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Abstract—The study of round-trip time (RTT) measurements
on the Internet is of particular importance for improving real-
time applications, enforcing QoS with traffic engineering, or de-
tecting unexpected network conditions. On large timescales, from
1 hour to several days, RTT measurements exhibit characteristic
patterns due to inter and intra-AS routing changes and traffic
engineering, in addition to link congestion. We propose the use of
a nonparametric Bayesian model, the Hierarchical Dirichlet Pro-
cess Hidden Markov Model (HDP-HMM), to characterize RTT
timeseries. The parameters of the HMM, including the number
of states, as well as the values of hidden states are estimated
from delay observations by Gibbs sampling. No assumptions are
made on the number of states, and a nonparametric mixture
model is used to represent a wide range of delay distribution in
each state for more flexibility. We validate the model through
three applications: on RIPE Atlas measurements we show that
80% of the states learned on RTTs match only one AS path; on
a labelled delay changepoint dataset we show that the model is
competitive with state-of-the-art changepoint detection methods
in terms of precision and recall; and we show that the predictive
ability of the model allows us to reduce the monitoring cost by
90% in routing overlays using Markov decision processes.

I. INTRODUCTION

The Internet is the subject of continuous measurements of
its performance, whether the goal is to detect attacks such as
denial-of-service, to route packets on better-performing paths
(traffic engineering), or to improve protocols design. Among
the various quality of service metrics that can be obtained,
the round-trip time (RTT) is of particular importance as it
directly impacts real-time services as well as user experi-
ence. While various statistical models for RTTs have been
proposed in the literature, they either focus on short-time delay
prediction with autoregressive models and recurrent neural
networks [1], [2], [3], or on modelling delay distributions on
longer timescales but most of the time without accounting for
temporal dependencies [4], [5]. However on timescales from
1 hour to several days, the delay exhibits some stability and
characteristic patterns due to changes in the routing and the
traffic level which claim for models with time dependency and
some kind of ”hidden” states.

Hidden Markov Models (HMM) with a fixed number of
states have been applied to different types of network measure-
ments. In [6] a discrete-time HMM is used to model packet
losses, while in [7] a continuous-time HMM models both
packet losses and delays. In [8] a HMM is used to model
inter-packet times and packet sizes. Because the number of

hidden states is not known a-priori, these studies empirically
choose a number of states (which is not learned from data),
or use information theoretic approaches to choose a realistic
number of states and prevent overfitting.

We propose the use of a Bayesian nonparametric time-
series model, the hierarchical Dirichlet process hidden Markov
model (HDP-HMM) to capture these patterns in a statistical
model. Nonparametric Bayesian methods are concerned with
the estimation of models where the number of parameters is
allowed to change with observations. Such a method has been
recently applied to Internet measurements in [9]. In contrast
to this work, where an infinite mixture model is proposed to
characterize the distribution of delays of several hosts observed
at a major Internet backbone link, we propose a model for
the delay of a single origin-destination pair over time, with
moreover an exact inference of the Markov chain transition
probability matrix.

Our model is validated through three applications. 1) We
show on RIPE Atlas measurements that the hidden states
inferred by the model match well with the IP and AS path
observed in traceroutes. 2) Although changepoint detection
is not the only goal of our study we show on a labelled
changepoint dataset that the HDP-HMM performs at least
as well as state of the art detection methods. 3) We also
exploit the Markovian property of the model and its ability to
capture time dependency and so forecast future RTT values to
solve a parsimonious monitoring problem in a routing overlay
and reduce by 90% the number of measurements without
degradation of the QoS.

II. MIXTURE MODELS AND HIDDEN MARKOV MODELS

The distribution of delay observations on large timescales is
often multimodal. A classical approach to model those distri-
butions is to use mixture models. A mixture model is defined
by a mixture proportion vector π such that πk := P(zt = k),
and by observation parameters θk (e.g. θk = (µk, σk) for a
Gaussian mixture model). The generative model is defined by
zt |π ∼ π and yt | {θk}Kk=1, zt ∼ pθzt where zt is the hidden
state and yt is the observation.

Hidden Markov models (HMMs) are discrete-time time-
series models. They take into account time dependency be-
tween successive values. They are defined by transition prob-
abilities between states πkl := P(zt = l | zt−1 = k) and by



observation parameters θk. The generative model is defined as
zt | {πk•}Kk=1, z1:t−1 ∼ πzt−1• and yt | {θk}Kk=1, z1:T ∼ pθzt .

