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Abstract

We study mechanisms that can produce an increase of biomass production in batch
processes when considering mixed cultures, compared to pure cultures. We show
that growth thresholds or variable yields can produce ‘overyielding’, while this is
not possible in the classical batch model with multiple species. We give sufficient
conditions on the characteristics of the species to obtain overyielding, and illus-
trate these theoretical results with numerical simulations. This work provides new
insights on species complementary in models of mixed cultures, without having to
consider direct interactions terms between species as, for instance in the well known
Generalized Lotka-Volterra model.

Key words: batch culture, complex ecosystems, diversity, overyielding, transient,
optimization.

1 Introduction

Microorganisms play an important role in many ecosystems on earth, such as
carbon or nitrogen biochemical cycles, or food chains [26]. Today, many in-
dustrial bio-processes rely on bacteria or yeasts to transform matter into high-
value products, such as in the food industry (winery, bakery, cheese dairy...).
Cultivation is operated either in continuous (chemostat) [15], batch [6] or
fed-batch modes [19]. Although questions related to biodiversity (exclusion,
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coexistence, persistence of species) have been already well investigated for
continuous mode (see e.g. [28]), batch cultures have received less fundamental
attention with respect to the study of diversity. One of the main reasons is
much probably that most of the industrial batch processes rely on a single
species that have been carefully selected for its characteristics (such as yield
conversion, growth kinetics, products composition). Another possible expla-
nation is the relative recent availability of genetic tools to discriminate with
accuracy the ecosystems composition in these application fields.

Yet, in many cases, a better performance has been observed with mixed cul-
tures when compared to the performances obtained with a single species.
When the criterion is the conversion into biomass or into a product of the
bioreaction, we shall say that such situations exhibit an ’overyielding’. Sev-
eral natural batch ecosystems rely on a certain diversity for their functioning,
such as the ones one can find in cheese dairy [22] or animal rumen [5] ac-
tivities. In such ecosystems, a number of species interact together and are
complementary one of each others in terms of functioning. Finally, in many
cases, a complex ecosystem exhibits better stability and robustness properties
with respect to unexpected situations. It is why species interactions have been
studied in order to explain how the main functions of the ecosystems can be
ensured by concomitant species. Nevertheless, it appears that few works have
investigated the role of ecosystems diversity - from a theoretical framework -
in terms of performances of a given function, such as the biomass production.
In industrial applications, the paradigm that the best performances are nec-
essarily obtained by the selection of a single species - the best one - seems to
remain quite strong. Let us underline that differently to the continuous mode,
for which competitive exclusion predicts that under perfectly well-controlled
environment the best species excludes the other ones at steady state, the dy-
namics of batch culture is fundamentally transitory. Therefore, dominance
alternation among species can occur.

The objective of the present work is to study with existing mathematical mod-
els [20, 25] mechanisms that can explain overyielding in batch cultures. Here
we will say that there is biomass overyielding in a batch process if the total pro-
duction of biomass using an inoculum composed of multiple species is greater
than the biomass production obtained when the inoculum is made up of a
single species. In other words, we study the role of the diversity of the inocu-
lum with respect to process performances in terms of biomass production. For
simplicity, we restrict our attention to single step reactions, which means that
we investigate possible mechanisms of overyielding in any biological system
where the biomass growth is limited by a single limiting substrate. In other
terms, we study biomass overyielding in the framework of the competition of
n species on a single resource.
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The paper is organized as follows. In the next Section 2, we first introduce
assumptions and modeling framework to give a precise mathematical defini-
tion of overyielding. In Section 3 we consider the most classical batch model
and show, under the simplest hypotheses, that overyielding is not possible
(the greatest biomass production is obtained when the ‘best’ species is culti-
vated alone). For this simplest case however, it is shown that results hold for
a very important class of growth functions. Then, we consider more sophis-
ticated models from the literature and highlight key mechanisms for biomass
overyielding to occur: constant yield with a threshold in the growth functions
of species in Section 4 and variable yields in Section 5. For these two classes of
models, we give precise conditions for which overyielding is possible. Summary
and comparison of possibilities to obtain overyielding are given in Section 6.
Finally, numerical examples which illustrate the possibilities of overyielding
for these models are then provided and discussed in Section 7.

