
HAL Id: hal-02010175
https://hal.science/hal-02010175v1

Preprint submitted on 6 Feb 2019 (v1), last revised 13 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Sparsity for Semi-Algebraic Set Volume
Computation *

Matteo Tacchi, Tillmann Weisser, Jean-Bernard Lasserre, Didier Henrion

To cite this version:
Matteo Tacchi, Tillmann Weisser, Jean-Bernard Lasserre, Didier Henrion. Exploiting Sparsity for
Semi-Algebraic Set Volume Computation *. 2019. �hal-02010175v1�

https://hal.science/hal-02010175v1
https://hal.archives-ouvertes.fr


Exploiting Sparsity for Semi-Algebraic Set Volume Computation∗

M. Tacchi1,2 T. Weisser1 J. B. Lasserre1,3 D. Henrion1,4

February 5, 2019

Abstract

We provide a systematic deterministic numerical scheme to approximate the volume (i.e.
the Lebesgue measure) of a basic semi-algebraic set whose description follows a sparsity
pattern. As in previous works (without sparsity), the underlying strategy is to consider
an infinite-dimensional linear program on measures whose optimal value is the volume of
the set. This is a particular instance of a generalized moment problem which in turn can
be approximated as closely as desired by solving a hierarchy of semidefinite relaxations
of increasing size. The novelty with respect to previous work is that by exploiting the
sparsity pattern we can provide a sparse formulation for which the associated semidefinite
relaxations are of much smaller size. In addition, we can decompose the sparse relaxations
into completely decoupled subproblems of smaller size, and in some cases computations can
be done in parallel. To the best of our knowledge, it is the first contribution that exploits
sparsity for volume computation of semi-algebraic sets which are possibly high-dimensional
and/or non-convex and/or non-connected.

1 Introduction

This paper is in the line of research concerned with computing approximations of the volume (i.e.
the Lebesgue measure) of a given compact basic semi-algebraic set K of Rn neither necessarily
convex nor connected. Computing or even approximating the volume of a convex body is hard
theoretically and in practice as well. Even if K is a convex polytope, exact computation of
its volume or integration over K is a computational challenge. Computational complexity of
these problems is discussed in, e.g. [1, 2, 3]. In particular, any deterministic algorithm with
polynomial-time complexity that would compute an upper bound and a lower bound on the
volume cannot yield an estimate on the bound ratio better than polynomial in the dimension
n. For more detail, the interested reader is referred to the discussion in [4] and to [5] for a
comparison.

If one accepts randomized algorithms that fail with small probability, then the situation is
more favorable. Indeed, the probabilistic approximation algorithm of [6] computes the volume
to fixed arbitrary relative precision ε > 0 in time polynomial in 1/ε. The algorithm uses
approximation schemes based on rapidly mixing Markov chains and isoperimetric inequalities,
see also hit-and-run algorithms described in e.g. [7, 8, 9]. So far, it seems that the recent work
[10] has provided the best algorithm of this type.

1LAAS-CNRS, Université de Toulouse, France.
2Réseau de Transport d’Electricité (RTE), France.
3Institut de Mathématiques de Toulouse, Université de Toulouse, France.
4Faculty of Electrical Engineering, Czech Technical University in Prague, Czechia.
∗This work was partly funded by the RTE company and by the ERC Advanced Grant Taming.

1



The moment approach for volume computation

In [4] a general deterministic methodology was proposed for approximating the volume of a
compact basic semi-algebraic set K, not necessarily convex or connected. It was another illus-
tration of the versatility of the so-called moment-SOS (sums of squares) hierarchy developed in
[11] for solving the Generalized Moment Problem (GMP) with polynomial data.

Briefly, the underlying idea is to view the volume as the optimal value of a GMP, i.e., an
infinite-dimensional Linear Program (LP) on an appropriate space of finite Borel measures.
Then one may approximate the value from above by solving a hierarchy of semidefinite pro-
gramming (SDP) relaxations with associated sequence of optimal values indexed by an integer
d. Monotone convergence of the bounds is guaranteed when d increases. Extensions to more
general measures and possibly non-compact sets were then proposed in [12]. The order d in the
hierarchy encodes the amount of information that is used, namely the number of moments of
the Lebesgue measure up to degree d. It is a crucial factor for the size of the associated SDP
problem. More precisely, the size grows in dn as d increases, which so far limits its application
to sets of small dimension n, typically up to 4 or 5.

In view of the growth of the size of the SDP problem with increasing order it is desirable to
converge quickly towards the optimal value of the LP. However, this convergence is expected to
be slow in general. One reason becomes clear when looking at the dual LP which attempts to
compute a polynomial approximation (from above) of the (discontinuous) indicator function of
the set K. Hence one is then faced with a typical Gibbs effect1, well-known in the theory of ap-
proximation. To overcome this drawback the authors in [4] have proposed to use an alternative
criterion for the LP, which results in a significantly faster convergence. However in doing so,
the monotonicity of the convergence (a highly desirable feature to obtain a sequence of upper
bounds) is lost. In the related work [12] the author has proposed an alternative strategy which
consists of strengthening the relaxations by incorporating additional linear moment constraints
known to be satisfied at the optimal solution of the LP. These constraints come from a spe-
cific application of Stokes’ theorem. Remarkably, adding these Stokes constraints results in a
significantly faster convergence while keeping monotonicity.

Motivation

The measure approach for the volume computation problem is intimately linked to the use
of occupation measures, in dynamical systems theory, for computing the region of attraction
(ROA) of a given target set. Indeed, in [13], the problem of estimating the ROA is formulated
as a GMP very similar to the volume computation problem. The idea is to maximize the volume
of a set of initial conditions that yield trajectories ending in the target set after a given time.

This problem of estimating the ROA of a target set is crucial in power systems safety
assessment, since the power grids must have good stability properties. Perturbations (such
as short-circuits or unscheduled commutations) should be tackled before they get the system
outside the ROA of the nominal operating domain. Currently the stability of power grids is
estimated through numerous trajectory simulations that prove very expensive. In the wake of
the energy transition, it is necessary to find new tools for estimating the stability of power
systems. The conservative, geometric characterization of the region of attraction as formulated
in [13] is a very promising approach for this domain of application, see [14].

As in volume computation, the main limitation of this method is that only problems of
modest dimension can be handled by current solvers. Exploiting sparsity seems to be the best
approach to allow scalability both in volume computation and ROA estimation. Since volume
estimation is a simpler instance of the GMP than ROA estimation, we decided to address first
the former problem.

1The Gibbs effect appears at a jump discontinuity when one approximates a piecewise continuously differen-
tiable function with a continuous function, e.g. by its Fourier series.

2



In addition, volume computation with respect to a measure satisfying some conditions (e.g.
compactly supported or Gaussian measure) also has applications in the fields of geometry and
probability computation, which is the reason why many algorithms were already proposed for
volume computation of convex polytopes and convex bodies in general.

Contribution

We design deterministic methods that provide approximations with strong asymptotic guaran-
tees of convergence to the volume of K. The methodology that we propose is similar in spirit
to the one initially developed in [4] as described above and its extension to non-compact sets
and Gaussian measures of [12]. However it is not a straightforward or direct extension of [4] or
[12], and it has the following important distinguishing features:

(i) It can handle sets K ⊂ Rn of potentially large dimension n provided that some sparsity
pattern is present in the description of K. This is in sharp contrast with [4].

(ii) The computation of upper and lower bounds can be decomposed into smaller independent
problems of the same type, and depending on the sparsity pattern, some of the computations
can even be done in parallel. This fact alone is remarkable and unexpected.

To the best of our knowledge, this is the first deterministic method for volume computation
that takes benefit from a sparsity pattern in the description of K in the two directions of (a)
decomposition into problems of smaller size and (b) parallel computation.

The key idea is to provide a new and very specific sparse formulation of the original prob-
lem in which one defines a set of marginal measures whose (small dimensional) support is in
accordance with the sparsity pattern present in the description of the set K. However, those
marginal measures are not similar to the ones used in the sparse formulation [15] of polyno-
mial optimization problems over the same set K. Indeed they are not expected to satisfy the
consistency condition of [15]2.

Finally, in principle, our floating point volume computation in large dimension n is faced
with a crucial numerical issue. Indeed as in Monte-Carlo methods, up to rescaling, one has to
include the set K into a box B of unit volume. Therefore the volume of K is of the order εn

for some ε ∈ (0, 1) and therefore far beyond machine precision as soon as n is large. To handle
this critical issue we develop a sparsity-adapted rescaling which allows us to compute very small
volumes in potentially very high dimension with good precision.

A motivating example

Consider the following set

K := {x ∈ [0, 1]100 : xi+1 ≤ x2i , i = 1, . . . , 99}.

This is a high-dimensional non-convex sparse semi-algebraic set. The precise definition of a
sparse semi-algebraic set will be given later on, but so far notice that in the description of K
each constraint involves only 2 variables out of 100. The volume of K is hard to compute, but
thanks to the structured description of the set we are able to prove numerically that its volume
is smaller than 1.2624 · 10−30 in less than 200 seconds on a standard computer.

For this we have implemented a specific version of the moment-SOS hierarchy of SDP re-
laxations to solve the GMP, in which we exploit the sparsity pattern of the set K. The basic
idea is to replace the original GMP that involves an unknown measure on R100 (whose SDP
relaxations are hence untractable) with a GMP involving 99 measures on R2 (hence tractable).
In addition, this new GMP can be solved either in one shot (with the 99 unknown measures) or
by solving sequentially 99 GMPs involving (i) one measure on R2 and (ii) some data obtained
from the GMP solved at previous step. Our approach can be sketched as follows.

2If two measures share some variables then the consistency condition requires that their respective marginals
coincide.

3



First, we rescale the problem so that the set K is included in the unit box B := [0, 1]n on
which the moments of the Lebesgue measure are easily computed.

