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Sparse analysis for mesoscale convective
systems tracking

Jean-Baptiste Courbot, Vincent Duval, and Bernard Legras.

Abstract—In this paper, we study the tracking of de-
formable shapes in sequences of images. Our target ap-
plication is the tracking of clouds in satellite image. We
propose to use a recent state-of-the-art method for off-
the-grid sparse analysis to describe clouds in image as
mixtures of 2D atoms. Then, we introduce an algorithm
to handle the tracking with its specificities: apparition
or disappearance of objects, merging, and splitting. This
method provides similar numerical outputs as the recent
state-of-the-art alternatives, while being more flexible, and
providing additional information on, e.g., cloud surface
brightness.

Index Terms—Shape tracking, Mesoscale Convective Sys-
tem tracking, sparse image analysis

I. INTRODUCTION

A. Problem formulation

IN this paper, we study the tracking of deformable
shapes in sequences of images. Our target applica-

tion is the tracking of organized cloud systems, called
Mesoscale Convective Systems (MCS) in infrared satellite
images.

The MCS are formed when clouds generated by
convective instability cluster as a common cloud system
with a large upper deck of thick opaque ice clouds
accompanied by precipitations over a large area [1]. Such
systems are the major part of the high cloud cover in the
tropical region where they can reach sizes of up to 1000
km in diameter. Under some favorable circumstances,
they can eventually organize as tropical cyclones. The
behavior of aggregation and of the MCS life cycle is
complex and only partly understood [2], [3]. Collecting
large amounts of information about MCS is a required
step towards a finer understanding of their behavior. MCS
are mostly observed through satellite imaging, notably
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from geostationary imagers that chart the full tropical
cloud cover at a resolution of a few kilometers every
ten or fifteen minutes. The high clouds are particularly
visible in the infrared window channel, which provides a
measure of the emitting surface brightness (temperature,
in Kelvin degrees). As the cloud top temperature is at least
50K lower than the surrounding ground or low clouds,
the high clouds can be easily isolated (see Figure 1).
Due to the complexity and the huge amount of available
information, there is a need for an automatic tool able
to detect and keep track of MCS in time series of these
images.

This problem is challenging in two aspects. First, we
do not know in advance when, where, and in which
quantity MCS may appear in the images. In addition to
their apparition and disappearance, MCS may also split
or merge. Secondly, to extract quantitative information
about MCS, one must be at least able to describe in an
appropriate fashion its shape and its temperature. Hence,
the descriptors to extract must contain this information.

B. Previous works

1) Cloud tracking in satellite images: In the literature,
several works address specifically the problem of MCS
tracking in infrared satellite image. In [5], the authors
propose a method based on a thresholding step followed
by an area-overlap linking step to perform the tracking.
The final product, used for measurements, is an ellipse fit
on the contours. This method coarsely describes shapes,
and does not account for local brightness temperature
minima in MCS (see Fig. 1), so close MCS components
are indistinguishable.

This aspect of the problem has been handled in [6],
in which the authors propose an algorithm, named
TOOCAN, similar to region growing techniques [7].
The method consists in iteratively dilating “seeds” from
lower to higher brightness temperature, under a maximum
contrast constraint. This algorithm does separate several
components of MCS, and provides as in [5] a labeled
map: contours are only implicitly defined, and there is no
information on the pixel intensities within each labeled
regions.

Alternatively, the authors of [8] propose to use a
Bayesian tracking method, based on the Multiple Hy-
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Fig. 1: Example of four consecutive infrared images provided by the Himawari satellite [4], with 2× 2 km at the
sub-satellite point (140.7◦E, 0◦N). In this figure and in the following, the colors encode brightness temperature
within the same range.

pothesis Tracking (MHT) framework [9], [10]. In that
paper, the authors first threshold images and fit ellipses
to the resulting connected components. These ellipses are
the input of the MHT method, which explicitly handles
the birth, death, split and merge events. However, the
output of this method consists in ellipse contour only, and
does not provide information about the cloud’s surface
brightness.

Hence, to our knowledge, there is no method in the
literature handling both intensity and shape information
for MCS tracking. Our approach towards this goal is be
the modeling of MCS as mixtures of 2D atoms, such as
Gaussian ellipsoids (detailed below).

2) Object and shape tracking: Beside MCS tracking,
there is a large corpus of literature addressing the
problems of object tracking. One of the main approach in
this regard is the Bayesian particle filtering methods [11]
and its developments [12]. This approach relies on
the sampling of a given parameter space, weighted
by an appropriate likelihood/data fit term. It allows,
in particular, the analysis of non-normally-distributed
movements that are considered in Kalman filtering [13].
Regarding the apparition and disappearance of multiple
objects in time sequences, the Multi-Bernoulli Particle
Filter (MBPF) [14] and its improvements [15], [16], [17]
seem relevant to our problem. In many cases, particle
filters are applied in a localization context: objects to
be tracked are characterized by a few parameters (e.g.
position and size). In some works, such as [18], the
parameters are used for a contour tracking framework.

Nevertheless, in the context of this work the assumption
of fixed and low-dimension description does not hold, so
for each mixture its cardinal must be sampled as well as
its parameters. This leverages convergence, speed, and
prior distribution fitting issues. Hence, sampling-based
methods such as particle filtering are not well-suited to
our problem.