2 Model, assumptions and definitions

Under appropriate environmental conditions (temperature, pH,...), we con-
sider a vessel which contents all the biotic resources necessary for microor-
ganisms to grow, except a single limiting resource. At initial time, one or
several species and the resource are introduced (in fermentation processes,
these are typically one or several yeasts and sugar). We shall denote by Xi(t),
i ∈ {1, · · · , n} the concentrations (or densities) of microorganisms of species
i, and by S(t) the concentration of the resource. The general expression of
classical consumers-resources model which describes the time evolution of the
reactions that take place between Xi and S is given by the following system:

Ẋi = µi(S)Xi (i = 1 · · ·n)

Ṡ = −
n∑
i=1

1

yi(S)
µi(S)Xi

(1)

where µi(·) is the specific growth rate function and yi(·) the yield conversion
factor of species i. In microbiology, four phases are usually described in batch
processes: 1. the lag phase, 2. the growth phase, 3. the stationary phase and
4. the decline phase. As our objective here is to focus on the production of
the growth phase, we neglect with this model the lag phase, assuming that at
initial time all the species are already in their ‘active’ phase. We also do not
consider the decline phase, and assume that the mortality of micro-organisms
is negligible during the growth and stationary phase. However, we shall allow
y(·) to be possibly resource dependent, as this is commonly met in literature
(see e.g. [2, 25]). We make the following assumptions on the functions µi and
yi.
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Hypothesis 1

(1) The functions µi(·) are Lipschitz continuous from R+ to R+ and there
exist growth thresholds Si ≥ 0 (i = 1 · · ·n) such that

µi(S) = 0, S ∈ [0, Si], µi(S) > 0, S > Si

(2) The functions yi(·) are Lipschitz continuous from R+ to R+, with yi(S) >
0 for any S ∈ R+ (i = 1 · · ·n)).

The threshold Si represents the minimal value of the substrate concentration
under which a growth cannot occur [32]. This value is often imposed to be
equal to 0, as in the classical Monod model. However, in practice it is rare
to have observations for low values of the substrate concentration to identify
such threshold. Nevertheless, it has been observed that for some strains, this
threshold is not negligible [29, 31].

Under this hypothesis, one can easily check that solutions of the system of
differential equations (1) are well defined and bounded at any positive time,
whatever the initial condition is in Rn+1

+ .

Recall that we shall speak of overyielding when the production of biomass
of an inoculum composed of multiple species is greater than the production
obtained when the inoculum is made up of a single species. Let us formalize
this definition from a mathematical viewpoint: let us denote by S the simplex
in the positive orthant of Rn

S :=

{
p ∈ Rn

+;
∑
i

pi = 1

}

and the vertices σi (i = 1 · · ·n) such that

σi,i = 1, σi,j = 0, j 6= i

We shall also denote by X the vector in Rn
+ of components Xi.

Definition 2 Let B0, S0 be two positive numbers. For any p0 ∈ S, consider
the solution of (1) for the initial condition

X(0) = p0B0, S(0) = S0

and define the number

R(p0) := B∞ −B0 where B∞ := lim
t→+∞

B(t) with B(t) =
n∑
i

Xi(t)
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System (1) is said to present overyielding for the pair (B0, S0) when the in-
equality

max
p0∈S

R(p0) > max
i∈{1···n}

R(σi) (2)

is fulfilled.

In other words, overyielding in this precise framework means that there exists
a composition of the initial biomass with different species that gives a greater
production of biomass than the one we obtain when the initial biomass is
made up of a single species.

In the definition of the function R, we consider asymptotic values B∞ of the
biomass, whereas we have previously mentioned that the model do not take
into consideration the decline phase of the biomass which occurs for large
times. Therefore, those asymptotic values may not be reached in practice.
However, if one considers that the stationary phase corresponds to biomass lev-
els close to these asymptotic values, one may reasonably assume that the com-
parison order between the biomass productions determined with the asymp-
totic values of the model is also verified at the stationary phase.