Next, we describe the volume problem on K as a chain of volume subproblems on the
projections on the subspaces generated by the coordinates (xi, xi+1), with a link between the
i-th and (i+ 1)-th sub-problems.

Finally, in this example, as n = 100 and K ⊂ B, the volume of K is very small and
far below standard floating point machine precision. To handle this numerical issue, we have
implemented a sparsity-adapted strategy which consists of rescaling each subproblem defined on
the projections of K to obtain intermediate values all with the same order of magnitude. Once
all computations (involving quantities of the same order of magnitude) have been performed,
the correct value of the volume is obtained by a reverse scaling.

The sparse formulation stems from considering some measure marginals appropriately de-
fined according to the sparsity pattern present in the description of K. It leads to a variety of
algorithms to compute the volume of sparse semi-algebraic sets.

The outline of the paper is as follows. In Section 2.1 we describe briefly the moment-SOS
hierarchy for semi-algebraic set volume approximation, as well as our notion of sparse semi-
algebraic set. In Section 3, we introduce a first constructive theorem that allows to efficiently
compute the volume of specific sparse sets with the hierarchy. Section 4 is dedicated to a method
for accelerating the convergence of the sparse hierarchy, as well as some numerical examples.
Eventually, Section 5 presents the general theorem for computing the volume of any sparse set
using parallel computations, accompanied with some other examples.

2 Preliminaries

2.1 Notations and definitions

Given a closed set K ⊂ Rn, we denote by C (K) the space of continuous functions on K, M (K)
the space of finite signed Borel measures on K, with C+(K) and M+(K) their respective cones
of positive elements.

The Lebesgue measure on Rn is λn(dx) := dx1 ⊗ dx2 ⊗ · · · dxn = dx, and its restriction to a
set K ⊂ Rn is λK := 1Kλ

n , where 1K denotes the indicator function equal to 1 in K and zero
outside. In this paper, we focus on computing the volume or Lebesgue measure of K, that we
denote by vol K or λn(K) or λK(Rn).

Given a Euclidean space X and a subspace Xi ⊂ X, the orthogonal projection map from X
to Xi is denoted by πXi . The m-dimensional subspace spanned by coordinates xi1 , . . . , xim is
denoted 〈xi1 , . . . , xim〉. Given a measure µ ∈M (X), its marginal with respect to Xi is denoted
by µXi ∈M (Xi). It is equal to the image or push-forward measure of µ through the map πXi .

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn) and let R[x]d be the
vector space of polynomials of degree at most d, whose dimension is s(d) :=

(
n+d
n

)
. For every

d ∈ N, let Nn
d := {α ∈ Nn : |α| (=

∑
i αi) ≤ d}, and let vd(x) = (xα)α∈Nn

d
be the vector of

monomials of the canonical basis (xα)α∈Nn
d

of R[x]d. A polynomial p ∈ R[x]d is written as

x 7→ p(x) =
∑
α∈Nn

pα xα = p · vd(x)

for some vector of coefficients p = (pα)α∈Nn
d
∈ Rs(d), where the dot denotes the Euclidean inner

product.
We say that µ ∈ M (Rn) is a representing measure of the sequence m = (mα)α∈Nn ⊂ R

whenever

mα =

∫
xα dµ(x)

4



for all α ∈ Nn. Given a sequence m = (mα)α∈Nn , let Lm : R[x]→ R be the linear functional

f

(
=
∑
α

fα xα

)
7→ Lm(f) :=

∑
α

fαmα.

Given a sequence m = (mα)α∈Nn , and a polynomial g :=
∑

γ gγ xγ ∈ R[x], the localizing
moment matrix of order d associated with m and g is the real symmetric matrix Md(gm) of
size s(d) with rows and columns indexed in Nn

d and with entries

Md(gm)(α, β) := Lm(g(x) xα+β)

=
∑
γ

gγmα+β+γ , α, β ∈ Nn
d .

When g ≡ 1, the localizing moment matrix Md(m) is called simply the moment matrix.

2.2 The Moment-SOS hierarchy for volume computation

Let B := [0, 1]n ⊂ X := Rn be the n-dimensional unit box, and let K ⊂ B be a closed basic
semialgebraic set defined by

K := {x ∈ X : gi(x) ≥ 0, i = 1, . . . ,m } = {x ∈ X : g(x) ≥ 0}

where g = (gi)i=1,...,m ∈ R[x]m and the rightmost vector inequality is meant entrywise. As in
[4] consider the infinite-dimensional linear program (LP) on measures

max
µ, µ̂∈M+(B)

∫
dµ

s.t. µ+ µ̂ = λB
spt µ ⊂ K
spt µ̂ ⊂ B.

(1)

Its value is equal to vol K and the measures µ∗ = λK, µ̂∗ := λB\K are the unique optimal
solutions of (1). The dual of (1) is the infinite-dimensional LP on continuous functions

inf
v∈C+(B)

∫
v dλB

s.t. v ≥ 1K.
(2)

It turns out that there is no duality gap between (1) and (2), i.e., they both have the same
optimal value. Notice that a minimizing sequence of (2) approximates the indicator function
1K from above by polynomials of increasing degrees.

The LP (1) is a particular and simple instance of the Generalized Moment Problem (GMP).
As described in [4] one may approximate its optimal value as closely as desired by using the
following key result in [11]. Given an infinite dimensional LP on measures, one can construct
a hierarchy of finite dimensional semidefinite programs3 (SDP) whose associated sequence of
optimal values converges monotonically to the optimal value of the original infinite dimensional
LP. The basic idea is to represent a measure with the sequence m of its moments, and to
formulate finite dimensional SDPs on truncations of the sequence m. When this strategy
is applied to LP (1), the step d of the moment-SOS hierarchy consists of solving the SDP
relaxation

Pd : max
m, m̂∈Rs(d)

m0

s.t. mα + m̂α =
∫
B xα dx, α ∈ Nn

2d

Md(m) � 0, Md(m̂) � 0
Md−di(gi m) � 0, i = 1, . . . ,m

(3)

3A semidefinite program is a convex conic optimization problem that can be solved numerically efficiently,
e.g. by using interior point methods.

5



where m = (mα)α∈Nn
2d

, m̂ = (m̂α)α∈Nn
2d

, and di = d(deg gi)/2e, i = 1, . . . ,m.
The sequence of SDP problems (Pd)d∈N indexed by the relaxation order d is a hierarchy

in the sense that its sequence of values converges monotonically from above to vol K when d
increases. Each SDP relaxation Pd has a dual formulated in terms of sums of squares (SOS)
of polynomials, which leads to a dual SOS hierarchy, whence the name moment-SOS hierarchy.
The basic moment-SOS hierarchy can be modeled using the GloptiPoly Matlab toolbox [16]
and solved using any SDP solver, e.g. SeDuMi or Mosek. For more details on the moment-SOS
hierarchy and some of its applications, the interested reader is referred to [11].

2.3 The sparsity pattern and its graph representation

Definition 1. A sparse semi-algebraic set has a description

K := {x ∈ X : gi(πXi(x)) ≥ 0, i = 1, . . . ,m}

where each gi is a vector of polynomials (inequalities are meant entrywise) and X1, . . . ,Xm are
Euclidean vector spaces such that

∑m
i=1 Xi = X := Rn.

A simple example of a sparse semi-algebraic set is

K := {x = (x1, x2, x3, x4) ∈ R4 : g1(x1, x2) ≥ 0, g2(x2, x3) ≥ 0, g3(x3, x4) ≥ 0} (4)

for X = R4, X1 = 〈x1, x2〉, X2 = 〈x2, x3〉, X3 = 〈x3, x4〉 and the projection maps are πX1(x) =
(x1, x2), πX2(x) = (x2, x3), πX3(x) = (x3, x4).

Our methodology is based on the classical theory of clique trees. We first construct a graph
associated with the structure of the problem. For each variable in the definition of K, we
define a vertex of the graph. Then, two variables that interact within the same polynomial in
the definition of K correspond to vertices connected by an edge. Up to a chordal extension
(which is equivalent to slightly weakening the sparsity pattern), we suppose that the associated
graph is chordal (i.e. every cycle of length greater than 3 has a chord, i.e. an edge linking two
nonconsecutive vertices). Then we construct the cliques of the graph (a clique C is a subset
of vertices such that every vertex of C is connected to all the other vertices of C). Figure 1
illustrates this constuction for the sparse set (4), the vertices are denoted by xi and our cliques
are denoted by Cj .

x2x1 x3

C1

x4

C2 C3

Figure 1: Graph associated to the sparse set (4).

Then, we construct a clique tree which is instrumental to the computer implementation. It
is proved in [17] that if the graph is chordal, then its cliques can be organized within a tree
satisfying the clique intersection property: for two cliques C and C ′ the intersection C ∩ C ′
is contained in every clique on the path from C to C ′. Figure 2 represents the clique tree
associated to the sparse set (4).

For a slightly more complicated illustration, consider the sparse set

K := {x ∈ R6 : g1(x1, x2) ≥ 0, g2(x2, x3, x4) ≥ 0, g3(x3, x5) ≥ 0, g4(x4, x6) ≥ 0} (5)

whose graph is represented on Figure 3 and whose clique tree is represented on Figure 4. The
clique tree of Figure 2 is called linear because all cliques form a single chain (i.e. they are in a
sequence) with no branching. In contrast, the clique tree of Figure 4 is called branched.

6



C1 C2 C3

Figure 2: Linear clique tree associated to the sparse set (4).

x2

x3

x4

C2

x5

x6

C3

C4

x1

C1

Figure 3: Graph associated to the sparse set (5).

C1

C3

C4

C2

Figure 4: Branched clique tree associated to the sparse set (5).