Mixtures and HMMs are parametric models in the sense that
they have a fixed number of parameters K. For an HMM with
K states the model parameters are φ = {πk•, θk}Kk=1. The task
of inferring parameters is typically handled by using maximum
likelihood estimation (MLE): φMLE = arg maxφ p(y1:T |φ),
where p(y1:T |φ) is the likelihood of data given parameters.

In general it is not feasible to maximize directly the like-
lihood with respect to φ, there is no closed-form solution.
A classical approach is to use a two-steps iterative algo-
rithm called Expectation-Maximization (EM). However, the
EM algorithm is not able to estimate the order K of the
model, which is supposed to be known. A possible solution
is to change the maximization criterion by adding a penalty
term, such as the Akaike information criterion (AIC) or the
Bayesian information criterion (BIC), to the log-likekihood.
But this requires to test a large number of values for K.
Another important problem with EM is that it may converge
to local and not global maxima of the likelihood. It therefore
requires a very good initialization point. For those two reasons
parametric HMMs with EM estimation are not suitable when
a large number of timeseries have to be processed.

III. NONPARAMETRIC BAYESIAN MODELS

In contrast to MLE, the Bayesian approach involves defin-
ing priors on parameters. The posterior distribution of the
parameters given the data is proportional to the likelihood of
the data given the parameters, times the prior: p(φ | y1:T ) ∝
p(y1:T |φ)p(φ). As in the MLE case, direct maximization
of p(φ | y1:T ) with respect to φ may be difficult. Note the
particular case of the conjugate prior where the posterior
belongs to the same family as the prior.

However Markov Chain Monte Carlo (MCMC) techniques
can be used in very general situations for inference [10]. Alter-
natively, variational Bayesian methods can also be considered.
The principle of MCMC methods such as Gibbs sampling or
Hastings Metropolis is to use simulation techniques to draw a
large number of samples φ from p(φ|y1:T ).

In this section we describe two nonparametric models based
on the Dirichlet process prior: the Dirichlet Process Mixture
Model (DPMM) and the Hierachical Dirichlet Process Hidden
Markov Models (HDP-HMM). We will then show how these
models can be combined to create a very flexible model for
the characterization and clustering of RTT timeseries.

A. Motivation for nonparametric models

We provide in Table I a taxonomy of the different models
discussed in this article. Mixture models and DPMM do not
take into account time dependencies, contrary to HMM and
HDP-HMM. On the other hand, mixture models and HMM
assume a finite and known number of ”hidden” states, whereas
DPMM and HDP-HMM allow for unknown and unbounded
numbers of states.

In many cases network performance metrics such as delays
are quite stable over time, and are switching randomly from

TABLE I
TAXONOMY OF MODELS

Model # states Temporal dependency

Mixture Model Fixed No
Hidden Markov Model Fixed Yes

Dirichlet Process Mixture Model ∞ No
Hierarchical Dirichlet Process
Hidden Markov Model ∞ Yes

time to time between different ”baseline” values. These base-
line values may correspond to different IP paths, or traffic
engineering configurations at a lower layer. Measurement
noise as well as network congestion result in noisy values
around these baselines. HMM (or noisy Markov chains) are
appropriate models to capture the idea of a stable state which
is not observed directly. But the problem with standard HMMs
is that they are not flexible enough to automate the processing
of a large number of timeseries, in particular because they
assume that the number of states is fixed. HDP-HMMs make
very weak assumptions on the number of states which is
considered as random and unbounded. Note that to add even
more flexibility to the model, we will not assume a parametric
model of RTT in each hidden state. We will consider that the
distribution of RTTs in each hidden state is also non parametric
and that it can be modeled as a DPMM. All in all, our model
is a HDP-HMM with DPMM conditional distributions.

B. Dirichlet Process Mixture Models

The main tool of nonparametric Bayesian methods is the
Dirichlet process (DP) [11]. A DP is a stochastic process,
the realizations of which are probability distributions. It is
parameterized by a concentration parameter α and a base
distribution H and denoted as G ∼ DP (α,H). It can be seen
as a process indexed by partitions (A1, . . . , An) (n > 0) of
the space E on which H is defined, with realizations that are
n-variate Dirichlet random variables: (G(A1), . . . , G(An)) ∼
Dir(αH(A1), . . . , αH(An)).

