) modeling [20], the
pair (X,Y) is a Markov field :

p(x, y) ∝
∏
s∈S

p(xs, ys|xNs , yNs ). (1)

We assume that (X,Y) is stationary and that Ys and YNs are
independent given (Xs,XNs ):

p(xs, ys|xNs , yNs ) = p(ys|xs, xNs )p(xs|xNs yNs ) (2)

The two resulting distributions are detailed in the following
subsections.

2.1. Observation model
We assume the noise to be normally distributed:

p(ys|xs, xNs ) ∼ N(γs,Σ); (3)

where γs ∈ RΛ and Σ ∈ RΛ×Λ are the mean and covariance
matrix respectively.

The parameter γs models the convolution by the FSF f1:

γs = f0µs +
∑
r∈Ns

frµr; (4)

where µs ∈ RΛ is the mean associated to the class of xs. We
assume in the remaining of this paper that f is known prior to
the segmentation, e.g. from instrumental calibration.

In this paper, the covariance matrix is designed to model the
MUSE observations (cf. Section 5): it is pentadiagonal, with the
same parameters for each spectral component:

Σ =

σ2 ρ1 ρ2 0 0
ρ1

ρ2 0

0 ρ2

ρ1

0 0 ρ2 ρ1 σ2




(5)

This configuration of Σ is set with respect to the application on
MUSE observations (cf. Section 5), and can be adapted to other
applications.

1Note that since since (X,Y) is stationary, f does not depend on s.

2.2. Convolutional pairwise Markov fields

In this paper, we investigate two possible choices for the
second term of (2) :
• in the first case, we assume that Xs and YNs are independent

given XNs , and that X has a Markov field distribution. We
choose to use an Ising potential as it is a widespread prior
for image regularization [4]:

p(xs|xNs , yNs ) = p(xs|xNs ) ∝ exp

−∑
s′∈Ns

α
(
1 − 2δxs′ (xs)

) (6)

where δxs′ is the Kronecker function of xs′ and α is a model
parameter controlling the “granularity” of the realization
x. This model will be hereafter referred as “Convolutional
Pairwise Markov Field” (CoPMF).

• In the second case, we choose to penalize the gaps between
the spectral mean at the site s, and the observed spectra
in the neighboring sites within Ns. To do so, we add a
Gaussian term to (6), yielding:

p(xs|xNs , yNs ) ∝ exp

−∑
s′∈Ns

α
(
1 − 2δxs′ (xs)

)
−

1
2

γs −
1
|Ns|

∑
s′∈Ns

ys′

> Σ−1

γs −
1
|Ns|

∑
s′∈Ns

ys′


 (7)

where | · | is the cardinal function. This model will here-
after be referred as “Multivariate Gaussian CoPMF” or
MGCoPMF.

Fig. 1 illustrates the dependency graphs yielded by the two
models, in comparison with the classical HMF model. The two
models will be evaluated in Section 4.

3. Unsupervized Bayesian segmentation

3.1. Bayesian segmentation

We compare two estimators for segmentation, namely the
Maximum A Posteriori (MAP) [13] :

x̂MAP = arg max
ω∈Ω|S|

p(X = ω|Y = y); (8)
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(a) Intensity map. (b) Intensity map after con-
volution.

(c) 3 × 3 Moffat FSF. (d) Spectral mean of a re-
alization Y = y.
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Figure 2: Synthetic image formation.

and the Maximum Posterior Mode (MPM) [16]:

∀s ∈ S, x̂MPM
s = arg max

ω∈Ω

p(xs = ω|Y = y). (9)

The exact distributions p(x|y) is known only up to a constant.
However, the segmentation remains possible, using e.g. adapta-
tions of Iterated Conditional Modes (ICM) [4] for the MAP and
Marroquin’s algorithm [16] for the MPM. These methods rely
on simulation algorithms, such as the Gibbs sampling [13].

