
HAL Id: hal-02010014
https://hal.science/hal-02010014v1

Preprint submitted on 6 Feb 2019 (v1), last revised 16 Sep 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concomitant Lasso with Repetitions (CLaR): beyond
averaging multiple realizations of heteroscedastic noise
Quentin Bertrand, Mathurin Massias, Alexandre Gramfort, Joseph Salmon

To cite this version:
Quentin Bertrand, Mathurin Massias, Alexandre Gramfort, Joseph Salmon. Concomitant Lasso with
Repetitions (CLaR): beyond averaging multiple realizations of heteroscedastic noise. 2019. �hal-
02010014v1�

https://hal.science/hal-02010014v1
https://hal.archives-ouvertes.fr


Concomitant Lasso with Repetitions (CLaR): beyond averaging multiple
realizations of heteroscedastic noise

Quentin Bertrand * 1 Mathurin Massias * 1 Alexandre Gramfort 1 Joseph Salmon 2

Abstract
Sparsity promoting norms are frequently used
in high dimensional regression. A limitation
of Lasso-type estimators is that the regulariza-
tion parameter depends on the noise level which
varies between datasets and experiments. Esti-
mators such as the concomitant Lasso address
this dependence by jointly estimating the noise
level and the regression coefficients. As sam-
ple sizes are often limited in high dimensional
regimes, simplified heteroscedastic models are
customary. However, in many experimental ap-
plications, data is obtained by averaging mul-
tiple measurements. This helps reducing the
noise variance, yet it dramatically reduces sam-
ple sizes, preventing refined noise modeling. In
this work, we propose an estimator that can cope
with complex heteroscedastic noise structures by
using non-averaged measurements and a con-
comitant formulation. The resulting optimiza-
tion problem is convex, so thanks to smoothing
theory, it is amenable to state-of-the-art proximal
coordinate descent techniques that can leverage
the expected sparsity of the solutions. Practical
benefits are demonstrated on simulations and on
neuroimaging applications.

1. Introduction
In many important statistical applications, the number of
parameters p is much larger than the number of obser-
vations n. A popular approach to tackle linear regres-
sion problems in such high dimension scenarios is to con-
sider convex `1-type penalties, as popularized by Tibshi-
rani (1996). The use of these penalties relies on a regu-
larization parameter λ trading data fidelity versus sparsity.
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Figure 1: Amplitude Ȳ of n = 59 EEG signals, averaged
across r = 5 (top), r = 10 (middle), and r = 50 (bot-
tom) repetitions. As the number of averaged repetitions in-
creases, the noise is reduced and the measurements become
smoother, revealing the brain response around 0.1 s.

Unfortunately, statistical analysis reveals that the optimal
λ should be proportional to the noise level (Bickel et al.,
2009), which is rarely known in practice. To tackle this is-
sue, one can jointly estimate the noise level and the regres-
sion coefficients. Such a concomitant estimation (Huber
and Dutter, 1974; Huber, 1981) has recently been adapted
for sparse regression by Owen (2007) and analyzed under
several names such as Square root Lasso (Belloni et al.,
2011) or scaled Lasso (Sun and Zhang, 2012).

In these latter works, the noise parameter consists of a
single variance parameter. However, in various applied
settings, mixing data of different natures or coming from
different sources is customary to increase the number of
observations. This often leads to heteroscedasticity: the
data may be contaminated with non-uniform noise lev-
els (differing across features or samples). This is the
case for magneto-electroencephalographic (M/EEG) data,
where observations come from three different types of sen-
sors (gradiometers, magnetometers and electrodes), lead-
ing to very different amplitudes, noise levels and noise co-
variance matrices. Attempts to cope with heteroscedastic-
ity were analyzed in this context by Daye et al. (2012);
Wagener and Dette (2012); Kolar and Sharpnack (2012);
Dalalyan et al. (2013). Moreover, fast algorithms relying
on smoothing techniques from the optimization commu-
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nity (Nesterov, 2005; Beck and Teboulle, 2012) have been
extended to heteroscedastic regression in a multi-task set-
ting, through the Smooth Generalized Concomitant Lasso
(SGCL, Massias et al. (2018)). The SGCL is designed to
jointly estimate the regression coefficients and the noise
co-standard deviation matrix1. However, in certain appli-
cations, such as with M/EEG data, the number of parame-
ters in the co-standard deviation matrix (≈ 104) is typically
equal to the number of observations, making it statistically
impossible to estimate accurately.

When observations are contaminated with a strong noise
and the signal-to-noise ratio (SNR) is too low, provided
measurements can be repeated, a natural idea is to aver-
age them. Indeed, under the assumption that the signal of
interest is corrupted by some additive independant noise
realizations, averaging different measurements divides the
noise variance by the number of repetitions. This is clas-
sically done in experimental sciences from chemistry, to
physics or neuroscience as it generally allows to visually
inspect signals. This effect is illustrated in Figure 1 for
electroencephalography (EEG) data. By averaging from 5
to 50 repetitions of the electrical response of the brain to a
stimulus one can reveal a so-called evoked brain response
around 100 ms after stimulation. It is usually this type of
averaged data which is plugged into optimization solvers,
hence discarding individual observations that could be used
to better characterize the noise and improve the statistical
estimation (Gramfort et al., 2013; Ou et al., 2009).

In this work, we propose the Concomitant Lasso with Rep-
etitions (CLaR), an estimator designed to exploit all avail-
able measurements collected during repetitions of experi-
ments. The proposed concomitant formulation of the op-
timization problem derived has two strong benefits: first,
the noise covariance is an explicit parameter of the model,
on which it is easy to add structural constraints (e.g., block
diagonality) and second, smoothing theory leads to a cost
function that can be minimized using efficient proximal co-
ordinate descent techniques. By estimating the regression
coefficients and the noise structure, this estimator demon-
strates improvements in suppport identification compared
to estimators using averaged data or assuming homoscedas-
tic noise.

In Section 2, we recall the framework of concomitant esti-
mation, and introduce our estimator. In Section 3, we detail
the properties of CLaR, and derive an algorithm to solve it.
Finally, Section 4 is dedicated to experimental results.

2. Heteroscedastic concomitant estimation
Notation For a matrix A ∈ Rm×n its jth column
(resp. jth row) is denotedA:j ∈ Rm×1 (resp.Aj: ∈ R1×n).