Our method consists of conveniently rooting the clique tree and splitting the volume compu-
tation problem into lower-dimensional subproblems that are in correspondence with the cliques
of the graph. The subproblem associated with a clique C takes as only input the solutions of the
subproblems associated with the children of C in the clique tree. This way, one can compute in
parallel the solutions of all the subproblems of a given generation, and then use their results to
solve the subproblems of the parent generation. This is the meaning of the arrows in Figures 2
and 4. The volume of K is the optimal value of the (last) sub-problem associated with the root
C1 of the tree.

7



3 Linear sparse volume computation

In this section we describe the method in the prototype case of linear clique trees. The more
general case of branched clique trees is treated later on.

3.1 An illustrative example: the bicylinder

Figure 5: A representation of the bicylinder produced by the AutoDesk Fusion 360 software.

Before describing the methodology in the general case, we briefly explain the general under-
lying idea on a simple illustrative example. Consider the sparse semi-algebraic set

K :=
{
x ∈ R3 : g1(x1, x2) := 1− x21 − x22 ≥ 0, g2(x2, x3) := 1− x22 − x23 ≥ 0

}
(6)

modelling the intersection of two truncated cylinders K1 := {x ∈ R3 : x21 + x22 ≤ 1} and
K2 := {x ∈ R3 : x22 + x23 ≤ 1}, see Figure 3.1. The subspaces are X1 = 〈x1, x2〉 and
X2 = 〈x2, x3〉 and the projection maps are πX1(x) = (x1, x2) and πX2(x) = (x2, x3). Let
Ui := πXi(Ki) for i = 1, 2.

Following [4], computing volK is equivalent to solving the infinite-dimensional LP (1). Next
observe that in the description (6) of K there is no direct interaction between variables x1 and
x3, but this is neither exploited in the LP formulation (1) nor in the SDP relaxations (3) to
solve (1). To exploit this sparsity pattern we propose the following alternative formulation

vol K = max
µi∈M+(Xi)

i=1,2

∫
R2

dµ1 (7)

s.t. µ2 ≤ λ⊗ λ
µ1 ≤ λ⊗ µ〈x2〉2

spt µ1 ⊂ U1, spt µ2 ⊂ U2

where µ
〈x2〉
2 denotes the marginal of µ2 in the variable x2.

In the sparse case, the basic idea behind our reformulation of the volume problem is as
follows. We are interested in vol K. However, as the marginal of a measure has the same mass
as the measure itself, instead of looking for the full measure µ in problem (1), we only look for
its marginal on X1.

This marginal µX1 is modeled by µ1 in (7). In order to compute it, we need some additional
information on µ captured by the measure µ2 in (7). The unique optimal solution µ of (1) is

dµ(x) = dλK(x)

= 1U1(x1, x2) 1U2(x2, x3) dx

8



and therefore its marginal µ1 := µX1 on (x1, x2) is

dµ1(x1, x2) =

∫ 1

0
dµ(x1, x2, x3)

= 1U1(x1, x2) dx1

(∫ 1

0
1U2(x2, x3) dx3

)
dx2︸ ︷︷ ︸

dµ
〈x2〉
2 (x2)

(8)

where

dµ2(x2, x3) = dλU2(x2, x3). (9)

What is the gain in solving (7) when compared to solving (1) ? Observe that in (7) we have
two unknown measures µ1 and µ2 on R2, instead of a single measure µ on R3 in (1). In the
resulting SDP relaxations associated with (7) this translates into SDP constraints of potentially
much smaller size. For instance, and to fix ideas, for the same relaxation degree d:

• The SDP relaxation Pd associated with (1) contains a moment matrix (associated with µ
in (1)) of size

(
3+d
d

)
;

• The SDP relaxation Pd associated with (7) contains two moment matrices, one associated
with µ1 of size

(
2+d
d

)
, and one associated with µ2 of size

(
2+d
d

)
, where µ1 and µ2 are as in

(7).

As the size of those matrices is the crucial parameter for all SDP solvers, one can immediately
appreciate the computational gain that can be expected from the formulation (7) versus the
formulation (1) when the dimension is high or the relaxation order increases. Next it is not
difficult to extrapolate that the gain can be even more impressive in the case where the sparsity
pattern is of the form

K = {(x0, . . .xm) ∈ X : gi(xi−1,xi) ≥ 0, i = 1, . . . ,m }, (10)

with xi ∈ Rni and ni � n for i = 0, . . . ,m. In fact, it is straightforward to define examples
of sets K of the form (10) where the first SDP relaxation associated with the original full LP
formulation (1) cannot be even implemented on state-of-the-art computers, whereas the SDP
relaxations associated with a generalization of the sparse LP formulation (10) can be easily
implemented, at least for reasonable values of d.

3.2 Linear computation theorem

Let
Ki := {x ∈ X : gi(πXi(x)) ≥ 0}

with gi ∈ R[xi]
pi , so that our sparse semi-algebraic set can be written

K =
m⋂
i=1

Ki.

Moreover, let
Ui := {xi ∈ Xi : gi(xi) ≥ 0} = πXi(Ki)

and let
Yi := Xi ∩X⊥i+1

be a subspace of dimension ni for i = 1, . . . ,m− 1 with Ym = Xm. The superscript ⊥ denotes
the orthogonal complement.

9



Assumption 2. For all i ∈ {2, . . . ,m} it holds Xi ∩
i−1∑
j=1

Xj 6= {0}.

Assumption 3. For all i ∈ {2, . . . ,m} it holds Xi ∩
i−1∑
j=1

Xj ⊂ Xi−1.

If Assumption 2 is violated then K can be decomposed as a Cartesian product, and one
should just apply our methodology to each one of its factors. Assumption 3 ensures that the
associated clique tree is linear.

Theorem 4. If Assumptions 2 and 3 hold, then vol K is the value of the LP problem

max
µi∈M+(Xi)
i=1,...,m

∫
dµ1 (11)

s.t. µi ≤ µXi∩Xi+1

i+1 ⊗ λni i = 1, . . . ,m− 1 (12)

µm ≤ λnm (13)

spt µi ⊂ Ui i = 1, . . . ,m. (14)

Proof. Let us first prove that the value of the LP is larger than vol K. For i = 1, . . . ,m, let

Zi := X⊥i ∩
m∑

j=i+1
Xj so that

m∑
j=i

Xj = Xi ⊕ Zi. For xi ∈ Xi define

dµi(xi) := 1Ui(xi)

∫
Zi

m∏
j=i+1

1Uj ◦ πXj (xi + zi) dzi

 dxi. (15)

By construction µi ∈ M+(Xi) and constraints (14) are enforced. In addition, one can check
that, if xi,i+1 ∈ Xi ∩Xi+1, then

dµ
Xi∩Xi+1

i+1 (xi,i+1)
def
=

∫
yi,i+1∈X⊥i ∩Xi+1

dµi+1(xi,i+1 + yi,i+1)

(15)
=

(∫
X⊥i ∩Xi+1

1Ui+1(xi,i+1 + yi,i+1)∫
Zi+1

m∏
j=i+2

1Uj ◦ πXj (xi,i+1 + yi,i+1 + zi+1) dzi+1

 dyi,i+1

 dxi,i+1

=

∫
Zi

m∏
j=i+1

1Uj ◦ πXj (xi,i+1 + zi) dzi

 dxi,i+1

since (X⊥i ∩Xi+1)⊕ Zi+1 = Zi.
Thus, constraints (12) are satisfied. Moreover, they are saturated on Ui. Eventually, one

has
X = X1 ⊕ Z1

and thus ∫
X1

dµ1 =

∫
X1

1U1(x1)

∫
Z1

m∏
j=2

1Uj ◦ πXj (x1 + z1) dz1

 dx1

=

∫
X

 m∏
j=1

1Uj ◦ πXj (x)

 dx

=

∫
X

1K(x) dx

= vol K,

10



that is, we have just proved that the value of the LP is larger than or equal to vol K.
To prove the converse inequality, observe that our previous choice µ1, . . . , µm saturates the

constraints (12) while enforcing the constraints (14). Any other feasible solution µ̃1, . . . , µ̃m
directly satisfies the inequality µ̃i ≤ µi. In particular, µ̃1 ≤ µ1 and thus∫

dµ̃1(x1) ≤ vol K.

Remark 5. The dual of the LP problem of Theorem 4 is the LP problem

inf
vi∈C+(Xi)
i=1,...,m

∫
Xm

vm(xm) dxm

s.t. v1(x1) ≥ 1 ∀ x1 ∈ U1

vi+1(xi+1) ≥
∫
Yi

vi(yi, πXi(xi+1)) dyi ∀ xi+1 ∈ Ui+1, i = 1, . . . ,m− 1.

According to [11], there is no duality gap, i.e. the value of the dual is vol K. For example, in
the case of the bicylinder treated in Section 3.1, the dual reads:

inf
v1, v2∈C+([0,1]2)

∫ 1

0

∫ 1

0
v2(x2, x3) dx2dx3

s.t. v1(x1, x2) ≥ 1 ∀ (x1, x2) ∈ U1

v2(x2, x3) ≥
∫ 1

0
v1(x1, x2) dx1 ∀ (x2, x3) ∈ U2.

Thus, if (vk1 , v
k
2 )k∈N is a minimizing sequence for this dual LP, then the sets

Ak :=

{
(x1, x2, x3) ∈ [0, 1]3 :

vk1 (x1, x2) v
k
2 (x2, x3)∫ 1

0 v
k
1 (x, x2)dx

≥ 1

}

are outer approximations of the set K and the sequence (vol Ak)k decreases to vol K. Similar
statements can be made for the general dual problem.