3) Sparse recovery: On the other hand, tools from the
compressed-sensing and the sparse recovery theories are
specifically designed for this purpose. The topic of sparse
recovery and optimization under sparse constraint is well
studied (see [19] for a survey). The sparsity prior may
be leveraged using a greedy approach such as the OMP

algorithm [20], or in a variational approach involving a
sparsity promoting functional (e.g. the `1 norm) as in
the LASSO [21] or Basis Pursuit [22]. However, these
methods are discretized: the atoms to search for are
often sampled on a pre-established grid, commonly called
dictionary. Choosing the dictionary for a given problem
has important consequences in the result quality, as well
as in the performance of the considered algorithm.

In recent years, several methods have been proposed
to overcome the issues introduced by discretization. In
[23], the Continuous Basis Pursuit interpolates between
parameters defined on a grid so as to reach subgrid
accuracy. Another approach, which follows from [24],
[25], [26], is to work in a fully continuous setting,
replacing the `1 norm with its continuous counterpart,
the total variation of measures. Following [27], we call
this method the BLASSO.

To numerically solve the BLASSO problem, several
approaches have been proposed. In [25], [28], the problem
is recast as a semi-definite program, whereas the ADCG
solver proposed in [26], [29] relies on an alternating
gradient based method which progressively adds Dirac
masses. Recently, a variant of the ADCG called Sliding
Frank-Wolfe (SFW) appeared in [30], which is guaranteed
to converge in a finite number of steps under suitable
assumptions.

C. This paper

The outline of this paper is the following. In Section II,
we describe the observation model to invert, and we
present how SFW can be used to analyze single mixtures
in single images.

Then, we present our method to track shapes in images
using sparse analysis in Section III. This method is
based on the principles of SFW for individual object
analysis, and extends it to manage the specificities of
tracking: apparition and disappearance of objects, as well
as splitting and merging.

Finally, Section IV presents the experimental results on
real satellite images, as well as a numerical comparison
with two state-of-the-art methods [6], [8].

In this paper, we track objects (MCS) represented by
mixtures, so we use the two terms without distinction.
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The mixtures contain atoms that are weighted Dirac
masses, so here also the two terms will be used without
distinctions. For convenience, we use in this paper the
convention that high intensities in the images correspond
to low surface brightness temperature, and images will be
considered in their vector form. Vectors and multi-valued
mathematical objects will be represented in bold.

II. OBSERVATION MODEL AND SPARSE SHAPE
ANALYSIS WITH SFW

A. Observation Model

We observe a sequence {y1, . . . ,yT } of T images,
indexed by time. In our observation model, each image
yt, 1 ≤ t ≤ T , is built from an imaging operator applied
to a measure:

yt = Φµwt,θt
+ εt (1)

εt is an error term accounting for the model misfit. In
other words, yt is a mixture of several atoms. In this
paper, we consider the case of 2D Gaussian ellipsoid,
parametrized by position, scale, and eccentricity. Here
and in the following, we consider for the measures µ a
positive weighted Dirac mass sum of the form:

µwt,θt =

N∑
n=1

wt,nδθt,n (2)

with the weight vector wt = {wt,1, . . . , wt,N}, such
that wt,n > 0 ∀n ∈ {1, . . . , N}1. We denote by D the
bounded domain of interest for the parameter set, such
that θt,n ∈ D. The imaging operator Φ is defined by
Φµ =

∫
D φ dµw,θ where φ : D → R is, in our case, a

convolution by a 2D Gaussian ellipsoid kernel.
Gathering the Dirac masses into labeled object mixtures

(the MCS), we may rewrite:

yt =

L∑
l=1

Φµ
(l)
wt,θt

+ εt. (3)

where l denotes one label among the L objects appearing
in the sequence.

Moreover, between t = 1 and t = T an object l may
appear (at tl,start) or disappear (at tl,stop). Accounting
for these phenomena, the complete observation model is:

yt =

L∑
l=1

1{tl,start≤t≤tl,end}Φµ
(l)
wt,θt

+ εt (4)

We also consider the following phenomena:

• merging: several mixtures, separated at time t, may
be grouped at time t+ 1.

1Formally, in Eq. (2) N depends on the time frame t. Since there is
no ambiguity when N is used, this dependence is not made explicit.

• splitting: a mixture at time t may be split in several
mixtures at time t+ 1.

• exchange: atoms belonging to a label at time t may
switch to another label at time t+ 1.

The purpose of this paper is to invert the observation
model (4) for the parameters of the measure, knowing
only each yt and Φ, while accounting for the split and
merge phenomena. Let us notice, in particular, that for
each time frame t, we do not know the number L of
objects involved, nor the number of Dirac masses N in
each mixture.

We seek the inversion of the observation model (4)
within a continuous framework: the parameters are
real-valued within the domain D, which is a compact
defined by lower and upper bounds for each parameter
component.

B. Retrieving sparse shapes with Sliding Frank-Wolfe

Before handling the inversion of (4), we consider the
following sub-problem: how can we retrieve a single
mixture from an image ? This amounts to invert the
simplified observation model (1) at a given time t,
assuming there is only one object in the image.

To retrieve µwt,θt
in a sparse fashion, we minimize

among all non-negative measures µ the following crite-
rion:

C(yt, µ, λ) =
1

2
‖yt −Φµ‖22 + λµ(D) (5)

where λ > 0 is the regularization parameter, and µ(D)
denotes the total mass of the non-negative measure µ.
In the case (2) of a sum of Dirac masses, µwt,θt

(D) =∑N
n=1 wt,n. Such a minimization problem is challenging,

since, contrary to standard `1 problems, not only the
weights {wt,n} of the masses, but also their positions
{θt,n} in the parameter space are unknown, since they
are not assumed to belong to a predefined a grid.