Remark 3 In some works [9, 27], the weaker condition R(p0) >
∑n
i=1 p0,iR(σi)

is considered as the definition for overyielding, and condition (2) refers then
as transgressive overyielding. We believe that this difference makes sense when
the criterion is static or deals with steady-states. Here the proportions of
species in the consortium are changing with time, which makes us choose a
stricter definition of overyielding, as we shall see later on.

To study the possibilities of biomass overyielding, it is useful to first charac-
terize the residual concentration of substrate, with the following lemma.

Lemma 4 For any initial condition in Rn
+, the solution of (1) verifies

S∞ := lim
t→+∞

S(t) = min
(
S(0), min

i=1···n
{Si s.t. Xi(0) > 0}

)

PROOF. Posit l = min (S(0),mini=1···n{Si s.t. Xi(0) > 0}).

Notice first, from equations (1), that S(·) is a decreasing function bounded
from below by 0. Therefore, it admits a limit S∞ ≤ S(0). Moreover, the
functions Xi(·) are non decreasing. One can then write

n∑
i=1

µi(S(t))

yi(S(t))
Xi(t) ≥

n∑
i=1

min
S∈[S∞,S(0)]

{
µi(S)

yi(S)

}
Xi(0), t ≥ 0
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If S∞ > l, there exists j ∈ {1, · · · , n} such that Xj(0) > 0 with l = Sj < S(0).
Then, let

η = min
S∈[S∞,S(0)]

µj(S)

yj(S)
Xj(0) > 0

and one has Ṡ(t) ≤ −η for any t > 0, which contradicts the positivity of the
variable S for any time.

If S∞ < l, there exists S̃ ∈ (0, l) and T > 0 such that S(T ) = S̃. Then,
(X(T ), S̃) is a steady-state of (1), which contradicts the uniqueness of solu-
tions of (1).

We conclude that the equality S∞ = l is satisfied.

Remark 5 When there is no threshold i.e. Si = 0, we find the well-known
fact that there is no residual substrate at the end of the reaction.

3 Overyielding in the classical ‘batch competition model’

We consider here the model (1) with constant yields yi(·) = Yi and growth
functions with no threshold i.e. Si = 0.

Proposition 6 Let B0, S0 be two positive numbers.

1. One has
R(σi) = YiS0, i = 1 · · ·n

2. The system (1) does not present any overyielding, and best species i? are
the ones with the highest Yi?.

PROOF. From Lemma 4, one has S∞ = 0 whatever is the initial composition
p0 of the biomass. From (1), one can write

d

dt

(
n∑
i=1

Xi(t)

Yi
+ S(t)

)
= 0

and then, integrating between t = 0 and t = +∞, one obtains

n∑
i=1

Xi(∞)−Xi(0)

Yi
= S0

Posit

qi =
Xi(∞)−Xi(0)

YiS0

, i = 1 · · ·n
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Then, for any initial proportion p0 ∈ S of the species, one has

R(p0) =
n∑
i=1

Xi(∞)−Xi(0) =
n∑
i=1

qiYiS0

For the proportions σi (i = 1 · · ·n), one has

R(σi) = YiS0, i = 1 · · ·n

which proves the point 1. One can then write

R(p0) =
n∑
i=1

qiR(σi)

As the numbers qi belongs to [0, 1] and their sum is equal to 1, we conclude
that any R(p0) cannot be above the largest R(σi) with i ∈ {1, · · · , n}, which
proves point 2.

Remark 7 Notice that Proposition 6 remains valid whatever the expressions
of µi(·) are. The only condition is that these functions are positive when S
is positive, so that one has Si = 0. Indeed, the only condition for the result
to hold is that the terms µi(·) appearing in the dynamics of Xi be the same
than the ones appearing negatively in the dynamics of Si, whatever are the
growth rates under the condition that S∞ = 0: they can involve any state of
the system or any external ‘inputs’ or environmental variables like the pH or
the the oxygen concentration, or even include direct interaction terms. From a
chemical engineering viewpoint, this result is easily understandable: since our
performance index - the biomass production - is essentially related to the yield
of the biomass, the final state does not depend on the transitory but only on
the initial resource available.

In the next sections, we study two different mechanisms for biomass overyield-
ing to appear.

4 Overyielding with constant yields and growth thresholds

We denote by capital letters functions yi(·) when constant, that is yi(S) = Yi.

