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Abstract: Two formulations of model predictive control (MPC) that have robustness properties
over conventional MPC are presented and studied for the control of the translational dynamics
of an Unmanned Aerial Vehicle (UAV). These controllers are using results from invariant sets
theory. Their tuning is studied, and their performances are compared in simulations in a context

of bounded additive disturbance.
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1. INTRODUCTION

The last decade has witnessed a significant increase on the
number of tasks performed by Unmanned Aerial Vehicles
(UAVs). Among these we can cite commercial tasks such
as goods delivery (Mo et al. (2016)), terrain mapping
(Tahar et al. (2011)) and building facade assessment
(Choi and Kim (2015)). The design of controllers enabling
UAVs to perform autonomously such tasks should take
into account safety and technological constraints, such as
distance to obstacles or actuator limitations. Moreover,
UAVs are subject to disturbances such as ground effect or
aerodynamic perturbations when flying close to walls or
rigid obstacles (McKinnon (2015)).

Previous work has been carried out on robust control
of UAVs, from a switching model strategy (Alexis et al.
(2011)) to a robust PID controller (Kada and Ghazzawi
(2011)). These strategies are designed to guarantee ro-
bustness with respect to bounded disturbances, but suffer
either from constraints limitation or from a computational
aspect.

In this context, the constraint handling by the control law
can benefit from Model Predictive Control strategies. Also,
the ability to handle bounded disturbances on the system
dynamics has been extensively studied and current MPC
strategies allow for improved robustness and stability
properties (Scokaert and Mayne (1998) Langson et al.
(2004)). Developments on the computational aspects of
the solution to the associated optimization problem make
MPC controllers possible candidate for embedded systems
(Necoara et al. (2014) Harja et al. (2013)).

One possible robustification of a MPC strategy that does
not increase much the optimization problem complexity
consists in computing a trajectory for a disturbance free
version of the system by a classical MPC, while simultane-
ously an additional control law maintains the state of the

perturbed system inside a “tube” around the nominal tra-
jectory (Langson et al. (2004)). This method requires an a
priori knowledge of the disturbance bounds that can affect
the system to ensure the uncertain system remains in the
“tube”. These strategies have been extensively studied for
linear systems (Mayne et al. (2006) Mayne et al. (2005)).
The problem of position stabilization of an UAV can fit
into this framework.

The MPC controllers in this study are based on invariant
sets (Blanchini (1999)), that are computed here using the
method presented in (Olaru et al. (2010)). Closed loop
stability is guaranteed for these controllers by making
use of a terminal stabilizing constraint (Mayne et al.
(2000)), defined by sets whose construction are detailed
in this paper. The tuning of two linear robust MPC
controllers (Mayne et al. (2005)) and a comparison of their
performances are studied in simulations. The disturbance
model used in simulations are based on results from
McKinnon (2015).

This paper is structured as follow: In Section 2, the
equations of motion of a quadrotor UAV are introduced
while results on invariant sets and related properties are
presented in Section 3. In Section 4, two robust MPC
controllers are described, and their tuning is studied in
Section 5. Simulation results are presented in Section 6.

Notations Given two sets X € R™ and Y € R”, the
Minkowski sum and Pontryagin difference are defined as:

XoY={z+ylreX,yeY}
XeoY={zlzaY C X}

For two vectors x € R? and y € R3, the cross product is
denoted as = x y.

A polytope P can be described as the convex-hull of
a finite set of points {vi,vs,..,v,p)}, P = {z|lz =



S (P) A Z,ZU(P) A;i = 1}, or as the set of solutions to
a system of linear inequalities P = {z|A(P)xz 4+ b(P) < 0}.

2. UAV MODELING

Considering an inertial frame I = (O, 4,7, k) and a body
frame B attached to the vehicle, the UAV equations of
motion are

§=v (1)
mv = —mgk + RF + Fop; (2)
k= RQ(w) (3)
Jw=—-wxJw+T (4)
where & = (pz, py,p») " is the position of the quadrotor in
I, v = (vg,vy,v,) " its velocity in I, m its mass, R € SO(3)
the orientation matrix, w = (wWg,wy,w,)" its angular

velocity in the body frame, J its inertia matrix, g the
gravity constant, and

0 —W3 W
Qw) = ( w3 0 —w1>
—Ww2 W1 0
The resulting force and torque generated by the quadrotor
propellers are denoted F' and 7 in the body frame B. F, .,
represents additional forces in the inertial frame due to
external disturbance.
The following section will present an MPC strategy for the
position regulation of the UAV (translational motion, i.e.
(1) and (2)). Define
u=—gk+ RyefFref/m

yielding

1'1:u-i—l/m((RF—RrefFref)—I-Fext) (5)
The design of an attitude controller, via the torque 7, that
guarantees the convergence of R, the actual orientation
matrix, to R,.s the reference orientation matrix, is not
discussed in this paper. Nevertheless, it is accounted for
in the definition of the bounds in the disturbance term.
The motors’ dynamic is also neglected, thus F' is assumed
to convergence instantaneously to F..¢. The equations (1)
and (5) correspond to 3 double integrators with a bounded
additive disturbance. We discretize them with a zero-order
hold on u with sampling-time §; to obtain

zlk + Az[k] + Bulk] + w[k]

