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Abstract: Invariant set theory has been recognized as an important tool for control design
of constrained systems subject to disturbances. Indeed, for a given control law, entering an
invariant set guarantees recursive state and input constraint satisfaction in closed-loop. This
paper focuses on discrete-time linear systems subject to bounded matched additive disturbance.
The problem of the joint synthesis of control laws and associated invariant sets that are optimized
with regards to the state constraints is investigated. An interpolation method is used to enlarge
the controllable region.
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1. INTRODUCTION

Constrained control of dynamic systems in presence of
disturbance faces two main challenges: the impact of the
disturbances on the local behavior around a nominal
equilibrium and the characterization of the controllable
region. Both challenges have been addressed in several
control design frameworks according to the tools and
modelling assumptions: set theoretic methods (Blanchini
(1999)), interval based approaches (Jaulin (2000)), or
robust Model Predictive Control (Mayne et al. (2005)).
Set theoretic methods require a set description of the
disturbances. A systematic way to assess the influence of
disturbances is to compute invariant sets. Indeed, invari-
ant sets are certificates for robust constraints satisfaction,
recursive feasibility, and mitigation of the disturbances for
a given control law (Mayne et al. (2000)). Such approaches
have been studied in the context of model predictive con-
trol (Mayne et al. (2005)), robust time-optimal control
(Mayne and Schroeder (1997)), or design of reference gov-
ernors (Falcone et al. (2009)). A series of results regarding
invariant set have been established for linear systems, with
a linear control law, subject to additive bounded distur-
bance, see for example Kolmanovsky and Gilbert (1998).
Of particular interest is the so-called minimal Robust Pos-
itively Invariant (mRPI) set. It is defined as the smallest
invariant set for a given disturbance set (Rakovic̀ et al.
(2005)). It corresponds to the limit set of state trajectories
for any sequence of disturbances. Characterization of the
controllable region can also be addressed by set theoretic
methods (Blanchini (1999); Mayne et al. (2005)). The set
of interest for such controllability analysis is the largest

invariant set respecting the constraints, denoted Maximal
Robustly Positively Invariant (MRPI) set.
Previous work has focused on the joint synthesis of control
laws and associated invariant sets tailored to state or input
constraints (Corradini et al. (2014); Nguyen (2012); Tahir
and Jaimoukha (2015); Rakovic̀ et al. (2007); Michel et al.
(2018)). In Rakovic̀ et al. (2007), a characterization of
families of robust control invariant sets, based on outer
approximations of the mRPI set, is proposed. This char-
acterization can be used to establish optimized invariant
sets regarding the state and input constraints. The control
design in Michel et al. (2018) considers bounded matched
additive disturbance and adopts a sliding mode strategy.
The resulting control law is the linear feedback gain min-
imizing the mRPI projection in a predefined direction.
In this paper we extend the linear control law and associ-
ated invariant set design strategy of Michel et al. (2018) to
a larger class of state constraints, and we account for input
constraints. The impact of the disturbances around the
nominal equilibrium is further mitigated by relaxing the
linear control structure, allowing for smaller invariant sets
in the direction of the state constraints. An interpolation-
based control design is then proposed to enlarge the con-
trollable region.
The paper is organized as follows. Section 2 presents the
class of system studied and important definitions. Sec-
tion 3 introduces results on the design of invariant set
tailored to the state constraints. Section 4 proposes an
interpolation based method to enlarge the controllable
region. Section 5 gives illustrative examples of the results.
Finally, Section 6 draws conclusion and discusses perspec-
tives.