It can be proved that a Dirichlet Process G ∼ DP(α,H),
can also be defined via the stick-breaking constructive ap-
proach proposed in [12]. The idea is to build a discrete distri-
bution by assigning probabilities πk (k = 1, 2, . . .) to samples
θk drawn independently from H . As the probabilities πk must
sum to 1, we divide a unit-length stick. The stick of length 1 is
first broken into two parts, one of the two parts is again broken
into two, and the process continues indefinitely. Each time the
stick is broken the proportions are drawn from a Beta(1, α)
distribution. The obtained portions π = [π1, π2, . . .] tend to
a Griffiths-Engen-McCloskey distribution π ∼ GEM(α) and
clearly

∑
k πk = 1.

The typical prior on weights for a mixture model with K
states is the K-dimensional Dirichlet distribution such that
π |α ∼ Dir(α/K, . . . , α/K) since this is a conjugate prior. α
is a concentration parameter influencing whether the weights
will be shared equally among the components or concentrated
on a few components. The DPMM is obtained by taking K



to infinity and replacing the prior on the mixture weights by
a stick-breaking process: π ∼ GEM(α).

The parameter of the distribution of observations yt given
a precise value of hidden state zt = k is distributed according
to the base distribution H .

C. Hierarchical Dirichlet Process Hidden Markov Models

In a standard HMM each row {πkl}l=1,K of the transition
matrix weights the distribution of zt given that zt−1 = k.
In the case of HMMs with Dirichlet process priors we cannot
simply place any prior DP (α,H) on each row of the transition
matrix.

Indeed one has to make sure that weights πkl will weight,
for all k, the same emission distribution [yt | zt = l]. To do
so we need to consider as a base distribution for each row
{πkl}l=1,∞ a discrete valued distribution G0. G0 is supposed
to follow a Dirichlet process: G0 ∼DP (γ,H) where H is the
base distribution at the top of the hierarchy. Each row k is now
defined as aDP (α,G0). We therefore have a hierarchy of two
levels of DP and the obtained model is called a Hierarchical
Dirichlet Process HMM (HDP-HMM) [13].

In the case of data with persistent states, such as RTT
observations where the sampling frequency is usually higher
than frequency of state changes (e.g. routing changes), the
HDP-HMM may oversegment the data (i.e. favor transitions
to other states instead of staying in the same state). The sticky
extension, introduced in [14], allows to bias the model towards
self-transitions. A parameter κ is introduced to control this
bias and the prior on row k of the state transition matrix is
redefined as DP (α+ κ, 1

α+κ (αG0 + κδθk)). This permits to
give more weight to the parameter θk of the k-th emission
distribution when already in state k. This model is called a
sticky HDP-HMM.

D. Inference in the HDP-HMM with DPMM emissions

As shown in [14] it is possible to combine the HDP-HMM
model with DPMM to create very flexible models. The idea
is to consider that the base distribution H at the top of the
hierarchy, which represents the distribution of observations y
given the values of states z, is a DPMM. This permits more
flexibility than assuming parametric emission distributions
(Gaussian, Exponential...). Any distribution is now possible,
without any assumption on the shape of the distribution.

We denote the weights of the k-th mixture as Ψk• to avoid
confusion with the k-th row of the transition matrix πk•. In the
HDP-HMM with DPMM emissions observations are generated
as follows:

zt | {πk•}∞k=1, zt−1 ∼ πzt−1•

st | {Ψk•}∞k=1, zt ∼ Ψzt•

yt | {θk,j}∞k,j=1, zt, st ∼ pθzt,st
Inference of the weights β of G0, transition probabilities πks,
mixtures weights Ψks, and emission distributions parameters
θs can be performed via several MCMC methods.

The direct assignment sampler ([13], [14] in the sticky case)
has a time complexity of O(TK) where K is the number of

states instantiated and doesn’t rely on approximations but has
a slow mixing rate (i.e. it is slow to reach the target posterior
distribution). The beam sampler [15] has a worst-case time
complexity O(TK2) but shows improved mixing rate. In this
work we choose the blocked Gibbs sampler [14] which has a
O(TL2) time complexity where L is an upper bound on the
number of states. This sampler is more costly than the others
and relies on an approximation of the Dirichlet process, but
is shown in [14] to have better convergence rate than other
samplers.

E. Modelling RTTs using the HDP-HMM

We seek to learn RTT models from active measurements
performed at regular intervals. In practice measurements are
often performed at higher frequency that the one of network
state changes (e.g. every minute while significant changes
occurs on hourly timescales). To improve the clustering of
timeseries with persistent states we use the sticky extension
of the HDP-HMM.