1] =
15,0000 52 '
010000 £5f00 00
lootso00|. 52
A=lgo0o0100:B=|0 050 00
000013 52
000001 0000

where © = (pg, Vs, Py, Uy, D2, )", and w € W is the
discretized term obtained from the discretization of the
disturbance 1/m((RyefFref — RF)+ Fegt). If u is bounded
and if the attitude controller is stabilizing, it can be shown
that the error term R, F..y — RF is also bounded. Since
F..: is assumed to be bounded too, then the disturbance
term w can be considered as bounded. This system will be
refered to as the uncertain system.

3. INVARIANT SETS AND FEEDBACK POLICY

The spatial and control constraints are defined by x €
X ¢ RS and v € U ¢ R3, X and U bounded polytopes

containing the origin in their interior. We also consider
W as a polytopic set containing the origin and bounding
the discretized disturbance w. Denote the disturbance-free
system

zlk + 1) = Az[k] + Bulk], (6)
This system is called the nominal system. Let us consider
the following feedback law for the uncertain system

ulk] = alk] + K (x[k] — z[k]) (7)
with K € R3*6 a linear stabilizing state feedback gain
such that Ax = A+ BK is Schur. The difference, or error,
z[k] between the state of the uncertain system x[k] and
the nominal state Z[k] verifies:

z[k + 1] = Agz[k] + wlk] (8)
Definition 1. (Blanchini (1999))The set Z is said robustly
positively invariant for the system (8) if for all z[k] € Z
and all w e W, z[k+ 1] € Z.
The following proposition states that the feedback law (7)
ensures that the difference between the uncertain and the
nominal state remains in a RPI set Z.

Proposition 1. (Mayne et al. (2005)) Suppose Z is RPI for

z[k+1] = Ak z[k]+w[k]. Assume that z[k] € {Z[k]}®Z and
ulk] = ulk] + K (z[k] — Z[k]), then z[k+ 1] € {Z[k+ 1]} & Z
for all w € W.
Define the sets
X=Xz (9)
U=UsKZ (10)

If the nominal system satisfies the constraints (Z € X and
@ € U), then the uncertain system constraints are satisfied
(i.e. x € X and u € U).

Remark: it is mandatory to have Z C X and KZ C U to
have non-empty feasible sets.

4. ROBUST MPC
4.1 Robust model predictive controller

This section presents the design of the nominal system
control law using a MPC approach. The model predictive
controller presented here is based on the solution of an
optimal control problem Py (Z[k]) whose cost function
N—1
Vn(To, @) = Y (ZQF; + Ui P;) + Ty QN
=0
is quadratic. Py (Z[k]) consists in minimizing the value
function Vy (Zg, u) with Zg the current state of the nominal
system Z[k]. In this optimization problem, the control
input sequence @ = (g, U1, ...,un—1) is the sole decision
variable.

Py (z[k]) -V (z[k])
u; € U, Vi € {0, o, N
To = Z[k]
T € X,Vie{0,..,N
TN € Xf cX

= min(Vn(Zo,a))

-1}
—1}

With Z;y1 = AZ; + Bu; for all i« € {0,..,N — 1} as
dynamical constraints. The optimal control sequence is
denoted @’. The weighting matrices @, P and Qy are
positive definite. N is the prediction horizon. The terminal



cost Q; and the terminal set X; are defined to ensure
stability.

Proposition 2. (Mayne et al. (2005)) Let ky € R**6 be a
feedback gain matrix. Suppose k¢, @ and Xy are such
that:

(A + ka)Xf C Xf

kfo cU (11)
Xy cCX

((A+ Bky)z)'Qs(A + Bky)Z + kyz' Py
—2'Qpz < 0,Vz € Xy (12)

Then the origin is exponentially stable for the controlled
nominal system and recursive feasibility of the optimiza-
tion problems is ensured.

The feasibility domain of the optimization problem Py (Z)
is denoted X . Once the optimization problem Py (Z[k])
is solved, the nominal control input @[k] is set as the first
element of the optimal control input sequence 4. The next
nominal state Z[k + 1] and the control input w[k] is given
by Equation (7).

The successive optimization problems can be precom-
puted: they involve the nominal state only, which is not
impacted by the disturbance sequence. It is possible to
compute the nominal system trajectory offline before the
flight while the component K(z[k] — Z[k]) ensures the
uncertain system remains in a ”tube” centered on this
trajectory.

