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Abstract

On a manifold, consider an elliptic diffusion X admitting an invariant measure p. The goal
of this paper is to introduce and investigate the first properties of stochastic domain evolutions
(Dt)te[0,] Which are intertwining dual processes for X (where T is an appropriate positive stopping
time before the potential emergence of singularities). They provide an extension of Pitman’s
theorem, as it turns out that (u(D¢))se[0,1) is always a Bessel-3 process, up to a natural time-change.
When X is a Brownian motion on a Riemannian manifold, the dual domain-valued process is a
stochastic modification of the mean curvature flow to which is added an isoperimetric ratio drift
to prevent it from collapsing into singletons.
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1 Introduction

In the finite state space framework, Diaconis and Fill [4] have shown that ergodic Markov chains
can be intertwined with Markov chains living on the set of non-empty subsets of the state space
and ending up being absorbed at the full state space. This result enabled them to construct strong
stationary times for ergodic Markov chains, leading to quantitative bounds on their convergence to
equilibrium, in the separation discrepancy and in the total variation distance. In [18], this point of
view was extended to real ergodic diffusion processes, but the one-dimensionality seemed crucial in
the method. As noted in this previous paper, it is quite unfortunate, since otherwise it could lead
to a new probabilistic approach to the hypoellipticity theorem of Hérmander [10]. Here we make an
important step further in this program, by showing that elliptic diffusions on differential manifolds
admitting an invariant measure can indeed be intertwined with domain-valued Markov processes.
Although the hypoellipticity is not yet entering in the game (but see [17] for a first illustration in
dimension 1), the introduced domain-valued processes are already very intriguing and promising
for themselves. When dealing with the Brownian motion on a Riemannian manifold, they are
natural stochastic modifications of the mean curvature flow. In the more general case, when a
gradient drift is added to the Brownian motion, one has to consider some weighted extensions.

Let L be an elliptic diffusion generator on a differentiable manifold V. Here we will not be
interested in regularity problems, so V' and the coefficients of L are supposed to be smooth. Assume
there exists a o-finite measure p on V' which is invariant for L in the sense that

vfecrV),  wlLlf]l = 0

where C°(V') stands for the space of smooth functions on V' with compact support. By ellipticity,
the measure p admits a positive density with respect to the Riemannian measure. Note that in
general j is not unique, even up to a positive factor, e.g. for the generator 0% + ¢ on R, all the
measures with a density of the form R 3 x — a + bexp(z), with a,b > 0, are invariant. But there
is at most one finite invariant measure and in this case it is usual to normalize p into a probability
measure.

Let D be the set of non-empty, compact and connected domains D in V', which coincide with
the closure of their interior and whose boundary C := ¢D is smooth. Denote also D =D u {{z} :
x € V}, obtained by adjunction of all the singletons to D, and D the set of all measurable subsets
D of V which either satisfy (V) € (0, +00) or are singletons (so that D = D < D). Consider the
Markov kernel A from D to V given by

mAnD)
VDeD,VAecBYV), ADA = u(D) fu(D)>0 (1)
9z (A) ,if D = {z}, withz e V

where B(V) is the set of measurable subsets of V' and d, the Dirac mass at z. As usual, such an
integral kernel can be seen as an operator transforming bounded (respectively positive) measurable
functions on V into finite-valued (resp. (0, +00]-valued) functions on D.

The main goal of this paper is to find a Markov generator £ with state space D satisfying, in
an appropriate sense, the intertwining relation

SA = LA (2)

and for which the singletons are entrance boundaries.

Remark 1 This was done in [18] when V' = R and when —oo and +00 were entrance boundaries
for L. The latter assumption was needed to insure that the resulting Markov processes on the set
of the closed segments (which were not assumed to be compact in [18]) end up being absorbed at
the whole state space R, because we were primarily interested in constructing strong stationary



times. This is no longer our objective here (even if we should come back to this question in a future
work), that is why no assumption is made on the behavior of L at infinity.

