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Existence and regularity of law density of a pair
(di�usion, �rst component running maximum)

Laure Coutin∗, Monique Pontier†

July 2, 2018

Abstract

Let X be a continuous d-dimensional di�usion process and M the running

supremum of the �rst component. We show that, ∀t > 0, the law of the

(d+ 1) random vector (Mt, Xt) admits a density with respect to the Lebesgue

measure using Malliavin's calculus. In case d = 1 we prove the regularity of

this density.

Keywords: Running supremum process, joint law density, Malliavin calcu-

lus, regularity of the density.

A.M.S. Classi�cation: 60J60, 60H07, 60H10.

In this paper one is interested in the joint law of the random vector (M,X) where
X is a d-dimensional di�usion process and M the running supremum of its �rst
component. When the process X is a Brownian motion the result is well known, see
for instance [13]. For general Gaussian processes, the law of the maximum is studied
in [2]. The cases where the process X is a martingale, or a Lévy process are deeply
studied in the literature. Some speci�c di�usion processes as Orstein-Uhlenbeck
were also investigated.

A lot of studies are devoted to the maximum of martingales, their terminal value,
their maximum at terminal time. For instance look at Rogers et al. [18, 9, 3]. Cox-
Obloj [7] aim is to exhibit an hedging strategy of the so-called �no touch option�,
meaning that the payo� is the indicator of the set {ST < b;ST > a}, the price
process S being given. They are not concerned with the law of the pair (process, its
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†pontier@math.univ-toulouse.fr, IMT: Institut Mathématique de Toulouse, Université Paul

Sabatier, 31062 Toulouse, France.

1

Manuscript Click here to download Manuscript LaureMoRegul2juillet18.pdf 

http://www.editorialmanager.com/esaim-ps/download.aspx?id=13307&guid=28c6c89a-848a-474a-ba8e-02a39537a950&scheme=1
http://www.editorialmanager.com/esaim-ps/download.aspx?id=13307&guid=28c6c89a-848a-474a-ba8e-02a39537a950&scheme=1


running maximum). A lot of papers are mainly interested in the hedging of barrier
option, for instance [3].

The case of general Lévy processes is studied by Doney and Kyprianou [8]. In
particular cases driven by a Brownian motion and a compound Poisson process,
Roynette et al. [19] provide the Laplace transform of undershot-overshot-hitting
time law. In [15, 6] the pair (the process-its running maximum) law density is
proved to be a weak solution of a partial di�erential equation. We quote [4] which
is the starting point of our study. Lagnoux et al. [14] provide the law density of
such a pair, but in case of a re�ected Brownian motion.

Concerning the di�usion processes, for instance the Ornstein Uhlenbeck process,
the density of the running maximum law is given in [1]. Some analogous results are
provided in [9] concerning random walks.

Quote Jeanblanc et al. [13] for the one-dimensional di�usion process: a PDE is
obtained for the law density of the process stopped before hitting a moving barrier.
In [10] a multi-dimensional di�usion (whose corresponding di�usion vector �elds are
commutative) joint distribution is studied at the time when a component attains
its maximum on �nite time interval; under regularity and ellipticity conditions the
smoothness of this joint distribution is proved.

Here we look for more general (but continuous) cases where this density exists.
In d−dimensional case, the law of the (d+ 1)-random vector (Mt, Xt) is absolutely
continuous, where Mt := sups≤tX

1
s . In the one-dimensional case we get the regu-

larity of this density. Such results are used in our work in progress [5] where this
density is proved to be a weak solution of a partial di�erential equation.

The model is as following: let a �ltered probability space (Ω, (Ft = σ(Wu, u ≤
t))t≥0,P) where W := (Wu, u ≥ 0) is a d-dimensional Brownian motion. Let X be
a d-dimensional di�usion process solution to

dXt = B(Xt)dt+
d∑
i=1

Ai(Xt)dWt, X0 = x∈ Rd, t > 0,

where B: Rd → Rd and A: Rd → Rd×d are bounded with bounded and continuous
di�erential.

In Section 1 we recall some elements in Malliavin's calculus that we use to prove
that the law of Vt := (Mt, Xt) is absolutely continuous with respect to the Lebesgue
measure in a general case with some standard assumptions on the coe�cients A and
B. In Section 2, we turn to the one-dimensional case and we prove the regularity
of the density of the law of Vt under some more technical assumptions. Section
3 provides an example where the announced partial di�erential equation is exactly
stated.
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1 The law of Vt is absolutely continuous

Here it is proved that for any t > 0, the joint law of Vt := (Mt, Xt) admits a density
with respect to the Lebesgue measure. For this purpose, we use �Malliavin calculus�
speci�cally Nualart's results [16]. Let us denote Ci

b(Rd) the set of the functions i
times di�erentiable, bounded, with bounded derivatives.

Theorem 1.1 We assume that A and B satisfy

(1) A and B ∈ C1
b (Rd)

and there exists a constant c > 0 such that

c‖v‖2 ≤ vTA(x)AT (x)v, ∀v, x ∈ Rd.(2)

Then the joint law of Vt = (Mt, Xt) admits a density with respect to the Lebesgue
measure for all t > 0.

The next subsection recalls some useful de�nitions and results.