Proposition 8 Fix B0, S0 two positive numbers.

1. One has

R(σi) = Yi max(0, S0 − Si), i = 1 · · ·n (3)
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2. Let j ∈ {1, · · · , n} be such that R(σj) = maxi∈{1···n}R(σi) > 0. If there
exists k ∈ {1, · · · , n}\{j} such that Yk > Yj, then for S0 > Sk, the model
(1) presents an overyielding.

PROOF.

1. For pure cultures i.e. proportions p0 equal to one of the σi, i ∈ {1, · · · , n},
one has from equations (1)

d

dt
(Xi(t) + YiS(t)) = 0

Integrating this equality between t = 0 and t = +∞ gives

Xi(∞)−Xi(0) = Yi(S0 − S∞)

where S∞ = min(S0, Si) by Lemma 4. Therefore, one obtains the equality
R(σi) = Yi max(0, S0 − Si).

2. Consider an initial proportion p0 with the presence of the species j and k
only. Note that Yk > Yj implies necessarily to have Sk > Sj (as R(σj) > R(σk).
When S0 > Sk, the two species grow and one has S∞ = Sj (by Lemma 4).
From equations (1), we write

d

dt

(
Xj(t)

Yj
+
Xk(t)

Yk
+ S(t)

)
= 0

and by integration, one has

Xj(∞)−Xj(0)

Yj
+
Xk(∞)−Xk(0)

Yk
= S0 − Sj

From Yk > Yj, one gets

R(p0) = Xj(∞) +Xk(∞)−Xj(0)−Xk(0) > Yj(S0 − Sj) = R(σj)

which shows that a composition of species j and k gives a better production
than the best species j alone.

This result shows that having different growth thresholds could be a way
to obtain overyielding, playing with a complementary effect among species.
Typically, this happens when a species j has the best biomass production
among single species, and another species k has an even better conversion
factor Yk but suffers from a relatively large growth threshold Sk (so that it
can no longer grow when the resource level S is below Sk). Then, the presence
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of species k in addition to species j boosts the performances of the ecosystem
when S is above Sk due to the better conversion factor of species k. Later
on, species j carries alone on the conversion of the resource, ensuring a better
total production at the end when compared to situations where k or j are
alone.

Remark 9 When the numbers Si, i ∈ {1, · · · , n} are all identical, one can
straightforwardly extend the result of Proposition 6 to show that no overyield-
ing is possible.

The mechanism we have identified for overyielding is based on growth thresh-
olds, assuming that the species do not consume any substrate when there is no
growth. We investigate now another mechanism that could produce overyield-
ing.

5 Overyielding with variable yields

In this section, we explore another mechanism based on variable yields, that
can produce overyielding. To properly separate this mechanism from the one
induced by growth thresholds that has been studied in Section 4, we come
back to the hypothesis used in Section 3 and consider growth thresholds Si
all equal to 0.

Evidence of variable yield cultures could be deduced from observed oscillations
in both continuous [7, 10] or batch cultures [17, 33], based on the fact that
models without variable yields cannot exhibit oscillations [1, 18]. Moreover,
models with several species and variable yields have been also investigated
in the literature but for continuous cultures [14, 23] and not - at the best of
author’s knowledge - to characterizing overyielding in batch, as we do in the
present work.

Several biological mechanisms could justify a variable yield, such as extra-
cellular material or transporters [8, 12]. However, the most frequently encoun-
tered justification is related to maintenance terms [16, 24, 25] Typically, in
continuous culture, a maintenance term mX (where m is a positive constant)
is subtracted from the substrate kinetics, as follows:

Ẋ = µ(S)X −DX

Ṡ = − 1

Y
µ(S)X +D(Sin − S)−mX

(4)

whereD represents the dilution rate. Nevertheless, although this formalism has
been successfully validated in chemostats [16], this writing is not satisfactory
in batch mode (i.e. when D = 0) because the solutions of the differential
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equations (4) can take negative values of S. This issue has been addressed
by several authors that have proposed more complex models, incorporating
microbial death [3, 30, 34]. However, non-constant maintenance terms have
been observed experimentally (see e.g. [4, 13]). This is why we consider here
the maintenance term m as a function of S with m(0) = 0 (which gives no
substrate consumption at S = 0) instead of a constant coefficient. One can
take, for instance, an expression of the form m(S) = min(kS,mc) (where k
and mc are constant parameters) to recover the constant case m = mc when
S > mc/k. Therefore, the model (1) with constant yield Yi becomes

