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ABSTRACT: The Kidney Exchange Problem (KEP) aims at finding the best exchanges in a barter market
where agents are patients with a willing but incompatible donor. (Abraham et al. 2007) introduced a natural
(exponential) integer programming formulation called the cycle formulation that they could solve efficiently
by a branch-and-price approach. Recently, several countries allowed for the participation of altruistic donors
in the exchanges. The corresponding variant of KEP is harder to solve as the pricing problem becomes
NP-complete. In this work, we study and experiment a column generation approach that takes into account
altruistic donors. We use advanced techniques to circumvent the NP-hardness of the pricing problem and
show that the corresponding method can provide excellent guaranteed feasible solutions in a small amount of time.
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1 INTRODUCTION

One in every thousand Europeans is facing end-stage
renal disease for which the most effective treatment
is kidney transplant. For such a patient, waiting for
a deceased donor can be tedious while living dona-
tion is a viable alternative. Of course, in order to
avoid certain excesses, living donation conditions are
very strict and are defined by specific laws, for ex-
ample, only a close relative is authorized to donate
his or her kidney to a specific patient. Living do-
nation is faced with a major hurdle in the potential
incompatibilities that can occur between the patient
and his or her donor: it is risky to perform an incom-
patible transplant as it would significantly reduce the
patient’s immune defenses. The use of paired dona-
tion programs can lead to higher graft survival rates
(NHS 2017). A paired donation program makes ex-
changes between incompatible patient-donor pairs (a
patient and a close relative willing to donate one kid-
ney but medically incompatible with the patient). If
a pair is included in an exchange, the donor gives
one kidney to another – compatible – patient and
the patient receives a kidney from another – com-
patible – donor of the exchange. Paired donation
programs can also involve altruistic donors defined
as singletons who anonymously and charitably give a
kidney. Programs performing paired donations grow
continuously, sometimes aiming at encompassing sev-
eral countries, as their effectiveness is strongly depen-
dent on the number of participants. Emerging in-
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ternational and European programs require to tackle
pools of the order of thousands of patients. The prob-
lem of finding the ”best” exchanges in a program is a
challenging mathematical problem, in particular the
question of developing efficient algorithms capable of
tackling a large number of patients and donors at a
time.

We focus in this study on algorithms providing good
upper and lower bounds in order to be able to assess
the quality of our results. (Abraham et al. 2007) de-
veloped an exponential integer programming formu-
lation, the cycle formulation, for the problem contain-
ing only patient-donor pairs. They solve the model
with a branch-and-price algorithm that performs well.
This model yet fails to accommodate with the addi-
tion of altruistic donors. Informally (see section
2.2 for details), the linear relaxation of the cycle for-
mulation is solved with a technique referred to as
column generation, which iteratively add well-chosen
variables. Identifying a variable to add is known as
the pricing problem and is NP-complete in the pres-
ence of altruistic donors (Plaut et al. 2016b) in con-
trast with (Abraham et al. 2007). In this paper, we
propose to combine local search and a randomized
method, called color coding, to solve the pricing prob-
lem efficiently. We also use a relaxation of the pricing
problem to compute an upper bound even if the pric-
ing step is not solved optimally.

The rest of this section introduces the problem, its
modeling, and a short literature review. In section 2,
we present the integer programming formulation used
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in this article as well as the column generation algo-
rithm. The next two sections describe the algorithms
used to solve the pricing problem (section 3) and the
Kidney Exchange Problem (section 4). Finally exper-
imental results are reported in section 5.

1.1 Definition of the problem

Paired donation. A basic Kidney Paired Donation
Program (KPD) involves incompatible patient-donor
pairs. It creates exchanges between some of the pairs
such that the patient of a pair receives the kidney
from the donor of another pair. Figure 1 shows the
simplest case involving only two pairs.

Donor A

Donor B

Patient A

Patient B

Pair A

Pair B

Figure 1 – An exchange of size 2. Dashed lines show
incompatibility and arrows show the exchange.

A KPD can create several exchanges among the pool
of pairs, called cycles of donation, of any size. How-
ever, the withdrawal of a donor after the transplant of
his or her patient means that in another pair a donor
already gave a kidney while his or her patient still
waits for a transplant. To avoid this unacceptable
situation, all operations of a cycle must be executed
simultaneously. As a cycle requires twice as many
operating rooms and surgical teams than pairs – one
for each patient and each donor –, in practice cycles
must be of a limited size k ∈ N, typically k = 2, 3, 4.