Several models have been proposed to model delays such
as a Weibull [5] or a Normal mixture model [4]. However
the distribution of the delay is prone to change over time. For
example in some states it might follow a normal distribution,
while in some states the delay might follow an exponential
distribution. We propose to use a nonparametric observation
model as shown in Section III-D. We use the conjugate prior
to the Normal distribution with unknown mean and variance,
the Normal-Inverse-χ2 (NIX) distribution, for the components
of the mixture model.

In our experiments we only constrain the expected mean
of the gaussian components into a realistic range by set-
ting it to the empirical mean of the data. As we have
no a-priori knowledge on the concentration parameters of
the DPs, we place weakly informative priors on them [14]:
α + κ ∼ Gamma(1, 0.01), γ ∼ Gamma(1, 0.01). Note that
as the number of data points grows, the effects of the prior
diminishes.

IV. VALIDATION AND APPLICATIONS

As there exists no RTT dataset with ground-truth on the
network ”state” we propose to validate the model through three
applications: clustering of RIPE Atlas measurements, detection
of delay changes, and reduction of the monitoring cost in
routing overlays using Markov decision processes (MDP).

A. Statistical Analysis of RIPE Atlas Measurements

RIPE Atlas is one of the most comprehensive source of
network measurements at the scale of the Internet. At the
time of writing, more than 11 millions RTT observations were
recorded every hour. While these observations offer valuable
insights on the performance and health of the Internet, the
conclusions that can be drawn from them are limited by the
scale of the analysis. As we will demonstrate the HDP-HMM
learned model allows an analyst to quantify the performance
of a path, such as the time spent in a particular network state.
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Fig. 1. Segmentation of RTT observations between at-vie-as1120 and vn-sgn-as24176 using an HDP-HMM with DP-GMM emissions. Each color
identifies a state.

In this work we focus on two usages of Atlas measurements:
to validate the obtained segmentation by correlating hidden
states with IP paths observed in traceroutes, and to demonstrate
the interpretability of the HMM parameters.

1) Correlation between hidden states and IP paths: We
hypothesized earlier that the distribution of delay observations
is conditioned on the underlying network state, such as the
inter and intra-AS routing configuration, as well as the traffic
level. If this is the case, we should observe that changes in
IP path result in changes in the HDP-HMM hidden state. As
we will see the opposite is not necessarily true. For a given
IP path different RTT distributions, and thus different hidden
states, can be observed due to changes in traffic levels or at
a lower layer. In order to study this correlation we rely on
Atlas anchoring mesh measurements. These measurements are
setup between every anchors pairs in a full-mesh topology
and provide ICMP delay measurements every four minutes as
well as ICMP traceroute measurements every fifteen minutes,
both on forward and reverse paths. Our dataset consists of
IPv4 RTT measurements between all Atlas anchors and the
at-vie-as1120 anchor, from the 2nd to the 9th of May
2018. Considering the subset of anchors that were online over
the time period, we collected 301 series of 2520 data points.

We learned the HDP-HMM model following Section III-E
and producing segmentation results such as those of Fig. 1.
Using a Julia implementation of the sampler we can infer the
parameters of a 2520 points RTT timeseries with 500 iterations
of the sampler in less than 5 seconds on a 2.80GHz Intel Core
i7-7600U CPU. 40% of the one-week long series had 1 state,
30% 2 states, 12% 3 states, and the remaining 18% less than 11
states. For every observation and its inferred hidden state we
then counted how many different IP paths were observed in the
corresponding traceroute measurements. As shown in Figure
2, the majority of states learned over all the paths matches only
one AS path and one IP path. For example there are 595 states
which always correspond to the same AS path over the 746
states learned. Stated differently only 21% of the states learned
can match two AS paths or more. States associated with more
than one AS path can be explained by delay differences too
small to be separated into two clusters.

Conversely one IP or AS path may be associated to more

than one state. In the traceroutes associated to the anchor
pairs of Figure 1, only three different IP paths are identified
for 6 hidden states (represented by different colors). In this
particular case all the IP paths match the same AS path,
and all changes occur in the transit provider AS (Cogent,
130.117.0.0/16, 154.54.0.0/16). We observe that
new hidden states are learned when the distribution of the
delay changes, potentially due to congestion. Being able to
detect these events, invisible in traceroutes, allows for more
thorough analysis of Internet path performances, as shall be
demonstrated in future works.
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Fig. 2. Distribution of the number of states associated with a given number
of unique AS and IP-level paths.