1i.e., the square root of the noise covariance matrix

Let r be the number of repetitions of the experiment. The r
observations matrices are denoted Y (1), . . . , Y (r) ∈ Rn×q
with n being the number of sensors/samples and q corre-
sponds, for example, to a number of tasks or a number
of time samples. The mean over the repetitions of the
observations matrices is written Ȳ = 1

r

∑r
l=1 Y

(l). Let
X ∈ Rn×p be the design matrix, with p features stored
column-wise: X = [X:1, . . . , X:p]. The matrix B ∈ Rp×q
contains the coefficients of the linear regression model.
We write ‖·‖ (resp. 〈·, ·〉) for the standard Euclidean norm
(resp. inner product) on vectors and matrices, ‖·‖p1 for the
`p1 norm, for any p1 ∈ [1,∞). For a matrix B ∈ Rp×q ,
‖B‖2,1 =

∑p
j=1 ‖Bj:‖ (resp. ‖B‖2,∞ = maxj∈[p] ‖Bj:‖)

is its row-wise norm, and for any p1 ∈ [0,∞], we write
‖B‖s,p1 for the Schatten p1-norm (i.e., the `p1 norm of the
singular values of B). The notation Sn+ (resp. Sn++) stands
for the set of positive semi-definite matrices (resp. posi-
tive definite matrices). For S1 and S2 ∈ Sn+, S1 � S2 if
S1 − S2 ∈ Sn+, and S1 � σ if S1 � σ Idn. For a square
matrix A ∈ Rn×n, Tr(A) represents the trace of A and
‖A‖S =

√
Tr(A>SA) is the Mahalanobis norm induced

by S ∈ Sn++. For a, b ∈ R, we denote (a)+ = max(a, 0),
a ∨ b = max(a, b) and a ∧ b = min(a, b). The block soft-
thresholding operator at level τ > 0, is denoted BST(·, τ),
and reads for any vector x, BST(x, τ) = (1− τ/‖x‖)+ x.

For p1 ∈ [1,∞), let us write Bp1 for the associated unit `p1
ball. The identity matrix of size n× n is denoted Idn, and
[r] is the set of integers from 1 to r.

2.1. Model and proposed estimator

We consider observations where r repetitions of the
same experiment are performed, leading to measurements
Y (1) ∈ Rn×q, . . . , Y (r) ∈ Rn×q . We assume each mea-
surement follows the same linear model:

∀l ∈ [r], Y (l) = XB∗ + S∗E(l) , (1)

where the entries of E(l) are i.i.d. standard normal dis-
tributions, the E(l)s are independent and S∗ ∈ Sn++ is
the co-standard deviation matrix, i.e., the square root of
the noise covariance matrix.2 Note that even if the obser-
vations Y (1), . . . , Y (r) are different because of the noise
E(1), . . . ,E(r), the true parameter B∗ and the noise struc-
ture S∗ are shared across repetitions.

To leverage the multiple repetitions while taking into ac-
count the heteroscedasticity of the noise, we introduce the
Concomitant Lasso with Repetitions estimator:
Definition 1 (Concomitant Lasso with Repetitions, CLaR).
CLaR estimates the parameters of (1) by solving

(B̂CLaR, ŜCLaR) ∈ arg min
B∈Rp×q
S�σ

f(B, S) + λ ‖B‖2,1 , (2)

2since we impose S∗ ∈ Sn
++, it is uniquely defined
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where f(B, S) := 1
2nqr

∑r
1

∥∥Y (l) −XB
∥∥2

S−1 + 1
2n Tr(S),

λ > 0 controls the sparsity of B̂CLaR and σ > 0 controls
the smallest eigenvalue of ŜCLaR.

2.2. Connections with previous estimator

In low SNR settings, the standard way to deal with strong
noise is to use the averaged observation Ȳ ∈ Rn×q instead
of the raw observations. The associated model reads:

Ȳ = XB∗ + S̃∗Ẽ , (3)

with S̃∗ := 1√
r
S∗ and Ẽ has i.i.d. entries drawn from

a standard normal distribution. The SNR of the average
is multiplied by

√
r, yet the number of available samples

to characterize the noise goes from rq to q. This explains
why averaging is not sufficient to estimate complex het-
eroscedastic noise models, i.e., when S∗ is far from a scalar
matrix. Our introduced CLaR is a generalization of the
Smoothed Generalized Concomitant Lasso (Massias et al.,
2018) which only targets averaged observations:

Definition 2 (Smoothed Generalized Concomitant Lasso,
SGCL). SGCL estimates the parameters of model (3), by
solving:

(B̂SGCL, ŜSGCL) ∈ arg min
B∈Rp×q
S̃�σ/

√
r

f̃(B, S̃) + λ ‖B‖2,1 , (4)

with f̃(B, S̃) := 1
2nq‖Ȳ −XB‖2

S̃−1 + 1
2n Tr(S̃).

Remark 1. Note that ŜCLaR estimates S∗, while ŜSGCL

estimates S̃∗ = S∗/
√
r. Since we impose the constraint

ŜCLaR � σ, we adapt the scaling so that ŜSGCL � σ/
√
r

in (4) for future comparisons.
Remark 2. SGCL is a particular case of CLaR: for r = 1
and Y (1) = Ȳ , the solution of CLaR is the same as the one
of SGCL.

The justification for the introduction of CLaR is the follow-
ing: using the quadratic loss ‖Y −XB‖2, the parameters
of model (1) can be estimated by using either ‖Ȳ −XB‖2
or 1

r

∑
‖Y (l)−XB‖2 as a data-fitting term. It turns out that

in such a case, the two alternatives yield the same solutions
(as the two terms are equal up to constants in B). Hence,
apart from averaging, the quadratic loss does not leverage
the multiple repetitions, and ignores the noise structure.
Using the data-fitting term of CLaR allows to incorporate
this structure.

2.3. Smoothing of the nuclear norm

In this section we shed some light on the properties of
CLaR, especially with respect to smoothing theory (Nes-
terov, 2005; Beck and Teboulle, 2012). The following
proposition relates the data-fitting term used in CLaR and

SGCL showing the link with the smoothing of the Schat-
ten 1-norm (a.k.a. the trace norm or the nuclear norm). For
that, we introduce the following smoothing function:

ωσ(·) = σ
2 ‖·‖

2
F + σ n∧q2 , (5)

and the inf-convolution of functions f and g, defined as
f � g(y) = infx f(x) + g(y − x).

Proposition 1. The ωσ-smoothing of the Schatten-1 norm,
i.e., the function ‖·‖s,1 �ωσ : Rn×q 7→ R, is the solution
of the following (smooth) optimization problem:

(‖·‖s,1 �ωσ)(Z) = min
S�σ

1
2 ‖Z‖

2
S−1 + 1

2 Tr(S) . (6)

Proof of Proposition 1 is in Appendix A.3.

Definition 3 (Clipped Square Root). For S ∈ Sn+, let us
define the Clipped Square Root operator:

ClSqrt(S, σ) = U diag(
√
γ1∨σ, . . . ,

√
sn∨σ)U> , (7)

where S = U diag(γ1, . . . , γn)U> and U is orthogonal.