Remark 6. The LP (11)-(14) is formulated as a single problem on m unknown measures.
However, it is possible to split it in small chained subproblems to be solved in sequence. Each
subproblem is associated with a clique (in the linear tree clique graph) and it takes as input
the results of the subproblem associated with its parent clique. This way, the sparse volume
computation is split into m linked low-dimension problems and solved sequentially. This may
prove useful when m is large because when solving the SDP relaxations associated with the single
LP (11)-(14), the SDP solver may encounter difficulties in handling a high number of measures
simultaneously. It should be easier to sequentially solve a high number of low-dimensional
problems with only one unknown measure.

3.3 Lower bounds for the volume

As explained in the introduction, the hierarchy of SDP relaxations associated with our infinite-
dimensional LP provides us with a sequence of upper bounds on vol K. One may also be
interested in computing lower bounds on vol K. In principle it suffices to apply the same
methodology and approximate from above the volume of B \K since K is included in the unit
box B. However, it is unclear whether B\K has also a sparse description. We show that this is
actually the case and so one may exploit sparsity to compute lower bounds although it is more
technical. The following result is a consequence of Theorem 4:

11



Corollary 7. If K is sparse, then K̂ := B \K is sparse as well, and vol K̂ is the value of the
LP problem

max
µi,j∈M+(Xj)
1≤i≤j≤m

m∑
j=1

∫
Xj

dµ1,j

s.t. µj,j ≤ λmj

µi,j ≤ µXi∩Xi+1

i+1,j ⊗ λni i = 1, . . . , j − 1

spt µi,j ⊂ Ui i = 1, . . . j − 1

spt µj,j ⊂ cl Ûj

where mj := dim Xj, ni := dim X⊥i+1 ∩Xi, Ûj := [0, 1]mj \Uj is open and cl Ûj denotes its
closure4.

Proof. The following description

K̂ =
m⊔
j=1

[
j−1⋂
i=1

Ui ∩ Ûj

]
,

where
⊔

stands for disjoint union, is sparse. Indeed the description of the basic semi-algebraic
set

Vj :=

j−1⋂
i=1

Ui ∩ Ûj

is sparse. In addition, by σ-additivity of the Lebesgue measure, it holds

vol K̂ =

m∑
j=1

vol Vj .

Finally, by using Theorem 4 we conclude that volVj is the value of LP consisting of maximizing∫
Xj
dµ1,j subject to the same constraints as in the above LP problem. Summing up yields the

correct value.

4 Accelerating convergence

As already mentioned, the convergence of the standard SDP relaxations (3) for solving the
GMP (1) is expected to be slow in general. To cope with this issue we introduce additional
linear constraints that are redundant for the infinite dimensional GMP, and that are helpful
to accelerate the convergence of the SDP relaxations. These constraints come from a specific
application of Stokes’ theorem.

4.1 Full Stokes constraints

We first focus on the full formulation (1). We know that the optimal measure of our infinite
dimensional LP is µ = λK. Thus, one can put additional constraints in the hierarchy in order to
give more information on the target sequence of moments, without increasing the dimension of
the SDP relaxation. To keep the optimal value unchanged, such constraints should be redundant
in the infinite dimensional LP. Ideally, we would like to characterize the whole set of polynomials
p such that ∫

K
p(x) dµ(x) = 0.

4This is necessary since the support of a measure is a closed set by definition.

12



Indeed, given any such polynomial p, the moments m of µ necessarily satisfy the linear constraint
Lm(p) = 0. However, for a general semi-algebraic set K, we do not have an explicit description
of this set of polynomials. Nevertheless, we can generate many of them, and hence improve
convergence of the SDP relaxations significantly, as it was done originally in [18] in another
context. Let us explain how we generate these linear moment constraints.

We recall that Stokes’ theorem states that if O is an open set of Rn with a boundary ∂O
smooth almost everywhere, and ω is a (n− 1)-differential form on Rn, then one has∫

∂O
ω =

∫
O
dω.

A corollary to this theorem is obtained by choosing ω(x) = h(x) · n(x) σ(dx), where the
dot denotes the inner product between h, a smooth (ideally polynomial) vector field, and n
the outward pointing unit vector orthogonal to the boundary ∂O, and σ denotes the (n − 1)-
dimensional Hausdorff measure on ∂O. In this case, one obtains the Gauss formula [19]∫

∂O
h(x) · n(x) σ(dx) =

∫
O

div h(x) dx.

Choosing h(x) = h(x) ei, where h is a smooth function (ideally a polynomial) and ei is the i-th
vector of the canonical basis of Rn, one obtains the following vector equality∫

∂O
h(x) n(x) dσ(x) =

∫
O

grad h(x) dx.

Then, if we choose O = K \ ∂K and a polynomial h vanishing on ∂K, the vector constraint∫
K

grad h(x) dx = 0

is automatically satisfied and it can be added to the optimization problem (1) without changing
its optimal value. Such constraints are redundant in the infinite-dimensional LP formulation
(1) but not in the SDP relaxations (3). It has been numerically shown in [18] that adding these
constraints dramatically increases the convergence rate of the hierarchy of SDP relaxations.

These so-called Stokes constraints can be added to the formulation of problem (1) to yield

max
µ, µ̂∈M+(B)

∫
dµ

s.t. µ+ µ̂ = λB
(grad h)µ = grad (hµ)
spt µ ⊂ K
spt µ̂ ⊂ B

(16)

where h is any polynomial vanishing on the boundary of K, without changing its value vol K.
The vector constraint (gradh)µ = grad(hµ) should be understood in the sense of distributions,
i.e. for all test functions v ∈ C 1(B) it holds∫

(grad h)v dµ = −
∫

(grad v)h dµ

or equivalently ∫
((grad h)v + (grad v)h) dµ =

∫
grad (hv) dµ = 0

which becomes a linear moment constraint

Lm(grad (hv)) = 0

if v is polynomial. In practice, when implementing the SDP relaxation of degree d, we choose
h(x) :=

∏
j=1 gj(x) and v(x) = xα, α ∈ Nn, |α| ≤ d+ 1−

∑m
j=1 deg gj .

13



Remark 8. The dual to the LP problem (16) is the LP problem

inf
v∈C+(B)
w∈C (B)n

∫
v λB

s.t. v + div(hw) ≥ 1K.

It follows that the function v is not required anymore to approximate from above the discon-
tinuous indicator function 1K, so that the Gibbs effect is reduced.

4.2 Sparse Stokes constraints

We have designed efficient Stokes constraints for the full formulation of problem (1), at the price
of introducing in problem (4) a polynomial h vanishing on the boundary of K. However, in the
sparse case (7), the polynomial h would destroy the sparsity structure, as it is the product of all
polynomials defining K. So we must adapt our strategy to introduce sparse Stokes constraints.

In this section, to keep the notations simple, we illustrate the ideas on our introductive
bicylinder example of Section 3.1. Considering the optimal measures µ1 and µ2 defined in
(8),(9), we can apply Stokes constraints derived from the Gauss formula, in the directions in
which they are Lebesgue: for µ1 in the x1 direction and for µ2 in the remaining directions. To
see this, define

h1(x1, x2) = g1(x1, x2) x1 e1,

h2(x2, x3) = g2(x2, x3) x2 e2,

h3(x2, x3) = g2(x2, x3) x3 e3

where gi(xi, xi+1) = 1 − x2i − x2i+1, such that h1 · nU1 vanishes on the boundary of U1 and
h2 · nU2 and h3 · nU2 vanish on the boundary of U2, where nUi is the outward point vector
orthogonal to the boundary of Ui. For i, j, k ∈ N, the Gauss formula yields∫

U1

∂

∂x1
(g1(x1, x2)x

i+1
1 xj2) dµ1 = 0,∫

U2

∂

∂x2
(g2(x2, x3)x

j+1
2 xk3) dµ2 = 0,∫

U2

∂

∂x3
(g2(x2, x3)x

j
2x
k+1
3 ) dµ2 = 0.

Hence, adding these constraints does not change the optimal value of the LP problem (7).

4.3 Example: bicylinder revisited

We refer to (1) as the full problem and to (7) as the sparse problem. For both problems, we
consider instances with and without additional Stokes constraints. Note that for the bicylinder
example of Section 3.1 the optimal value for both the full and the sparse problem is

vol K =
16

3
≈ 5.3333

since adding Stokes constraints does not change the optimal value.
We solve the SDP relaxations with Mosek on a standard laptop, for various relaxation orders

and we report the bounds and the computation times in Table 1. We observe a slow convergence
for the full and the sparse versions without Stokes constraints, and a much faster convergence
with Stokes constraints. We also observe significantly smaller computation times when using
the sparse formulation.

14



full sparse
d without Stokes with Stokes without Stokes with Stokes

2 7.8232 (1.0s) 5,828 (1.1s) 7,7424 (1.1s) 5,4984 (1.1s)
3 7.2368 (0.9s) 5,4200 (1.3s) 7,1920 (0.9s) 5,3488 (1.1s)
4 7.0496 (1.4s) 5,3520 (2.2s) 7,0040 (1.2s) 5,3376 (1.2s)
5 6,8136 (3.1s) 5,3400 (4.4s) 6,7944 (1.8s) 5,3352 (1.8s)
6 6,7376 (7.2s) 5,3376 (8.2s) 6,6960 (2.1s) 5,3344 (2.3s)
7 6,6336 (12.8s) 5,3360 (18.3s) 6,6168 (2.6s) 5,3344 (3.2s)

Table 1: Bounds on the volume (and computation times in seconds) vs relaxation order for the
bicylinder.

4.4 Example: nonconvex set

Let X := R5, X1 = 〈x1, x2〉, X2 = 〈x1, x3〉, X3 = 〈x1, x4〉, X4 = 〈x1, x5〉 and

• gi(x1, xi+1) := (2x21 − x21+i − 1 , x1 (1− x1) , xi+1 (1− xi+1)), i = 1, . . . , 4

• Ui := g−1i
(
(R+)3

)
= {(x1, xi+1) ∈ [0, 1]2 : 2x21 − x2i+1 ≥ 1}, i = 1, . . . , 4.

