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Abstract

Uncertainty quantification is an important procedure when dealing
with errors and discrepancies that are present in any modeling effort.
This work presents a consistent uncertainty quantification framework
for an epidemiological dynamical system, which is able to construct
robust descriptions given a calibrated model. Since arbitrary choices of
distributions for the input parameters can provide biased estimates and
results, the maximum entropy principle is employed in the construction
of the stochastic model to infer the most possibly unbiased probability
density functions affected by the lack of information. The framework
is applied on a SEIR-SEI compartmental system for the Brazilian Zika
virus outbreak to study a stochastic scenario.
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1. Introduction

A primordial step in the application of mathematical models for the
study of natural and artificial phenomena is the validation of such models
through several calibration process with independent data sets. Unfortu-
nately, that process can be poorly influenced by data that underestimates
the reality or due to inaccurate values of the parameters: small variations
on the inputs, in some cases, can bring about huge changes in the model
response. Propagation of uncertainties introduced in the parameters allows
one to observe if the model provides robust results when confronted with
multiple sources of errors and discrepancies [1, 2].

This work presents an uncertainty quantification (UQ) framework, and
showcase its use for an epidemiological compartmental model previously
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calibrated to describe the outbreak of the Zika virus in Brazil [3]. In order
to do a refined study while considering the more influential parameters for
the response, uncertainties are propagated only for the more sensible inputs,
which were determined and analyzed in another previous work [4]. The lack
of knowledge regarding the input distribution introduces bias when naive
choices are made. The maximum entropy principle [2] is detailed on the
application of selecting the parameter’s distribution consistently, picking
the less biased one available.

2. Computational model

The SEIR-SEI nonlinear dynamical system outlined in Figure 1 was pre-
viously calibrated for the Brazilian context of Zika infection with values
from the literature [3]. This compartmental model divides the human and
vector populations into four groups according to their current state (time t)
in relation to the Zika fever: susceptible for infection, S(t); exposed to the
virus but unable to transmit it, E(t); infectious, I(t), which are infected and
capable of transmitting the disease; and recovered humans, Rh(t). Demo-
graphic changes are only considered for the vector, with both populations
constant.
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Figure 1: Diagram of the SEIR-SEI system dynamics.

The transmission mechanism embedded in the continuous-time dynam-
ical system is the cross-infection, as expressed in the system of differential
equations
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(1)

where 1/α represents the incubation period, 1/δ is the vector lifespan, 1/γ
the human infection period, βh and βv the transmission rates. The total
human population is Nh = 206× 106, the Brazilian population in 2016, and
Nv = 1 since the vector population is treated in proportions. The cumulative
number of infectious is collected for each time on C(t), in the last equation.

The vector of stated obtained from Eqs.(1) reports how humans and
vectors are segmented for each time t. The quantities of interest (QoI) are
the cumulative number of infectious and the new cases per epidemiological
week (EW), computed from

C(t) =

∫ t

t0

αhEh dt ,

N = Cw − Cw−1 , N1 = C1, w = 2, · · · , 52 ,

(2)

where Cw is the value of C in the w-th EW. The QoI in this way are quanti-
ties associated to the epidemiological concepts of prevalence and incidence,
which can be compared to real data about the Brazilian Zika infection of
2016 assembled by the Ministry of Health [5].

The computational model uses the input parameters (βh, αh, γ, βv, αv, δ)
in Eqs.(1) and then obtain the QoIs through Eqs.(2) to output C(t) and Nw.
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3. Uncertainty Quantification

The dynamical system from the previous section provides QoI that can be
seen as a random quantity due to the variability (randomness) in the system
parameters. In this context, the mathematical model defined by Eqs.(1)
and Eqs.(2) can be thought abstractly as an operator M, which maps an
input (random) vector X that lumps the system random parameters, into
an output (random) scalar Y , representing a generic QoI, i.e.,

Y =M(X). (3)

To deal with the uncertainties of the problem, a consistent probabilistic
model must be constructed. In general, for lack of information, the joint-
distribution of X can not be reliably specified via non-parametric statistics.
In this way, a conservative procedure aims to estimate the least biased dis-
tribution, while using the few information known about it. The maximum
entropy principle (MaxEnt) is formalized over this premise. The joint-PDF
of X, denoted by pX(x), is obtained by maximizing the Shannon Entropy

E(pX) = −
∫
R
pX(x) ln pX(x) dx , (4)

with the restrictions ∫
R
g(x) pX(x) dx = b , (5)

where g(x) =
(
1, g1(x), g2(x), . . . , gu(x)

)
is a Ru+1-valued function defined

on the support IX, that enforces certain statistical properties b ∈ Ru+1

along with the PDF normalization condition. The general solution for this
optimization problem can be written with Lagrange multipliers [2] as

pX(x) = 1IX exp
(
− < λ, g(x) >

)
, (6)

with λ being the u-dimensional vector of Lagrange multipliers and < ·, · >
denoting the dot product. The multipliers are found by solving the nonlin-
ear system of equations that appear when substituting Eq.(6) in Eq.(5) to
guarantee b [2].

In terms of stochastic calculations, once the input random vector X dis-
tribution is known, the distribution of output Y is determined a posteriori,
via Monte Carlo simulation [1, 2].
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4. Results

Global sensitivity measures developed in a parallel work of the authors [4]
suggest that βh and δ are the most important inputs when studying how the
system response around EW 7 (peak of the outbreak). A stochastic scenario
is investigated in Figure 2, where 95%-confidence bands are presented for the
system QoI when introducing dispersion in the MaxEnt probability density
function. For the construction of this PDF, the parameter’s support bounds
came from [3], and the mean value was considered the set that provided the
calibrated response in [4]. A coefficient of variation (CV ) of 10% for βh and
15% for δ is assumed to observe its effect on the output.
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Figure 2: The 95%-confidence band for the cumulative number C(t) (left)
and new cases Nw (right).

The graphs in Figure 2 allow to contemplate the robustness of the model
in comparison to the epidemic data, showing how the system response keeps
its general shape and follows the outbreak evolution around the peak infec-
tion until the end, even under some variability in the parameters. Another
information regards the initial time, where it is apparent that these param-
eters have little control in the QoI at early weeks, due to small width of
the confidence bands. This procedure exemplifies how the UQ-framework
can be employed to study different kinds of uncertainties subjected over the
model and made in a mathematical consistent manner.
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5. Concluding remarks

An uncertainty quantification framework that uses the the Maximum
Entropy Principle to estimate the parameter’s distribution was used, evalu-
ating the robustness of a SEIR-SEI calibrated model for the context of the
2016 Zika infection in Brazil. A stochastic scenario were tested, estimating
the most unbiased input distributions, promoting propagation of uncertain-
ties through the system and calculating confidence interval for the response.
In future works, the authors intend to apply the uncertainty quantification
framework in more complex models and also increment the analysis by em-
ploying Bayesian updating.
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