Remark 3. Note that ClSqrt(S, σ) is the projection of the
square root of S onto the affine cone {S ∈ Sn++ : S � σ}.

We can now state explicitly the connection between the
SGCL, CLaR and the Schatten 1-norm.

Proposition 2 (Smoothing properties of CLaR). The so-
lution of the CLaR problem in Equation (2), (B̂, Ŝ) =
(B̂CLaR, ŜCLaR) is a solution of:

B̂ = arg min
B∈Rp×q

(‖·‖s,1 �ωσ)(Z) + λn ‖B‖2,1

Ŝ = ClSqrt( 1
rZZ

>, σ) ,

where Z = [Z(1)| . . . |Z(r)] and Z(l) = Y (l)−XB√
q .

Proof of Proposition 2 can be found in Appendix B.1.
Remark 4. Following Remark 1, similar properties can be
obtained for B̂SGCL and ŜSGCL letting r = 1, and substi-
tuting Z̄ := Ȳ−XB√

q to Z in the former proposition.

Ideas similar to the ones of Propositions 1 and 2 can be
traced to van de Geer (2016, Lemma 3.4, p. 37), where
the following formulation was introduced to prove oracle
inequalities for the multivariate square-root Lasso3:

‖Z‖s,1 = min
S∈Sn++

1

2
‖Z‖2S−1 +

1

2
Tr(S) . (8)

In the present contribution, the problem formulation in
Proposition 1 is motivated by computational aspects, as it
helps to address the combined non-differentiability of the
data-fitting term ‖·‖s,1 and the penalty ‖·‖2,1 term.

3defined as the solution of Equation (9) with p1 = 1
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Other alternatives to exploit the multiple repetitions with-
out simply averaging them, would consist in investigating
other Schatten p1-norms:

arg min
B

1√
rq‖[Y

(1)−XB| . . . |Y (r)−XB]‖s,p1+λn ‖B‖2,1 ,

(9)
Without smoothing, problems of the form given in Equa-
tion (9) have the drawback of having no smooth term,
and solvers have to resort to proximal splitting algorithms
(e.g., the ones by Douglas and Rachford (1956) or Cham-
bolle and Pock (2011)) that can handle the sum of two non-
smooth components.

Even if the non-smooth Schatten 1-norm is replaced by
the formula in (8), numerical challenges remain: S can
approach 0 arbitrarily, hence, the gradient w.r.t. S of the
data-fitting term is not Lipschitz over the optimization do-
main. A similar problem was raised by Ndiaye et al. (2017)
for the concomitant Lasso and leads to the introduction of
smoothing techniques to address it.

Here we replaced the Schatten norm with p1 = 1 by its
smoothed version ‖·‖s,p1 �ωσ , for some smooth function
ωσ . Results for other Schatten p1-norms are provided in
the Appendix; see Proposition 11 (resp. Proposition 12) for
the case of the Schatten 2-norm (resp. Schatten∞-norm).

3. Properties of CLaR
We detail the principal results needed to solve Problem (2)
numerically in this section, leading to the efficient imple-
mentation proposed in Algorithm 1. We first recall some
technical results from alternate minimization to optimize
composite problems.

3.1. Alternate minimization

Proposition 3. CLaR is jointly convex in B and S so min-
imizing the objective alternatively in S and in B (see Algo-
rithm 1) converges to a global minimum.

Proof.

f(B, S) =
1

2nqr

r∑
1

∥∥∥Y (l) −XB
∥∥∥2

S−1
+

1

2n
Tr(S)

= Tr(ZTS−1Z) +
1

2n
Tr(S) ,

with Z = 1√
2nqr

[Y (1) −XB| . . . |Y (r) −XB].

(Z,Σ) 7→ TrZ>Σ−1Z is jointly convex over Rn×q×Sn++,
see Boyd and Vandenberghe (2004, Example 3.4). This
means that f is jointly convex in (Z, S), moreover B 7→

1√
2nqr

[Y (1) − XB| . . . |Y (r) − XB] is linear in B, thus f
is jointly convex in (B, S), meaning that f + λg is jointly

convex in (B, S). Moreover the constraint set is convex and
thus solving CLaR is a convex problem.

As the next proposition shows, optimizing over S with B
being fixed involves the Clipped Square Root operator of
Definition 3.

Proposition 4 (Minimization in S). Let B ∈ Rn×q be
fixed. The minimization of f(B, S) w.r.t. S with the con-
straint S � σ admits the closed-form solution:

S = ClSqrt

(
1

r

r∑
l=1

Z(l)Z(l)>, σ

)
, (10)

with Z(l) = 1√
q (Y (l) −XB).

Proof. Minimizing f(B, S) in S amounts to solving

arg min
S�σ

1
2 ‖Z‖

2
S−1 + 1

2 Tr(S) . (11)

with Z = 1√
r
[Z(1)| . . . |Z(l)]. The solution is

ClSqrt
(
ZZ>, σ

)
(see Massias et al. (2018, Appendix

A2)), and ZZ> = 1
r

∑r
l=1 Z

(l)Z(l)>.

We can now state the update of the B term in the alternate
minimization process. Here, because of the row-wise sep-
arability of ‖·‖2,1, we use block updates over rows, whose
closed-form are provided by the next proposition:

Proposition 5. Each step of the block minimization of
f(·, S) + λ ‖·‖2,1 in the jth line of B admits a closed-form
solution:

Bj: = BST

(
Bj: +

X>:j S
−1(Y −XB)

‖X:j‖2S−1

,
λnq

‖X:j‖2S−1

)
.

(12)

Proof. The function to minimize is the sum of a smooth
term f(·, S) and a non-smooth but separable term, ‖·‖2,1,
whose proximal operator can be computed:

• f is ‖X:j‖2S−1 /nq-smooth with respect to Bj:, with
partial gradient∇jf(·, S) = − 1

nqX
>
:j S
−1(Ȳ −XB),

• ‖B‖2,1 =
∑p
j=1‖Bj:‖ is row-wise separable over B,

with proxλnq/‖X:j‖2S−1 ,‖·‖(·) = BST
(
·, λnq
‖X:j‖2S−1

)
.

Hence, proximal block-coordinate descent converges
(Tseng and Yun, 2009), and the update reads like Equa-
tion (12). The closed-form formula arises since the
smooth part of the objective is quadratic and isotropic
w.r.t. Bj:.
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3.2. Critical parameter, duality gap and stopping
criterion

As for the Lasso we show that there is a critical parameter,
i.e., there exists λmax ≥ 0 such that whenever λ is greater
than this value, the coefficients recovered vanish:

Proposition 6 (Critical regularization parameter). For the
CLaR estimator we have the following property: with
Smax = ClSqrt( 1

qr

∑r
l=1 Y

(l)Y (l)>, σ),

B̂ = 0, ∀λ ≥ λmax :=
1

nq

∥∥X>S−1
maxȲ

∥∥
2,∞ . (13)

Proof. First notice that if B̂ = 0, then Ŝ =
ClSqrt( 1

qr

∑r
l=1 Y

(l)Y (l)>, σ) := Smax.