Let us approximate the volume of the sparse set

K :=
{

(x1, x2, x3, x4, x5) ∈ [0, 1]5 : 2x2i − x2i+1 ≥ 1, i = 1, . . . , 4
}

=

4⋂
i=1

π−1Xi
(Ui) .

Here the coordinates x2, x3, x4 and x5 do not interact: they are only linked with the coordinate
x1. The proper way to apply our linear computation Theorem 4 is to define a linear clique tree
as shown in Figure 6.

x1

x3

x4

C2

C3

x2

x5

C1

C4

(a) Variable graph

C1 C2

C3C4

(b) Clique tree

Figure 6: Graph with linear clique tree for the nonconvex set.

15



This yields the following formulation

vol K = max
µi∈M+(Xi)
i=1,...,4

∫
X1

dµ1 (17)

s.t. dµ1(x1, x2) ≤ dµ〈x1〉2 (x1) dx2

dµ2(x1, x3) ≤ dµ〈x1〉3 (x1) dx3

dµ3(x1, x4) ≤ dµ〈x1〉4 (x1) dx4

dµ4(x1, x5) ≤ dx1 dx5
spt µi ⊂ Ui i = 1, . . . , 4

with Stokes constraints

∂

∂x2

[
(2x21 − x22 − 1) x2 (1− x2)

]
dµ1(x1, x2) =

∂

∂x2

[
(2x21 − x22 − 1) x2 (1− x2) dµ1(x1, x2)

]
∂

∂x3

[
(2x21 − x23 − 1) x3 (1− x3)

]
dµ2(x1, x3) =

∂

∂x3

[
(2x21 − x23 − 1) x3 (1− x3) dµ2(x1, x3)

]
∂

∂x4

[
(2x21 − x24 − 1) x4 (1− x4)

]
dµ3(x1, x4) =

∂

∂x4

[
(2x21 − x24 − 1) x4 (1− x4) dµ3(x1, x4)

]
∂

∂x5

[
(2x21 − x25 − 1) x5 (1− x5)

]
dµ4(x1, x5) =

∂

∂x5

[
(2x21 − x25 − 1) x5 (1− x5) dµ4(x1, x5)

]
∂

∂x1

[
(2x21 − x25 − 1) x1 (1− x1)

]
dµ4(x1, x5) =

∂

∂x1

[
(2x21 − x25 − 1) x1 (1− x1) dµ4(x1, x5)

]
.

We can compute analytically

vol K =
1

15

(
7− 4

√
2
)
' 0.0895.

On Figure 7 we show results from solving several relaxations via the full and the sparse
approach, with and without Stokes constraints. While solving with Mosek the degree 12 full
relaxation took about 1000 seconds, solving the degree 12 sparse relaxation took less than
10 seconds. With the sparse relaxations it was possible to go much higher in the hierarchy.
Figure 7b shows convincingly how Stokes constraints accelerate the convergence of the hierarchy.
We can also observe that the nonconvexity of K poses no special difficulty for the volume
computation.

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 7: Performance for the nonconvex set.

16



4.5 Example: high dimensional polytope

Consider
Kn := {x ∈ [0, 1]n : xi + xi+1 ≤ 1, i = 1, . . . , n− 1}.

According to [20], for any θ ∈]− π
2 ,

π
2 [, one has the elegant formula :

tan θ + sec θ = 1 +

∞∑
n=1

vol Kn θ
n

which allows to compute analytically the volume for n arbitrarily large. For example when
n = 20 we obtain

vol K20 =
14814847529501

97316080327065600
≈ 1.522 · 10−4.

From the SDP viewpoint, vol Kn is computed by solving relaxations of the LP problem
given in Theorem 4 where m = n−1, Xi = 〈xi, xi+1〉 and gi(xi, xi+1) = (xi, xi+1, 1−xi−xi+1),
i = 1, . . . , n− 1.

We implemented the volume computation algorithm for n = 20, with Stokes contraints.
This cannot be achieved without resorting to sparse computation as the dimension is too high
for regular SDP solvers. With the sparse formulation however we could solve relaxations up
to degree 28 in less than 100 seconds, see Figure 8. Note however, that the analytic volume is
of the order of 10−4. In consequence we observe a non monotonicity of the relaxation values
which contradicts the theory. This issue is surprising as the Mosek SDP solver terminates
without reporting issues. This indicates that computing small volumes in large dimension can
be numerically sensitive.

Figure 8: Bounds on the volume vs relaxation order for the high dimensional polytope.

In order to fix the monotonicity issue, we added a sparse rescaling to our problem. The idea
is the following: at each step of the algorithm, the mass of the measure µi is less than the mass
of the reference measure

ρi := µ
Xi∩Xi+1

i+1 ⊗ λni .

Defining

εi :=
|µi|
|ρi|
∈]0, 1[,

we obtain that

vol K =

m∏
i=1

εi

17



(a) Without rescaling. (b) With rescaling.

Figure 9: Bounds on the volume vs relaxation order for the high dimensional polytope.

as a telescoping product, since |ρm| = vol B = 1. As a result, if m is large and the εi are small,
one can expect the volume to be very small, which explains why the SDP solver encounters
difficulties. Thus, a solution is to multiply each domination constraint by a well-chosen rescaling
factor ε such that the mass of µi does not decrease too much. The resulting LP is as follows

vol K = εm−1 max
µi∈M+(Xi)
i=1,...,m

∫
X1

dµ1 (18)

s.t. ε µi ≤ µXi∩Xi+1

i+1 ⊗ λni i = 1, . . . ,m− 1

µm ≤ λnm

spt µi ⊂ Ui i = 1, . . . ,m.

Figure 9 gives a comparison between the results obtained with and without sparse rescaling,
using the SDP Solvers SeDuMi and Mosek, for the choice ε = 1

2 .
First, one can see that without rescaling (Figure 9a), both SeDuMi and Mosek have accuracy

issues that make them lose monotonicity, while the rescaling (Figure 9b) allows to recover
monotonicity at least when using SeDuMi (which is slower but more accurate than Mosek to
our general experience). Second, it is clear that the relative approximation error is much smaller
with scaling. This, combined to the fact that the error is relative (after rescaling, the error is
much smaller), demonstrates the power of our rescaling method.

4.6 Example: nonconvex high dimensional set

Finally, we consider a set which is both nonconvex and high dimensional. Let

K := {x ∈ [0, 1]n : xi+1 ≤ x2i }

whose analytic volume, as a function of the dimension n, is not available to us, except for
n = 2, 3. We approximated numerically the volume of K for n = 2, 3, 100. The lower dimension
computations (not shown here) were done to check that the algorithm works normally. The
n = 100 computation was done (with scaling and SeDuMi) to prove that our method allows to
compute volumes of nonconvex sets in really high dimension for which it becomes difficult to
use Monte-Carlo methods.

On Figure 10a we can see that the order 10 relaxation takes only 3 minutes to be solved.
Moreover, Figure 10b gives us the upper bound vol K ≤ 1.2624 · 10−30.

18



(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 10: Performance for the high dimensional nonconvex set.

5 General sparse volume computation

5.1 General sparsity pattern

Let us describe a general method to compute the volume of

K :=
m⋂
i=1

Ki.

For this we construct a graph G = (V,E) as follows :

• V = {1 . . . , n} represents the canonical basis {e1, . . . , en} of X;

• E = {(i, j) ∈ {1, . . . , n}2 : ei, ej ∈ Xk for some k ∈ {1, . . . ,m}}.

In the following, we relax Assumption 3 with

Assumption 9. [Running Intersection Property (RIP)] For all i ∈ {2, . . . ,m} it holds

Xi ∩
i−1∑
j=1

Xj ⊂ Xk for some k ∈ {1, . . . ,m}.

This ensures that G is chordal5, see [17]. Let K be the set of cliques of G. By construction,
each clique is associated to a single subspace Xi, which gives us a natural ordering on K =
{C1, . . . , Cm}. We then make the following strong sparsity statement.

Proposition 10. [Disjoint Intersection Property (DIP)] If Assumptions 2 and 9 hold,
there is a clique tree T = (K, E), rooted in C1, such that for all i, j, k ∈ {1, . . . ,m}, if (Ci, Cj) ∈ E
then i < j and Ci ∩ Cj 6= ∅, and if (Ci, Cj) ∈ E and (Ci, Ck) ∈ E, then j = k or Cj ∩ Ck = ∅.

In words, Proposition 10 means that each clique has a nonempty intersection with its parent
clique, and an empty intersection with all its sibling cliques. The proof gives an algorithmic
method to construct the clique tree. However it is quite technical, so we do not present it here.
See Appendix A for details. Figure 11 illustrates the meaning of this proposition for n = 12
and m = 8. One can check that Assumptions 2 and 9 hold.

Remark 11. According to this proposition, the only possible clique trees for applying our
method to the nonconvex example illustrated in Figure 6 are linear clique trees. Indeed, any
branched clique tree would imply sibling cliques containing x1.

5Our method is thus valid for any sparse structure, up to a chordal extension of the graph G. In particular,
cyclic graphs can be tackled by adding empty interactions between well-chosen variables.

19



x2

x3

x4

C2

x5

x6

x7

x8

C3

C4

x9

x10

x11

x12

C5

C6

C7

C8

x1

C1

C1

C5

C6

C7

C8

C2

C3

C4

Figure 11: Chordal graph (left) with its clique tree (right).

5.2 Distributed computation theorem

One can formulate a simple generalization of Theorem 4 to our general sparsity pattern.

Theorem 12. Let Assumption 2 and 9 hold. Let T = (K, E) be a clique tree as in Proposition
10. Then

vol K = max
µi∈M+(Xi)
i=1,...,m

∫
X1

dµ1 (19)

s.t. µi ≤

 ⊗
(Ci,Cj)∈E

µ
Xi∩Xj

j

⊗ λni i = 1, . . . ,m (20)

spt µi ⊂ Ui i = 1, . . . ,m (21)

and ni = dim Xi ∩

( ∑
(Ci,Cj)∈E

Xj

)⊥
for i = 1, . . . ,m.