3.2. Parameter estimation

In an unsupervised context, the unknown parameters θ =

{µ, σ, ρ1, ρ2, α} are estimated prior to segmentation with ded-
icated methods. It is possible to use, e.g., methods inspired
from the Expectation-Maximization (EM) [9, 17], the Stochastic
EM (SEM) [6] or the Iterative Conditional Estimator (ICE) [8]
algorithms. For robustness reasons [19, 11], we use an adapta-
tion of the SEM method with, at a given step q:
• simulate x(q) along pθ(q−1)(x|y)
• estimate θ(q) from (x(q), y) with the estimators described

below.
Let w = (ws)s∈S = x ∗ f be the convolution of x by the FSF

f. For µ and Σ, we use the following maximum likelihood
estimators:

µ̂ =

∑
s∈S

wsys∑
s∈S

w2
s

(10)

Σ̂ =
1

|S| − 1

∑
s∈S

(ys − wsµ̂)(ys − wsµ̂)> (11)

The proof for (10) is given at the end of the paper, and the
derivation of (11) is straightforward. Thanks to the function
invariance property of the maximum likelihood estimator [5],
the estimators of σ, ρ1, ρ2 are obtained by :

σ̂ =

√
1
Λ

Λ∑
i=1
Σ̂i,i; ρ̂1 = 1

Λ−1

Λ−1∑
i=1
Σ̂i,i+1; ρ̂2 = 1

Λ−2

Λ−2∑
i=1
Σ̂i,i+2.

(12)
Finally, α is estimated with the least-squares estimator of [10].

To sum up, the Bayesian unsupervized detection within blurred
and noisy HSI is made possible by both CoPMF and MGCoPMF
models, using either the MPM or the MAP es()timators.

4. Numerical results

4.1. Settings and alternatives

In this section, we evaluate the method for detection of faint
sources in hyperspectral images, with Ω = {0, 1}. The numerical
experiments are conducted on HSI containing 60 × 60 spectra
and Λ = 10 spectral channels. The noiseless image is a 2D
Gaussian where the faintest intensities are set to zero (cf. Fig. 2a).
The intensities are then convolved by a 3 × 3 Moffat FSF (cf.
figures 2c, 2b and also [7]). Finally, µ contains 3 non-zero
coefficients, as shown in Fig. 2e.

Six methods are evaluated:

1. the proposed CoPMF model with the MAP (8) ;

2. MPM (9);

3. the proposed MGCoPMF model with the MAP (8);

4. MPM (9);

5. the detection method introduced in [7], based on an
hypothesis-testing framework. We use the same experi-
mental settings proposed as in [7] concerning the choice
of the catalog and the PFA, and use the same FSF as in the
synthetic images ;

6. the detection method proposed in [2] and extended in [1].
We perform the preprocessing with the same FSF as in the
images, and set the FDR value to 0.1.

All methods are evaluated under a varying signal-to-noise
ratio (SNR), defined as

SNR = 10log10

 ‖µ‖22
Λσ2

 ; (13)

where µ the product of µ by the average of non-zero intensities in
the intensity map. An insight of the results for the six evaluated
method is provided in Fig. 3.

4.2. MGCoPMF and CoPMF

In Fig. 4, we report the performances of the CoPMF-based
methods in terms of false classification, false positive and false
negative rates. These results yield the following findings:
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Figure 3: Results insights under low SNR for synthetic images. Red circles
represent the ground truth (cf. Fig. 2a).

• the four methods yield very close averaged error rates,
providing for all of them less than 10% error rate for SNR >
−14dB. In most cases, the MGCoPMF with the MAP yields
slightly better results than the other methods, and for both
MGCoPMF and MPM, the MAP estimator yields smaller
error rates than the MPM estimator;

• these two estimators have however distinct behaviors in
terms of false positive rates. One one hand, the MAP
provides less false negatives that any other methods (less
than 10% when RSB > −14 dB), at the cost of having
small, but non-zero false positive rates. On the other hand,
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Figure 4: Average performances of the MGCoPMF and CoPMF models using
the MAP (8) and the MPM (9). Each point is an average results, and the shaded
regions are between the first and fourth quartiles. The results were obtained with
100 realizations Y = y.

the MPM provides almost no false alarm (less than 3%
at all SNR), but has a non-zero false negative rate. We
interpret this observation as an insight of the stability of
the MPM criterion with respect to the MAP in practical
implementation.

• in average, the MGCoPMF yields better results with either
the smaller error rates for the MGCoPMF with the MAP,
or the smallest error rate with zero-valued false alarms for
the MGCoPMF with the MPM.