1.1 Short Malliavin calculus summary

The material of this subsection can be found in Section 1.2 of [16]. Let H =
L2([0, T ],Rd) endowed with the usual scalar product 〈., .〉H and the associated norm
‖.‖H.
For all (h, h̃) ∈ H2,

W (h) :=

∫ T

0

h(t)dWt

is a centered Gaussian variable with variance equal to ‖h‖2
H. If 〈h, h̃〉H = 0 then the

random variables W (h) and W (h̃) are independent.
Let S denote the class of smooth random variables F de�ned as following:

F = f(W (h1), ...,W (hn))(3)

where n ∈ N, h1, ..., hn ∈ H and f belongs to Cb(Rn).

De�nition 1.2 The Malliavin derivative of a smooth variable F de�ned in (3) is
the H valued random variable given by

DF =
n∑
i=1

∂if(W (h1), ...,W (hn))hi.

Proposition 1.3 The operator D is closable from Lp(Ω) into Lp(Ω,H) for any
p ≥ 1.
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For any p ≥ 1, let us denote D1,p the domain of the operator D in Lp(Ω), meaning
that D1,p is the closure of the class of smooth random variables S with respect to
the norm

‖F‖1,p = (E[|F |p] + [E[‖DF‖pH])1/p .

Malliavin calculus is a powerful tool to prove the absolute continuity of random
variables law. Namely Theorem 2.1.2 page 97 [16] states:

Theorem 1.4 Let F = (F 1, ..., Fm) be a random vector satisfying the following
conditions

(i) F i belongs to D1,p for p > 1 for all i = 1, ...,m,
(ii) the Malliavin matrix γF := (〈DF i, DF j〉H)1≤i,j≤m is invertible.

Then the law of F is absolutely continuous with respect to the Lebesgue measure on
Rm.

Using this theorem, the proof of Theorem 1.1 will be a consequence of the
following:

• X i
t , i = 1, ..., d and Mt belongs to D1,p p > 1, see Lemma 1.5;

• the (d + 1) × (d + 1) matrix γV (t) := (〈DV i
t , DV

j
t 〉)1≤i,j≤d+1 is almost surely

invertible, see Proposition 1.6.

1.2 Malliavin di�erentiability of the supremum

Lemma 1.5 Under Assumption (1), X i
t , i = 1, ..., d and Mt belongs to D1,p ∀p ≥ 1

for all t > 0.

Proof: Using Theorem 2.2.1 [16], under Assumption (1),

• X i
t , i = 1, d belong to D1,∞ for all t > 0,

• ∀t ≤ T, ∀p > 0, ∀i = 1, · · · , d, there exists a constant Cp
T such that

sup
0≤r≤t

E
(

sup
r≤s≤T

∣∣DrX
i
s

∣∣p) = Ct ≤ Cp
T <∞,(4)

• the Malliavin derivative DrXt satis�es DrXt = 0 for r > t almost surely and
for r ≤ t almost surely, using Einstein's convention (2.56 page 125 [16]):

DrX
i
t = Ai(Xr) +

∫ t

r

A
i

k,α(s)Dr(X
k
s )dWα

s +

∫ t

r

B
i

k(s)Dr(X
k
s )ds(5)

where Ak,α(s) := ∂kAα(Xs) and Bk := ∂kB(Xs) are in Rd.
(i) In order to prove that Mt belongs to D1,p we follow the same lines as in the

proof of Proposition 2.1.10 [16] with index p instead of 2. For any i = 1, ..., d, we
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establish that the H-valued process (D.X
i
t , t ∈ [0, T ]) has a continuous modi�cation

and satis�es E(‖D.X
i
t‖
p
H) <∞.

We now use Appendix (A.11) in Nualart [16], as a corollary of Kolmogorov's
continuity criterion: if there exist positive real numbers α, β,K such that

(6) E[‖D.X
i
t+τ −D.X

i
t‖αH ] ≤ Kτ 1+β, ∀t ≥ 0, τ ≥ 0

then DX i admits a continuous modi�cation.
(ii) As a second step we prove (6). Let τ > 0, Equation (5) yields

∆τDr(X
i
t) : = Dr(X

i
t+τ )−Dr(X

i
t)

=

∫ max(t+τ,r)

max(r,t)

B
i

k(s)Dr(X
k
s )ds+

∫ max(t+τ,r)

max(r,t)

A
i

k,α(s)Dr(X
k
s )dWα

s .

Using the de�nition of H

‖∆τD.(X
i
t)‖2

H =

∫ T

0

|
∫ max(t+τ,r)

max(r,t)

B
i

k(s)Dr(X
k
s )ds+

∫ max(t+τ,r)

max(r,t)

A
i

k,α(s)Dr(X
k
s )dWα

s |2dr.

According to Jensen's inequality for p ≥ 2

‖∆τD.(X
i
t)‖

p
H ≤ T

p
2
−1

∫ T

0

|
∫ max(t+τ,r)

max(r,t)

B
i

k(s)Dr(X
k
s )ds+

∫ max(t+τ,r)

max(r,t)

A
i

k,α(s)Dr(X
k
s )dWα

s |pdr.

Using (a+ b)p ≤ 2p−1(ap + bp),

‖∆τD.(Xt)‖pH ≤ 2p−1T
p
2
−1

∫ T

0

[
|
∫ t+τ

t
B
i
k(s)Dr(X

k
s )ds|p + |

∫ t+τ

t
A
i
k,α(s)Dr(X

k
s )dWα

s |p
]
dr.