The proof of Theorem 12 is very similar in spirit to the proof of Theorem 4, but it is more
technical and it requires some additional notations. For this reason, we postpone it to Appendix
B.

The main difficulty in Theorem 12 is that problem (19) is not a linear problem on measures,
since constraints (20) are multilinear in general. A way of solving this difficulty is to notice that
the optimal measures are obtained by saturating constrains (20) while enforcing constraints
(21). As a result, these optimal measures can be obtained by maximizing the mass of each one
of the µi while enforcing constraints (20) and (21).

Then, the sparse volume computation problem can be separated into m linear subproblems
as follows.

20



Corollary 13. With the same notations as in Theorem 12 it holds vol K =

∫
X1

dµ∗1 where

µ∗i ∈ argmax
µi∈M+(Xi)
i=1,...,m

∫
Xi

dµi (22)

s.t. µi ≤

 ⊗
(Ci,Cj)∈E

µ
∗Xi∩Xj

j

⊗ λni

spt µi ⊂ Ui, i = 1, . . . ,m

and ni = dim Xi ∩

( ∑
(Ci,Cj)∈E

Xj

)⊥
for i = 1, . . . ,m.

Therefore one obtains a sequence of infinite dimensional LPs on measures that can be algo-
rithmically addressed using the usual SDP relaxations. The computations start from the leaves
of the clique tree and proceed down to the root. It is worth noting that all the cliques of the
same generation in the tree are totally independent, which allows to treat them simultaneously,
i.e. to partially parallelize the computations.

Remark 14. As in Remark 5 we can derive a dual global multilinear sparse program

vol K = inf
vi∈C+(Xi)
i=1,...,m

∫
X1

v1(x1) dx1

s.t. vi(xi) ≥
∏

(Ci,Cj)∈E

∫
Zij

vj(πXj (xi), zij) dzij ∀xi ∈ Ui.

The difference with the linear case is that here the dualization does not invert the direction of
propagation of the information.

Remark 15. The convergence of the moment-SOS hierarchy associated to the sequence of
problems (22), as well as their dual problems, is yet to be proved. Indeed, one cannot solve
each problem (22) exactly and propagate the exact moments to solve the next problem when
progressing in the clique tree. As numerical examples will show, the algorithm seems to give
reasonably strong results. However, it is nontrivial to describe how the fact of transmiting
approximate moments instead of exact moments can influence the final computation.

Remark 16. Stokes constraints can be implemented similarly to the linear case.

5.3 Example: 6D polytope

Let X := R6 and X1 = 〈x1, x2〉, X2 = 〈x2, x3, x4〉, X3 = 〈x3, x5〉, X4 = 〈x4, x6〉. For i = 1, 3, 4
let gi(x, y) := (x, y, 1 − x − y) and Ui := g−1i

(
R2
+

)
= {(u, v) ∈ [0, 1]2 : u + v ≤ 1}. Let

g2(x, y, z) := (x, y, z, 1 − x − y − z) and U2 := g−12

(
R3
+

)
= {(x, y, z) ∈ [0, 1]3 | x + y + z ≤ 1}.

Let us approximate the volume of the 6D polytope

K := {x ∈ R6
+ : x1 + x2 ≤ 1, x2 + x3 + x4 ≤ 1, x3 + x5 ≤ 1, x4 + x6 ≤ 1} =

4⋂
i=1

π−1Xi
(Ui) .

No linear clique tree is associated to this problem through Proposition 10. The only possible
clique trees for applying our method are the two branched clique trees of Figure 12.

21



x2

x3

x4

C2

x5

x6

C3

C4

x1

C1

C1

C3

C4

C2

(a) 3 step clique tree

x2

x3

x4

C1

x5

x6

C3

C4

x1

C2

C3

C2

C4

C1

(b) 2 step clique tree

Figure 12: Two possible branched clique trees for the 6D polytope.

Let us compare the performance of the algorithms derived from the two possible clique tree
configurations and with the full problem. For that, we first write the problem associated with
the 3 step clique tree configuration of the top of Figure 12:

vol K =

∫
X1

dµ∗1 (23)

where

µ∗1 = argmax
µ1∈M+(X1)

∫
X1

dµ1

s.t. dµ1(x1, x2) ≤ dx1 dµ〈x2〉2 (x2)

spt µ1 ⊂ U1

µ∗2 = argmax
µ2∈M+(X2)

∫
X2

dµ2

s.t. dµ2(x2, x3, x4) ≤ dx2 dµ∗〈x3〉3 (x3) dµ
∗〈x4〉
4 (x4)

spt µ2 ⊂ U2

22



µ∗i = argmax
µi∈M+(Xi)

i=3,4

∫
Xi

dµi

s.t. µi ≤ λ2

spt µi ⊂ Ui, i = 3, 4.

This problem can be complemented with the following Stokes constraints:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x2 − x3 − x4)

]
dµ2(x2, x3, x4) =

∂

∂x2
[x2 (1− x2 − x3 − x4) dµ2(x2, x3, x4)]

∂

∂xi

[
xi (1− xi − xi+2)

]
dµi(xi, xi+2) =

∂

∂xi
[xi (1− xi − xi+2) dµi(xi, xi+2)]

∂

∂xi+2

[
xi+2 (1− xi − xi+2)

]
dµi(xi, xi+2) =

∂

∂xi+2
[xi+2 (1− xi − xi+2) dµi(xi, xi+2)] i = 3, 4.

The 2 step clique tree of the bottom of Figure 12 yields the following formulation

vol K =

∫
X2

dµ∗2 (24)

where

µ∗2 = argmax
µ2∈M+(X2)

∫
X2

dµ2

s.t. dµ2(x2, x3, x4) ≤ dµ∗〈x2〉1 (x2) dµ
∗〈x3〉
3 (x3) dµ

∗〈x4〉
4 (x4)

spt µ2 ⊂ U2

µ∗i = argmax
µi∈M+(Xi)
i=1,3,4

∫
Xi

dµi

s.t. µi ≤ λXi

spt µi ⊂ Ui, i = 1, 3, 4

with Stokes constraints

∂

∂xi

[
xi (1− xi − xj)

]
dµi(xi, xj) =

∂

∂xi
[xi (1− xi − xj) dµi(xi, xj)]

∂

∂xj

[
xj (1− xi − xj)

]
dµi(xi, xj) =

∂

∂xj
[xj (1− xi − xj) dµi(xi, xj)]

for (i, j) = (1, 2), (3, 5), (4, 6). However, no Stokes constraints can be applied for the com-
putation of µ2 (there is no Lebesgue measure in the domination constraint, so the optimal
measure is not uniform). For this reason one can expect a slower convergence than in the linear
configuration.

We implement the hierarchies associated to the 2 and 3 step sparse formulations, as well
as the full problem hierarchy, and compare their performance in Figure 13. We can compute
analytically

vol K =
1

18
' 0.0556.

Both sparse formulations outperform the dense one in terms of computational time needed
to solve the corresponding SDPs (Figure 13a). On the accuracy side however (Figure 13b), we
observe that the 2 step formulation seems to be less efficient than the 3 step formulation. In

23



(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 13: Performance for the 6D polytope.

particular when considering the accuracy/time effort relation at order 3 the full formulation
provides a better value in almost the same time. We believe that this can be explained by the
way Stokes constraints are added to the program. In the branched configuration, the last step
of the optimization program cannot be accelerated by Stokes constraints. The gap between
the optimal value and the analytic value for the branched formulation in Figure 13b could be
explained by the Gibbs effect in the last optimization step.

As a consequence, in the following, one should avoid the branched hierarchies that cannot
be accelerated at each step by Stokes constraints. Such a hierarchy appears when the root of
the chosen clique tree shares all its vertices with its children cliques. It can be proved that
such a configuration can always be avoided while implementing sparse volume computation, by
choosing a leaf as the new root of the tree.

5.4 Example: 4D polytope

Let X := R4, X1 := 〈x1, x2〉, X2 := 〈x2, x3〉, X3 := 〈x3, x4〉, gi(u, v) := (u, v, 1 − u − v),
i = 1, 2, 3 and Ui := g−1i

(
R3
+

)
= {(u, v) ∈ [0, 1]2 : u+ v ≤ 1}. Let us approximate the volume

of the 4D polytope

K :=
{

(x1, x2, x3, x4) ∈ R4
+ : x1 + x2 ≤ 1, x2 + x3 ≤ 1, x3 + x4 ≤ 1

}
=

3⋂
i=1

π−1Xi
(Ui) .

In such a case, there are two possible configurations for the associated clique tree of Proposition
10, see Figure 14. Accordingly, we can compute vol K in two different ways. The first way

vol K = max
µ1∈M+(X1)
µ2∈M+(X2)
µ3∈M+(X3)

∫
X1

dµ1 (25)

s.t. dµ1(x1, x2) ≤ dx1 dµ〈x2〉2 (x2)

dµ2(x2, x3) ≤ dx2 dµ〈x3〉3 (x2)

dµ3(x3, x4) ≤ dx3 dx4
spt µi ⊂ Ui, i = 1, 2, 3.

24



x2x1 x3

C1

x4

C2 C3

C1 C2 C3

(a) linear clique tree

x2x1 x3

C2

x4

C1 C3

C1

C2

C3

(b) branched clique tree

Figure 14: Two possible clique trees for the 4D polytope.

is the linear formulation given by Corollary 4, which is under the form of a non-parallelizable
single linear problem. The following additional Stokes constraints can be added:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x2 − x3)

]
dµ2(x2, x3) =

∂

∂x2
[x2 (1− x2 − x3) dµ2(x2, x3)]

∂

∂x3

[
x3 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x3
[x3 (1− x3 − x4) dµ3(x3, x4)]

∂

∂x4

[
x4 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x4
[x4 (1− x3 − x4) dµ3(x3, x4)] .