To optimize (5), we use the Sliding Frank Wolfe
algorithm (SFW), a variant of [26], [29] proposed recently
in [30]. This greedy algorithm iteratively adds new Dirac
masses to the current set, then optimizes only the weights
wt in a classical LASSO setting, and then optimizes
locally both wt and θt using a quasi-Newton method
such as BFGS [31].

The key elements in this algorithm are the choice of
new Dirac masses and the stopping criterion. Both rely
on a certificate η written, at step k, as:

η
(k)
t

def.
=

1

λ
Φ>

(
yt −Φµ

w
(k−1)
t ,θ

(k−1)
t

)
; (6)

where w(k−1)
t and θ(k−1)t are estimated at the previous

step. This certificate is a continuous function defined
over the compact set D. It is high-valued in the locations
of yt that are not well explained by µ

w
(k−1)
t ,θ

(k−1)
t

.
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Algorithm 1 Sliding Frank-Wolfe

Input: yt, λ
Output: Minimizer µ̂wt,θt

Initialization: µ
w

(0)
t ,θ

(0)
t

= 0.
while max

D
η(k) > 1 (see Eq. (6)) :

1. Augment the support:

θ
(k)
t = θ

(k−1)
t ∪ arg max

θ∈D
η(k)

2. Adjust weights only (LASSO):

w̃
(k)
t = arg min

w∈Rk
+

C(yt, µw,θ(k)
t
, λ)

3. Local variations on all parameters, using BFGS
and starting at µ

w̃
(k)
t ,θ

(k)
t

:

w
(k)
t ,θ

(k)
t = arg min

w∈Rk
+,θ∈Dk

C(yt, µw,θ, λ)

4. Measure update: µ
w

(k)
t ,θ

(k)
t

=
∑k
n=1 w

(k)
t,nδθ(k)

t,n

Besides, µ
w

(k−1)
t ,θ

(k−1)
t

is a solution to (5) if and only if
maxD η

(k) ≤ 1. Indeed, that condition is equivalent to
standard optimality conditions for constrained convex
problems, as explained (informally) in Appendix A.
Hence, this condition is a natural stopping criterion for
the SFW algorithm.

The SFW procedure is described in Algorithm 1, and
Fig. 2 provides a stepwise illustration of the algorithm.
Details on its implementation are given in Appendix B.
We refer the reader to [30] for further detail on the SFW
algorithm.

III. PROPOSED METHOD

In this section, we introduce our method to track several
deforming shapes in image sequences, based on the sparse
image decomposition presented in the previous section.
Our approach requires to consider several aspects of the
problem, listed below and detailed in the next subsections:
• Initialization refers to the estimation of the mixtures

number and parameters in the initial image y0.
• Propagation is the task of recursive mixture estima-

tion, from time t− 1 to time t.
• Creation manages the apparition of mixtures at time
t that did not exist at time t− 1.

• Merging and splitting handle the interaction between
mixtures over time.

A. Initialization

At this step, the problem is the retrieval of several
shapes in the image y0. This is the conjunction of two
problems:

(a) (b) (c)

(d) (e) (f)

Fig. 2: Illustration of SFW steps on a synthetic image
(cf. Alg. 1). (a) synthetic image yt generated with white
Gaussian noise, and 5 atoms using a 2D ellipsoid kernel φ.
(b)–(d) images generated with Φµ

w
(k)
t ,θ

(k)
t

from k = 1 to
k = 5, on which the atom are superimposed to illustrate
the parameters (positions, scales, orientation).

1) finding the number of objects,
2) estimating the parameter of each objects.

These problems are handled through a two-step SFW
procedure. The first step consists in applying SFW to an
under-resolved version of y0, to produce an estimation
of the number of mixtures as well as a coarse estimation
of their parameters. This step yields several atoms, that
are for now considered as separate objects: they may be
merged or split later (see Subsection III-D).

The second step processes each of the resulting atoms
separately. It consists in applying SFW using the fully
resolved image, in order to obtain several atoms per
object. We observed that this procedure provides an
accurate estimate of mixture number, while being faster
than applying SFW on the fully-resolved image. The
initialization procedure is summarized in Alg. 2 and its
first step is illustrated in Fig. 3.

Algorithm 2 Initialization: coarse-to-fine SFW

Input: Image y0

Output: Estimation µ̂w0,θ0

Step 1.
Let ỹ0 be the under-resolved version of y0.
Apply SFW (Alg. 1) to ỹ0.
Step 2.
for each resulting Dirac mass :

Apply SFW on y0 starting at the coarse estimation
from step 1.
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(a) y0 (b) Under-resolved ỹ0 (c) SFW on ỹ0.

Fig. 3: Illustration of step 1 of the initialization step.
In (c), labels are represented by color and the opacity
corresponds to brightness temperature thresholds (see
Fig. 6).

B. Propagation and disappearance

At this step, we handle the problem of retrieving, at
time t, a mixture l that already existed at time t−1. This
amounts to finding µwt,θt

minimizing C(yt, µwt,θt
, λ),

knowing already µ̂wt−1,θt−1
. We assume that the varia-

tion in mixture number and parameters values are small
between t−1 and t. Hence, the propagation step consists
in applying SFW to yt, using µ̂wt−1,θt−1

as an initial
guess. This starting measure is modified as follow:
• we need to allow for pruning, to handle decreasing

number of atoms in mixtures. This is done by a
LASSO optimization on the weights only, followed
by a removal of the zero-valued outputs.