4.3. Comparison with state-of-the-art alternatives
Fig. 5 reports the performance comparison of the MGCoPMF

model with [7] and [2, 1]. The investigation of these results
reveals the following points:
• the CoPMF segmentations yield, at all SNR, the best error

rate with respect to the alternatives, with similar error rates
for the MAP and MPM estimators;
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Figure 5: Results for the methods from [7], from [2, 1] and with the MAP (8)
and the MPM (9) within the MGCoPMF introduced in this paper (the red and
black curves are the same as in Fig. 4). The legend is the same as in Fig. 4.

• the method from [1] yields fairly high error rate when
SNR < −8 dB, due to an excess of non-detection required
for the FDR control;

• the method from [7] provides no clear advantage over the
other detection methods. This is partly caused by the use
of the 3 × 3 pixels FSF from the simulations.

5. Real MUSE images

Detection in astronomical hyperspectral images may re-
veal spatially extended, spectrally-located light emission called
Lyman-alpha, tracing the circum-galactic medium (CGM). The
CGM may be occurring in the vicinity of known galaxies, mak-
ing possible to extract from a MUSE observation (see [3]) a
smaller HSI centered spatially and spectrally on the emission
of interest. Such HSI may be contaminated by brightest objects
presenting a “continuum” emission. These contamination are
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Figure 6: Results on 4 real MUSE images. Left : spectral average of Y = y
(inverse video) after the spectral median subtraction has removed the brightest
objects. Center : detection results with the MGCoPMF model, using the MPM
(gray) and MAP (red) criteria. Right : average spectra in the two detected
regions, with intensities in 10−20erg s−1cm−2Å

−1
as a function of the wavelength

(in Ångström).

efficiently removed by a spectral median filtering prior to the
segmentation.

Fig. 6 illustrates the unsupervized segmentation of 4 MUSE
HSI. In the absence of ground truth, the qualification of the
results must be conducted thoroughly by experts. Nevertheless,
two points are worth mentioning :
• in most cases, the MAP-based segmentation yields a larger

detected region than its MPM counterpart. This is consis-
tent with the results obtained on synthetic images;

• the inspection of the average spectra reveals that their shape
is consistent with a possible Lyman-alpha emission. Be-
sides, the spatial shapes make likely the presence of an
extended emission wider than a FSF blur on a point source,
bolstering the hypothesis of the detection of an extended
Lyman-alpha emission.

6. Conclusion

In this paper, we introduced the CoPMF and the MGCoPMF
model, allowing to handle the convolution in the Markovian
modeling of images. This model was specified for the applica-
tion to detection in astronomical hyperspectral images, and the
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unsupervized segmentation in this context was presented. Then,
comparative results with state-of-the art method indicate that the
CoPMF methods outperform their state-of-the-art alternatives,
with in addition complimentary results provided by the MAP
and MPM estimators. We finally presented results on real MUSE
images, showing that the both segmentation method are robust
to a real-world use.
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Proof : maximum likelihood estimator of µ

Let us derive the expression of the maximum likelihood esti-
mator (MLE) of µ, stated in (10). The log-likelihood is written:

log `(x, y;µ,Σ) = c −
1
2

∑
s∈S

(ys − wsµ)>Σ−1(ys − wsµ). (14)

where c = −
|S|

2 log
(
(2π)Λ det(Σ)

)
. The MLE of µ, noted µ̂,

verifies:

∂ log `(x, y,µ,Σ)
∂µ

∣∣∣∣∣
µ=µ̂

= 0 (15)

which can be rewritten using (14) as:

0 = −
1
2
∂

∂µ

∑
s∈S

y>s Σ
−1ys − 2wsµ

>Σ−1ys + w2
sµ
>Σ−1µ


∣∣∣∣∣∣∣
µ=µ̂

0 = −
1
2

∑
s∈S

−2wsΣ
−1ys + 2w2

sΣ
−1µ̂. (16)

Assuming that
∑
s∈S

w2
s , 0, a left-hand product by Σ yields:

µ̂ =

∑
s∈S

wsys∑
s∈S

w2
s
. (17)

�
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