Ẋi = µ(Si)Xi (i = 1 · · ·n)

Ṡ = −
n∑
i=1

1

Yi
µi(S)Xi −mi(S)Xi

(5)

We shall consider the following assumption

Assumption 10 The function mi(·) are Lipschitz continuous from R+ to R+

with mi(0) = 0 and mi(S) > 0 for S > 0. Moreover, for each i ∈ {1, · · · , n},
one has

∃ lim
S>0,S→0

mi(S)

µi(S)
< +∞

Under this assumption, one can define for each i ∈ {1 · · ·n}, the function

αi(S) :=
mi(S)

µi(S)
, S ≥ 0

and consider functions yi(·) (denoted in lowercase letters) defined as follows

yi(S) :=
Yi

1 + αi(S)Yi
, S ≥ 0

Then, formally, one can check that system (5) is equivalent to (1).

Proposition 11 Fix B0, S0 two positive numbers.

1. One has

R(σi) =
∫ S0

0
yi(s)ds, i = 1 · · ·n (6)

2. Assume there exist j, k in {1, · · · , n} such that

(i) One has limS0→+∞R(σj) = +∞, and for S0 large enough, one has
R(σj) = maxi∈{1···n}R(σi).

(ii) There exist positive numbers S?, S̃ with S̃ ≥ S? such that
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(a) (yj(S)− yk(S))(S? − S) > 0, ∀S 6= S?

(b) ∃ε > 0 s.t. yk(S) ≥ yj(S) + ε, µk(S) ≥ µj(S), ∀S ≥ S̃

Then, for any B0 > 0, the model (5) presents a biomass overyielding for
S0 large enough.

PROOF.

1. For pure cultures, equations (1) give

d

dt
(Xi(t) + yi(S(t))S(t)) = 0

Integrating this equality between t = 0 and t = +∞ gives

Xi(∞)−Xi(0) =
∫ ∞

0
yi(S(t))S(t))dt

By Lemma 4 one has S∞ = 0 and from (1) S(·) is a decreasing function from
[0,∞] to [0, S0]. Therefore, we obtain

R(σi) =
∫ S0

0
yi(s)ds

2. Choose B0 > 0 and S0 > S̃. We shall consider ecosystems with species j
and k only. From Lemma 4, we know that S(t) tends to 0 when t tends to +∞.
As S(·) is decreasing with time, there exists t? > t̃ > 0 such that S(t̃) = S̃
and S(t?) = S?. We proceed in three steps.

Step 1: S(t) ∈ [0, S?].

From equations (1), let us write Ṡ as follows

Ṡ = − Ẋj

yj(S)
− Ẋk

yk(S)
= −Ẋj + Ẋk

yj(S)
+

(
1

yj(S)
− 1

yk(S)

)
Ẋk

and define the number

η = − min
s∈[0,S?]

(
1− yj(s)

yk(s)

)

From hypothesis (ii)-(a), η is a positive number. Then, one can write

Ḃ(t) = Ẋj(t) + Ẋk(t) ≥ −yj(S(t))Ṡ(t)− ηẊk(t), t ≥ t?
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and integrating this last inequality between t = t? and t = +∞, one obtains

B∞ −B(t?) ≥
∫ S?

0
yj(s)ds− η(Xk(∞)−Xk(t

?))

As B∞ −B(t?) > Xk(∞)−Xk(0) is fulfills, one obtains

B∞ −B(t?) >
1

1 + η︸ ︷︷ ︸
δj

∫ S?