Note also that in general there is not a unique Markov generator satisfying the above require-
ments, since in [18] we constructed a whole family of such operators when V' = R. Nevertheless,
among them, one was the fastest to be absorbed at R, it is a generalization of this Markov generator
that will be considered below.

As a consequence of the previous remark, from now on, we assume that the dimension of V is
larger or equal to 2. To describe our candidate £, we need to introduce some notations.

By using the inverse of the matrix diffusion of L to induce a Riemannian structure on V (see
e.g. the book [12] of Tkeda and Watanabe for the details), L can be decomposed as L = A + b,
where A is the Laplacian operator associated to the Riemannian structure and b is a vector
field (seen as a first order differential operator). We assume that V is complete, endowed with
the Riemannian distance d. Let A be the Riemannian measure on V. It is well-known
that p is absolutely continuous with respect to A and that its density is smooth. Let us write
U = 1In(dp/dX) € C*(V) (a priori defined up to an additive constant, except when yx is normalized
into a probability measure). The vector field b can written as VU + 8, with the vector field
satisfying div(exp(U)S) = 0; it corresponds to the p-weighted Hodge decomposition of b. In the
previous sentence, V and div(-) are the gradient and divergence operators associated to the
Riemannian structure. Other Riemannian notions that will be useful for our purpose are the
scalar product {,-), as well as the exterior normal vector v, the “mean” curvature p¢c
and the (dim(V) — 1)-Hausdorff measure o¢, all the last three objects being defined on the
boundary C' of an element D € D. The mean curvature is signed with respect to our choice of the
orientation of v¢ and it is not really a mean, since it is the trace (without renormalization) of the
second fundamental form. A priori the orientation of vo and the sign of pc require to know on
which side of C' is the interior of D (except when V' is not compact, then the mapping D 3 D — C
is one-to-one, otherwise it is two-to-one), but pcve depends only on C.

Let us first describe heuristically the type of stochastic evolution (Dt)tE[O,T) in D we want to
consider. The positive stopping time T is earlier than the exit time from D, typically due to
the apparition of singularities on the boundary C; = dD;. We want, as long as ¢t € [0,7T), the
infinitesimal evolution of any Y; € C; to be given by

_ w0 ) o ou o ,
av = (Vaap,+ (27D (5 VU (1) - pe 1))t v (9

where B = (B;)i>0 is a standard real Brownian motion. The evolution (3) can be seen as a
deterministic and stochastic modification of the mean curvature flow, which corresponds to

dys = —pc,(yt)ve, (ye) dt

for the points y; on the evolving boundary.

The global term o, (exp(U))/u(Dy) (it does not depend on the position of ¥; on Cy) in (3) can
be seen as an isoperimetric ratio with respect to p. Indeed, it can be rewritten as u(Cp)/u(Dy),
where p is the (dim (V') — 1)-dimensional measure on C; admitting exp(U) as density with respect
to o¢,. So this term explodes as D; becomes closer and closer to a point. In some sense, it will
compensate the trend of the mean curvature flow on compact boundaries to make them smaller and
smaller (and rounder and rounder). Though too qualitative to be convincing, this observation is a
first hint of why the singletons will be entrance boundaries for the Markov processes determined
by (3).

The term {8, vc, ) (Yi)ve, (Yz) in (3) could be replaced by 8(Y3), since the tangential components
in the description of the evolution of the points on boundary can be removed, up to a diffeomor-
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phism of C} (see e.g. Section 1.3 of Mantegazza [15]). Only the radial component (i.e. the projection
on the normal vectors v¢,) is important, thus an equation such as (3) will be said to be radial.