• we account for the average trend of mixtures in D,
as the difference of the parameter averages between
t − 1 and t − 2. This corresponds to speed in the
parameter space D.

After this step, an object may have no Dirac mass left.
In this case, the object is assumed to have disappeared,
so an estimation of tl,end is known and the object is not
proceed further. The propagation step is summarized in
Alg. 3.

Algorithm 3 Propagation using SFW

Input: Estimation µ̂wt−1,θt−1
, yt

Output: Estimation µ̂wt,θt

if t > 2 :
Estimate the trend as ŵs = wt−1 −wt−2 and θ̂s =
θt−1 − θt−2.
Initial guess: µ̂wt−1+ŵs,θt−1+θ̂s

.
else:

Initial guess: µ̂wt−1,θt−1
.

Pruning, adjusting weights only (LASSO).
Run the SFW iterations.

C. Birth

We address the problem of retrieving, at a given
time t, mixtures that did not exist at time t − 1. The

goal is to detect where new mixtures appear, and how
many. This problem is close to the problem handled at
initialization, excepting that some parts of the image are
already explained by mixtures.

Let us consider the current residual, noted rt:

rt = yt −Φµ̂wt,θt
(7)

This residual is obtained with the current estimator, i.e.
after the propagation step. Reusing the methods from the
initialization step, the creation of new object at time t is
done by the application of Alg. 2 to the residual rt.

D. Merging mixtures

When considering the merging of two mixtures, we
have to consider the following cases:
• two or more mixtures overlap entirely: they both

describe the same phenomenon and must be merged
under one label;

• two or more mixtures overlap partly: some Dirac
masses in these mixtures describe the same phe-
nomena, and they must be moved under the same
label.

An illustration of these two cases is given in Fig. 4.
The merging procedure we propose account for the two

situations. We measure correlation coefficients between
mixture images Φµ

(l)
wt,θt

, corresponding to each label l
at the fixed time t.

Let l1 be a given “reference” mixture, and l2 an other
mixture that may be merged:

• if Φµ
(l1)
wt,θt

and Φµ
(l2)
wt,θt

are too much correlated,
they are merged.

• if the image of a Dirac mass µ
(l2,n2)
wt,θt

from the
mixture l2 is too much correlated to the image of

→

(a) Mixture merging.

→

(b) Atom transfer.

Fig. 4: Illustration of the two cases considered for
merging. In case (a) the two mixtures are merged, while
in case (b) the smaller atom is merged to the right-hand
mixture and removed from the left-hand mixture.
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another Dirac mass µ(l1,n1)
wt,θt

from l1, it is merged to
l1 and removed from l2.

This approach requires the definition of a correlation
threshold Cthr, above which the merging is performed.
In practice, this threshold defines the tolerance to overlap
in the resulting image. Alg. 4 summarizes the merging
step.

Algorithm 4 Correlation-based merging

Input: Correlation threshold Cthr, current measure
µwt,θt

Output: Merging of correlated mixtures.
Let L be the mixture list, sorted by total mass in
decreasing order, and R be the reference mixture list,
empty at start.
for l1 ∈ L : . reference mixture

Append l1 to R.
for l2 ∈ L with l2 6∈ R : . other mixture

Step 1. Single atom merging or transfer
if N2 = 1 :
∀n1 ∈ {1, . . . , N1}, compute:
cn1,l2 = Corr(Φµ

(l1,n1)
wt,θt

,Φµ
(l2)
wt,θt

)

if ∃n1 ∈ {1, . . . , N1} s.t. cn1,l2 > Cthr :
Merge l1 and l2. The label of the mixture with
the larger total mass is maintained.

else:
for n2 ∈ {1, . . . , N2} : . within l2

Let µ(l2,\n2)
wt,θt

be µ(l2)
wt,θt

without the n2 atom.

Compute

{
cn2,l1 = Corr(Φµ

(l2,n2)
wt,θt

,Φµ
(l1)
wt,θt

)

cn2,l2 = Corr(Φµ
(l2,n2)
wt,θt

,Φµ
(l2,\n2)
wt,θt

)
if cn2,l1 > cn2,l2 :

Move µ(l2,n2)
wt,θt

to the mixture l1.

Step 2. Mixture merging.
if Corr(Φµ

(l1)
wt,θt

,Φµ
(l2)
wt,θt

) > Cthr :
Merge l1 and l2. The label of the mixture with
the larger total mass is maintained.

E. Splitting

At a given time t, a mixture may also be split into
several parts. This situation arises, within a mixture, when
two or more components are too much separated from
one another, i.e. they do not overlap enough to represent
the same object anymore.

To quantify this separation, we evaluate the correlation
matrix of the mixture Dirac masses’ images. This matrix
is thresholded using Cthr, below which the Dirac masses
are considered uncorrelated. The resulting binary matrix
is used to build a undirected, unweighted graph Γ
where nodes represent Dirac masses and edges represent
correlations above the threshold. If the graph Γ has

several disconnected component, then the mixture must
be split along these separated components. The procedure
is illustrated in Fig. 5 and reported in Alg. 5.

Let us remark that this step relies on the same
principles as the merging step, so that using both in
long time series allow the estimator to be balanced, i.e.
there is no over-splitting or over-merging.