On the other hand, if one associates the clique C1 to the subspace X2 and the clique C2 to the
subspace X1, one also has

vol K =

∫
X2

dµ∗2 (26)

where

µ∗2 = argmax
µ2∈M+(X2)

∫
X2

dµ2

s.t. dµ2(x2, x3) ≤ µ∗〈x2〉1 (dx2) dµ
∗〈x3〉
3 (x3)

spt µ2 ⊂ U2

µ∗1 = argmax
µ1∈M+(X1)

∫
X1

dµ1

s.t. dµ1(x1, x2) ≤ dx1 dx2
spt µ1 ⊂ U1

µ∗3 = argmax
µ3∈M+(X3)

∫
X3

dµ3

s.t. dµ3(x3, x4) ≤ dx3 dx4
spt µ3 ⊂ U3

which is the branched formulation associated to Theorem 12. Here one can see that µ∗1 and µ∗3
can be computed independently in parallel, and then re-injected in the problem to which µ∗2 is

25



the solution. One can add the following Stokes constraints:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x2
[x2 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x3

[
x3 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x3
[x3 (1− x3 − x4) dµ3(x3, x4)]

∂

∂x4

[
x4 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x4
[x4 (1− x3 − x4) dµ3(x3, x4)] .

We can compute analytically

vol K =
5

24
' 0.2083.

In Figure 15 we compare the two sparse formulations with and without Stokes constraints.
Surprisingly the linear formulation is faster than the branched one for small relaxation degrees.
When going deeper in the hierarchy we see the advantage of the branched formulation where
more computations are done in parallel. As observed in the previous example however, the
branched formulation seems to have problems to converge to the optimal value on an early re-
laxation. While the values of both formulations without Stokes constraints almost coincide, the
values of the linear formulation with Stokes are strictly better than the ones of the accelerated
branched formulation. This further supports our conjecture that formulations where Stokes
constraints can be added at every step of the optimization program are to be preferred.

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 15: Performance for the 4D polytope.

Conclusion

Our results

In this paper we addressed the problem of approximating the volume of sparse semi-algebraic sets
with the moment-SOS hierarchy of SDP relaxations. As illustrated by our examples, our sparse
formulation allows to dramatically decrease the computational time for each relaxation, and to
tackle high dimensional volume computation problems that are not tractable with the usual SDP
methods. By splitting the problems into low dimensional subproblems, one drastically reduces
the dimension of each relaxation, without loss of precision. This reduction of complexity is due

26



to the correspondance between the structure of our algorithm and the sparsity pattern in the
description of the semi-algebraic set.

We also showed that additional Stokes constraints have a huge effect on convergence and
precision for volume computation, and that they can successfully be adapted to our sparse
formulations. This yields a much better rate of convergence for the corresponding hierarchy.
However, implementing these Stokes constraints leads to subtle constraints that have to be
enforced if one wants to efficiently compute the volume:

• First, one should always prefer the linear formulation of Theorem 4 whenever possible,
since this ensures that Stokes constraints can always be efficiently implemented.

• Then, in the more general case of Theorem 12, one should always avoid formulations
in which the root at the computation tree has no Stokes constraint; fortunately, such
configurations can always be avoided by chosing a leaf as the root of the clique tree.

Furthermore, in the branched case, one should be aware of the fact that each step of the
algorithm introduces an approximation error, and the errors accumulate until the root is reached.
Consequently, a formulation in which the clique tree has too many generations will lead to
a larger global error than a formulation with less generations. For this reason, one should
minimize the number of generations in the clique tree, which is equivalent to parallelizing as
much as possible. In addition to that, when the problem has many dimensions and branches,
parallelization can obviously drastically increase the speed of the computations.

Applications and future work

To the best of our knowledge, this sparse method for solving volume problems is new and full
of promises for future applications. For instance, the problem of computing the mass of any
compactly supported measure absolutely continuous (with respect to the Lebesgue measure)
can be adressed using this sparsity method. Also, measures that are not compactly supported
but have some decay properties (e.g. Gaussian measures) can also be handled by our method,
which may prove useful in computations for probability and statistics. Also, specific constraints
could probably be used in addition to Stokes constraints when the semi-algebraic set presents
a specific structure (e.g. a polytope, a convex body).

Furthermore, the framework of exploiting sparsity can be applied to any method that relies
on computations on measures, whether these measures are represented by their moments (as
it is done in this paper), or by samples (as in the stochastic volume computation methods).
In particular, we believe that this formalism could easily be extended to Monte-Carlo-based
volume computations.

Finally, we also believe that this method can be adapted to the computation of regions of
attraction, through the formalism developed in [13], for high dimensional differential-algebraic
systems that present a network structure, such as power grids, distribution networks in gen-
eral and possibly other problems. The main difficulty resides in taking sparsity into account
when formulating the Liouville equation, and keeping uniqueness of the solution as in the non-
controlled non-sparse framework.

A Disjoint Intersection Property

Definition 17. Let G = (V,E) be a graph with vertices set V and edges set E. The following
definitions can be found in e.g. [17]:

• A clique of G is a subset of vertices C ⊂ V such that u, v ∈ C implies (u, v) ∈ E.

• A graph G is chordal if every cycle of length greater than 3 has a chord, i.e. an edge
connecting two nonconsecutive vertices on the cycle.

27



• A tree T = (K, E) is a graph without cycle.

• A rooted tree is a tree in which one vertex has been designated the root.

• In a rooted tree, the parent of a vertex v is the vertex w connected to it on the path
to the root; v is then called a child of w; two vertices that have the same parent are
called siblings; a descendant of a vertex v is any vertex which is either the child of v or is
(recursively) the descendant of any of the children of v.

• The vertices of a rooted tree can be partitioned between the root, the leaves (the vertices
that have parents but no children) and the branches (that have children and parents).

• Let K be the set of cliques of G. A clique tree T = (K, E) of G is a tree whose vertices
are the cliques of G.

• A tree satisfies the clique intersection property (CIP) if for every pair of distinct cliques
C,C ′ ∈ K, the set C ∩C ′ is contained in every clique on the path connecting C and C ′ in
the tree. We denote by T ct the set of clique trees of G that satisfy the CIP.

• The ordering K = {C1, . . . , Cm} satisfies the Running Intersection Property (RIP) if

∀i ∈ {2, . . . ,m}, ∃ ki ∈ {1, . . . , i− 1} such that Ci ∩
i−1⋃
j=1

Cj ⊂ Cki .

Theorem 18. A connected graph G is chordal if and only if T ct 6= ∅ if and only if K admits
an ordering that satisfies the RIP.

Definition 19. Let G = (V,E) be chordal. Let T = (K, E) ∈ T ct be a clique tree rooted in
C1 ∈ K. T satisfies the Disjoint Intersection Property (DIP) if ∀C,C ′, C ′′ ∈ K, if (C,C ′) ∈ ET ,
then C ∩C ′ 6= ∅, and if (C,C ′) ∈ ET and (C,C ′′) ∈ E then C ′ = C ′′ or C ′ ∩C ′′ = ∅. In words,
each clique has a nonempty intersection with its parent clique, and an empty intersection with
all its siblings.

Theorem 20. There is a clique tree T ∗ = (K, E∗) ∈ T ct rooted in some C1 ∈ K that satisfies
the DIP. Moreover, such a tree can be constructed algorithmically by ordering the cliques and
using the RIP.

Proof. Since G is connected and chordal, there exists an ordering K = {C1, . . . , Cm} such that

∀i ∈ {2, . . . ,m}, it holds Ci ∩

(
i−1⋃
j=1

Cj

)
6= ∅ and satisfying the RIP. We are going to construct

the announced clique tree, by finite induction:
• By connectivity, C1 ∩ C2 6= ∅. We then define E2 := {(C1, C2)}. The tree T2 =

({C1, C2}, E2) trivially satisfies the DIP.
• Let k ∈ {3, . . . ,m}. Suppose that we have constructed a tree Tk−1 = ({C1, . . . , Ck−1}, Ek−1)

satisfying the DIP, by successively adding the cliques C3, . . . , Ck−1 to T2. We want to add the
clique Ck to our tree. We link it to a parent clique Cj∗ of Tk−1. This Cj∗ is a leaf or a
node of the tree. We first notice that by construction (Ci, Cj) ∈ Ek−1 implies i < j. Let
B(Tk−1) := {j ∈ {1, . . . , k − 2} : Cj already has child cliques} be the set of the cliques to
which other cliques have already been connected, i.e. the branch cliques.

- If ∃ i ∈ B(Tk−1) such that Ci ∩Ck 6= ∅ and (Ci, Cj) ∈ Ek−1 implies Cj ∩Ck = ∅, then we
can add (Ci, Ck) to Ek−1. In words, Ck shares an available variable with a branch clique, which
is therefore a valid choice for its parent clique. We define Ek := Ek−1 ∪ {(Ci, Ck)}.

- Else, ∀i ∈ B(Tk−1) such that Ci∩Ck 6= ∅, ∃ j ∈ {i+1, . . . , k−1} such that (Ci, Cj) ∈ Ek−1
and Cj ∩ Ck 6= ∅. In words, any branch clique of Tk−1 cannot be chosed as a parent clique for
Ck without violating the DIP.

28



Let L(Tk−1) := {j ∈ {2, . . . , k− 1} | Cj has no child clique yet} be the set of leaves of Tk−1.
Then, Ck is connected to a leaf Cj∗ ∈ L(Tk−1) and Cj∗ ∩ Ck 6= ∅, see the proof of Lemma 21
below. We define Ek := Ek−1 ∪ {(Cj , Ck)}.