The expectation of the �rst term is bounded using Jensen's inequality and (4) for any

r ∈ [0, T ]:

E

[
|
∫ t+τ

t
B
i
k(s)Dr(X

k
s )ds|p

]
≤ ‖B‖p∞τp−1 sup

r
E[ sup

r≤s≤T
|Dr(X

k
s )|pτ ] = ‖B‖p∞τpC

p
T .

Using once again (4), Burkholder-Davis Gundy' and Jensen's inequalities, the expectation

of the second term satis�es for any r ∈ [0, T ]:

E

[
|
∫ t+τ

t
A
i
k,α(s)Dr(X

k
s )dWα

s |p
]
≤ CpE

[
(

∫ t+τ

t
|Aik,α(s)Dr(X

k
s )|2ds)p/2

]

≤ Cp‖A‖p∞τp/2−1

∫ t+τ

t
E( sup

r≤s≤T
|Dr(X

i
s)|p)ds ≤ Cp‖A‖p∞τp/2−1CpT τ,

thus for any τ ∈ [0, 1] there exists a constant D = T p/22p/2−1CpT (‖B‖p∞τp/2 + Cp|A‖p∞)
such that for any i = 1, ...d,

E[‖D.(X
i
t+τ )−D.(X

i
t)‖

p
H ] ≤ Dτp/2.
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So Criterium (6) is satis�ed with α = p > 2, β = p/2− 1, K = D. Kolmogorov's lemma

applied to the process {D.(Xt), t ∈ [0, T ]} taking it values in the Hilbert space H,
proves the existence of a continuous version of the process t 7→ D.(Xt) from [0, T ]
to the Hilbert space H.
Finally, we conclude as Nualart's Proposition 2.1.10 proof with index p instead of
2. •

1.3 Invertibility of the Malliavin matrix

Proposition 1.6 Assume that B and A satisfy Assumptions (1) and (2) then for
all t > 0 the matrix γV (t) := (〈DV i

t , DV
j
t 〉H)1≤i,j≤d+1 is almost surely invertible.

Proof: The key is to introduce a new matrix which will be invertible:

(7) for all (s, t), 0 < s < t, γG(s, t) := (〈DGi(s, t), DGj(s, t)〉H)1≤i,j≤2(d+1)

where Gi(s, t) := X i
t , i = 1, ..., d and Gi+d(s, t) = X i

s, i = 1, ..., d.

Step 1: We introduce

• N1,t := {ω,∃s ∈ [0, t], DX1
s 6= DMt and X1

s = Mt},

• N2,t := {ω,∃s ∈ [0, t[, det(γG(s, t)) = 0},

• N3,t := {ω, X1
t = Mt},

• Nt = {ω, det(γV (t)) = 0}.

Remark that Nt ⊂
(
Nt ∩ ∩3

i=1N
c
i,t

)
∪ ∪3

i=1Ni,t.
Note that P(Nt ∩ ∩3

i=1N
c
i,t) = 0. Indeed if ω ∈ Nt ∩ ∩3

i=1N
c
i,t, since X

1
. admits a

continuous modi�cation there exists s0 such that X1
s0

= Mt. The fact that ω ∈ N c
3,t

implies that s0 < t, and γV (t) = (Γi,jG (s0, t))(i,j)∈{1,··· ,d+1}2 is a sub matrix of γG(s0, t).
The fact that γV (t) is not invertible contradicts the fact that γG(s0, t) is invertible.
Then, it remains to prove that P(Ni,t) = 0 for i = 1, 2, 3.

Step 2: Using the same lines as the proof of Proposition 2.1.11 [16], we prove that
almost surely

{s : X1
s = Mt} ⊂ {s : DMt = DX1

s}
meaning P(N1,t) = 0. We skip the details for simplicity.

Step 3: For all t> 0, almost surely for all s < t, the 2d × 2d matrix γG(s, t) is
invertible, meaning that ∀t, the event N2,t is negligible.
Proof: This matrix γG(s, t) is symmetrical and using (2.59) and (2.60) in [16] yields:

γG(s, t) =

(
Y (t)C(t)Y T (t) Y (s)C(s)Y T (t)
Y (t)C(s)Y T (s) Y (s)C(s)Y T (s)

)
(8)
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where, using Einstein's convention

Ci,j(t) :=

∫ t

0

Y −1(u)ikA
k
l (Xu)A

k′

l (Xu)Y
−1(u)jk′du(9)

Y i
j (t) := δi,j +

∫ t

0

A
i

k,l(u)Y k
j (u)dW l

u +

∫ t

0

B
i

k(u)Y k(u)du, i, j ∈ {1, · · · , d}.

Let us denote
Ci,j(s, t) := Ci,j(t)− Ci,j(s).

According to (2.58) [16] there exists a process Z such that almost surely for all
h ∈ [0, T ]

Z(h)Y (h) = Id

thus for all t the matrices Y (t) are invertible.
As a consequence, for all (s, t) ∈ [0, T ]2, the (d, d) matrix Y (s, t) := Y (t)Y (s)−1 is
too invertible. Then γG(s, t) (8) can be rewritten as a matrix composed with four
(d, d) blocks:

γG(s, t) :=

(
Y (s, t)Y (s)[C(s) + C(s, t)]Y T (s)Y T (s, t) Y (s)C(s)Y T (s)Y T (s, t)

Y (s, t)Y (s)C(s)Y T (s) Y (s)C(s)Y T (s)

)
The second line of blocks multiplied by Y (s, t)′ and this one subtracted to the �rst
line yield:

det [γG(s, t)] = det

(
Y (s, t)Y (s)C(s, t)Y T (s)Y T (s, t) 0

Y (s, t)Y (s)C(s)Y T (s) Y (s)C(s)Y T (s)

)
.