Fig. 5: Illustration of the splitting procedure. Left: a
single mixture containing 6 atoms. Right: graph of
correlated atoms, colored by disconnected components.
The corresponding atoms groups form the new mixtures.

Algorithm 5 Splitting

Input: Correlation threshold Cthr, current measure
µwt,θt

Output: Splitting of non-correlated Dirac masses within
mixtures.
for Each mixture l ∈ {1, . . . , L} :

Compute the correlation matrix C with Φµ
(l,n)
wt,θt

, 1 ≤
n ≤ N .
Threshold this matrix with Cthr.
Build the graph Γ from C.
if Γ has more than one connected component :

Split l along the connected components.

F. Summing up

Before gathering the entire algorithm procedure, we
need to introduce an additional local adjustment step. Its
purpose is to provide further flexibility after the split
and merge steps, so that newly formed mixtures can be
adapted to the image. To do so, we process each mixture
with the SFW algorithm, using the current mixtures values
as initial guess.

The method we propose is based on the four step
described previously, and is called SAST for Sparse
Analysis for Shape Tracking. The algorithm iteratively
provides estimators µ̂wt,θt from t = 1 to t = T , with, at
each step, a recursive adaptation of the estimator. It is
described in Alg. 6 and a step-by-step illustration of the
algorithm is provided in Fig. 6.

IV. RESULTS

This section presents the results of the SAST method
for the tracking of MCS in infrared satellite images,
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Algorithm 6 SAST algorithm

Input: Image sequence, correlation threshold Cthr, reg-
ularization parameter λ

Output: Estimator µ̂wt,θt , t ∈ {1, . . . , T}
for t = 1 to t = T :

if t = 1 :
Initialize: Alg. 2 applied to y0

else:
Propagate: Alg. 3 with µ̂wt−1,θt−1

Create: Alg. 2 applied to rt = yt −Φµ̂wt,θt

Split: Alg. 5 using Cthr.
Merge: Alg. 4 using Cthr.
Local variations: apply SFW (Alg. 1) on the modified
mixtures starting from their current values.
Save the current value of µ̂wt,θt

as a result.

136 138 140 142
-2

0

(a) Current image.

136 138 140 142
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0

(b) Previous estimation.
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(c) Propagation.

136 138 140 142
-2

0

(d) Creation.

136 138 140 142
-2

0

(e) Splitting.

136 138 140 142
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0

(f) Merging.

Fig. 6: Step-by-step illustration of the SAST algorithm.
(a) has the same intensity range as in Fig. 1 and (b)-(f)
represents outputs by color (labels) with an opacity de-
fined by the set (235K, 245K, 255K, 265K) of brightness
temperature thresholds. Individual atoms are represented
in overlay.

as well as a comparison with the two state-of-the-art
methods proposed in [6] and [8].

The objective is to automatically produce informations
on the MCS dynamic to help understand their behavior,
which is not fully known. Hence, creating realistic
synthetic data on dynamic MCS is far from trivial. Since
no ground truth is available, we experiment the three
methods on real Himawari [4] images, and then compare

them qualitatively and numerically.

A. Experimental settings

1) SAST algorithm: The SAST algorithm requires
several choices regarding its implementation. The first
one is the choice of the convolution kernel, which
will describe the shape of individual atoms forming
mixtures. As mentioned previously, we choose to describe
MCS as mixtures of 2D Gaussian, since they do not
have clear contour in satellite image. The parameter of
each Gaussian are the position (x, y), the big axis a,
the eccentricity e and the orientation α. Hence, given
the time t, a label l, and an atom index n, we have
θ
(l)
t,n = {x, y, a, e, α}(l)t,n. This parametrization allows to

directly control ellipsoid eccentricity in order to avoid
degenerate cases.
D contains each parameters set θ(l)t,n, so its bounds

must be specified.We choose to set the position bounds
at the image border, and α between −π and π. In order
to avoid degenerate cases, we set the big axis between
2 and 20 pixels and the eccentricity between 0 and 0.9.
to avoid degenerate cases. These choices were made to
provide fast, yet efficient, results on the data presented
hereafter. The output of the algorithm is only marginally
affected by changes in these settings.

Two parameters affects the overall behavior of the
SAST algorithm:
• the regularization parameter λ sets the sparsity

compromise in (5). A larger λ yields fewer atoms,
so the description of the clouds will be coarser and
obtained more quickly. Conversely, a smaller λ will
provide a finer fit to the image.

• the correlation threshold Cthr sets the limit for both
splitting and merging. A larger Cthr implies a larger
number of small mixtures, while a smaller value
yields larger and fewer mixtures.

These two parameters must be set in accordance with the
purpose of the analysis: fine vs. coarse, and atomic vs.
grouped analysis respectively. We observed that a coarser
analysis is relevant when used in conjunction with a more
grouped aggregation, and conversely. In consequence, we
choose to study the three following cases :
A. λ = 1.25 and Cthr = 0.5,
B. λ = 2 and Cthr = 0.25,
C. λ = 3 and Cthr = 0.125.
2) State-of-the-art methods: In the literature, two

recent algorithms address the problem of tracking MCS
in time sequences of images. The first one, coined
TOOCAN [6], tracks binary shapes based on threshold,
surface, and connectivity in the spatio-temporal domain.
TOOCAN produces discrete-labeled map of pixels, so
there is no information regarding shape or intensity.
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Fig. 7: First column: sequence of images from Himawari taken August 10, 2017 from 01:40 to 15:20 UTC. Second
column: results with the TOOCAN algorithm [6], each color representing a label. Third column: results with the
MHT method [8], represented as labeled ellipses. Fourth column: results with the SAST method in case B, using the
same representation as in Fig. 6. Mixtures are in addition delimited by the convex hull of their atom’s positions.
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Fig. 7 (Cont.): Output of the SAST method for cases A
(left) and C (right).