4.2 An alternative version

The control input sequence w is the only decision vari-
able of the optimization problem Py (Z[k]) previously de-
scribed. The change presented here, as initially proposed
in Mayne et al. (2005) consists in letting Z be a decision
parameter of an optimization problem P} (z[k]). At each
time step, the nominal state Z[k] and the optimal control
sequence @° are taken as the minimizer of the value func-
tion:
Py (a[k]) Vi (x[k]) = min(V (o, @))

u; € U,vi € {0,...,N — 1}

(E[k] S {(fo} ez

z; € X,vi € {0,...,N — 1}

Iy €XpCX

With Tiy1 = AZ; + Bu; for all i € {O,,N — 1} The
optimal control sequence is denoted @’ and the optimal
initial state 7). The control is

ulk] = @y + K (x[k] — )
The feasibility domain of the optimization problem Py (z[k])
is denoted Xpy. It can be proved that Xy ® Z = Xy
(Mayne et al. (2005)). The conditions on @y and Xj
defined in Proposition 2 guarantee recursive feasibility and
robustl exponential stability of the set Z for the controlled
uncertain system.
The successive optimization problems involved in this con-
troller can not be solved offline, indeed, the disturbance
w[k] can not be forecast and it impacts the state z[k + 1].
Therefore, the optimization problems have to be solved

online.

An interesting property of this controller is the following:
Proposition 3. ¥z € Z, VQ(x) = 0,23 = 0,u’ = 0 and
u=u+K(x—Z)=Kzx

Once the uncertain system has reached the RPI set Z, the
optimization problem is trivial and Z is invariant for the
uncertain system.

Both controllers presented in this section have robustness
properties with regards to bounded additive disturbance.
The tuning of their parameters is studied in the next
section, and their closed loop performances are compared
in Section 6.

5. TUNING PARAMETERS

The impact of the weighting matrices @ and P and of
the prediction horizon N of Py (Z) and Pj(z) are not
detailed here. These controllers involve two sets of tuning
parameters: (K, Z) and (ky, Qr,Xy).

5.1 Feedback gain K

The set Z defines the maximal distance z = x — &
between the nominal and the uncertain state, and can be
considered as the key element of the control law regarding
the precision of the controlled system with regards to the
disturbance W. Moreover, it also defines the constraints X
and U of the optimization problems:

e a larger set Z implies a smaller set X = X — Z.
o for a given feedback gain K, a larger set Z implies a
smaller set U=U - KZ

For a given feedback gain K, it is possible to define
the minimal Robust Positive Invariant (mRPI) set Z*
Blanchini (1999)

7* = @2 AW
With A% being the matrix A to the i*" power, and @
the Minkowski sum. A feedback gain K leading to larger

eigenvalues of A will result in a smaller set Z* and a
larger set K Z*. In terms of optimal problems constraints:

o Larger eigenvalues lead to a larger feasible MPC set
X=X-27¢

e Larger eigenvalues lead to a smaller feasible control
set U=U—- KZ*

Hence, the tuning of K impacts both the disturbance
rejection and the constraints of the optimization problems.
Remark: In general, Z* is not a polytope and cannot be
explicitly characterized. In practical, the set Z is chosen
as being an RPI outer approximation of the mRPI Z*.

5.2 Feedback gain kj

The admissible initial condition set Xy is deduced from
the terminal constraints set X;. The admissible initial
condition sets for different horizon length i € {1,..., N}
are given by the following relations

Xy ={z €X|Ju € U, Az + Bu € Xy}

Xit1 = {7 €X|3u € U, A7 + Bu € X;}Vi € {1,..., N — 1}
A larger set X leads to larger sets X of admissible initial
conditions for a horizon prediction of N. The set X; has
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Fig. 1. Projection of the disturbance set on (py, vy).

to verify (11). A smaller feedback gain &y leads to a larger
set Xy, hence to a larger set Xy.

Remark: Due to (12), the feedback gain &y has an impact
on the terminal state cost Qy.

6. SIMULATIONS

Consider below the example related to a critical flight of
the UAV close to a wall. The state constraints are x €
X = {z|-5m < p, < 5m,—0.5m < p, < Im,—0.2m <
p, < Im,—1m.s7! < Vgs Uy, Uy < Im.s~1}. The control
input constraints are u € U = {u|—1m.s72 < uy, uy,u, <
Im.s~2}. The structure of the above constraints are such
that the three directions (ps,vs:), (py,vy) and (p.,v.)
can be adressed independently. Hence, the 6 dimensional
optimization problem is separated into 3 independent 2-
dimensional optimization problems. In the following, the
results will be presented for one direction y. Similar results
are obtained in the other two directions.