One can check that the graph Tk = ({C1, . . . , Ck}, Ek) is a tree that satisfies the DIP.
By finite induction, we have constructed a clique tree T ∗ = (K, Em) that satisfies the DIP.

Lemma 21. With the notations of the proof of Theorem 20, if ∀i ∈ B(Tk−1) such that Ci∩Ck 6=
∅, ∃ j ∈ {i + 1, . . . , k − 1} such that (Ci, Cj) ∈ Ek−1 and Cj ∩ Ck 6= ∅, then ∃ j∗ ∈ L(Tk−1)
such that Cj∗ ∩ Ck 6= ∅. In words, if any branch clique of Tk−1 cannot be chosed as a parent
clique for Ck without violating the DIP, then Ck is connected to a leaf of Tk−1.

Proof. We first notice that {1, . . . , k− 1} = B(Tk−1)tL(Tk−1), i.e. any clique is either a node,
or a leaf. Let I(Ck) := {i ∈ {1, . . . , k − 1} | Ci ∩ Ck 6= ∅}. By connectivity, I(Ck) 6= ∅.
Thus, if I(Ck) ∩ B(Tk−1) = ∅, then our first remark yields that I(Ck) ∩ L(Tk−1) 6= ∅ :
∃ j∗ ∈ I(Ck) ∩ L(Tk−1) and Cj∗ ∩ Ck 6= ∅.

We now consider the case in which I(Ck)∩B(Tk−1) 6= ∅. Let i∗ := max (I(Ck) ∩ B(Tk−1)).
In words, Ci∗ is by construction the latest clique satisfying Ci∗ ∩ Ck 6= ∅ which is not a leaf of
Tk−1. Since i∗ ∈ I(Ck) ∩ B(Tk−1), by assumption there is a j∗ ∈ {i∗ + 1, . . . , k − 1} such that
(Ci∗ , Cj∗) ∈ Ek−1 and Cj∗ ∩ Ck 6= ∅. By maximality of i∗, it is necessary that j∗ /∈ B(Tk−1) :
j∗ ∈ L(Tk−1).

B Proof of Theorem 12

Proof. We first observe that, according to Proposition 10, for any i ∈ {1, . . . ,m}

Xi =

 ⊕
(Ci,Cj)∈E

Xi ∩Xj

⊕Yi.

Thus, constraint (20) is well-posed.
Let us prove first that p∗ ≥ vol K.
For i ∈ {1, . . . ,m}, let D(i) := {j 6= i : ∃ an oriented path from Ci to Cj in T}, the set of

descendants of Ci.
For j ∈ {2, . . . ,m}, let Zij := X⊥i ∩Xj such that Xj = (Xi ∩Xj)⊕ Zij .
Let i ∈ {1, . . . ,m}, Zi :=

∑
j∈D(i)

Zij . By definition, ∀j ∈ D(i), Xj ⊂ Xi ⊕ Zi. Let

dµi(xi) := 1Ui(xi)

∫
Zi

∏
j∈D(i)

1Uj (πXj (xi + zi)) dzi

 dxi.

By construction, µi ∈M+(Xi) and constraints (21) are enforced.
Moreover, if (Ch, Ci) ∈ E , then

dµXh∩Xi
i (xhi) =

∫
Zhi

1Ui(xhi + zhi)

∫
Zi

∏
j∈D(i)

1Uj (πXj (xhi + zhi + zi)) dzi

 dzhi

 dxhi.

Let us prove that the family {µ1, . . . , µm} we have constructed saturates the domination
constraints (20) on the supports of the µi.

29



Let i ∈ {1, . . . ,m}, A ∈ B(Xi). Then ⊗
(Ci;Cj)∈E

µ
Xi∩Xj

j

⊗ λni

 (A ∩Ui) =

 ∏
(Ci,Cj)∈E

µ
Xi∩Xj

j (A ∩Ui ∩Xj)

× λni(A ∩Ui ∩Yi)

=

 ∏
(Ci,Cj)∈E

(∫
Xi∩Xj

1A∩Ui(xij)

×

(∫
Zij

1Uj (πXj (xij + zij))

×

∫
Zj

∏
k∈D(j)

1Uk
(πXk

(xij + zij + zj)) dzj


× dzij

)
dxij

)× ∫
Yi

1A∩Ui(yi) dyi

=

∫
Xi

1A∩Ui(xi)×
∏

(Ci,Cj)∈E

(∫
Zij

1Uj (πXj (xi + zij))

×

∫
Zj

∏
k∈D(j)

1Uk
(πXk

(xi + zij + zj)) dzj


× dzij

)
dxi

=

∫
Xi

1A∩Ui(xi)

∫
Zi

∏
j∈D(i)

1Uj (πXj (xi + zi)) dzi

 dxi

=

∫
Xi

1A(xi) dµi(xi)

= µi(A).

Thus, the inequality constraints (20) are satisfied. In addition, they become equalities on
Ui in the case of our choice of µi.

We have proved that our choice of {µ1, . . . , µm} is a feasible one. Before we compute

∫
X1

dµ1,

we make the useful observation that, since T is rooted in C1, it holds D(1) = {2, . . . ,m} and
X = X1 ⊕ Z1. Thus, we have

∫
X1

dµ1 =

∫
X1

1U1(x1)

∫
Z1

m∏
j=2

1Uj (πXj (x1 + z1)) dz1

 dx1

=

∫
X

(
m∏
i=1

1Ui(πXi(x))

)
dx

=

∫
X

1K(x) dx

= vol K.

Then we have proved that p∗ ≥ vol K.

30



The other direction p∗ ≤ vol K is easier. Since our previous choice µ∗1, . . . , µ
∗
m saturates

the constraints (20) while enforcing the constraints (21), any other feasible solution µ1, . . . , µm

directly satisfies µi ≤ µ∗i . In particular, µ1 ≤ µ∗1, and thus

∫
X1

dµ1(dx1) ≤ vol K.

References

[1] B. Bollobás. Volume estimates and rapid mixing. Pages 151–180 in Flavors of geometry,
MSRI Publ. 31, Cambridge University Press, Cambridge, UK, 1997

[2] M. E. Dyer, A. M. Frieze. On the complexity of computing the volume of a polyhedron.
SIAM J. Comput. 17:967–974, 1988.

[3] G. Elekes. A geometric inequality and the complexity of measuring the volume. Discrete
Comput. Geom. 1:289–292, 1986.

[4] D. Henrion, J.B. Lasserre, C. Savorgnan. Approximate volume and integration for basic
semialgebraic sets. SIAM Review 51(4):722–743, 2009.

[5] B. Büeler, A. Enge, K. Fukuda. Exact volume computation for polytopes: a practical
study. Pages 131–154 in Polytopes: combinatorics and computation, G. Kalai and G. M.
Ziegler (Eds.), Birkhäuser Verlag, Basel, 2000.

[6] M. E. Dyer, A. M. Frieze, R. Kannan. A random polynomial-time algorithm for approxi-
mating the volume of convex bodies, J. ACM 38:1–17, 1991.

[7] C. Belisle. Slow hit-and-run sampling, Statist. Probab. Lett. 47:33–43, 2000.

[8] C. Belisle, E. Romeijn, R. L. Smith. Hit-and-run algorithms for generating multivariate
distributions. Math. Oper. Res. 18:255–266, 1993.

[9] R. L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed
over bounded regions. Oper. Res. 32:1296–1308, 1984.

[10] B. Cousins, S. Vempala. A practical volume algorithm. Math. Program. Comput. 8:133–
160, 2016.

[11] J. B. Lasserre. Moments, positive polynomials and their applications. Imperial College
Press, London, UK, 2010.

[12] J.B. Lasserre. Computing Gaussian and exponential measures of semi-algebraic sets. Adv.
Appl. Math. 91:137–163, 2017.

[13] D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial
control systems. IEEE Trans. Autom. Control 59(2):297-312, 2014.

[14] C. Josz, D.K. Molzahn, M. Tacchi, S. Sojoudi. Transient stability analysis of power systems
via occupation measures. To be presented at Innovative Smart Grid Technologies, 2019.

[15] J.B. Lasserre. Convergent SDP relaxations in polynomial optimization with sparsity. SIAM
J. Optim. 17:822–843, 2006.

[16] D. Henrion, J. B. Lasserre, J. Loefberg. GloptiPoly 3: moments, optimization and semidef-
inite programming. Optimization Methods and Software 24(4-5):761-779, 2009.

[17] J. R. S. Blair, B. Peyton. An introduction to chordal graphs and clique trees. Pages 1–29
in Graph Theory and Sparse Matrix Computation, Springer, New York, 1993.

31



[18] J. B. Lasserre. Representation of chance-constraints with strong asymptotic guarantees.
IEEE Control Systems Letters 1(1):50–55, 2017.

[19] J. H. Hubbard, B. Burke Hubbard. Vector calculus, linear algebra, and differential forms
- A unified approach. 2nd Ed., Prentice Hall, 2002.

[20] R. Stanley, I. G. Macdonald, R. B. Nelsen. Solution of elementary problem E2701. The
American Mathematical Monthly 86(5):396, 1979.

32


	Introduction
	Preliminaries
	Notations and definitions
	The Moment-SOS hierarchy for volume computation
	The sparsity pattern and its graph representation

	Linear sparse volume computation
	An illustrative example: the bicylinder
	Linear computation theorem
	Lower bounds for the volume

	Accelerating convergence
	Full Stokes constraints
	Sparse Stokes constraints
	Example: bicylinder revisited
	Example: nonconvex set
	Example: high dimensional polytope
	Example: nonconvex high dimensional set

	General sparse volume computation
	General sparsity pattern
	Distributed computation theorem
	Example: 6D polytope
	Example: 4D polytope

	Disjoint Intersection Property
	Proof of Theorem ??