Fermat’s rules states that

B̂ = 0⇔ 0 ∈ ∂ (f(·, Smax) + λ‖·‖2,1( 0)

⇔ −∇f(·, Smax) ∈ λB‖·‖2,∞

⇔ 1

nq

∥∥X>S−1
maxȲ

∥∥
2,∞ := λmax ≤ λ . (14)

To ensure the convergence of our algorithm, we use the
duality gap as a stopping criterion (as it guarantees a tar-
geted sub-optimality level). For its computation we there-
fore need to explicitely state the dual optimization problem
of Problem (2):

Proposition 7. With Θ̂ = (Θ̂(1), . . . , Θ̂(r)), the dual for-
mulation of Problem (2) is

Θ̂ = arg max
(Θ(1),...,Θ(r))∈∆X,λ

σ

2

(
1− qnλ2

r

r∑
l=1

Tr Θ(l)Θ(l)>
)

+
λ

r

r∑
l=1

〈
Θ(l), Y (l)

〉
, (15)

with Θ̄ = 1
r

∑r
1 Θ(l) and

∆X,λ =
{

(Θ(1), . . . ,Θ(r)) ∈ (Rn×q)r :∥∥X>Θ̄
∥∥

2,∞ ≤ 1,
∥∥∥ r∑
l=1

Θ(l)Θ(l)>
∥∥∥

2
≤ r

λ2n2q

}
. (16)

Proof of Proposition 7 is in Appendix B.2.

In Algorithm 1 the dual point Θ at iteration t is obtained
through the relations Θ(l) = 1

nqλ (Y (l) −XB) (with B the
current primal iterate), and then projected on ∆X,λ.
Remark 5. Once the quantity covY := 1

r

∑r
1 Y

(l)Y (l)>

has been pre-computed, the cost of updating S in CLaR
does not depend on r, hence is the same as work-
ing with averaged data. Indeed, R being defined as

Algorithm 1 ALTERNATE MIN. FOR CLAR
input : X, Ȳ , σ, λ, f, T
init : B = 0p,q , S−1 = σ−1 Idn, R̄ = Ȳ

covY = 1
r

∑r
l=1 Y

(l)Y (l)> // precomputed

for iter = 1, . . . , T do
if iter = 1 (mod f) then // noise update

RR> = RRT(covY , Y,X,B) // Rk. (5)
S ← ClSqrt( 1

qrRR
>, σ) // Eq. (10)

for j = 1, . . . , p do Lj = X>:j S
−1X:j

for j = 1, . . . , p do // coef. update

R̄← R̄+X:jBj:

Bj: ← BST
(X>:j S−1R̄

Lj
,
λnq

Lj

)
R̄← R̄−X:jBj:

return B, S

R = [Y (1) − XB| . . . |Y (r) − XB], computing RR> =
RRT(covY , Y,X,B) := rcovY + r(XB)(XB)> −
rȲ >(XB) − r(XB)>Ȳ can be done in O(qn2) (details
are in Appendix B.3).

3.3. Statistical comparison

In this section, we show the statistical interest of using all
repetitions of the experiments instead of using a mere aver-
aging as SGCL would do (remind that the later is equivalent
to CLaR with r = 1 and Y (1) = Ȳ , see Remark 2).

Let us introduce Σ∗, the true covariance matrix of the noise
(i.e., Σ∗ = S∗2 with our notation). In SGCL and CLaR al-
ternate minimization consists in a succession of estimations
of B∗ and Σ∗ (more precisely S = ClSqrt(Σ, σ) is esti-
mated along the process). In this section we explain why
the estimation of Σ∗ provided by CLaR has some more in-
teresting statistical properties with respect to one obtained
by SGCL. For that, we can compare the estimates of Σ∗

one would obtain provided that the true parameter B∗ is
known by both SGCL and CLaR. In such “ideal” scenario,
the associated estimators of Σ∗ could be written:

Σ̂CLaR :=
1

qr

r∑
l=1

(Y (l) −XB̂)(Y (l) −XB̂)> , (17)

Σ̂SGCL :=
1

qr

( r∑
l=1

Y (l) −XB̂
)( r∑

l=1

Y (l) −XB̂
)>
,

(18)

with B̂ = B∗, and satisfy the following properties:

Proposition 8. Provided that the true signal is known, and
that the covariance estimator Σ̂CLaR and Σ̂SGCL are de-
fined thanks to Equations (17) and (18), then one can check
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Table 1: Algorithms cost

CD epoch gap computation

CLaR O(n
3+qn2

f + pn2 + pnq) O(rnq + p)

SGCL O(n
3+qn2

f + pn2 + pnq) O(nq + p)

MTLR O(npqr) O(rnq + p)
MTL O(npq) O(nq + p)

that

E(Σ̂CLaR) = E(Σ̂SGCL) = Σ∗ , (19)

cov(Σ̂CLaR) =
1

r
cov(Σ̂SGCL) . (20)

Proof of Proposition 8 can be found in Appendix B.4

Proposition 8 states that Σ̂CLaR and Σ̂SGCL are unbiased
estimators of Σ∗ but our newly introduced CLaR, improves
the estimation of the covariance structure by a factor r, the
number of repetitions performed.

Empirically4, we have also observed that Σ̂CLaR has larger
eigenvalues than Σ̂SGCL, leading to a less biased estimation
of S∗ after clipping the singular values.

4. Experiments
The code is released as an open source package and can be
found here https://github.com/QB3/CLaR. The
implementation is in Python, with Numba compilation
(Lam et al., 2015) to increase the speed of the algorithm.

Comparison with other estimators We compare CLaR
to other estimators: SGCL, the Multi-Task Lasso (MTL,
Obozinski et al. 2010) and a version of the MTL with rep-
etitions: MTLR. Recall that CLaR solves Problem (2) and
that SGCL solves Problem (4); we also remind the defini-
tion of MTL and MTLR:

B̂MTL ∈ arg min
B∈Rp×q

1

2nq

∥∥Ȳ −XB
∥∥2

+ λ ‖B‖2,1 . (21)

With Y = [Y (1)| . . . |Y (r)] ∈ Rn×rq, MTLR first solves:

B̂C ∈ arg min
B∈Rp×rq

1

2nq
‖Y −XB‖2 + λ ‖B‖2,1 , (22)

then the estimator is defined as B̂MTLR = 1
r

∑r
l=1 B̂(l),

with B̂C = [B̂(1)| . . . |B̂(r)].