Notation: For a positive integer p, define Ip = {1, ..., p}.
For a vector h ∈ Rn, denote hi its ith element, de-
fine ||h||∞ = max|hi|, i ∈ In, and |h| = [|h1| ... |hn|]>.
For two vectors x and y, x ≤ y (x < y) denotes
the element-wise (strict) inequalities between their com-
ponents. Define 1p the vector of ones of dimension p.
The ith power of a matrix A is denoted Ai. The ith

line of a matrix A is denoted Ai. Define the set of
invertible matrices Gn = {A ∈ Rn×n | det(A) 6= 0}. The
set of Schur matrices of dimension n is denoted Cn.
For a matrix A ∈ Rm×n and a set X ⊆ Rn, de-
fine the set AX = {y ∈ Rm | y = Ax, x ∈ X}. Given two
sets A,B, define A ⊕ B = {a+ b | a ∈ A, b ∈ B} and A 	
B = {x | {x} ⊕ B ⊆ A}. The boundary of a set A is
denoted ∂A.

2. PRELIMINARIES

Consider the following discrete-time linear time-invariant
system

x+ = Ax+B(u+ w), B =
[
0⊥n−m,m Im

]> (1)
where x ∈ Rn is the state, u ∈ Rm is the input, w ∈ W ⊆
Rm is an unknown bounded disturbance, and we assume
that m < n. Note that any system x+ = Āx + B̄(u + w)
with rank(B̄) = m can be written as (1) with a linear
change of coordinates. The system (1) is subject to the
state and input constraints

x ∈ X = {x ∈ Rn | |Hx| ≤ 1p} , u ∈ U , (2)
where H ∈ Rp×n, m ≤ p. The sets U and W are bounded
polytopes containing the origin in their interior. This
paper focuses on the stabilization of (1) to a neighborhood
of the origin, characterized in terms of invariant set, along
with the characterization of the controllable region.
The following definitions are based on invariant set the-
ory (Blanchini (1999); Kolmanovsky and Gilbert (1998)).
Definition 1. The set Z is said to be Robustly Controlled
positively Invariant (RCI) for the system (1) and con-
straint set (X ,U ,W) if Z ⊆ X , and ∀x ∈ Z there
exists u ∈ U such that Ax+B(u+ w) ∈ Z,∀w ∈ W.

In the following, an RCI set will refer to an RCI set for
the system (1) and constraint set (X ,U ,W).
Given a state feedback control law ν : Rn → Rm, we define
the set Xν = {x ∈ X | ν(x) ∈ U} .
Definition 2. A set Z ⊆ Rn is said Robustly Positively
Invariant (RPI) for the system x+ = Ax + B(ν(x) + w)
and constraint set (Xν ,W), if Z ⊆ Xν , and ∀x ∈ Z, Ax+
B(ν(x) + w) ∈ Z,∀w ∈ W.
Remark 1. Note that an RPI set for the system x+ = Ax+
Bν(x) + Bw and constraint set (Xν ,W) is an RCI set.
Likewise, from any RCI set Z it is possible to define a
state feedback ν : Z → U such that Z is an RPI set
for the system x+ = Ax + Bν(x) + Bw and constraint
set (Xν ,W) (see Rakovic̀ et al. (2007)).

The following definitions consider a linear state feedback
law ν(x) = Kx, and we define the polytopic set XK =
{x ∈ X | Kx ∈ U} .
Definition 3. The Maximal Robustly Positively Invariant
(MRPI) set for the system x+ = (A + BK)x + Bw and

constraint set (XK ,W) is defined as the RPI set containing
all the RPI sets, denoted here O∞(K).
Definition 4. The minimal Robust Positively Invariant
(mRPI) set for the system x+ = (A + BK)x + Bw and
constraint set (XK ,W) is defined as the RPI set contained
in any closed RPI set.

If A+ BK is Schur, the mRPI for the system x+ = (A+
BK)x+Bw and constraint set (Rn,W) exists, is unique,
compact and contains the origin in its interior. Moreover,
it is given by the following infinite Minkowski sum

Z∞(K) =
∞⊕
i=0

(A+BK)iBW.

An RPI for the system x+ = (A + BK)x + Bw and
constraint set (Xν ,W) exists if and only if Z∞(K) ⊆ XK .
Remark 2. In general, we do not have an explicit charac-
terization of the set Z∞(K). For computational purposes,
polytopic outer approximations of this set are sought
(Olaru et al. (2010); Rakovic̀ et al. (2005)).