The properties of block trigonal matrix determinants prove that

det [γG(s, t)] =
∣∣Y (s, t)Y (s)C(s, t)Y T (s)Y T (s, t)Y (s)C(s)Y T (s)

∣∣(10)

The processes Z are Y are di�usion processes so each of them admits a contin-
uous modi�cation satisfying Z(h)Y (h) = Id, ∀h ∈ [0, T ]. Thus, almost surely the
continuous process Z is invertible so satis�es almost surely for all 0 ≤ s ≤ t ≤ T∫ t

s

det(Z(h))2dh > 0.

Let σ(x) =
∑d

l=1Al(x)Al(x)′. By de�nition of C (see (9))

C(s) =

∫ s

0

Y −1(h)σ(Xh)(Y (h)−1)′dh, C(s, t) =

∫ t

s

Y −1(h)σ(Xh)(Y (h)−1)′dh

We now follow the proof of Theorem 2.3.1 page 127 [16]: for v ∈ Rd, using the
uniform ellipticity (Assumption (2)):

v′σ(Xs)v ≥ c|v|2, ∀s > 0, ∀v ∈ Rd.
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With v = (Y (h)−1)′u we get

u′Y (h)−1σ(Xh)(Y (h)−1)′u ≥ cu′Y (h)−1(Y (h)−1)′u

and

u′C(s)u =

∫ s

0
u′Y (h)−1σ(X(h))(Y (h)−1)′udh ≥ c

∫ s

0
u′Y (h)−1(Y (h)−1)′udh = c|u|2

∫ s

0
det(Z(h))2dh.

Similarly

u′C(s, t)u =

∫ t

s

u′Y (h)−1σ(X(h))(Y (h)−1)′udh ≥ c|u|2
∫ t

s

det(Z(h))2dh.

Thus almost surely for all s ∈]0, t[, C(s) and C(s, t) are invertible. Since Y (s, t),
Y (s) are too invertible as a consequence, from (10) the matrix γG(s, t) is invertible.
The process t→ D.(Xt) takes its values in H and admits a continuous modi�cation
(see (6) above) and the set of invertible matrices is an open set then,

P({ω,∃s ∈]0, t[, det(γG(s, t)) = 0}) = P(N2,t) = 0. 2

Step 4: Under Assumptions (1) and (2), time t being �xed, almost surely Mt > X1
t

meaning the event N3,t is negligible.
Proof: For sake of completeness we prove this result. Actually it is Proposition 18
[10] but with stronger assumptions than ours.
The set {Mt = X1

t } is detailed as follows:

{ω,Mt(ω) = X1
t (ω)} = Ω1 ∪ Ω2 where(11)

Ω1 = {ω,∃s < t| ∀u ∈ [s, t], X1
u(ω) = X1

t (ω)}, Ω2 = {ω| ∀u < t, X1
u(ω) < X1

t (ω)}.

Using Assumptions (1) and (2), A−1B is bounded, thus an equivalent change of
equivalent probability measure can be operated using Girsanov Theorem: the prob-
ability measure P0 is de�ned as

(12)
dP0

dP |Ft

= Lt, Lt := exp

(
−
∫ t

0

(BA−1)i(Xs)dW
i
s −

1

2

∫ t

0

‖(BA−1(Xs)‖2ds

)
.

Then X1 is a (F ,P0) martingale:

X1
t = X1

0 +

∫ t

0

∑
j

A1,j(Xs)dW̃
j
s(13)

where W̃ is a (F ,P0) d-dimensional Brownian motion. The bracket of X1, actually
independent of the probability measure in continuous case, is

〈X1, X1〉t =

∫ t

0

∑
j

(A1,j(Xs))
2ds.

8



Assumption (2) applied to v = (1, 0, ..., 0) implies that for any x,
∑

j A
1,j(x)A1,j(x) ≥

c > 0. This have two consequences:
• For all rational numbers q < q′ in [0, T ]

〈X1, X1〉q′ − 〈X1, X1〉q > c(q′ − q) > 0.

According to Proposition 1.13 page 119 [17], for all rational numbers q < q′ in [0, T ]
X1 is not constant on the interval [q, q′]. Let us remark

{ω,∃s > t| ∀u ∈ [s, t], X1
u(ω) = X1

t (ω)} ⊂ ∪q<q′<T, q,q′∈Q{ω| u ∈ [q, q′], X1
u(ω) = X1

q (ω)}

thus

P0

(
{ω| ∃s > t, ∀u ∈ [s, t], X1

u(ω) = X1
t (ω)}

)
= 0.

The probability measures P0 and P are equivalent so

P
(
{ω,∃s > t| ∀u ∈ [s, t], X1

u(ω) = X1
t (ω)}

)
= 0.(14)

• Using Dambis-Dubins-Schwarz' Theorem (Theorem 1.6 Chapter V [17]), and
once again that

∑
j(A

1,j(Xs))
2 ≥ c, then

〈X1, X1〉∞ =

∫ ∞
0

∑
j

(A1,j(Xs)
2ds = +∞.

So there exists a P0 Brownian motion B such that

X1(t) = B〈X1,X1〉t , ∀t > 0.