In fact, the radial stochastic differential equation (3) of the points on the boundary is not
the most convenient way to work with the process (Dt)se[o,r)- In Markov theory, the martingale
problem approach is usually more helpful (for a general introduction and an extensive development
of this notion, cf. for instance the book of Ethier and Kurtz [6]). It needs convenient observables
on the state space. On D, the role of elementary observables is played by the mappings

F;:DaD H,@wyiLf@ (@)

associated to the functions f € C*(V'), the space of smooth mappings on V.
To proceed in the direction of the definition of the generator £ on an appropriate algebra ® of
functionals defined on D, we begin by defining the action of £ on the above elementary observables:

for any f e C®(V),

VDeD, SWMD):‘L[fd+2 de (5)

Using Stokes formula, we will check in Section 3 that the above r.h.s. can be written as an integral
over C only:
_ u(C)
vDeD, eFAD) = | Vhvey+ (225 4 (8 ve)) fdu (6)
c (D)
Furthermore, we introduce a bilinear form I'¢ (which will be the carré du champs associated to
£) on such functionals, via

VfgeC(V), ¥ DeD,  Te[F; F)(D) = <Lfdg) (Lgdg) (7)

Since the D-valued Markov processes we are interested in will have continuous sample paths
(namely they will be diffusions), we are naturally led to the following definitions (see e.g. the
book of Bakry, Gentil and Ledoux [2]). Consider © the algebra consisting of the functionals of the
form § = f(Fy,, ..., Fy,), wherene Z,, fi,..., fp e CP(V) and § : R — R is a C* mapping, with R
an open subset of R™ containing the image of D by (FY,, ..., Fy,). For such a functional §, define

£[S] = Z ajf(Ffl,...,an)SFfj Z aklf Ffl,...,an)Fg[ka,Ffl] (8)
jelin] k,le[1,n]

To two elements of ©, § = f(Fy,, ..., F,) and & = g(F,,, ..., Fy,, ), we also associate

[e[3,8] = Z alf(Fflv" an)akg( 917"‘7Fym)FE[FfHF9k] 9)
le[n],ke[m]

Remark 2 A priori the above definitions are ambiguous, since they seem to depend on the writing
of § € © under the form §(Fy,, ..., Fy,) and similarly for &. To see that they are indeed well-defined,
note that

VE6eD, Ie[F, 6] = (L[3®] — FL[B] — &L[F])

N |

This property implies that if f is a polynomial in n variables, then for any § := f(f1, ..., fn), with
f1y-es fn € CP(V), the object £[F] is uniquely defined. Indeed, it relies on an iteration on the
degree of f, starting from (6) and (7). The general case of smooth functions f is deduced from their
approximation over compact domains by polynomial mappings.
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Let us come back to the Markov operator A defined in (1). For any f € C*(R?), A[f] is an

element of ®, since it can be written
V DeD, AlfI(D) = &(D)
Fy

where 1 is the constant function taking the value 1. This relation also leads us to endow D with the
o-algebra generated by the mappings Fy, for f € C*(V), so that A is really a Markov kernel from
D to V: for any fixed A € B(V), the mapping D 3 D — A(D, A) is measurable. For this mapping
to be measurable on D, put on the set {d, : = € V} the o-algebra obtained by identifying it with
V (seeing d, as =) and consider on D the o-algebra generated by those on D and on {J, : = € V}.
Since we already mentioned continuity of trajectories, we must also endow D with a topology. The
simplest way to do so would be to consider the smallest topology such that all the mappings F7,
for f € C*(V), are continuous (with the natural extension that the F; vanish on the singletons).

But for our purpose, we will need a stronger topology making continuous the following functionals,
for any feC*®(V):

DD — A[F|(D) (10)

DsD Lfdg (11)

with the convention that if D is a singleton, then C' = ¢J (so that the latter r.h.s. is 0). Condi-
tion (10) enables us to topologically identify {d, : = € V} with V. The topology on D will be such
that the o-algebra put on D is the Borelian one. Condition (11) implies that for any f € C*(V),
L[F¢] is continuous on D. For the precise definition of this topology, see Section 3, where D will
furthermore be endowed with an infinite-dimensional differential structure.