The weighting matrices R and @ are R = 0.1/3 and
Q = diag(10,1,10,1, 10, 1). The sampling-time is ; = 0.1s
and the horizon length N = 15. The disturbance w is
modeled as the sum of two components:

e the external force we,; due to the proximity of a wall,
whose value is taken from the models in McKinnon
(2015) obtained by experimentations,

e a bounded disturbance term w;,,, whose value is
randomly chosen in a set W,..,, at each time step

The projection of the set W is presented in Figure 1.

6.1 Feedback controller K

The feedback gain K is computed using a pole placement
strategy for the matrix Agx. The method presented in
Olaru et al. (2010) defines, for a given feedback gain K, a
sequence of RPI sets Z = (Zy, Z1, ...). These sets are pre-
sented in Figure 2 for the set of poles {0.70, 0.60} regarding
the direction y. The iterations increase the complexity of
the polytope while decreasing its area (Figure 2). Z is
chosen as Zg in this simulation.

The set Zg is presented for three sets of poles {0.30,0.20},
{0.70,0.60} and {0.90,0.80}. The associated bounds on @
are || < 0.34,0.54 and 0.59m.s~2. A set of poles closer to
0 tends to increase the size of X while reducing the size of
the set U.

The simulation is run with the set of poles {0.70,0.60} for
Ak.

0 e s 100 120
Number of verticles

Fig. 2. (Left) Projection of the different sets Z;,i =0, ..., 8
on (py,vy) for the following set of poles {0.70,0.60}.
(Right) Relation between the area of the iterations Z;
and their number of vertices v(Z;).

T o o oms o1 o o2
py(m)

Fig. 3. Zg for three different sets of poles:{0.30,0.20}
(blue),{0.70,0.60} (red) and {0.90,0.80} (black).

6.2 Terminal constraints

The feedback gain ky is computed using a pole placement
strategy for the matrix A + Bky. In this study, the
algorithm used to compute the set X; is the following

e Initialization: Qp = {x € X|k;z € U}
e Iteration: ;41 = {z|A(Q;)z + b(;) <0, A(2;)(A+
Bky)x + b(€;) < 0},Vi <0

The computation stops at the [*" iteration such that
Q1 = Q, which implies (A + Bky)q C . Thus,
the set €; verifies the conditions of Proposition 2. Finite
convergence of the algorithm is not guaranteed with the
above strict stopping criterion. However, a relative con-
vergence test can be used based on the decrease of the
Hausdorff distance between consecutive iterations. It can
be noted that the convergence speed increases for smaller
eigenvalues of A+ Bk which is relative to the contraction
factor of the set mapping.

Figure 4 presents the sets X; and Xy obtained for different
sets of poles of A+ Bky. Poles closer to 1 increase the size
of the set of admissible initial conditions while increasing
the complexity of the set Xy, that defines constraints of
the optimization problem. The simulation is run with the
set of poles {0.95,0.90} for A + Bky.

6.3 Controller performance comparison

Both controllers have been simulated with the same ad-
missible initial conditions z[0] = (0.5,0,0.5,0,0.5,0)"
and random disturbance sequence w,.q,,. The stabilization
problem consists in steering the state of the system to
the reference chosen to be the origin. The closed-loop
performances regarding p, are illustrated in Figure 5, and
the control input in Figure 6.

The control input is closer to saturation (u, = 1m.s™2)
for controller 2. This is due to the fact that x — Z takes
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Fig. 4. Projection of the sets X; (left) and Xy (right)
on (py,vy) for three sets of poles: {97,95} (black),
{90,80} (red) and {80,60} (blue).

0.5

0.4

03
£ 02

0.1

0

-0.1
0

1 2 3
Time (s)

Fig. 5. Time evolution of y for both controllers.
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Fig. 6. Time evolution of the control input w, @ and K (z—
Z) with controller 1 (left) and controller 2 (right).
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Fig. 7. Projection on the plane (p,,v,) of the difference
x — T with controller 1 (blue) and controller 2 (red).

extremal values in Z for controller 2 (Figure 7). Moreover,
Figure 6 illustrates that 4 and K (x—Z) have the same sign
until @ = 0 (i.e. once the uncertain system has reached
the set Z as mentioned in Proposition 3). This version
allows the ”tube” control input K (z—Z) to not only reject
disturbance but also to contribute in steering the state of
the uncertain system to the reference.

In both simulations, the state of the uncertain system x
remains in the "tube” = @ Z as illustrated in Figure 7.

7. CONCLUSION

We have presented the computation of the sets involved
in the robust model predictive controller presented in
Mayne et al. (2005) for a simplified UAV model. The
tuning parameters and their impact on both the system
performance and the optimization problem have been

studied. Two robust model predictive controllers have been
compared in simulations, using disturbance models from
McKinnon (2015).
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