Here is followed step by step the proof of Theorem 2.7 Chapter I [17] (Lévy's modulus
of continuity), but without absolute value: for all N ∈ R

P0

lim sup
ε→0

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < ε

Bt1 −Bt2

h(ε)
= 1



 = 1

where h(s) =
√

2s log(1/s), s ∈ [0, 1].
This is equivalent to

P0

lim inf
ε→0

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < ε

Bt1 −Bt2

h(ε)
6= 1



 = 0.
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We remark that

Ω2 =
{
ω, ∀u ∈ [0, t], X1(u) < X1(t)

}
=
{
ω, ∀u ∈ [0, t], B〈X1,X1〉u < B〈X1,X1〉t

}

⊂ ∪N ∪n ∩k≥n

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < 1/k

Bt1 −Bt2

h(1/k)
≤ 0


⊂ ∪N lim inf

1/n→0

 sup
0 ≤ t1, t2 ≤ N
t1 − t2 < 1/n

Bt1 −Bt2

h(1/n)
6= 1


thus P0(Ω2) = 0. The probability measures P and P0 are equivalent, so

P(Ω2) = P
({
ω, ∀s ∈ [0, t], X1

s (ω) < X1
t (ω)

})
= 0.(15)

Finally (11), (14), (15) prove that

P
({
Mt = X1

t

})
= P(N3,t) = 0.(16)

2

These four steps conclude the proof of Proposition 1.6, so Assumption (ii) in
Theorem 1.4 is satis�ed and Theorem 1.1 is proved.

2 Case d = 1, regularity of the density

In the one-dimensional case we study the regularity of the density of the law of the
vector Vt.

We recall the model, the following stochastic di�erential equation (see [6])

dXt = B(Xt)dt+ A(Xt)dWt, X0 = x, t ∈ [0, T ],(17)

whereW is a Brownian motion, A and B satisfy Assumptions (1) and (2). Moreover
Assumption (2) yields that A−1B is bounded. We recall the notations V := (M,X)
where Mt = sups≤tXs, t ∈ R.

From Theorem 1.1. in Section 1, the law of the pair Vt = (Mt, Xt) admits a
density. With Malliavin calculus tools, we are not able to prove the regularity of
the density on the diagonal {(m,x) : m = x}. So we turn to the regularity of the
density on the open subset {(m,x), m > max(0, x)}.

Theorem 2.1 Under Assumptions (2), B ∈ C4
b (R), A ∈ C5

b (R), ∀t > 0, the density
of the vector Vt restricted to the open set ∆ := {(m,x), m > max(0, x)} belongs to
C2,2(∆).
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2.1 Reduction to a drifted Brownian motion

Since we are in a one-dimensional setting, we use a Lamperti transformation in
order to reduce the problem to the case of a di�usion with additive noise. A priori
dXt = B(Xt)dt + A(Xt)dWt. We look for an increasing function ϕ ∈ C2

b such that
the coe�cient of dW would be 1. Itô formula yields

dϕ(Xt) = ϕ′(Xt)B(Xt)dt+
1

2
ϕ”(Xt)A

2(Xt)dt+ ϕ′(Xt)A(Xt)dWt.

A su�cient condition is to choose ϕ such that ϕ′ = 1
A
. As is A, ϕ′ is bounded above

and below uniformly. Then Y = ϕ(X) satis�es

(18) dYt =

[
B

A
◦ ϕ−1(Yt)−

1

2
A′ ◦ ϕ−1(Yt)

]
dt+ dWt.

Remark that B̃ = B
A
◦ ϕ−1 − 1

2
A′ ◦ ϕ−1 ∈ C1

b as a consequence of Assumptions of
Theorem 2.1 Moreover ϕ′ being positive, ϕ is increasing and Y ∗t = ϕ(X∗t ). From
Theorem 1.1, the law of the pair (Y ∗t , Yt) admits a density with respect to Lebesgue
measure and the link between Vt and (Y ∗t , Yt) law densities is done by the following
lemma.

Lemma 2.2 We assume that A and B satisfy Assumptions of Theorem 2.1. Then
the density law of (Mt, Xt), pV (., ., t), satis�es

pV (b, a; t) =
pY ∗,Y (ϕ(b), ϕ(a); t)

A(b)A(a)

where ϕ is de�ned by ϕ′(x) = 1
A(x)

and pY ∗,Y (., ., t) is the pair (Y ∗t , Yt) law density.

Proof: It is enough to identify the density law of the pair Vt = (Mt, Xt) using, for
any bounded measurable F , the following

E[F (Mt, Xt)] = E[F (ϕ−1(Y ∗t ), ϕ−1(Yt)] =

∫
F (ϕ−1(β), ϕ−1(α))pY ∗,Y (β, α; t)dβdα.

We operate the change of variables b = ϕ−1(β), a = ϕ−1(α), so dβ = ϕ′(b)db = 1
A(b)

db

and dα = ϕ′(a)da = 1
A(a)

da get the result. •

With such a lemma, the regularity of the density p will be the one of pY ∗,Y , ϕ, A.
Theorem 2.1 is a consequence of the following theorem where B is indeed B

A
◦ϕ−1−

1
2
A′ ◦ ϕ−1.

Theorem 2.3 Assume that B belongs to C4
b (R), then for all t > 0 the law of

(Mt, Xt) has a C
2,2 density with respect to the Lebesgue measure on ∆ = {(b, a), b > a, b > 0}

where Mt = sups≤tXs and Xt is the solution of

dXt = B(Xt)dt+ dWt.

11



2.2 Change of probability measure

We now consider the model with A = 1 meaning

dXt = B(Xt)dt+ dWt.