The local behavior around the origin can be characterized
in terms of RCI sets, or RPI sets and their associated
control law. In this paper, we want to design a local control
law that mitigates the impact of the disturbances on the
state constraints satisfaction. Hence, our goal is to design
a control law and an associated RPI set, or an RCI set,
that is minimal in the direction of the state constraints. To
this local control strategy we add an interpolation-based
control design to enlarge the controllable region.
A measure to evaluate the minimality of invariant sets
with regards to the state constraints is introduced in the
following section.

3. INVARIANT SET DESIGN

The criterion for the design of RCI sets Z is the minimiza-
tion of

h(Z, H) = max
x∈Z

||Hx||∞. (3)

Indeed, Z accounts for the impact of the disturbance,
and H characterizes the direction of the state constraints.
However, we do not have an explicit characterization of all
the RCI sets for the system (1). The proposed approach
is to first minimize (3) among mRPI obtained with linear
control laws, which is a choice for the computation of RPI
sets using existing methods (Olaru et al. (2010); Rakovic̀
et al. (2005)). The linear control structure is then relaxed
to construct a decreasing sequence of RCI sets starting
from this mRPI.
The computation of a feedback gain leading to an mRPI
minimizing (3) is presented below and a strategy to further
improve the solution by relaxing the linear control law
structure is presented in Section 3.2.

3.1 Invariant set design using linear state feedback

We now briefly recall the results in Michel et al. (2018) for
the minimization of (3) with (1)-(2), p = m and U = Rm.
The design method allows to compute the linear control
law ν(x) = Kx whose mRPI set Z∞(K) minimizes (3)



under the assumptions that the matrix H = [HB⊥ HB ]
satisfies HB ∈ Gm. In this paper, we propose a strategy
that extends the approach for the case p > m.
Let us consider the matrices Hσi ∈ Rm×n, i ∈ {1, ...,

(
p
m

)
}

as the matrices obtained from the combination of m
distinct rows out of the p rows ofH. Consider the partition
of those matrices, Hσi = [Hσi,B⊥ Hσi,B ], and define
the set H =

{
Hσi , i ∈ {1, ...,

(
p
m

)
} | Hσi,B ∈ Gm

}
. From

every matrix Hσi ∈ H we compute the linear control
law νσi(x) = Kσix with the method presented in Michel
et al. (2018) that minimizes

h(Z, Hσi) = max
x∈Z

||Hσix||∞. (4)

Define the set

K =
{
Kσi , i ∈

{
1, ...,

(
p

m

)}
|

Hσi ∈ H,KσiZ∞(Kσi) ⊆ U
}

This set contains the linear feedback gains Kσi obtained
from the matrices Hσi ∈ H, and such that Z∞(Kσi) is an
RPI set for the system (1) and constraint set (X ,U ,W).
If the set K is non-empty, we chose the element minimiz-
ing (3), that is

K = arg min
Kσi∈K

max
x∈Z∞(Kσi )

||Hx||∞. (5)

Using these elements we are able to state the following
result.
Proposition 1. If Z∞(K) ⊆ X , then robust asymptotic
stability of the set Z∞(K) is achieved with a region of
attraction O∞(K). Additionally, the finite determination
of O∞(K) is guaranteed.

The strategy presented here allows to take the state
constraints into account in the design of a linear feedback
gain and construct the associated mRPI in a direct manner
by exploiting the matched properties of the disturbance. If
the set K is empty, alternative design strategies based on
the complete characterization of the RCI sets taking into
account input constraints are to be sought (Nguyen (2012);
Rakovic̀ et al. (2007); Tahir and Jaimoukha (2015)).
In the next section we propose to improve the solution
proposed in this section by relaxing the linear control
structure and allowing for nonlinear control policies.