4in that case we plug B̂ = B̂CLaR (resp. B̂ = B̂CLaR) in
Proposition 8
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Figure 2: ROC curves of true support recovery for the
CLaR, SGCL, MTL and MTLR with ρX = 0.6, ρS = 0.6,
r = 50 for different values of SNR.

The cost of an epoch of coordinate descent and the cost of
computing the gap for each for each algorithm are summa-
rized in Table 1.

4.1. Support recovery

Here we demonstrate the ability of our estimator to recover
the support i.e., the ability to identify the predictive fea-
tures. There are n = 150 observations, p = 500 features,
q = 100 tasks. The design X is random with Toeplitz-
correlated features with parameter ρX = 0.6 (correlation
between X:i and X:j is ρ|i−j|X ), and its columns have unit
Euclidean norm. The true coefficient B∗ has 30 non-zeros
rows whose entries are independent and normally centered
distributed. S∗ is a Toeplitz matrix with parameter ρS . The
SNR is fixed and constant across all repetitions

SNR := ‖XB∗‖/‖XB∗ − Y (l)‖ . (23)

For Figures 2 to 5, fhe figure of merit is the ROC curve,
i.e., the true positive rate against the false positive rate. For
the four estimators, the ROC curve is obtained by varying
the value of the regularization parameter λ on a geometric
grid of 160 points, starting from λmax (specific to each al-
gorithm) to λmin, the latest being also specific and chosen
to obtain large enough false positive rates.

SNR influence On Figure 2 we can see that when the
SNR is high (top left), all curves reach the (0, 1) point.
This means that for each algorithm, there exists a λ such
that the estimated support is exactly the true one. However,
when the SNR decreases (top right, bottom left), the per-
formance of SGCL, MTL and MTLR starts to drop, while

https://github.com/QB3/CLaR
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Figure 3: ROC curves of true support recovery for the
CLaR, SGCL, MTL and MTLR with ρX = 0.6, SNR =
0.03, r = 50 for different values of ρS .

that of CLaR remains stable. Finally, when the SNR is
too low (bottom right), all algorithms perform poorly, but
CLaR still performs better. This highlights the capacity of
CLaR to leverage multiple repetitions of measurements to
finely estimate the heteroscedastic noise.

Noise structure influence Figure 3 represents the ROC
curves of CLaR, SGCL, MTL and MTLR for different val-
ues of ρS . As ρS increases, the noise becomes less and
less heteroscedastic: from top left to bottom right, the per-
formance of CLaR and SGCL increases as they are de-
signed to exploit correlations in the noise, while the perfor-
mance of MTL and MTLR decreases, as their homoscedas-
tic model becomes less and less valid.

The same idea is presented in a different manner in Fig-
ure 4 which shows the cases where CLaR performs well
and poorly. For instance when the structure of the correla-
tion matrix of the noise is close to identity, CLaR performs
poorly. This a limitation of CLaR (and SGCL) as if the
noise turns out to be homoscedastic, CLaR just adds n2/2
model-useless parameters that are likely to fit the noise.

Influence of the number of repetitions Figure 5 shows
ROC curves of CLaR, SGCL, MTL and MTLR for dif-
ferent values of r, starting from r = 1, where CLaR and
SGCL are equivalent (as well as MTL and MTLR), to
r = 100. It can be seen that even with r = 20 CLaR
outperforms the other estimators, and that with r = 100
CLaR benefits more than any of the other algorithms from
the large number of repetitions.
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Figure 4: ROC curves of true support recovery for the
CLaR, SGCL, MTL and MTLR with ρX = 0.6, SNR =
0.03, r = 50 for different values of ρS .

4.2. Real data

We now evaluate our estimators on real magneto and elec-
troencephalography (M/EEG) data. The M/EEG record-
ings measure the electrical potential and magnetic field in-
duced by the active neurons. Data are time series of length
q with n sensors and p sources (locations in the brain).
Because the propagation of the electromagnetic fields is
driven by the linear Maxwell equations, one can assume
that the relation between the measurements Y (1), . . . , Y (r)

and the amplitudes of sources in the brain B∗ is linear. The
M/EEG inverse problem consists in identifying B∗. Be-
cause of the limited number of sensors (a few hundred in
practice), as well as the physics of the problem, the M/EEG
inverse problem is severely ill-posed and needs regulariza-
tion that provides plausible biological solutions. Because
the experiments are usually short (less than 1 s.) and fo-
cused on specific cogntive functions, the number of ac-
tive sources is expected to be small, i.e., B∗ is assumed
to be row-sparse. Thus the M/EEG inverse problem fits the
framework of Section 2.

We use the sample dataset from MNE (Gramfort et al.,
2014). The experimental conditions are here auditory stim-
ulations in the right or left ears or visual stimulations in the
right or left visual fields, leading to different active loca-
tions in the brain (i.e., different B∗ for each type of stimu-
lation). For this experiment, we keep only the gradiometer
magnetic channels, and we reject one of them due to strong
artifacts. This leads to 203 gradiometers, i.e., n = 203
signals. The length of the temporal series is q = 30, and
the data contains r = 50 repetitions. We choose a source



CLaR : Concomitant Lasso with Repetitions

CLaR SGCL MTL MTLR

0.0

0.5

1.0

T
P

R

r = 1 r = 20

0.0 0.2 0.4
FPR

0.0

0.5

1.0

T
P

R

r = 50

0.0 0.2 0.4
FPR

r = 100

Figure 5: ROC curves of true support recovery for the
CLaR, SGCL, MTL and MTLR with ρX = 0.6, ρS = 0.4,
SNR = 0.03, for different values of r.

space of size p = 1281 (oct-3 resolution). The orientation
is fixed, and normal to the cortical mantle.

To generate the semi-real data we use the real design ma-
trix X and the real co-standard deviation matrix S, esti-
mated on pre-stimulation data. We then generate plausible
MEG signals with MNE. The signals being contaminated
with correlated noise, if one wants to use homoscedastic
solvers it is necessary to whiten the data first (and thus to
have an estimation of the covariance matrix, the later often
being poor or not known). In this experiment we demon-
strate that without this whitening process, the homoscedas-
tic solver MTL fails, whereas CLaR succeeds (we dropped
here MTLR since it performed poorly on synthetic data and
was way to slow to converge).

However, it would not make sense to apply our solver di-
rectly on the design matrix X . Here we describe the pre-
processing applied to X and Y , using information from X
only. First we pre-whiten the data Y and the design ma-
trix X by multiplying from the left by the whitener matrix
W0 = diag((‖Xi:‖)i∈[n]). Then, we rescale each column
of the design matrixX to have a (Euclidean) norm of 1. Fi-
nally, as in Section 4.1, Figure 6 is obtained by varying the
estimator-specific regularization parameter λ from λmax to
λmin on a geometric grid.