0
yj(s)ds (7)

Step 2: S(t) ∈ [S̃, S0]

In a similar way than previously, we write

Ḃ = −yj(S)Ṡ +

(
1− yj(S)

yk(S)

)
Ẋk

and define the number

γ = inf
s≥S̃

(
1− yj(s)

yk(s)

)
which is positive by hypothesis (ii)-(b). One has then

B(t̃)−B0 ≥
∫ S0

S̃
yj(s)ds+ γ(Xk(t̃)−Xk(0))

Consider now the proportion variable pk = Xk/B with pk(0) = p0,k > 0. A
straightforward computation, from equations (1), gives

ṗk = (µk(S(t))− µj(S(t)))pk(1− pk)

From hypothesis (ii)-(b), we conclude that pk(·) is a non decreasing function
on [0, t̃]. Therefore, one has

Xk(t̃)−Xk(0) ≥ p0,k(B(t̃)−B0)

which yields

B(t̃)−B0 ≥
1

1− γp0,k︸ ︷︷ ︸
δk

∫ S0

S̃
yj(s)ds (8)

Step 3: S(t) ∈ [S?, S̃].

From hypothesis (ii)-(a), one has yk(S(t)) > yj(S(t)) for any t ∈ [t̃, t?), which
allows to write

Ṡ(t) = − Ẋk(t)

yk(S(t))
− Ẋj(t)

yj(S(t))
> − Ḃ(t)

yj(S(t))
, t ∈ [t̃, t?)
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Integrating between t = t̃ and t = t?, one obtains

B(t?)−B(t̃) >
∫ S̃

S?
yj(s)ds (9)

Finally, gathering inequalities (7)-(8)-(9), we get the inequality

B∞ −B0 > δk

∫ S0

S̃
yj(s)ds+

∫ S̃

S?
yj(s)ds+ δj

∫ S?

0
yj(s)ds

that we write as follows

B∞ −B0 > R(σj) + (δk − 1)
∫ S0

S̃
yj(s)ds− (1− δj)

∫ S?

0
yj(s)ds︸ ︷︷ ︸

∆

Notice that δj is smaller than one while δk is larger than 1. Under hypothesis
(i), the term ∆ is then positive when S0 is large enough, which implies that
the biomass production is larger than R(σj), and thus an overyielding.

The condition (ii) of Proposition 11 requires a complementarity of species j
and k in terms of yield, depending on the level of resource. Notice that differ-
ently to the constant yield case (Proposition 8), a condition on the difference
between the growth functions is also required here.

6 Summary and comparison

We summarize On Fig. 1 the results obtained in Sections 3, 4 and 5.

classical model threshold model variable yield model

growth any without threshold on S function of S

threshold on S without threshold

yield constant constant variable

no overyielding overyielding overyielding

when the best species when the best species

does not have the does not have for large

highest yield S the highest yield

and best growth rate

Fig. 1. Overyielding conditions
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One can see, as already underlined in Remark 7, that under constant yields,
it is not possible to have overyielding whatever are the growth functions and
their dependency, but on the single condition that growth functions are non
null when S > 0. Conversely, threshold is not sufficient to have overyielding: a
complementary between species with both high yield and high threshold versus
lower yield and lower threshold is required. Notice that here also no particular
condition on the kinetics, apart the existence of thresholds, is required. On
the contrary, the consideration of variable yield requires more sophisticated
complementarity conditions involving kinetics conditions for large values of
S. Although different thresholds or different variable yields both reflect com-
plementary between species, the underlying mechanisms in the transient are
quite different.

7 Numerical simulations and discussions

In this section, we illustrate the results of Propositions 8 and 11 on numerical
simulations with growth functions of the literature. For simplicity and ease of
results interpretation, we show examples of overyielding with two species only.
Of course, more sophisticated examples with more species can be provided.

7.1 Case of constant yields

According to Proposition 8, we consider non-null growth thresholds. Take for
instance two species with growth function of Moser type [21] with threshold:

µi(S) =


0, S < Si
µmax,iS

αi

Kαi + Sαi
, S ≥ Si (αi > 1)

Other choices of growth functions are possible. The Moser expression possesses
the advantage to be smooth at S = Si. Parameter values of the two species
are given in Table 7.1, while the graphs of their growth functions are plotted
in Fig. 2.

Yi Si µmax,i Ki αi

i = 1 1 0.5 0.3 0.7 2

i = 2 1.4 1 0.6 0.5 2

Table 1
Parameter values of the two species.
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Fig. 2. Graphs of the two growth rate functions.