Domino paired donation. When KPD involves al-
truistic donors, these latter create chains of donation.
In this case, called Domino Paired Donation, the si-
multaneity is still desirable as the withdrawal of a
donor breaks an exchange, but it is no more required
since the critical situation described in the previous
paragraph will never happen. Thus, some donors can
be bridge donors: their patient will receive a kidney
before they give their own. The last donor of a chain
can either give a kidney to the waiting list or be con-
sidered later as an altruistic donor. As a result, there
is no consensus on the need of a limit on the size of a
chain, but when it exists, this limit is usually greater
than k. In this paper we consider chains with at most
l ∈ N transplants. Figure 2 illustrates the main types
of chains.

Model. The Kidney Exchange Problem (KEP) is
the problem of finding the best exchanges in a KPD,
where best is defined by hospitals or transplant agen-
cies.

Let us define P to be the set of patient-donor

Donor A

Donor B

Patient A

Patient B

Altruistic donor

Waitlist

Donor A

Donor B

Patient A

Patient B

Altruistic donor

Waitlist

Time

(a) Domino paired donation (DPD)

Donor A

Donor B

Patient A

Patient B

Altruistic donor

(b) DPD with bridge donor (donor A)

Time

(c) Open chain

Figure 2 – The main types of chains. Dashed lines
show incompatibility and arrows show the exchange.
The dotted line shows a potential future exchange,
not known at this stage of the program.

pairs and N the set of altruistic donors. The com-
patibility graph of a KEP is the directed graph
G = (V = P ∪N,A), where A = {(uv) if donor of u
is compatible with patient of v, ∀u ∈ V, v ∈ P}. We
assume we are given a weight function w : A → R+.
wuv represents the medical benefit of transplanting
the kidney of donor u to patient v. A simple chain
(resp. cycle) is a chain (resp. a cycle) with no re-
peated vertices (except the starting and ending ver-
tices). We use the term valid chain to refer to a sim-
ple chain in G initiated by an altruistic donor with at
most l arcs and valid cycle to refer to a simple cycle
in G of length at most k. Chains and cycles must be
simple since a donor (resp. a patient) can give (resp.
receive) only one kidney. The term valid path refers
to either a valid cycle or chain. The weight wp of any
path p is defined as the sum of its arcs weights. Figure
3 illustrates an example of the model. Formally, the
KEP is: given G, w, k and l, find a set of disjoint valid
paths of maximum weight in G. Note that this solu-
tion does not necessarily cover the maximum number
of vertices since it depends on the weight function.

w3,4
w1,3 w2,4

w3,5w5,3 w6,4 w4,6

w6,5

v2v1

v3 v4

v5 v6

Figure 3 – An example of compatibility graph G.
Squares represent altruistic donors and circles rep-
resent incompatible patient-donor pairs. Many solu-
tions are possible, depending on l and k, e.g.:
{chain (v1v3v5) and chain (v2v4v6)} or {chain
(v1v3v5) and cycle (v4v6)} or cycle (v3v4v6v5)} ...
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1.2 Literature review

Since we focus on integer programming approaches in
this paper, the following section will mainly review lit-
erature on this topic. Other approaches and variants
were studied these past years. The reader can find
comprehensive literature reviews in (Mak-Hau 2017)
and (Gentry et al. 2011).

The idea of kidney exchange programs was introduced
by (Rapaport 1986) and developed for the first time
in 1991 in South Korea (Kwak et al. 1999). Later
on, the Netherlands, the UK and Spain started their
program, followed by many others, including France
and the USA. This problem is currently an important
research topic in Europe (see (COST 2016)).

The KEP was proved NP-complete by (Abraham
et al. 2007) when k > 2 even in the case of KPD
with pairs only (without altruistic donors). This ba-
sic case was widely studied and several integer pro-
grams were proposed. Standard formulations are ex-
ponential so branch-and-price approaches were de-
veloped by (Abraham et al. 2007) and (Klimentova
et al. 2014), while (Constantino et al. 2013), (Mak-
Hau 2017) and (Dickerson et al. 2016) introduced al-
ternative compact formulations.