Results of this experiment are in Figure 6. With (top) 2 ac-
tive sources in the brain, 1 auditory left and 1 auditory right
(i.e., ‖B‖∗2,1 = 2), the MTL estimator performs poorly and
does not recover the full support before reaching a false
positive rate (FPR) of 0.18. It makes sense since the MTL
is not designed to cope with heteroscedastic noise, and the
data is not whitened in this experiment. SGCL also per-
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Figure 6: ROC curves of true support recovery for (top) 2
sources: one left auditory and one right auditory source,
and for (bottom) 3 sources : one left auditory, one right
auditory and one left visual source for the CLaR, SGCL
and MTL with real M/EEG design and noise.

forms poorly, because of its statistical limitations: the num-
ber of observations used to estimate the covariance matrix
in SGCL is too low (here n× q ≈ 6× 103 observations to
estimate n2/2 ≈ 2×104 parameters). CLaR performs bet-
ter and is able to recover the true sources with a lower FPR.
It is worth noting that in CLaR r× q× n ≈ 3× 105 obser-
vations are used to estimate the n2/2 ≈ 2×104 parameters
of the covariance matrix.

Figure 6 (bottom) shows an experiment with 3 active
sources, 1 auditory left, 1 auditory right and 1 visual left,
CLaR can recover 2 sources among 3 with a low FPR,
whereas SGCL and CLaR do not identify 2/3 the sources
before at least a FPR of 0.15.

Conclusion
This work introduces CLaR, a sparse regression estimator
designed to handle heteroscedastic noise in the context of
repeated observations, a standard framework in applied sci-
ences such as neuroimaging. The resulting optimization
problem can be solved efficiently with standard tools, and
the algorithmic cost is the same as for single repetition data.
The theory of smoothing connects CLaR to the Schatten 1-
Lasso in a principled manner, which opens the way for the
smoothing of other Schatten norms. The benefits of CLaR
for support recovery in heteroscedastic context were exten-
sively investigated both on simulations and on real data.
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Notation For a set C ⊂ Rp×q we write ιC for the indicator function of the set C, i.e., ιC(x) = 0 if x ∈ C and ιC(x) = +∞
otherwise, and ΠC for the projection on the (closed convex) set C. For p1 ∈ [1,∞), let us write Bs,p1 for the Schatten-p1

unit ball.

A. Smoothing
A.1. Basic properties of inf-convolution

Proposition 9. Let h : Rd → R be a closed proper convex function and let ω : Rd → R be a convex function with
Lipschitz gradient. Let ωσ := σω

(
·
σ

)
.

The following holds (see Parikh et al. (2013, p. 136)):

h∗∗ = h , (24)
(h�ωσ)∗ = h∗ + ω∗σ , (25)

ω∗σ = σω∗ , (26)

‖·‖∗p = ιBq , where
1

p
+

1

q
= 1 , (27)

(h+ δ)∗ = h∗ − δ ∀δ ∈ Rd , (28)(
1

2
‖·‖2

)∗
=

1

2
‖·‖2 . (29)

From Equations (26), (28) and (29) it follows that

ω(·) =
1

2
‖·‖2 +

1

2
=⇒ ω∗σ =

σ

2
‖·‖2 − σ

2
. (30)

A.2. Smoothing of Schatten norms

In all this section, the variable is a matrix Z ∈ Rn×q .

Lemma 1. Let c ∈ R, p1 ∈ [1,∞]. Let p′1 ∈ [1,∞] be the Hölder conjugate of p1, 1
p1

+ 1
p′1

= 1. For the choice

ω(·) = 1
2 ‖·‖

2
F + c, the following holds true:

(‖·‖s,p1 �ωσ)(Z) =
1

2σ
‖Z‖2F + cσ − σ

2

∥∥∥∥ΠBs,p′1

(
Z

σ

)
− Z

σ

∥∥∥∥2

F

.

Proof.

(‖·‖s,p1 �ωσ)(Z) = (‖·‖s,p1 �ωσ)∗∗(Z) (using Equation (24))

=
(
‖·‖∗s,p1 + ω∗σ

)∗
(Z) (using Equation (25))

=
(
ιBs,p′1

+
σ

2
‖·‖2 − cσ

)∗
(Z) (using Eqs. (27) and (30))

=
(σ

2
‖·‖2 + ιBs,p′1

)∗
(Z) + cσ (using Eq. (28)) . (31)
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We can now compute the last Fenchel transform remaining:(σ
2
‖·‖2F + ιBs,p′1

)∗
(Z) = sup

U∈Rn×q

(
〈U,Z〉 − σ

2
‖U‖2F − ιBs,p′1 (U)

)
= sup
U∈Bs,p′1

(
〈U,Z〉 − σ

2
‖U‖2F

)
= − inf

U∈Bs,p′1

(σ
2
‖U‖2F − 〈U,Z〉

)
= −σ · inf

U∈Bs,p′1

(
1

2
‖U‖2F −

〈
U,
Z

σ

〉)

= −σ · inf
U∈Bs,p′1

(
1

2

∥∥∥∥U − Z

σ

∥∥∥∥2

F

− 1

2σ2
‖Z‖2F

)

=
1

2σ
‖Z‖2F −

σ

2
· inf
U∈Bs,p′1

(∥∥∥∥U − Z

σ

∥∥∥∥2

F

)

=
1

2σ
‖Z‖2F −

σ

2

∥∥∥∥ΠBs,p′1

(
Z

σ

)
− Z

σ

∥∥∥∥2

F

. (32)

The result follows by combining Equations (31) and (32).