2) Interpretation of the model parameters: An advantage
of HMMs over other timeseries models (e.g. autoregressive
models or neural networks) is that there is a notion of hidden
states and the parameters are easily interpretable with respect
to the application domain. In our case the transition matrix
gives us information about the frequency and the duration of
network configuration changes and the relation between them,
while the observations distributions gives us in particular the
mean value of the delay and its variance in each state.

Figure 1 shows one of the series learned, where each
color identifies a state learned by the model and with the
corresponding parameters (components means µ, variances σ,
and weights Ψ). We can distinguish two types of states: states
where the delay stays relatively constant (such as the blue
one), and states where the delay experiences high variations
(such as the cyan one). This is reflected by the number of



components learned for the mixture model associated to each
state, and the standard deviation of the components. Two
gaussians are associated to the blue state, one of which has
most of the weight (ψ = 0.990) and a small standard deviation
(σ = 0.1). Three gaussians with higher standard deviations
(σ = 0.2, 0.5, 0.9) are associated to the cyan state. States with
a high variance could possibly be explained by intra-domain
load-balancing (since Atlas pings flow ID is not constant),
congestion, or in-path devices delaying the processing of
ICMP packets. However asserting the cause of such variations
and studying the possibility of detecting them from delay
measurements is to be done in future works.

The average duration spent by a HMM in state i is given
by 1/(1 − πii) where πii is the probability of self-transition
for state i. In the example of Figure 1, the average duration
of the pink state is 40 timesteps while the average duration
of the green state is 100 timesteps (with one timestep being
equal to four minutes).

B. Changepoint detection

Detecting significant changes in RTT values over time is
of great interest for network management, network reliability,
and security. The use of changepoint detection methods allows
to filter out temporary delay fluctuations in order to avoid false
alarms. In [16] changepoint detection is performed by mini-
mizing the objective function

∑m+1
i=1 C(y(τi−1+1):τi)+βf(m)

where C is a cost function that measures the stability or
unstability of the delay over a range of successive delay
values and βf(m) is a penalty to prevent overfitting. In
order to evaluate these methods, with various cost functions
and penalties, [16] has produced a publicly available human-
labelled changepoint dataset. Although changepoint detection
is not our primary focus, the existence of a dataset with
some groundtruth allows us to evaluate the quality of the
segmentation performed by the HDP-HMM.

In [16] several classification performance metrics are
computed: the precision # True Positive

# True Positive+# False Positive , the recall
# True Positive

# True Positive+# False Negative , and the F2-score 5 Precision×Recall
4×Precision+Recall .

The weighted F2-score is computed on the weighted recall,
which gives more importance to large RTT changes. We have
reproduced the results of [16] and compared the segmentation
obtained with HDP-HMM to the two best performing methods:
a Poisson cost function, and a nonparametric changepoint
detection method, both with a MBIC penalty. The labelled
dataset contains 50 RTT series of varying lengths for a total
of 34,008 hours of observations. We have performed the
following steps to detect changes with the HDP-HMM: 1)
learn the model, 2) compute the most likely hidden state se-
quence, 3) define changepoints as changes in the hidden states
sequence. We have computed the classification performance
metrics on each series. The cumulative distribution functions
of the performance metrics are displayed on Figure 3. While
the precision of changepoint detection with HDP-HMM is
similar to the two best performing methods of [16], the recall
is significantly improved. This means that the model detected
more true changes. In other words, our model is more sensitive

to small changes in the delay without generating unnecessary
false alarms.

Note that changepoint detection is only one feature made
possible by HDP-HMM modelling. The benefits of such an
approach go much further than simply detecting changes
as it produces a temporal model, that is useful for delays
dynamics characterization and prediction, which is not the case
of standard changepoint detection methods.

C. Parsimonious monitoring

In comparison to simpler models, such as mixture models,
HMMs account for temporal dependencies, and as such allow
for prediction. We exploit this ability to reduce the monitoring
cost in routing overlays.

Nodes are connected in a full-mesh topology and one
seeks to choose the lowest delay path between an origin
and a destination. The possible paths between source and
destination are monitored in order to evaluate their delay and
choose the best path, but the goal is to limit the frequency of
measurements. Current approaches use all-pair probing which
makes the probing cost prohibitive (O(n2) with n, the number
of nodes).

We have proposed a method to balance the number of
measurements with the routing error [17]. This method is
based on a Markov modelling of the dynamics of delay on each
path. The problem of deciding or not to measure a path and
of selecting the ”best” path between source and destination is
then represented as a Markov decision process (MDP). Given
the current knowledge of paths delays, our method gives which
path to monitor, and when.