Recall the equivalent change of probability measure Q = LP where L is de�ned as
dLt = −LtB(Xt)dWt. Abusing of notation, remark that under Q, here we use W
instead of X which is a Q-Brownian motion. Denoting Z = L−1, P = ZQ,

(19) Zt = exp[

∫ t

0

B(Ws)dWs −
1

2

∫ t

0

B2(Ws)ds].

Since B is bounded, Zt ∈ Lp for any p.
Under Q the law of Vt is the one of (W ∗

t ,Wt) where W ∗
t := sups≤tWs.

Lemma 2.4 As soon as B ∈ C4
b , then Zt ∈ D4,p for any p > 1, where D4,p is the set

of random variables 4 times di�erentiable in the Malliavin sense with derivatives in
Lp.

Proof: Using the de�nition of Zt we only have to prove ∀p > 1∫ t

0

B(Ws)dWs −
1

2

∫ t

0

B2(Ws)ds ∈ D4,p.

Obviously by linearity
∫ t

0
B2(Ws)ds ∈ D4,p since actually Di

s1,...,si

∫ t
0
B2(Ws)ds =∫ t

maxj sj
(B2)(i)(Ws)ds. Using the Malliavin derivative Dr[

∫ t
0
B(Ws)dWs = B(Wr) +∫ t

r
B′(Ws)dWs and recursively DiZt, i = 1, ...4, are well de�ned.

Finally the lemma is proved using the boundness of B and its derivatives. •

From now on, using a change of time unit, it is enough to consider the case t = 1.

2.3 Local non degeneracy of F := V1 = (W ∗
1 ,W1)

Let us recall De�nition 2.1.2 in Nualart [16].

De�nition 2.5 A random vector F = (F1, ..., Fm) whose components are in D1,2

is locally non degenerate in an open set ∆ ⊂ Rm if there exist elements ui∆ ∈
D∞(H), j = 1, ...,m and an m×m random matrix γ∆ = (γi,j∆ ) such that γi,j ∈ D∞,
|detγ∆|−1 ∈ Lq(Ω) for all q ≥ 1, and 〈DF i, uj∆〉 = γi,j∆ on {F ∈ ∆} for any i, j =
1, ...,m.

Proposition 2.6 Let η > 0. The random vector F := V1 = (W ∗
1 ,W1) is locally non

degenerate in any open set ∆η = {(b, a), b− a > η, b > η}.

12



Proof: The key is to prove that the random vector F := V1 = (W ∗
1 ,W1) satis�es

De�nition (2.5).
Step 1: The F components belong to D1,2

Indeed, DtW1 = 1[0,1](t), and DtW
∗
1 = 1[0,τ ](t) where τ := inf{s,Ws = W ∗

1 }.
Step 2

Let the process W̃ be de�ned as W̃t := W1−t −W1.
Similarly to [16] Proposition 2.1.12 page 112 ∀p > 2, let s ∈ [0, 1] and γ such

that 2pγ ∈ (1, p− 1) we introduce:

Y 1(s) =

∫
[0,s]2

(Wu −Wu′)
2p

(u− u′)1+2pγ
dudu′

Y 2(s) =

∫
[0,s]2

(W̃u − W̃u′)
2p

(u− u′)1+2pγ
dudu′

Following this proposition proof, it can be proved that:

∃R(η, p, γ) such that Y 1(s) ≤ R⇒ sup
z∈[0,s]

Wz ≤ η;(20)

similarly Y 2(s) ≤ R⇒ sup
z∈[0,s]

W̃z ≤ η.

Let ψ : R+ → [0, 1] be in�nitely di�erentiable and such that ψ(x) = 1 when
x ∈ [0, R/2], ψ(x) = 0 when x ≥ R. Denote

(21) u1
η(s) = ψ(Y 1(s)), u2

η(s) = ψ(Y 2(1− s))

and

Γη =

( ∫ 1

0
ψ(Y 1(s))ds

∫ 1

0
ψ(Y 1(s))ds

0
∫ 1

0
ψ(Y 2(1− s))ds

)
.(22)

Step 3
The processes uiη ∈ D∞(H) i = 1, 2, by the construction of Y i and the de�nition of
the function ψ. As a consequence, the random matrix Γη belongs to D∞.

Step 4 Note that (detΓη)
−1 = [

∫ 1

0
ψ(Y 1(s))ds

∫ 1

0
ψ(Y 2(1−s))ds]−1.We will prove

that ∀q ≥ 1,

(23) (

∫ 1

0

ψ(Y 1(s))ds)−1 and (

∫ 1

0

ψ(Y 2(1− s))ds)−1 ∈ Lq.

Indeed using the trick of Proposition 2.1.12 [16] page 114
∫ 1

0
ψ(Y 1(s))ds ≥

∫ 1

0
1{Y 1(s)<R/2}ds =

Leb{s : Y 1(s) < R/2} = (Y 1)−1(R/2) > 0, since the non decreasing function Y 1 is

invertible; so for any q,
(∫ 1

0
ψ(Y 1(s)ds

)−q
≤ [(Y 1)−1(R/2)]

−q
. Recall that

E
(
[(Y 1)−1(R/2)]−q

)
=

∫ ∞
0

P{(Y 1)−1(R/2) < x−1/q}dx.

13



On the other hand for any y, P{(Y 1)−1(R/2) < y} = P{R/2 < Y 1(y)} ≤ ( 2
R

)qE[(Y 1)q(y)].
We compute E[(Y 1)q(y)] as

E
(

[

∫
[0,y]2

(Wu −Wu′)
2p

(u− u′)1+2pγ
dudu′]q

)
.