3.2 Refinement of RCI sets with nonlinear control laws

In the previous section we imposed a linear structure
to the control law in the design of an RPI set. We
now propose an optimization-based method to obtain a
decreasing sequence of RCI sets with nonlinear control
policies starting from a polytopic RCI set.
Let Ω0 be a polytopic RCI set. We consider the control
law ν0 : Ω0 → U :

ν0(x) = arg minimize
u

α

subject toAx+Bu ∈ Ω0 	BW (6)
H(Ax+Bu) ∈ αH(Ω0 	BW)
u ∈ U (7)
0 ≤ α ≤ 1 (8)

which, thanks to (6), (7), and (8), satisfies
∀x ∈ Ω0, Ax+Bν0(x) ∈ Ω0 	BW, ν0(x) ∈ U .

The above definition of ν0 seeks to minimize the scaling
factor α in the direction of the state constraints defined
by the matrix H as in (2). From the definition of an
RCI set, the feasible domain of the above optimization
problem is guaranteed to be non-empty. Note that the
above optimization problem is convex (convex constraints
and linear cost function).
We then define the set Ω1 as

Ω1 = ConvexHull {Av +Bν0(v), v ∈ V(Ω0)} ⊕BW.

By construction, the set Ω1 is polytopic, satisfies Ω1 ⊆ Ω0,
and is an RPI set for the system x+ = Ax+Bν0(x) +Bw
and constraint set (Xν0 ,W).
Remark 3. Note that the image set, namely
{z ∈ Rn | z = Ax+Bν0(x) +Bw, x ∈ Ω0, w ∈ W}

might not be convex.

Likewise, we can define a sequence of polytopic RCI sets
Ωi, i ∈ N, as
Ωi+1 = ConvexHull {Av +Bνi(v), v ∈ V(Ωi)}⊕BW, i ∈ N,
where

νi(x) = arg minimize
u

α

subject toAx+Bu ∈ Ωi 	BW
H(Ax+Bu) ∈ αH(Ωi 	BW)
u ∈ U
0 ≤ α ≤ 1.

By construction, we have ∀i ∈ N,∀j ∈ N, Ωi+j ⊆ Ωi, thus
the objective (3) decreases (not strictly) as i increases.
Let k ∈ N, and let Ω = Ωk. Consider the following control
law ν : Ω0 → U :

ν(x) = νk(x), x ∈ Ωk, (9a)
ν(x) = νi(x), x ∈ Ωi\Ωi+1, i ∈ {0, ..., k − 1}, (9b)
ν(x) = ν0(x), x ∈ Ω0. (9c)

For all x ∈ Ω0, finite time convergence to Ω is guaranteed.
Indeed, if x ∈ Ωi, i ∈ Ik−1, x+ = Ax + Bν(x) + Bw ∈
Ωi+1,∀w ∈ W.
We have presented a method to construct, starting from a
polytopic RCI set, a decreasing sequence of polytopic RCI
sets that aims at minimizing (3).
In the following section we define the control law ν(x)
outside of the set Ω0 using interpolation-based methods
to extend the controllable region.

4. ENLARGEMENT OF THE CONTROLLABLE
REGION

The previous section focused on the behavior of the system
in a neighborhood around the origin. The proposed control
law is defined locally. We now propose a method to enlarge
the controllable region using interpolation-based control.
Let K be the stabilizing gain as given in (5), Ω0 be a
polytopic outer approximation of the mRPI Z∞(K), and



Ω = Ωk for a given k ∈ N, the kth element of the decreasing
polytopic RCI sets sequence starting from Ω0 as defined
in Section 3.2.
A first step to enlarge the basin of attraction is to define
the control law on the set O∞(K)\Ω0 as

ν(x) = Kx, x ∈ O∞(K)\Ω0. (10)
Indeed, any element of O∞(K)\Ω0 is robustly steered to
Ω0 with the linear control law u = Kx.
The definition of the control law outside of O∞(K) pro-
posed here relies on the existence of L−1 stabilizing control
laws uj(x), j ∈ {2, ..., L} and associated RPI sets Xj ⊆
X , j ∈ {2, ..., L}. That is ∀j ∈ {2, ..., L},∀x ∈ Xj ,

uj(x) ∈ U , Ax+B(uj(x) + w) ∈ Xj ,∀w ∈ W.