When chains are allowed, the problem is more com-
plex. Indeed, the linear relaxation is harder to com-
pute because the pricing problem is NP-complete
(Plaut et al. 2016b). To the best of our knowledge,
no correct branch-and-price algorithm including al-
truistic donors was published (previous propositions
of (Glorie et al. 2014) and (Plaut et al. 2016a) turned
out to be incorrect, as the authors explained in (Plaut
et al. 2016b)). Finally, (Anderson et al. 2015) de-
scribed algorithms using integer programming for-
mulations based on the traveling salesman prob-
lem. Compact formulations either do not scale up to
large instances or provide poor upper bounds (Mak-
Hau 2017). As we hope to construct international
programs, including several hundreds or thousands of
patients, we focus on the natural exponential formu-
lation.

2 INTEGER PROGRAMMING

We introduce in this section an integer program
directly adapted from the cycle formulation of
(Abraham et al. 2007) and the framework of the col-
umn generation.

2.1 Path formulation

Let us define P as the set of all valid paths in G. The
decision variables of the Path Formulation (PF ) are:

∀p ∈ P, xp =

{
1 if path p is chosen in the exchange

0 otherwise

z∗ = max
∑
p∈P

wpxp (1)

s.t.
∑

p∈P:v∈p
xp ≤ 1 ∀v ∈ V (2)

xp ∈ {0, 1} ∀p ∈ P (3)

Constraints (2) impose that each vertex is taken at
most once, namely donors and patients are involved
in zero or one exchange. The objective (1) is to max-
imize the overall weight of exchanges. The linear re-
laxation of (PF ) is noted (PFLP ) and composed of
equations (1), (2) and :

xp ≥ 0 ∀p ∈ P (4)

2.2 Column Generation

In (PF ) the number of variables grows exponentially
with k and l. To tackle this problem, a prevail-
ing solution is to use a branch-and-price algorithm
which mixes brand-and-bound with column genera-
tion. Column generation is used to solve the linear
relaxation of (PF ) as explained below.

2.2.1 Principle

MILP formulation (max)

Yes

Solve pricing problem

Solve the restricted master

problem (RMP )

No

Is reduced cost > 0?

z∗LP = linear relaxation

Add a column
to RMP

Figure 4 – Framework of the column generation

The general framework of the column generation is
shown in figure 4. It is a form of the simplex algo-
rithm; indeed, the simplex algorithm does not need all
variables to be explicitly included in the model: the
required variables can be iteratively added, until it is
proved that no more variable is required. Thus, the
linear relaxation of (PF ) can be solved starting from
a subset of valid paths – this problem is called the re-
stricted master problem –, and this subset grows as we
generate new variables (i.e., new columns). Generat-
ing a new variable aims at improving the objective
value of the current basis in the simplex algorithm.
Finding such a column is called the pricing problem
or slave problem. In our case, the pricing problem is
the following: find a valid path of positive reduced
cost or prove none exists. Thus, the pricing problem
is to find a valid path of maximal reduced cost. The
reduced cost of a path p is given by rcp = wp −

∑
v∈p

αv
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where αv is the dual value of vertex v associated to
constraints (2) in the linear relaxation of (PF ).

2.2.2 Complexity of the pricing problem

Suppose we are given G, w, l and av∀v ∈ V .

Cycles. The cycle pricing problem is the problem
of finding a valid cycle of maximal reduced cost in
G. It can be solved in polynomial time in |V | with a
modified Bellman-Ford algorithm (Glorie et al. 2012).

Chains. The chain pricing problem is the problem
of finding a valid chain of maximal reduced cost in G.
It is NP-complete (Plaut et al. 2016b).

2.2.3 Our algorithm

IP formulation (PF )

Solve the restricted master

problem (RMP )

Solve cycle pricing

Solve (TSF ) within time limit

Update UBbest

UBbestz∗LP

Add a column

to (RMP )

Yes

Yes

Yes

Yes

No

No

No

No

NoYes

Cycle of
reduced cost> 0?

Chain of
reduced cost> 0?

Apply local search

Apply color coding

Chain of
reduced cost> 0?

Chain of
reduced cost> 0?

(TSF ) solved
to optimal?