Unsing Jensen's inequality,

E[(Y 1)q(y)] ≤ y2q−2

[∫
[0,y]2

E[(Wu −Wu′)
2pq]

(u− u′)q(1+2pγ)
dudu′

]
)

SinceW is a Brownian motion, E[(Wu−Wu′)
2pq] ≤ C|u−u′|pq and using 2pγ < p−1,

y2q−2

∫
[0,y]2

E[(Wu −Wu′)
2pq]

(u− u′)q(1+2pγ)
dudu′ ≤ Cyq(1+p−2γp).

Choosing y = x−1/q,

P{(Y 1)−1(R/2) < x−1/q} ≤ C1x
−(1+p−2γp).

Using this bound for x ≥ 1, and 2γp− p− 1 > −2,

E
(
[(Y 1)−1(R/2)]−q

)
=

∫ ∞
0

P{(Y 1)−1(R/2) < x−1/q}dx <∞.

Recall that W̃ is a Brownian motion (time reversal), so both processes (Y i
s , 0 ≤

s ≤ 1), i = 1, 2, have the same law so the two factors in detΓη have the same law.

So, for any q, (
∫ 1

0
ψ(Y 2(1 − s))ds)−1 also belongs to Lq. This achieves the proof of

(23) and as a conclusion, (detΓη)
−1 ∈ Lq for any q.

Step 5
According to De�nition 2.5 we now prove that the following random matrix(

〈DW ∗
1 , u

1
η〉 〈DW1, u

1
η〉

〈DW ∗
1 , u

2
η〉 〈DW1, u

2
η〉

)
(24)

coincides with Γη on the set {V1 ∈ ∆η}.
(i) By de�nition of the time τ , Wτ = W ∗

1 > η, this contradicts (20) so Y 1(s) ≥ R

thus ψ(Y1(s)) = 0 as soon as s ≥ τ ; 〈DW ∗
1 , u

1
η〉 =

∫ τ
0
ψ(Y 1(s))ds =

∫ 1

0
ψ(Y 1(s))ds.

(ii) Concerning 〈DW ∗
1 , u

2
η〉 =

∫ τ
0
u2
η(s)ds, it is null:

On the set {W ∗
1 > η,W ∗

1 −W1 > η}, using W ∗
1 = Wτ , so Wτ −W1 > η, we get

Wτ −W1 = Z1−τ > η so η ≤ Z1−τ ≤ sup0≤u≤1−s Zu for s ≤ τ. Once again, this
contradicts (20) so Y 2(1−s) > R, and the de�nition of ψ yields u2

η(s) = 0.∀s ∈ [0, τ ]

(iii) Concerning 〈DW1, u
i
η〉, since DW1 = 1 on [0, 1], 〈DW1, u

2
η〉 =

∫ 1

0
ψ(Y 2(1−s))ds

and 〈DW1, u
1
η〉 =

∫ 1

0
ψ(Y 1(s))ds. •
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2.4 Proof of Theorem 2.3

Let v0 = (x∗0, x0) ∈ ∆η:= {(x∗, x), x∗ > η, x∗ − x > η} and δ < 1
2
d(v0,∆

c
η) and

δ < δ′ < d(v0,∆
c
η). Recall the notations uiη, i = 1, 2,Γη (21) and (22).

(i) Let ϕ ∈ C∞η (Rm) meaning that support(φ) ⊂ ∆η and denote F = (W ∗
1 ,W1),

then using the de�nition of P and Q

E(∂2
1,2ϕ(F )) = EQ(∂2

1,2ϕ(F )Z1)(25)

where Z is de�ned in (19).
Since F is locally non degenerate (Proposition 2.6), we apply Proposition 2.1.4

(2.25) [16] to the multi-index α = (1, 2) and G = Z1. Since we use Proposition 2.1.4
[16] with index α = (1, 2), we only need Z1 belonging to ∩p>1D2

p. Later, we will use
twice these indices, so then we will need Z1 belonging to ∩p>1D4

p, see Lemma 2.4.
Using identity (2.25) of Proposition 2.1.4 [16] to the multi-index α = (1, 2) and

G = Z1 in the right hand of (25) we obtain

E(∂2
1,2ϕ(F )) = EQ(ϕ(F )H1,2(Z1)),(26)

where, following Formulas (2.26) and (2.27) of Proposition 2.1.4 [16], expressed in
our framework:

H(i)(Z1) =
2∑
j=1

δ(Z1(Γ−1
η )i,jujη), = δ(Z1(Γ−1

η uη)i) = Z1δ((Γ
−1
η uη)i)−

∫ 1

0

DsZ1(Γ−1
η uη(s))ids, i = 1, 2

and for β = (1, 2)
H1,2(Z1) = H(2)(H(1)(Z1)).

We detail this de�nition:

(27) H1,2(Z1) = δ[H(1)(Z1(Γ−1
η uη)2)] = δ[δ[Z1(Γ−1

η uη)1](Γ−1
η uη)2].