We denote u1(x) the control law given by (9) and (10),
and X1 = O∞(K).
Remark 4. The sets Xj , j = {2, ..., L} are assumed to be
convex and compact. This assumption is not restrictive
provided Conv{Xj} is an admissible convex RPI set.

Several methods to design the pairs uj(x),Xj exist in the
literature. Among those, we can cite
• an LMI-based method to compute the invariant el-
lipsoid E(x0), and the associated feedback gain u =
Kx0x, that contains the most important extension
on a direction defined by a reference point (Nguyen
(2012)). This is of particular interest to enlarge the
basin of attraction in specific directions.
• Tube-based Model Predictive Control (Mayne et al.
(2006)).

Let us now define Xch = Conv ({Xj , j ∈ IL}) .

Any point x ∈ Xch can be written x =
∑L
j=1 λjxj , with∑L

j=1 λj = 1, λj ≥ 0, xj ∈ Xj ,∀j ∈ IL.
Remark 5. The above expression of x is not unique.

By denoting x̂j = λjxj , we have x =
∑L
j=1 x̂j and x̂j ∈

λjXj . To perform a selection among the feasible λj and x̂j
at each time-step, we minimize online the following linear
cost function subject to convex constraints

minimize
λj ,x̂j ,j∈IL

− λ1 (11)

subject to x =
L∑
j=1

x̂j

x̂j ∈ λjXj ,∀j ∈ IL
λj ≥ 0,∀j ∈ IL
L∑
j=1

λj = 1

Let us denote (x̂∗j (x), λ∗j (x)), j ∈ IL the solution of (11)
for the state x, and define for all j ∈ IL,

x∗j (x) =
x̂∗j (x)
λ∗j (x) , if λ∗j 6= 0,

x∗j (x) = 0, if λ∗j = 0.
The dependency on x will be dropped for clarity purpose.
We use this selection to define the control law ν : Xch → U ,

ν(x) =
L∑
j=1

λ∗juj(x∗j ). (12)

Note that ∀x ∈ X1, ν(x) = u1(x). We have the following
result regarding the above control law.
Proposition 2. The set Xch is an RPI set for the sys-
tem x+ = Ax+Bν(x) +Bw and constraint set (Xν ,W).

Proof. Let x ∈ Xch and w ∈ W. We have ∀j ∈ IL,
uj(x∗j ) ∈ U , x∗+j = Ax∗j +Buj(x∗j ) +Bw ∈ Xj .

Moreover, x+ satisfies

x+ =
L∑
j=1

λ∗j
(
Ax∗j +Buj(x∗j ) +Bw

)
=

L∑
j=1

λ∗jx
∗+
j . (13)

Since the set U is convex, and by definition of the set Xch,
we have ν(x) ∈ U , x+ ∈ Xch. 2

In view of the stability analysis for the closed-loop system,
we introduce the following positive definite function:

V (x) = 1− λ∗1(x).
Based on the constraints on the interpolation factors we
have, ∀x ∈ Xch, 0 ≤ V (x) ≤ 1, and V (x) = 0 if and only
if x ∈ X1.

Proposition 3. The control law (12) ensures that the
closed-loop system is robustly stable in the sense of Lya-
punov (non-increase along the system trajectories) for all
initial conditions x ∈ Xch.

Proof. From (13), ∀w ∈ W, the pairs (λ∗jx∗+j , λ∗j ), j ∈ IL
satisfy the constraints of the optimization problem (11) for
the state x+.
Hence, ∀x ∈ Xch,∀w ∈ W, V (x+) ≤ 1− λ∗1(x) = V (x) 2

Let us introduce the following definition.
Definition 5. (Robust Contractivity) A set S is α robustly
contractive for the closed-loop system x+ = f(x,w), w ∈
W if there exists 0 ≤ α < 1 such that

∀x ∈ S,∀w ∈ W, x+ ∈ αS.

The following assumption will be considered in view of the
convergence analysis.
Assumption 1. The sets Xj , j ∈ IL are respectively αj
robustly contractive for the closed-loop systems x+ = Ax+
B(uj(x) + w), w ∈ W.