Consider now initial conditions with B0 = 0.01 and S0 = 2. On can check
that R(σ1) = Y1 max(0, S0 − S1) = 1.5 > R(σ2) = Y2 max(0, S0 − S2) = 1.4.
Therefore, species 1 is the best one when alone. However, one has Y2 > Y1

and according to Proposition 8, any mixture of both species brings a better
final biomass production. This is verified numerically, as illustrated in Table
7.1 and Fig. 3, with for instance the initial proportion p0 = 0.4.

p0 X1(∞) X2(∞) S(∞) B(∞)

1 1.5 0 0.5 1.5

0 0 1.4 1.5 1.4

0.4 ' 0.664 ' 1.169 0.5 ' 1.832

Table 2
Comparison of final states between pure and mixed cultures.

In Table 7.1, one can observe that one has S(∞) = Si,B(∞) = R(σi) (i = 1, 2)
as expected from Lemma 4 and formula (3). For the mixed culture, one has
S(∞) = min(S1, S2), consistently with Lemma 4. As predicted by Proposition
8, the mixed culture presents an overyielding with an increase of the produc-
tion about 21.7% compared to the best species alone. This example shows
that even with species of similar performances in pure culture, the mixed cul-
ture could bring a significantly better biomass production. In Fig. 3, one can
see that for the particular choice of the growth rate functions µi, the second
species grows the fastest in mixed culture, as long as the level of substrate is
above its growth threshold S2, in a similar way of what it does in pure culture.
On the contrary, the first species is somewhat penalized in the competition
and increases less quickly than if it were alone. This is due to the fact hat the
growth rate of the second species is the largest for large values of substrate (see
Fig. 2). But, differently to the second species, the first species keeps growing
when S goes below S2, and as a consequence, its stationary phase is reached
later. As noted in the last remark of section 3, it is worth to be underlined
that the final biomass in pure culture does not depend on the growth rate
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Fig. 3. From left to right: pure culture of species 1, pure culture of species 2 and
mixed culture with both species.

function (the growth rate impacts the kinetics but not the yield). In mixed
culture, although overyielding is systematic, the interplay between the growth
rates impacts the final gain. Its mathematical analysis appears to be quite
complex, because of richness of the nonlinear nature of the growth functions.

7.2 Case of variable yields

We have considered here a first species with a Monod law and a decreasing
yield against a second species with a Moser law and a constant yield. De-
creasing variable yields are typically met in alcohol fermentation [11, 13]. The
expressions of the growth and yield functions are given in Table 7.2 and their
graphs are depicted in Fig. 4.

µi(S) yi(S)

i = 1
0.5S

0.1 + S
1.8 e−0.2S

i = 2
0.8S4

625 + S4
0.8

Table 3
The growth and yield functions considered for the simulations.
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Fig. 4. Graphs of the growth rate functions (on the left) and yield functions (right).

One can see that hypothesis (ii)-(a) of Proposition 11 is verified with S? =
(log(1.8)− log(0.8))/0.2 ' 4.055. Moreover the graphs of the growth functions
cross at S̃, which is the largest root of 0.6S4 + 0.16S3 − 625 = 0, found
numerically to be S̃ ' 5.616, which is larger than S?. Hypothesis (ii)-(b) of
Proposition 11 is then fulfilled.

We have considered initial conditions with B0 = 1 and S0 = 10 (larger than S̃).
Table 7.2 gives the final values for pure and mixed cultures. One can observed
that species 1 has the best production when alone, and that hypothesis (i)
of Proposition 11 is fulfilled. These figures show that although the species

p0 X1(∞) X2(∞) S(∞) B(∞)

1 ' 8.782 0 0 ' 8.782

0 0 ' 8.599 0 ' 8.599

0.3 ' 5.443 ' 4.490 0 ' 9.933

Table 4
Comparison of final states between pure and mixed cultures.

exhibit similar performances in pure culture (the advantage of the production
of species 1 over species 2 is quite slight), an overyielding occurs in mixed
culture, with a gain approximately equal to 13.1%. The trajectories depicted in
Fig. 5 provide some additional information about the transients. In accordance
with Lemma 4, there is no residual substrate over infinite horizon. However,
one can see that species 2 alone reaches much slower the stationary phase
than species 1. This is due to its low kinetics for small value of S. In mixed
culture, species 1 contributes to a faster consumption of the substrate. The
complementarity between species is illustrated here with the species 2 having
a better conversion rate for large value of S (that is at the beginning of the
batch process), while species 1 takes over species 2 when the resource S takes
smaller values. This feature seems comparable to the simulations with constant
yields. However, the interplay between the species dynamics is here much more
complex, as the initial value S0 has to be large enough (see Proposition 11).
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Fig. 5. From left to right: pure culture of species 1, pure culture of species 2 and
mixed culture with both species.