We used our own implementation of TOOCAN for the
comparison.

The second method relies on a recursive Bayesian track-
ing framework, called MHT [8]. This method provides
parametric estimation of ellipses, each one describing the
shape of a cloud or cloud system. However, the tracking
is not applied directly on images: instead, a binarized
image (threshold at 233K) is produced, from which small
surface regions are removed. The remaining contours are
fit by ellipses, which form the observations considered by
the model. Hence, the MHT method works in parametric
contour space, without considering the images intensity.
For the comparison, we used the implementation of MHT
provided by the authors.

Here, we present comparative results on a real image
sequence acquired by the Himawari satellite [4], which
has a 2×2 km Sub-Satellite Point (SSP) resolution. Since
both TOOCAN and MHT were applied initially applied to
MSG-1 [32] infrared images (3× 3 km SSP resolution),
the parameters of both methods were adapted to the
Himawari setting.

B. Comparative results

1) Qualitative results: In Fig. 7, we illustrate the three
methods on a Himawari sub-satellite image in the infra-
red channel at 10.4 µm covering ca. 800×400 km2 over
50 time frames taken each 20 minutes. Several comments
can be made regarding these results:
• the TOOCAN algorithm yields very fine details, as

its analysis is performed at the pixel level. However,
resulting shapes are sometimes questionable espe-
cially where the image intensity smoothly varies
near the 235 K threshold value. Besides, TOOCAN
may separate features that could be analysed as
propagation of MCS, for instance at t = 45 near
(136◦E, 1◦N).

• unlike TOOCAN, the MHT method describes
coarser details in the images. While it does capture
the overall displacements, many informations are
missing: some objects undetected for some time
period, such as the blue ellipse moving from 142◦E
at frame 5 to 139◦E at frame 30. In consequence,
sometimes large parts of the original image were
missed as in frame 45.

• unlike TOOCAN and MHT, our method handles
a large scope of temperatures, providing more
complete object description. Despite being less
precise than TOOCAN regarding the pixel-wise
description, the output of SAST yields explicitly
shape parameters that can be used for the physical
processes analysis (beyond the scope of this work).

The three cases studied for SAST provide additional
insights:
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• In case A, λ = 1.25 yields the finer details: SAST
fits very well the image and 342 labels are found
in the sequence of frames. Because Cthr is high,
splitting occurs frequently and there is some overlap
between mixtures.

• Alternatively, case C provides a coarse estimation
of the mixtures because λ = 3. On the other
hand, because Cthr is low, the merging are frequent.
In consequence, 55 labels were found, and we
observe that they are well preserved across the time
sequence.

• Case B is an intermediate stage between cases A
and C. It provides finer details than case C, but also
less overlap between mixtures than in case A. In
this case, 141 mixtures were found.

More generally, we observed that for a fixed λ, diminish-
ing Cthr yields larger mixtures while, when Cthr is fixed,
mixtures become more isolated when λ is augmented.
Hence Cthr and λ cannot be chosen independently.

2) Quantitative results: As the three methods tested in
the experiments differ in the type of results, quantitatively
comparing them is not trivial. The common ground
between the outputs comes down to positions, scales,
and labels.

Besides, the outputs differ in label number: on the se-
quence described above, MHT fount 32 labels, TOOCAN
found 123 labels and SAST found 55 to 342 labels.
In addition, the time scales of the output results vary
between methods, and within each output. In consequence,
the outputs cannot be paired for comparison. Here,
we bypass these concerns by comparing the empirical
distributions of the time-scaled values of the objects
detected over 3 time frames or more.

In Fig. 8, we report the measure for relative variations
for longitude and latitude of the objects, as well as their
surface:
• The measurements provided by MHT seem more

scattered than for other methods. This is partly due
to the low number of labels (32), but also to the
method itself, as the 44 remaining (existing over 3
or more frames) labels of SAST, case C induce a
lower scattering.

• Regarding the position parameters, the three methods
agree on the general displacement. Vertical (latitude)
displacement is small and balanced, while horizontal
(longitude) displacements are all similarly shifted,
depicting well the east-to-west propagation of clouds
visible in Fig. 7.

• The size parameters have also the same magnitude,
despite the fact that they are performed on different
objects.

While the methods agree on the magnitude of the phenom-
ena, their apparent behavior differs notably. Especially,
the size measurements highlight an interpretation issue

regarding the life cycle of a MCS: when a new updraft
rises in the vicinity of an existing MCS, should it be
considered as the same MCS propagating, or as a new
MCS ?

In the first case, many objects have a short lifetime
and disappear in a split or merge event, so the MCS size
rarely decreases. This case corresponds to the measures
provided by MHT, and SAST in cases A and B.

In the second case, there is less short-live objects, but
MCS do not survive by in merging of new objects, hence
their size decreases and they disappear. This corresponds
to the TOOCAN output and with SAST in case C. Note
that in this case, the latitude displacement are more
important since lifetimes are longer.