Let us define α = max({αj , j ∈ IL}) in view of the
following result.
Proposition 4. The set Xch is α robustly contractive for
the closed-loop system x+ = Ax + Bν(x) + Bw,w ∈ W
with ν(x) defined in (12) and under the conditions of the
Assumption 1.

Proof. Let x ∈ Xch. From Assumption 1, we have, ∀j ∈
IL,∀w ∈ W, x∗+j = Ax∗j + B(uj(x∗j ) + w) ∈ αjXj ⊆ αXj .
Hence, x+ =

∑L
j=1 λ

∗
jx
∗+
j ∈ αXch. 2

Proposition 5. The control law (12) ensures that the
set X1 is robustly asymptotically stable for all initial
conditions x ∈ Xch.

Proof. First, let us prove that if V (x) = 1 then x ∈ ∂Xch.



Let us assume that x 6∈ ∂Xch. Then, ∃ε > 0 such
that (1+ε)x ∈ Xch. Moreover, X1 has a non-empty interior,
hence ∃δ > 0 such that δx ∈ X1.
Considering γ = min(ε, δ), we have concomitantly

(1 + γ)x ∈ Xch, γx ∈ X1.

If γ ≥ 1, then δ ≥ 1 and it follows x ∈ X1, which leads
to V (x) = 0. Else, if γ < 1 and we can rewrite x as

x = (1− γ)((1 + γ)x) + γ(γx),
where (1 + γ)x ∈ Xch, γx ∈ X1, 0 < (1 − γ) < 1
and 0 < γ < 1. Hence we get V (x) ≤ 1 − γ < 1. We
conclude that if V (x) = 1 then x ∈ ∂Xch.
Let w ∈ W. To prove robust asymptotic stability of the
set X1, we consider three cases regarding the value of V (x).
Case 1: V (x) = 1. From Proposition 4, we have x+ ∈
αXch. Thus, V (x+) < 1 = V (x).
Case 2: 0 < V (x) < 1. We have λ∗1(x) > 0. Given
that the set X1 is α1 robustly contractive, x∗+1 ∈ α1X1.
Moreover, X1 has an non-empty interior, hence ∃ε > 0 such
that x∗+1 + ε(x+ − x∗+1 ) ∈ X1. Note that if ε ≥ 1, x+ ∈ X1
and thus V (x+) = 0. Else, we denote

z1 = x∗+1 + ε(x+ − x∗+1 ) ∈ X1. (14)

This leads to x∗+1 = z1 − εx+

1− ε . We can rewrite x+ asx+ =

λ∗1
z1 − εx+

1− ε +
∑L
j=2 λ

∗
jx
∗+
j . Hence, x+(1 + λ∗1

ε

1− ε ) =

λ∗1
z1

1− ε +
∑L
j=2 λ

∗
jx
∗+
j .This is equivalent to

x+ = λ∗1z1

1− ε(1− λ∗1) +
L∑
j=2

λ∗j

(1 + λ∗1
ε

1− ε )
x∗+j .

From 0 < ε < 1, we have λ∗1 >
λ∗1

1− ε(1− λ∗1) > 0.

Moreover, we can show that
λ∗1

1− ε(1− λ∗1) +
L∑
j=2

λ∗j

(1 + λ∗1
ε

1− ε )
= 1

and ∀j ∈ IL,
λ∗j

(1 + λ∗1
ε

1− ε )
≥ 0. This proves

V (x+) ≤ 1− λ∗1
1− ε(1− λ∗1) < 1− λ∗1 = V (x).

Case 3: V (x) = 0. The control action is given by ν(x) =
u1(x) and it guarantees x+ ∈ X1. Hence, V (x+) = 0.
This proves robust asymptotic stability of the set X1 for
any initial condition x ∈ Xch. 2

We have proposed a design strategy to enlarge the control-
lability of the local control law defined in the previous sec-
tion. Convergence properties have been established with
regards to different assumptions on the sets considered for
the interpolation-based control strategy.