Figure 5 – The column generation algorithm

As the ChPP is NP-complete, some efforts have to
be made to solve this problem. In the next section,
we will present different ways to solve it: an exact
method – an integer programming formulation called
Time-Staged Formulation (TSF ) – and two non-exact
methods – a local search heuristic and a randomized
method called color coding (Alon et al. 1995).

We solve the pricing problem with algorithms of in-
creasing complexity, as shown in figure 5. We try to
solve it with the fastest methods first, which can be
sufficient to find lots of columns. When no column
is found with these algorithms, the exact method is
used, solving (TSF ) within a small time limit. As
we will see in section 4.1, this provides a new up-
per bound on z∗ and possibly a new column or the
proof of the optimality of z∗LP . The best upper bound

UBbest is kept all along the course of the algorithm
and is updated when (TSF ) is solved.

3 SOLVING THE PRICING PROBLEM

In this section we study how to solve the ChPP which
is the difficult part of the pricing problem. We con-
struct a graph G′ = (V ′ = V ∪ {s, t}, A′) where s is a
source and t a sink. We construct A′ with A, As the
set of arcs from the source to all altruistic donors
and At the set of arcs from all pairs to the sink,
namely As = {(sv) : ∀v ∈ N}, At = {(vt) : ∀v ∈ P}
and A′ = A ∪As ∪At. Given the dual values αv
∀v ∈ V , we define the arc function:

rc : A′ → R

a→ rca =


− αv if a = (sv) ∈ As
0 if a = (vt) ∈ At
wuv − αv if a = (uv) ∈ A

The reduced cost of a path, defined previously
as rcp = wp −

∑
v∈p

αv is also rcp =
∑

(uv)∈p
rcuv. We

look for a valid chain p∗ of maximal reduced cost:
rcp∗ = rc∗ = max

p∈P
rcp. It is a simple longest path

problem for which a dynamic programming approach
adapted from (Held & Karp 1962) can be developed,
but does not scale up to the instances we aim at solv-
ing. In fact, it is enough for the column generation
algorithm to find a valid chain of positive (not maxi-
mal) reduced cost, so the use of heuristic methods is
reasonable. However, to prove that the column gen-
eration finished, an exact method is necessary. Thus,
we present in this section two non-exact methods and
an integer programming to handle the ChPP.

3.1 Color coding (CD)

(Alon et al. 1995) proposed a randomized algorithm
to find simple paths of a given length, called color cod-
ing. We use this method to find a solution of ChPP.
It follows two steps:

1. randomly color each vertex v ∈ V with a color
cv ∈ {1, 2, ..., C}, where C ∈ N is the fixed num-
ber of colors. Note that s and t are not colored.

2. solve the problem of finding a colorful chain –
i.e., a valid chain using each color at most once –
of maximal reduced cost.

Step 2 is solved with a dynamic program, defined by:

g∗(C, v) = max
u∈V ′:cu∈C\{cv}

(uv)∈A′

{g∗(C \ {cv}, u) + rcuv}

g∗(C, v) is the maximal reduced cost of a chain start-
ing at s, visiting exactly one vertex of each color
of C and finishing in v. The maximal reduced cost
of a colorful chain is given by max

C⊆{1,...,C},v∈P
|C|≤l+1

g∗(C, v)
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This dynamic programming has a space complexity
of O(|V |2C) and a time complexity of O(|V |22C).

In order to get an optimal chain p∗ by color coding,
step 1 must, by chance, color p∗ with different colors.
In this case, p∗ would be colorful and be returned
by step 2. The probability that this event occurs

is Pr [p∗ is colorful ] = # colorful chains
# colored chains = C!/(C−l)!

Cl =
C!

(C−l)!Cl = ρ. To increase the chance of coloring

an optimal chain with different colors, the algorithm
must be repeated several times.

Let X be a random variable denoting the number
of iterations needed for p∗ to be colorful for the first
time. X follows a geometric distribution, so the prob-
ability that this event occurs before the ith iteration
is Pr [X ≤ i] = 1 − (1 − ρ)i. We want to repeat the
algorithm enough times to guarantee a high probabil-
ity of having a colorful optimal chain. Let ε ∈ [0, 1],

we seek i such that Pr [X ≤ i] = 1− ε⇔ i = ln(ε)
ln(1−ρ) .