Since

ϕ(W ∗
1 ,W1) =

∫ W ∗1

−∞

∫ W1

−∞
∂2

1,2ϕ(x∗, x)dx∗dx(28)

with Fubini in (26) we obtain

E[∂2
1,2ϕ(F )] =

∫
R2

∂2
1,2ϕ(x∗, x)EQ[1W1>x,W ∗1>x

∗H1,2(Z1)]dx∗dx.(29)

Then Equations (27) and (29) imply that the law of F has a density with respect
to the Lebesgue measure given by

pV (x∗, x; 1) = EQ[1W1>x,W ∗1>x
∗δ[δ[Z1(Γ−1

η uη)1](Γ−1
η uη)2].
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(ii) We now turn to the di�erentiability of this density. Let α = (1, 2) and β = 1,
or 2 or (i, j), i, j ≤ 2, using the de�nition of P and Q

E(∂
2+|β|
α,β ϕ(F )) = EQ[∂

2+|β|
α,β ϕ(F )Z1].(30)

Then using Proposition 2.1.4 [16] for α + β

E(∂
|β|
β (∂2

1,2ϕ(F )) = EQ[ϕ(F )Hβ(Hα(Z1))](31)

Using representation (28) of ϕ

E[(∂
2+|β|
α,β ϕ(F )] =

∫
R2

∂2
1,2ϕ(x∗, x)EQ[1W ∗1>x∗,W1>xHβ(Hα(Z1))]dxdx∗.(32)

Let φ be a regular function with support in the ball B(v0, δ) ⊂ ∆η and ξ = ∂2
αϕ so

∂
2+|β|
α,β ϕ = ∂

|β|
β ξ; we apply (32):

E[(∂
|β|
β ξ(F )] =

∫
R2

ξ(x∗, x)EQ[1W ∗1>x∗,W1>xHβ(Hα(Z1))]dxdx∗.(33)

The left hand above is identi�ed as
∫
R2 ∂

|β|
β ξ(x∗, x)pV (x∗, x; 1)dx∗dx but this one,

using an integration by part, is also ±
∫
R2 ξ(x

∗, x)∂
|β|
β pV (x∗, x; 1)dx∗dx

Thus we can identi�ed on any ball Bδ(v), using the notation |β| is the length of β:

∂
|β|
β pV (x∗, x; 1) = (−1)|β|EQ[1W ∗1>x∗,W1>xHβ(Hα(Z1))].

•

3 Monotonous image of the Brownian motion

Here is provided a simple example which is completely solvable and connected with
[5] where is studied the density of the law as a weak solution to a partial di�erential
equation.
• Firstly one recalls the standard result concerning the Brownian motion. The

density of the law of (W ∗
t ,Wt) is well known, ∀t > 0, see [13] Section 3.2, and is

de�ned on R2 by

pW (b, a; t) := 2
(2b− a)√

2πt3
e−

(2b−a)2

2t 1] sup(0,a),∞[(b), t > 0.(34)

It could be checked that Corollary 1 [6] provides for all t > 0, a partial di�erentiable
equation and boundary conditions for the density of the law of V1 := (W ∗

1 ,W1):

∂tpW (b, a; t) =
1

2
∂2

22pW (b, a; t), ∀b > max(0, a), t > 0

∂1pW (b, b; t) + 2∂2pW (b, b; t) = 0, ∀b > 0, t > 0,(35)

∂tpW ∗(b, t) +
1

2
(∂1pW (b, b, t) + ∂2pW (b, b, t)) = 0.
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• Another case is easily deduced: the particular case of a one-dimensional
monotonous image of the Brownian motion, as following:

dXt = σ(Xt)dWt+1/2σ′(Xt)σ(Xt)dt, X0 = x0

with σ ∈ C1 and infx∈R σ(x) ≥ c > 0. Let ϕ be the solution to the di�erential
equation

d

dx
ϕ(x) = σ(ϕ(x)), ϕ(0) = x0

then X = ϕ(W ). Moreover since ϕ is continuous and increasing, M = ϕ(W ∗) where
W ∗ is the running maximum of the Brownian motion.
Thus, using pW de�ned in (34), the law of the pair Vt = (Mt, Xt) = (ϕ(W ∗

t ), ϕ(Wt))
admits the density on R2: pV (m,x; t) := 1

σ(m)σ(x)
pW (ϕ−1(m);ϕ−1(x); t) and similarly

pM(m; t) := 1
σ(m)

pW ∗(ϕ
−1(m); t).

Let L denote the in�nitesimal generator of X, then its adjoint is

L∗F (x) :=
1

2
[σ′(x)2 + σσ”(x)]F (x) +

3

2
σσ′(x)F ′(x) +

1

2
σ(x)2F”(x).

Standard change of variables, starting from the partial di�erentiable system (35),
provides for all t > 0, a partial di�erentiable system for the density of the law of
Vt = (Mt, Xt),

∂tpV (m,x; t) = L∗(p(.; t))(m,x),

3σ′(m)pV (m,m; t) + σ(m)[∂1 + 2∂2](pV )(m,m; t) = 0, ∀m > 0,(36)

∂tpM(m, t) + σ′(m)pV (m,m; t) +
1

2
σ(m)(∂1 + ∂2)(pV )(m,m; t) = 0.

Remark 3.1 This example is the �Example 4� in [10], but there only the law of Mt

is studied instead of the pair as we do.

4 Conclusion

We emphasize here that such results on the law of the couple (M,X) could be
used when we are interested in barrier options, since the law of time activation (or
extinction) is strongly related to that of the couple (M,X). Moreover, for concrete
applications, the tools built in [11, 12] would be used.

Finally, in a work in progress [5], results as (36) could be generalised to a di�usion
process X under some convenient hypotheses as (1) and (2).
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