In addition, the SAST method provides more informa-
tion on the MCS, as exemplified by the peak temperature
measurements in the fourth line of Fig. 8. In the three
case, it can be seen that at the beginning of an object’s
life, on average temperatures first diminish and then rise.
This is in accordance with the physics of the MCS, since
the updraft first rises at high altitude at low temperatures,
and then slowly disaggregate while diminishing their
altitude, forming a large anvil and raising its temperature
[33]. Here also, the amplitude of temperature variations
varies because of differences of objects’ lifetime.

Summing up, the SAST method agrees with TOOCAN
and MHT on the overall measurements, while providing
flexibility regarding the MHT lifecycle interpretation,
and while providing more data than its counterparts. By
varying the parameter λ, we can analyze the images and
the formation of aggregates at various scales.

3) Computation time: The implementation of SAST
was made in Python 3.5, and will be made available on-
line2. This implementation was not specifically optimized
for speed. On a work station with 12 Intel i7-8700 3.2GHz
CPUs and a 12 Gb RAM, the 400× 200 px× 50 frame
images depicted in Fig. 7 were processed in 20 min,
10 min, and 6 min for cases A, B and C respectively.
This time is mainly used for the large number of
executions of the SFW algorithm. We believe that a
C/C++ implementation, coupled with GPU computation,
should significantly reduce this time. For comparison,
our implementation of TOOCAN using Python/Scipy
took 19 min to process the same dataset and MHT took
2 min to process the same sequence because it handles
parameter sets instead of image sequences.

V. CONCLUSION

In this paper, we propose a novel method, named SAST,
for the dynamic analysis of MCS in time sequences of
images. This method successfully achieves the image

2Repository web address: github.com/courbot/sast
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Fig. 8: Time-scaled, relative variations of positions (first and second line), surface (third line) and temperature
(fourth line) for the three evaluated methods. The average measure is in black, and the three first and last deciles
are represented in color. Note that neither TOOCAN nor MHT methods provide the temperature measurement.

fitting through a recent off-the-grid sparse analysis algo-
rithm, and manages as well the apparition, disappearance,
splitting and merging events. On real data, we show that
the results obtained by SAST are consistent with the
other state-of-the-art methods. Besides, we showed that
SAST provides additional information and flexibility with
respect to the existing methods.

Several perspectives stem from this work, among which
the the development of multi-spectral approaches and the
implementation for large-scale applications.
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Est Marne-la-Vallée, France), Caroline Muller, Genevieve
Seze (LMD, UMR 8539, Paris, France) and Pasquale
Selitto (LISA, CNRS UMR 7583, Paris, France) for
fruitful discussions regarding MCS tracking.

REFERENCES

[1] R. A. Houze, “Mesoscale convective systems,” Reviews of
Geophysics, vol. 42, no. 4, 2004.

[2] D. Bouniol, R. Roca, T. Fiolleau, and D. E. Poan, “Macrophysical,
Microphysical, and Radiative Properties of Tropical Mesoscale
Convective Systems over Their Life Cycle,” Journal of Climate,
vol. 29, no. 9, pp. 3353–3371, May 2016.

[3] C. E. Holloway, A. A. Wing, S. Bony, C. Muller, H. Masunaga,
T. S. L’Ecuyer, D. D. Turner, and P. Zuidema, “Observing
Convective Aggregation,” Surveys in Geophysics, Jun. 2017.

[4] K. Bessho, K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue,
Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno et al., “An intro-
duction to himawari-8/9 – japan’s new-generation geostationary
meteorological satellites,” Journal of the Meteorological Society
of Japan. Ser. II, vol. 94, no. 2, pp. 151–183, 2016.

[5] V. Mathon and H. Laurent, “Life cycle of Sahelian mesoscale
convective cloud systems,” Quarterly Journal of the Royal
Meteorological Society, vol. 127, no. 572, pp. 377–406, 2001.

[6] T. Fiolleau and R. Roca, “An algorithm for the detection
and tracking of tropical mesoscale convective systems using
infrared images from geostationary satellite,” IEEE transactions
on Geoscience and Remote Sensing, vol. 51, no. 7, pp. 4302–4315,
2013.

[7] R. Adams and L. Bischof, “Seeded region growing,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 16,
no. 6, pp. 641–647, 1994.

[8] A. Makris and C. Prieur, “Bayesian multiple-hypothesis tracking
of merging and splitting targets,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 52, no. 12, pp. 7684–7694,
2014.



12

[9] D. Reid et al., “An algorithm for tracking multiple targets,” IEEE
transactions on Automatic Control, vol. 24, no. 6, pp. 843–854,
1979.

[10] S. S. Blackman, “Multiple hypothesis tracking for multiple target
tracking,” IEEE Aerospace and Electronic Systems Magazine,
vol. 19, no. 1, pp. 5–18, 2004.

[11] R. P. Mahler, “Multitarget Bayes filtering via first-order multitarget
moments,” IEEE Transactions on Aerospace and Electronic
systems, vol. 39, no. 4, pp. 1152–1178, 2003.

[12] ——, “PHD filters of higher order in target number,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 43, no. 4,
2007.

[13] C. K. Chui, G. Chen et al., Kalman filtering. Springer, 2017.
[14] R. P. Mahler, Statistical multisource-multitarget information fusion.