A.3. Schatten 1-norm (nuclear/trace norm)

Proposition 1. For the choice ω(·) = 1
2 ‖·‖

2
F + n∧q

2 , then for any Z ∈ Rn×q the following holds true:

(‖·‖s,1 �ωσ)(Z) = min
S�σ Idn

1

2
Tr
(
Z>S−1Z

)
+

1

2
Tr(S) .

Proof. Let V diag(γ1, . . . , γn∧q)W
> be the singular values decomposition of Z. We remind that ΠBs,∞ , the projection

over Bs,∞, is given by (see (Beck, 2017, Example 7.31, p. 192)):

ΠBs,∞

(
Z

σ

)
= V diag

(
ΠB∞

(
γ1

σ
, . . . ,

γn∧q
σ

))
W>

= V diag

(
γ1

σ
∧ 1, . . . ,

γn∧q
σ
∧ 1

)
W> , (33)

where we used that the (vectorial) projection over B∞ is given coordinate-wise by (ΠB∞(γi))i = (γi ∧ 1)i. Then we have,∥∥∥∥ΠBs,∞

(
Z

σ

)
− Z

σ

∥∥∥∥2

F

=

∥∥∥∥V diag

(
γ1

σ
∧ 1− γ1

σ
, . . . ,

γn∧q
σ
∧ 1− γn∧q

σ

)
W>

∥∥∥∥2

F

(using Equation (33))

=

n∧q∑
i=1

(
γi
σ
∧ 1− γi

σ

)2

=
1

σ2

n∧q∑
i=1

(γi ∧ σ − γi)2
. (34)

By combining Equation (32) and Lemma 1 with p′1 =∞, c = n∧q
2 , the later yields

(‖·‖s,1 �ωσ)(Z) = (n ∧ q)σ
2

+
1

2σ

∑
γi≤σ

γ2
i −

1

2

∑
γi≥σ

σ +
∑
γi≥σ

γi . (35)
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Moreover it can be noticed that

min
S∈Sn++

S�σ Idn

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) =

1

2

n∧q∑
i=1

γ2
i

γi ∨ σ
+

1

2

n∧q∑
i=1

γi ∨ σ

=
1

2σ

∑
γi≤σ

γ2
i +

1

2

∑
γi≥σ

γi +
1

2

∑
γi≤σ

σ +
1

2

∑
γi≥σ

γi

=
1

2σ

∑
γi≤σ

γ2
i +

∑
γi≥σ

γi +
1

2

∑
γi≤σ

σ + (n ∧ q)σ
2
− (n ∧ q)σ

2

=
1

2σ

∑
γi≤σ

γ2
i +

∑
γi≥σ

γi + (n ∧ q)σ
2
− 1

2

∑
γi≥σ

σ , (36)

and identifying Equation (36) and Equation (35) leads to the result.

A.4. Schatten 1-norm (nuclear/trace norm) with repetitions

Let Z(1), . . . , Z(r) be matrices in Rn×q , then we define Z ∈ Rn×qr by Z = [Z(1)| . . . |Z(r)].

Proposition 10. For the choice ω(Z) = 1
2 ‖Z‖

2
F + n∧qr

2 , then the following holds true:

(‖·‖s,1 �ωσ(·))(Z) = min
S�σ Idn

1

2

r∑
l=1

Tr
(
Z(l)>S−1Z(l)

)
+

1

2
Tr(S) .

Proof. The result is a direct application of Proposition 1, with Z = [Z(1)| . . . |Z(r)]. It suffices to notice that
TrZ>S−1Z =

∑r
l=1 Tr

(
Z(l)>S−1Z(l)

)
.

A.5. Schatten 2-norm (Frobenius norm)

Proposition 11. For the choice ω(·) = 1
2 ‖·‖

2
F + 1

2 , and for Z ∈ Rn×q then the following holds true:

(‖·‖F �ωσ)(Z) = min
σ≥σ

(
1

2σ
‖Z‖2F +

σ

2

)
=

{
‖Z‖2F

2σ + σ
2 , if ‖Z‖F ≤ σ

‖Z‖F , if ‖Z‖F > σ
.

Proof. Let us recall that ‖·‖F = ‖·‖s,2, then

ΠBs,2

(
Z

σ

)
=

{
0, if ‖Z‖F ≤ σ
Z
‖Z‖F

, if ‖Z‖F > σ
. (37)

By combining Equation (37) and Lemma 1 with p′1 = 2, c = 1
2 , the later yields

(‖·‖F �ωσ)(Z) =

{
1

2σ ‖Z‖
2
F + σ

2 , if ‖Z‖F ≤ σ
‖Z‖F , if ‖Z‖F > σ

.

A.6. Schatten infinity-norm (spectral norm)

Proposition 12. For the choice ω(·) = 1
2 ‖·‖

2
F + 1

2 and for Z ∈ Rn×q , then the following holds true:

(‖·‖s,∞�ωσ)(Z) =

{
1

2σ ‖Z‖
2
F + σ

2 , if ‖Z‖1 ≤ 1
σ
2

∑n∧q
i=1

( γ2
i

σ2 − γ2
)

+
+ σ

2 if ‖Z‖1 > 1
,

where γ ≥ 0 is defined by the implicit equation∥∥∥∥(ST
(γ1

σ
, γ
)
, . . . ,ST

(γn∧q
σ

, γ
))∥∥∥∥

1

= 1 (38)
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Proof. We remind that ΠBs,∞ , the projection over Bs,1, is given by Beck (2017, Example 7.31, p. 192):

ΠBs,1

(
Z

σ

)
=


Z

σ
, if ‖Z‖s,1 ≤ σ

V diag(ST(γiσ , γ))W>, if ‖Z‖s,1 > σ
, (39)

γ being defined by the implicit equation∥∥∥∥(ST
(γ1

σ
, γ
)
, . . . ,ST

(γn∧q
σ

, γ
))∥∥∥∥

s,1

= 1 . (40)

By combining Equation (37) and Lemma 1 (with p′1 =∞, c = 1
2 ) it follows that

(‖·‖F �ωσ)(Z) =


1

2σ ‖Z‖
2
F + σ

2 , if ‖Z‖1 ≤ σ
1

2σ ‖Z‖
2
F + σ

2 −
σ
2

∥∥∥ΠBs,1

(
Z
σ

)
− Z

σ

∥∥∥2

F
, if ‖Z‖1 > σ

. (41)

Let us compute
∥∥∥ΠBs,1

(
Z
σ

)
− Z

σ

∥∥∥2

F
, if ‖Z‖s,1 > σ we have

∥∥∥∥ΠBs,1

(
Z

σ

)
− Z

σ

∥∥∥∥2

F

=
1

σ2

∥∥V diag((γi − γσ)+ − γi)W>
∥∥ (using Equation (39))

=
1

σ2

n∧q∑
i=1

(
(γi − γσ)+ − γi

)2
=

1

σ2

( n∧q∑
γi≥γσ

γ2σ2 +

n∧q∑
γi<γσ

γ2
i

)
. (42)

By plugging Equation (42) into Equation (41) it follows, that if ‖Z‖s,1 > σ

(‖·‖F �ωσ)(Z) =
1

2σ

n∧q∑
i=1

γ2
i +

σ

2
− 1

2σ

n∧q∑
γi≥γσ

γ2σ2 − 1

2σ

n∧q∑
γi<γσ

γ2
i

=
1

2σ

n∧q∑
γi≥γσ

(
γ2
i − γ2σ2

)
+
σ

2

=
σ

2

n∧q∑
i=1

(
γ2
i

σ2
− γ2

)
+

+
σ

2
. (43)

Proposition 12 follows by plugging Equation (43) into Equation (41).