5. SIMULATION RESULTS

The results presented in Section 3 and 4 are now illus-
trated. Consider the following system, constraints and
disturbance set

x+ = Ax+B(u+ w), A =
[
1 1
0 1

]
, B =

[
0
1

]
,

X =
{
x ∈ R2 | |Hx| ≤ 13

}
, H =

[ 0.375 0.25
0.1786 0.357
−0.25 0.25

]
,

U = {u ∈ R | |u| ≤ 1.5} ,W = {w ∈ R | |w| ≤ 0.5} .
In this exemple, p = 3, n = 2, and m = 1. The 1 × 3
submatrices of H verifying H ∈ H are Hi, i = 1, 2, 3.
We use the results in Michel et al. (2018) to obtain the
associated gains
K1 = [−0.9 −1.9] ,K2 = [−0.5 −1.5] , K3 = [−1.5 −2.5] .
In this scenario, it is possible to have an explicit represen-
tation of the sets Z∞(Ki) given the eigenstructure of the
matrices A+BKi and the dimensions of the problem. We
represent these sets and the state constraints in Figure 1.
Note that Z∞(Ki) ⊆ X , for all i ∈ {1, 2, 3}. We have

K1Z∞(K1) = [−1.2 ; 1.2] ,K2Z∞(K2) = [−1 ; 1] ,
K3Z∞(K3) = [−3.5 ; 3.5] .

For Z∞(Ki) to be an RPI set, it has to satisfy Z∞(Ki) ⊆
X and KiZ∞(Ki) ⊆ U . Hence, the gain K3 is not
admissible. Moreover, we have

h(Z∞(K1), H) = 0.44, h(Z∞(K2), H) = 0.5.

The set Z∞(K1) minimizes (3). Due to the dimension of
the problem and the proposed approach, the refinement
proposed Section 3 does not reduce the invariant set
(Ω1 = Ω0 = Z∞(K1)). The MRPI of the feedback gainsK1
and K2 are presented in Figure 2.
The method proposed in Section 4 to enlarge the control-
lable region O∞(K1) = X1 of the controller u1(x) = K1x
has been tested in simulation. The control laws uj , j =
2, 3, 4 and the associated RPI sets Xj , j = {2, 3, 4} have
been obtained using Tube-Based MPC as presented in
Mayne et al. (2005) with

Ktube,1 = K2,Ktube,2 = [−0.61 −1.61] ,
Ktube,3 = [−0.58 −1.55] ,

and a prediction horizon N = 10. The weight matri-
ces Q, R, and P as defined in Mayne et al. (2005) do not
impact the region of attraction of the tube-based MPC
controllers. We also consider X5 = O∞(K2) and u5(x) =
K2x.
The set Xch = Conv(Xi, i = 1, ..., 5) can be seen in Fig-
ure 3. Trajectories emanating from ∂Xch and converging
to Z∞(K1) are represented in Figure 4.

6. CONCLUSION

We have proposed a control law for discrete-time linear
systems subject to matched disturbances and input and
state constraints. The proposed method allows to mitigate
the impact of the disturbances in the direction of the state
constraints in a neighborhood of the origin. The effect of
the disturbances is assessed through invariant set. A first
approach that imposes a linear structure to the control
law is proposed. The control structure is then relaxed to
further mitigate the impact of the disturbance on state
constraints satisfaction, leading to smaller invariant sets



Fig. 1. Z∞(Ki) for K1 (red), K2 (blue), and K3 (yellow),
and the state constraints X (black).

Fig. 2. The MRPI O∞(Ki) and the mRPI Z∞(Ki) for K1
(left), and K2 (right).

Fig. 3. The enlarged controllable region Xch (grey) and the
initial MRPI O∞(K1) (red).

Fig. 4. The enlarged controllable region Xch (grey), the
mRPI Z∞(K1) (red), and trajectories initialized on
several vertices of Xch.

in the constraints direction. To this local control strategy
we add an interpolation-based control design to enlarge
the controllable region.
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