Interpretation of the parsimonious monitoring problem as
a MDP is possible because of the Markov model used for
the paths’ delays. The performance of the method strongly
depends on the accuracy of the models. Accurate models
permit to forecast future delays without constantly probing
the path provided the path delays are stable enough. In order
to characterize each path’s delay we have used a sticky HDP-
HMM model with DPMM emission distributions.

We briefly summarize here the main results obtained, and
refer the reader to [17] for more details on the problem
formulation and solution. In order to validate our approach,
we have simulated an overlay using delay measurements from
RIPE Atlas. We have built a 30-nodes topology by choosing
five anchors on each of the six continents. For each origin-
destination pairs we only retained the two paths (direct or
one-hop) which were the shortest most of the time. We then
considered the problem of dynamically deciding to monitor
or not path A or path B and to route the traffic on the path
supposed to be the shortest one.

In Figure 4 we show the average additional delay over
the optimal path for different path selection methods. Some
path selection methods are static: path A or path B, or the
path which is the best one most of the time, are constantly
selected to route the traffic. The two methods at the bottom
of Figure 4 are dynamic: constantly monitor paths A and
B and at each time slot select the shortest path, or use the
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Fig. 4. Comparison of the average delay for a static path selection and
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MDP approach to limit the number of measurements and
dynamically decide if path A should be monitored, if path
B should be monitored and on which path traffic should be
routed. It is clear that dynamically choosing the shortest path
leads to a reduction in the average delay over a static path
selection. The relatively low median values (3-5 ms) are due
to the fact that we choose the two shortest paths for every OD
pair. In practice delay differences between the paths may be
larger. The three bottom boxes show the simulation results for
different monitoring policies. In the MDP policy the average
number of measurements is 0.17 (max 0.65) per time slot so
91% lower than the constant cost of 2 for the always measure
policy, while the delay achieved is very close to what we get
when always measuring, confirming the good fit of the HDP-
HMM models to the delay series.

V. CONCLUSION

We’ve shown that the HDP-HMM, a nonparametric
Bayesian model, can be used to estimate HMM parameters,
including the number of states, from RTT observations. We
have checked on real Internet measurements that the states
learned map well to AS paths. Such a flexible model enabled
us to achieve precise clustering of delay series. It can also
be used to forecast delays and limit the monitoring cost in
a network management context such as the routing overlay
problem taken as an example. Many applications of the model
are yet to be explored. Sequential learning may be used to
design parsimonious monitoring schemes without the need for
historical measurements, and to detect new network states

in real-time (e.g. for incident detection). The hidden state
sequences could be used to align different measurements series
and detect correlated changes. The model could also be applied
to other delay measurements such as DNS response times, and
potentially other QoS metrics.

REFERENCES

[1] M. Yang, J. Ru, X. R. Li, H. Chen, and A. Bashi, “Predicting Internet
end-to-end delay: a multiple-model approach,” in Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies., vol. 4, March 2005, pp. 2815–2819 vol. 4.

[2] E. Kamrani, H. R. Momeni, and A. R. Sharafat, “Modeling internet delay
dynamics for teleoperation,” in Proceedings of 2005 IEEE Conference
on Control Applications, 2005. CCA 2005., Aug 2005, pp. 1528–1533.

[3] S. Belhaj and M. Tagina, “Modeling and prediction of the internet end-
to-end delay using recurrent neural networks,” Journal of Networks,
vol. 4, no. 6, pp. 528–535, 2009.

[4] Y. Sato, S. Ata, I. Oka, and C. Fujiwara, “Using mixed distribution for
modeling end-to-end delay characteristics,” 01 2005.

[5] J. A. Hernandez and I. W. Phillips, “Weibull mixture model to charac-
terise end-to-end Internet delay at coarse time-scales,” IEE Proceedings
- Communications, vol. 153, no. 2, pp. 295–304, April 2006.

[6] K. Salamatian and S. Vaton, “Hidden Markov Modeling for Network
Communication Channels,” SIGMETRICS Performance Evaluation Re-
view, vol. 29, no. 1, pp. 92–101, Jun. 2001.

[7] W. Wei, B. Wang, and D. Towsley, “Continuous-time hidden Markov
models for network performance evaluation,” Performance Evaluation,
vol. 49, no. 1, pp. 129 – 146, 2002, performance 2002.
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