Artech House, Inc., 2007.
[15] B.-T. Vo, B.-N. Vo, and A. Cantoni, “The cardinality balanced

multi-target multi-Bernoulli filter and its implementations,” IEEE
Transactions on Signal Processing, vol. 57, no. 2, pp. 409–423,
2009.

[16] S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, “The labeled
multi-Bernoulli filter,” IEEE Transactions on Signal Processing,
vol. 62, no. 12, pp. 3246–3260, 2014.

[17] B.-N. Vo, B.-T. Vo, N.-T. Pham, and D. Suter, “Joint detection and
estimation of multiple objects from image observations,” IEEE
Transactions on Signal Processing, vol. 58, no. 10, pp. 5129–5141,
2010.

[18] N. Vaswani, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Deform
PF-MT: particle filter with mode tracker for tracking nonaffine
contour deformations,” IEEE Transactions on Image Processing,
vol. 19, no. 4, pp. 841–857, 2010.

[19] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of
sparse representation: algorithms and applications,” IEEE access,
vol. 3, pp. 490–530, 2015.

[20] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Transactions
on information theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[21] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological),
pp. 267–288, 1996.

[22] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM review, vol. 43, no. 1, pp.
129–159, 2001.

[23] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “Recovery of
sparse translation-invariant signals with continuous basis pursuit,”
IEEE transactions on signal processing, vol. 59, no. 10, pp. 4735–
4744, 2011.

[24] Y. De Castro and F. Gamboa, “Exact reconstruction using Beurling
minimal extrapolation,” Journal of Mathematical Analysis and
applications, vol. 395, no. 1, pp. 336–354, 2012.

[25] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical
theory of super-resolution,” Communications on Pure and Applied
Mathematics, vol. 67, no. 6, pp. 906–956, 2014.

[26] K. Bredies and H. K. Pikkarainen, “Inverse problems in spaces
of measures,” ESAIM: Control, Optimisation and Calculus of
Variations, vol. 19, no. 1, pp. 190–218, 2013.

[27] J.-M. Azais, Y. De Castro, and F. Gamboa, “Spike detection from
inaccurate samplings,” Applied and Computational Harmonic
Analysis, vol. 38, no. 2, pp. 177–195, 2015.

[28] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed
sensing off the grid,” IEEE transactions on information theory,
vol. 59, no. 11, pp. 7465–7490, 2013.

[29] N. Boyd, G. Schiebinger, and B. Recht, “The alternating descent
conditional gradient method for sparse inverse problems,” SIAM
Journal on Optimization, vol. 27, no. 2, pp. 616–639, 2017.

[30] Q. Denoyelle, V. Duval, G. Peyré, and E. Soubies, “The Sliding
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APPENDIX A
STOPPING CRITERION AND OPTIMALITY CONDITIONS

In this Appendix, we explain informally (ignoring
the functional analysis issues raised by the infinite-
dimensionality of the space of measures) how the
condition max

D
η(k) ≤ 1 in Alg. 1 is equivalent to

µ
w

(k−1)
t ,θ

(k−1)
t

minimizing (5) under non-negativity con-
straints.

For the sake of simplicity, we drop the dependency on
yt and λ, and we write that minimization problem as

min
µ∈K

C(µ) (8)

where K is the closed convex set of non-negative
measures, and C(µ) := C(yt, µ, λ). The optimality
condition for that problem is that ∇C(µ) is normal to
K, pointing “outwards”, i.e.

〈∇C(µ), ν − µ〉 ≤ 0, (9)

for all ν ∈ K. When µ is of the form
∑k−1
n=1 wnδθn ,

choosing ν of the form αδθ and letting α→ +∞, then
choosing ν of the form µ± εδθn for ε > 0 small enough,
we see that (9) implies (and is in fact equivalent to)

∀θ ∈ D, ∇C(µ)(θ) ≤ 0, (10)
∀n ∈ {1, . . . , k − 1}, ∇C(µ)(θn) = 0. (11)

In other words, ∇C(µ) is a non-negative continuous
function which vanishes at every θn.

Now, from (5), one may observe that

∇C(µ) = Φ>(Φµ− yt) + λ (12)

so that ∇C(µ
w

(k−1)
t ,θ

(k−1)
t

)(θ) = λ
(
−η(k)(θ) + 1

)
.

It can be checked that the optimality condition of
Step 4 in Alg. 1 implies that η(k)(θ(k−1)t,n ) = 1 holds
for every n at every iteration k. As a result, Eq. (11)
always holds for µ = µ

w
(k−1)
t ,θ

(k−1)
t

. Eventually, the
condition max

D
η(k) ≤ 1 is equivalent to (10), hence to

the optimality of µ
w

(k−1)
t ,θ

(k−1)
t

.

APPENDIX B
IMPLEMENTATION OF THE SFW ALGORITHM

In this Appendix, we provide several implementation
details for the SFW algorithm detailed in Alg. 1.
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Step 1: computation of η(k). This certificate is valued
on the compact D. In practice, we grid D and evaluate
η(k) in each grid node.

Stop condition: searching for max
D

(η(k)). This values
is approached, because of the previous griding This does
not prevent the algorithm to perform correctly, as the
sub-grid errors are compensated in the gridless step 4
(see also [26]).

Step 3: weight adjusting. At this step, we allow w
to vary but not θ. This amounts to a classical LASSO
problem with a fixed dictionary, and we solve it with
coordinate descent.

Step 4. Local variations. As suggested in [30], we
use a limited-memory bounded BFGS algorithm [34] to
restrict the search space to D.