B. Proofs CLaR
B.1. Proof of Proposition 2

Proof. Proposition 2 follows from Appendix A.4 by choosing Z = 1√
rq [Y (1) −XB, . . . , Y (r) −XB] and by taking the

arg min over B.
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B.2. Proof of Proposition 7

Proof. Let the primal optimum be

p∗ := min
B∈Rp×q
S�σ

1

2nqr

r∑
l=1

∥∥∥Y (l) −XB
∥∥∥2

S−1
+

1

2n
Tr(S) + λ ‖B‖2,1

Then

p∗ = min
B∈Rp×q

R(l)=Y (l)−XB, ∀l∈[r]
S�σ

1

2nqr

r∑
l=1

∥∥∥R(l)
∥∥∥2

S−1
+

1

2n
Tr(S) + λ ‖B‖2,1

= min
B∈Rp×q

R(1),...,R(r)∈Rn×q
S�σ

max
Θ(1),...,Θ(r)∈Rn×q

1

2nqr

r∑
l=1

∥∥∥R(l)
∥∥∥2

S−1
+

1

2n
Tr(S) + λ ‖B‖2,1 +

λ

r

r∑
l=1

〈
Θ(l), Y (l) −XB−R(l)

〉
.

Since Slater’s conditions are met min and max can be inverted:

p∗ = max
Θ(1),...,Θ(r)∈Rn×q

min
B∈Rp×q

R(1),...,R(r)∈Rn×q
S�σ

1

2nqr

r∑
l=1

∥∥∥R(l)
∥∥∥2

S−1
+

1

2n
Tr(S) + λ ‖B‖2,1 +

λ

r

r∑
l=1

〈
Θ(l), Y (l) −XB−R(l)

〉

= max
Θ(1),...,Θ(r)∈Rn×q

(
min
S�σ

1

r

r∑
l=1

min
R(l)∈Rn×q

(∥∥R(l)
∥∥2

S−1

2nq
−
〈

Θ(l), R(l)
〉)

+ λ min
B∈Rp×q

(
‖B‖2,1 −

〈
Θ̄, XB

〉)
+

Tr(S)

2n
+
λ

r

r∑
l=1

〈
Θ(l), Y (l)

〉)
. (44)

Morover we have

min
R(l)∈Rn×q

(∥∥R(l)
∥∥2

S−1

2nq
−
〈

Θ(l), R(l)
〉)

= −nqλ
2

2

〈
Θ(l)Θ(l)>, S

〉
and

min
B∈Rp×q

(
‖B‖2,1 − 〈Θ̄, XB〉

)
= −max

(
〈X>Θ̄,B〉 − ‖B‖2,1

)
= −ιB2,∞(X>Θ̄) .

This leads to:

d∗ = max
Θ(1),...,Θ(r)∈Rn×q

min
S�σ
−1

r

r∑
l=1

nqλ2

2

〈
ΘlΘl>, S

〉
− λιB2,∞(X>Θ̄) +

Tr(S)

2n
+
λ

r

r∑
l=1

〈Θ(l), Y (l)〉

= max
Θ(1),...,Θ(r)∈Rn×q

1

2n
min
S�σ

(〈
Idn, S

〉
− qn2λ2

r

r∑
l=1

〈
Θ(l)Θ(l)>, S

〉)
− λιB2,∞(X>Θ̄) +

λ

r

r∑
l=1

〈Θl, Y (l)〉

= max
Θ(1),...,Θ(r)∈Rn×q

1

2n
min
S�σ

〈
Idn−

qn2λ2

r

r∑
l=1

Θ(l)Θ(l)>S

〉
− λιB2,∞(X>Θ̄) +

λ

r

r∑
l=1

〈Θl, Y (l)〉 . (45)

min
S�σ

〈
Idn−

qn2λ2

r

r∑
l=1

Θ(l)Θ(l)>, S

〉
=


〈

Idn−
qn2λ2

r

∑r
l=1 Θ(l)Θ(l)>, σ

〉
, if Idn− qn

2λ2

r

∑r
l=1 Θ(l)Θ(l)> � 0

−∞, otherwise.
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It follows that the dual problem of CLaR is

max
(Θ(1),...,Θ(r))∈∆X,λ

σ

2

(
1− qnλ2

r

r∑
l=1

Tr Θ(l)Θ(l)>
)

+
λ

r

r∑
l=1

〈
Θ(l), Y (l)

〉
, (46)

where ∆X,λ =
{

(Θ(1), . . . ,Θ(r)) ∈ Rn×q×r :
∥∥X>Θ̄

∥∥
2,∞ ≤ 1,

∥∥∥∑r
l=1 ΘlΘl>

∥∥∥ ≤ r
λ2n2q

}
.

B.3. Proof of Remark 5

Proof.

RR> =

r∑
l=1

R(l)R(l)>

=

r∑
l=1

(Y (l) −XB)(Y (l) −XB)>

=
r∑
l=1

Y (l)Y (l)> −
r∑
1

Y (l)(XB)> −
r∑
1

XBY (l)> + rXB(XB)>

= rcovY − rȲ >XB− r(XB)>Ȳ + rXB(XB)> (47)

B.4. Proof of Proposition 8

Let us recall that

ΣSGCL =
1

qr
(

r∑
l=1

R(l))(

r∑
l=1

R(l))> ,

and

ΣCLaR =
1

qr

r∑
l=1

R(l)R(l)> .

B.4.1. PROOF OF EQUATION (19)

Proof. If B = B∗, R(l) = S∗E(l), where E(l) are random matrices with normal i.i.d. entries, and the result trivially
follows.

B.4.2. PROOF OF EQUATION (20)

Proof. If B̂ = B∗, Y (l) −XB̂ = S∗E(l), where the E(l)’s are random matrices with normal i.i.d. entries.

Now, on the one hand :

Σ̂SGCL =
1

qr

(
r∑
l=1

S∗E(l)

)(
r∑
l=1

S∗E(l)

)>
.

Since 1√
r

∑r
l=1 S

∗E(l) ∼
law

S∗E it follows that

Σ̂SGCL ∼
law

1

q
S∗E(S∗E)>,

cov(Σ̂SGCL) =
1

q2
cov(S∗E(S∗E)>) .
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On the other hand:

Σ̂CLaR =
1

qr

r∑
l=1

S∗E(l)(S∗E(l))> .

Since the E(l)’s are independent it follows that

cov(Σ̂CLaR) =
1

r2q2

r∑
l=1

cov(S∗E(l)(S∗E(l))>)

=
1

r2q2

r∑
l=1

cov(S∗E(S∗E)>)

=
1

rq2
cov(S∗E(S∗E)>)

=
1

r
cov(Σ̂SGCL) .