Choice of the parameters. The efficiency of the
color coding algorithm is determined by C, the num-
ber of colors, and t, the number of iterations. As they
grow, the probability of finding the optimal chain
grows with them, as well as the computation time.
For given l and ε (the maximal allowed probability
to fail), their values are chosen to minimize the the-
oretical complexity. More precisely, let C ∈ N be the
maximal authorized number of colors (for computa-
tional reasons), we choose:

(C, t) = arg min
C∈[[l,...,C]],t∈N

{t× 2Cs.t. t =
ln(ε)

ln(1− ρ)
}

The steps 1 and 2 are then repeated t times and the
best colorful valid path is returned with a probability
of 1− ε to be optimal.

3.2 Local search (LS)

C and t grow as l does to guarantee the wanted prob-
ability of success making the color coding suffering
from long computation times. In this case, the lead-
ing alternative is the use of heuristics. We developed a
local search which starts with a random chain and try
to improve it with three kinds of movements. They
aim at increasing the reduced cost of the chain, keep-
ing it valid, by inserting, removing or exchanging 1, 2
or 3 vertices. The local search stops when it reaches
a local minimum, i.e., when no movements improves
the current path.

3.3 Integer programming (TSF )

The methods described above run fast but when they
find no valid chain of positive reduced cost, no con-
clusion can be made. If such a chain exists, we want

to find it; if it does not exist, we want to prove
it. Thus, an exact method must be implemented
to address this issue. We state the problem as a
time-staged integer programming formulation (TSF ).
We define I = {0, 1, ..., l + 1}, I∗ = {1, ..., l + 1}
and the decision variables: ∀(uv) ∈ A′, i ∈ I

riuv =

{
1 if (uv) is the ith arc in the path

0 otherwise

rc∗ = max
∑
i∈I

∑
(uv)∈A′

rcuvr
i
uv (5)

s.t.
∑
v∈N

r0sv = 1 (6)∑
i∈I\{0,1}

∑
u∈P

riut = 1 (7)

∀v ∈ V,∀i ∈ I :
∑
u∈V ′:
uv∈A′

riuv =
∑
u∈V ′:
uv∈A′

ri+1
vu

(8)

∀i ∈ I :
∑

(uv)∈A′
riuv ≤ 1 (9)

∀v ∈ V :
∑
i∈I

∑
u∈V ′:
uv∈A′

riuv ≤ 1 (10)

∀uv ∈ A′, ∀i ∈ I : riuv ∈ {0, 1} (11)

Constraints (6) and (7) ensure that the first chosen
arc leaves the source and that the sink is reached.
Constraints (8) are flow constraints guaranteeing that
if a vertex is reached by the ith arc then it is left with
the i+ 1th. Constraint (9) imposes that only one arc
is taken at stage i and constraint (10) forbids a vertex
to be taken more than once. Note that the solution
given by (TSF ) may contain l+2 arcs but two of them
are fictive (one from the source and one to the sink).

4 SOLVING THE KEP

The following section describes how the column gen-
eration can be further exploited to provide a feasible
guaranteed solution to (PF ) without the use of a com-
plete branch-and-price method.

4.1 Dual and lagrangian bounds

Define (PFβ) as the linear program composed of equa-
tions (1), (2), (4) and the redundant constraint:∑

p∈P
xp ≤

|V |
2

(12)

This constraint is valid for every KEP. Indeed it is
stating that the number of paths is at most half of
the number of pairs, which is implied by the fact that
a path involves at least two vertices. Let β be the
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dual value associated with constraints (12). The dual
program of (PFβ) is :

(D) min
∑
v∈V

αv +
|V |
2
β (13)

s.t.
∑
v∈p

αv + β ≥ wp ∀p ∈ P (14)

αv ≥ 0 ∀v ∈ V (15)

β ≥ 0 (16)

Solving optimally the ith pricing problem provides

rc∗ = max
p∈P

(
wp −

∑
v∈p α

i
v

)
≥ 0. Thus, setting βi to

rc∗ provides a feasible solution (αi, β) of (D), where
αi is the vector of dual values of the ith restricted
master problem. By weak duality, any feasible solu-
tion (α, β) produces an upper bound of z∗LP so that∑
v∈V

αv + β |V |2 ≥ z∗LP . Furthermore, as the restricted

master problem is solved optimally, we know that∑
v∈V

αiv = ziLP . Thus, ziLP + rc∗ |V |2 = UBiD is a dual

(upper) bound of z∗LP at iteration i.