8 Conclusion

In this work, we have investigated mechanisms that could explain a gain in
biomass production with mixed cultures of micro-organisms, compared to pure
cultures, that we defined as “overyielding”. Our main message is that the na-
ture of the non-linearities of the growth characteristics (specific growth rate
functions and yields) is enough to produce overyielding. In particular, there
is no need to have direct interaction between species to explain overyielding.
It was first shown that overyielding is not possible with the classical batch
models, such as the Monod model with multi-species. To play with comple-
mentarity between species, we have to face some additional features. We have
exhibited too kinds of situations, with features reported in the literature :

(1) different growth thresholds and (constant) yields (see Proposition 8),
(2) variable yields coupled with conditions on the growth functions (see

Proposition 11),

that have been illustrated with numerical simulations. The underlying mech-
anism is based on the utilization of the resources during the transients, with a
succession of stages where each species contributes to its best. Of course, those
mechanisms can be added to other ones to explain overyielding. The analysis
we performed here allowed to check a potential overyielding from the single
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knowledge of growth characteristics in pure culture, which can then guide the
choices of experiments among the combinatory of possible mixtures.

References

[1] P. Agrawal, C. Lee, H. Lim, and D. Ramkrishna. Theoretical investiga-
tions of dynamic behavior of isothermal continuous stirred tank biological
reactors. Chemical Engineering Science, 37(3):453–462, 1982.

[2] J. Arino, S. Pilyugin, and G. Wolkowicz. Considerations on yield, nutrient
uptake, cellular growth, and competition in chemostat models. Canadian
Applied Mathematics Quarterly, 11(2):107–142, 2003.

[3] H. Beeftink, R. van der Heijden, and J. Heijnen. Maintenance require-
ments: energy supply from simultaneous endogenous respiration and sub-
strate consumption. FEMS Microbiology Letters, 73(3):203 – 209, 1990.

[4] W. Beyeler, P. L. Rogers, and A. Fiechter. A simple technique for the
direct determination of maintenance energy coefficient: An example with
zymomonas mobilis. Applied Microbiology and Biotechnology, 19(4):277–
280, 1984.

[5] Y. F. Cheng, J. E. Edwards, G. G. Allison, W.-Y. Zhu, and M. K.
Theodorou. Diversity and activity of enriched ruminal cultures of anaero-
bic fungi and methanogens grown together on lignocellulose in consecutive
batch culture. Bioresource Technology, 100(20):4821–4828, 2009.

[6] A. Cinar, G. Birol, S. Parulekar, and C. Undey. Batch Fermentation:
Modeling: Monitoring, and Control. Taylor & Francis, CRC Press, 2003.

[7] P. Crooke, C. Wei, and R. Tanner. The effect of the specic growth rate and
yield expressions on the existence of oscillatory behavior of a continuous
fermentation model. Chem. Eng. Commun., 6:333–347, 1980.

[8] R. David, D. Dochain, J.-R. Mouret, A. Vande Wouwer, and J.-M. Sablay-
rolles. Nitrogen-backboned modeling of wine-making in standard and
nitrogen-added fermentations. Bioprocess and Biosystems Engineering,
37(1):5–16, 2014.

[9] D. Dochain, P. De Leenheer, and A. Rapaport. About Transgressive
Over-Yielding in the Chemostat. In MATHMOD 2012 - 7th Vienna In-
ternational Conference on Mathematical Modelling, pages 653–658. IFAC
Proceedings Volumes 45 (2), 2012.

[10] A. Dorofeev, M. Glagolev, T. Bondarenko, and N. Panikov. Observation
and explanation of the unusual growth kinetics of arthrobacter globi-
formis. Microbiology, 24:24–31, 1992.
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