When rc∗ cannot be computed (recall that the pricing
problem isNP-complete), we compute rc∗LP the value
of the linear relaxation of (TSF ). It is an upper bound

of rc∗ so ziLP +rc∗LP
|P |
2 = UBi is also an upper bound

of z∗LP .

Consequently, these bounds are upper bounds of the
optimal value of (PF ): z∗ ≤ UBiD ≤ UBi. Note that
when rc∗ = 0 the dual bound is equal to the primal
value, which proves that (PFLP ) is solved optimally.

4.2 Solving of (PF)

Even if z∗LP was not computed within the time limit,
the algorithm always returns an upper bound UBbest
of z∗, as well as a set P ′ ⊆ P of valid paths. When
the column generation stops, we solve the integer pro-
gram (PF ) restricted to P ′ thus providing a feasible
solution z for the problem: this is a lower bound. The
quality of this feasible can be assessed against the up-
per bound UBbest. As we will see in section 5, it seems
unnecessary to implement the branch-and-price since
the gap between the upper and the lower bounds is
small for most instances, ensuring that the feasible
solution is close to the optimal solution.

4.3 Pre-processing

The size of the graph can be reduced to improve the
efficiency of all the algorithms. We use a simple filter-
ing method that removes arcs that cannot belong to
any valid path, because they are ”too far” from other
vertices. Let duv be the shortest distance (in number
of arcs) between u and v, ∀u, v ∈ V .

RN = {(uv) ∈ A : ∀r ∈ N dru ≥ l} is the set of arcs
that cannot belong to a valid chain.
RV = {(uv) ∈ A : dvu ≥ k} is the set of arcs that
cannot belong to a valid cycle. R = RN ∩ RV is the
set of arcs than cannot belong to any valid path and
thus A = A \R.

5 NUMERICAL EXPERIMENTS

5.1 Benchmark

Instances were generated with an online data set
generator1. We choose the parameters in order to
vary δ the density of the compatibility graph, |P |
the number of patient-donor pairs and γ the per-
centage of altruistic donors in relation to |P |. These
parameters take the following values: δ = 5%, 10%,
γ = 1%, 5%, 10% and |P | = 100, 200, 400, leading to
18 classes of instances, each of them containing 10
instances. The probability of success at finding the
optimal chain by color coding was set to 90%.

5.2 Experimental setup

We used the CPLEX Java API (version 12.6) to
solve the different linear programs. Experiments were
performed on an Intel R©Xeon R©CPU E5-2440 v2 @
1.90GHz processor and 32 GB of RAM, with a mem-
ory limit of 8 GB of RAM. The time limit was set to
900 seconds. The time limit to solve (TSF ) was set
to 90 seconds.

5.3 Results

In this section, we use the following notations (aver-
age and number out of 10).

• CPU: average time in seconds to compute z∗LP
• #LR: number of instances where z∗LP is computed
• #OPT: (resp. %OPT) number (resp. percentage)

of instances where z∗ is computed
• GAP: average gap between upper and lower bounds

for (PF )

Table 1 presents the results for k = 3 and l = 4.
It shows that the computation time increases as the
number of pairs in the instance grows. As expected,
this increase is stronger when the graph is denser.
The results also demonstrate that the path formula-
tion provides a linear relaxation of high quality. Small
gaps between lower and upper bounds (< 0.3% in av-
erage for |P | = 100, 200, 400) are reported and the
proof of optimality is done for more than 35% of the
instances within 2 minutes of computation time (15
seconds in average). This supports the idea that im-
plementing the complete branch-and-price algorithm

1Available at http://www.dcs.gla.ac.uk/̃jamest/kidney-
webapp/#/generator
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δ γ |P | CPU # LR # OPT GAP

5%

1%
100 0.1

10
10 0%

200 1.2 4 0.47%
400 25.7 2 0.44%
800 784 9 0 4.46%

5%
100 0.3

10
7 0.30%

200 3.6 3 0.20%
400 78 2 0.28%
800 - 0 0 77.01%

10%
100 0.3

10
8 0.10%

200 4.9 7 0.13%
400 115 5 0.05%
800 - 0 0 80.34%

10%

1%
100 0.4

10
5 0.57%

200 6.9 1 0.41%
400 124 1 0.14%
800 - 0 0 83.87%

5%
100 1.3

10
4 0.55%

200 17.3 0 0.37%
400 300 0 0.44%
800 - 0 0 85.45%

10%
100 2.1

10
4 0.38%

200 31 1 0.17%
400 587 0 0.2%
800 - 0 0 86.43%

Table 1 – k = 3 and l = 4

may not be necessary. We also tested the algorithm
for instances where |P | = 800, but z∗LP was calcu-
lated for only 9 instances (with δ = 5% and γ = 1%).
For all the other instances the final gap was 81.8%
in average, but this high gap is due to the inability
to compute the linear relaxation, as the lower gap of
4.46% demonstrates. Figure 6 shows the evolution of
the upper bound (UBbest) and the lower bound (value
of the restricted master problem) as the columns are
added for a specific instance with 800 pairs, a density
of 5% and 5% of altruistic donors. The upper bound
is not calculated when cycles only are added.
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Figure 6 – Evolution of the value of (RMP ) and UBbest
with a time limit of 1 hour for |P | = 800, δ = 5% and
γ = 5%

Computation times are higher for l = 7 and l = 10 ,
but the algorithms behaves similarly. Due to the dif-
ficulty of the pricing problem when l is that big, the
linear relaxation z∗LP may not be computed within the

l = 7 l = 10
GAP % OPT GAP % OPT

z∗LP 0.4% 34% 0.4% 44%
no z∗LP 25.9% - 29.2% -

Table 2 – Average gap and percentage of solved in-
stances depending on the computation of z∗LP

time limit. Figure 7 outlines the difficulty to compute
z∗LP by showing the decreasing number of instances
where it is computed and the increasing time to ob-
tain it. We summarized in table 2 the average gap
and the percentage of solved instances depending on
the computation (or not) of the linear relaxation.
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Figure 7 – Number of instances (out of 60) where
z∗LP is computed (in black) and average CPU time to
compute it (in grey), for l = 7 (solid lines) and l = 10
(dashed lines).

l Cycles Chains CyPP LS CD (TSF )
4 161 129

0.08
0.05 0.31 1.06

7 263 174 0.25 4.69 3.21
10 354 149 0.64 - 5.65

Table 3 – Number of columns added and average time
of pricing algorithms (in seconds)

In average, over all the instances, solving the pricing
problems uses more than 90% of the total compu-
tation time. Table 3 details the average times, for
one iteration, of the different pricing algorithms as l
grows. This highlights that the bottleneck remains
the computation of each chain pricing problem.

These results show that our algorithm is efficient to
find good lower and upper bounds. When the col-
umn generation ends before the time limit, the gap
is almost (and sometimes is) zero. However, when
the time limit is reached before computing the lin-
ear relaxation, the gap may deteriorate, because the
best dual bound kept all along the column genera-
tion algorithm is poor. The improvement of this dual

bound – e.g., by updating |V |2 which is a poor upper
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bound on the number of paths in a solution or thanks
to a stronger integer programming formulation than
(TSF ) – could provide a better final gap even when
the linear relaxation is not provided.

6 CONCLUSION

In this paper we studied a column generation algo-
rithm for the kidney exchange problem. It uses the
exponential formulation derived from the formulation
of (Abraham et al. 2007), which was never strongly
exploited up to now to handle altruistic donors.

The results show an encouraging track to explore, as
the column generation algorithm provides integer so-
lutions of good (guaranteed) quality in a reasonable
amount of time and without the need of branching.
However, the solved instances are smaller than the
real or expected pools in the USA or in Europe, the
target being several hundreds, nay thousands of pa-
tients. Further work needs to be done to stabilize
the column generation algorithm and thus reduce the
number of iterations, which is an important limita-
tion noticed in the results, as well as the need to speed
up the pricing step. This includes work on the dual
bound described in the previous section as well as
development of new algorithms for the chain pricing
problem, e.g., derandomization of the color coding,
stronger integer formulations, more efficient heuris-
tics or dynamic programming approach with filtering
to overcome memory issues.
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