After these structural precisions, let us come back to £, whose main interest is to fulfill our
goal (2):

Theorem 3 For any f € C*(V), we have

VDeD,  E[A[fI(D) = A[L[f]I(D)

To go further, we want to construct Markov processes whose generator is £ and to establish a
link with (3).

Let be given a filtered probability space (2, F, (F;)i=0, P), all subsequent notions from stochastic
process theory will be relative to the filtration (F;);>0. Consider a stopped continuous and adapted
stochastic process (Dy)e[o,r), taking values in D and where T is a positive stopping time. It is said
to be a solution to the martingale problem associated to (9, £), if for all ¢ € (0,7), D; € D and
if for any § € ®, the process M3 := (Mf)te[o,r) defined by

¢
Vie[01), MS = §(Dy)—F(Do) - f C[31(D,) ds
0
is a local martingale. More precisely, in this situation we say that (Di)e[or) is a solution to the
martingale problem associated to the generator (D, £) and to the initial distribution £(Dy), the
law of Dy, or starting from Dy € D, when £(Dy) is a Dirac mass.

One key to the following result is the adaptation of the Doss [5] and Sussman [26] method to
the infinite dimensional stochastic differential equation (3).

Theorem 4 For any Dy € D, there is a solution to the martingale problem associated to (D, £)
starting from Dy.



In certain homogeneous spaces, it is possible to start from singletons, because these situations
can be brought back to the 1-dimensional setting treated in [18]. Indeed, the processes (D¢)i=0
end up being balls centered at the point from the initial singleton and it is sufficient to study the
evolution of the radius. This is the case of the Laplacian operator on Euclidean, hyperbolic and
spheric spaces. The stopping time T is infinite in the two former situations and corresponds to the
hitting time of the whole sphere in the latter one. But in general to consider D as state space is
probably too restrictive. We believe there exists a set G of subdomains of V', with D < G D, such
that £ can be naturally extended to G, in particular one should be able to define y and vap, u-a.e.
Heuristically, the set of singular points of the boundary of a domain from G should be very small.
We hope to investigate this question in a future work via the geometric measure theory, but for
the moment being, let us assume that we are given a such a set G with Theorem 4 holding up to a
positive stopping time earlier than the exit time of G. Still denote by (D¢)e[o,r) the corresponding
Markov processes. Consider

¢ = 2LT(/£(CS))QLZ$ € (0, +o0] (12)

and the time change (01)e[o,] defined by

vie[o,d, 2?(@(05))2618 _ (13)

Theorem 5 The process (u(Dy,, ))t=0 is a (possibly stopped) Bessel process of dimension 3.

By taking into account that 0 is an entrance boundary for the Bessel process of dimension 3,
a consequence of Theorem 5 is that the set of singletons is an entrance boundary for the Markov
processes associated to (D, £), if we were able to extend Theorem 4 to initial conditions that are
singletons. Theorem 5 can be seen as a multidimensional extension of the intertwining relation
between the real standard Brownian motion and the Bessel process of dimension 3 by Pitman [23]:
it corresponds to (2) when L is the Laplacian on R (see also Remark 37 in [18]).

Up to now, we did not consider the Markov processes associated to L, whereas their study is the
first motivation for the above developments. The martingale problems associated to (C*(V'), L)
are well-posed (see e.g. the book of Ikeda and Watanabe [12]), so to any initial distribution on
V', we can associate a stopped Markov process (Xt)te[o,f) where 7 is the explosion time (maybe
infinite). The conjunction of Theorems 3 and 4 should lead to the following result, which is the
reason behind our interest in the relation (2):

Conjecture 6 Assume that the martingale problems associated to (C*(V'), L) are well-posed and
defined for all times (no explosion). Let zp € V be given and let X := (X;);>0 be a solution starting
from xg € V for the martingale problems associated to (C*(V'), L). Up to enlarging the underlying
probability space, it is possible to couple the trajectory (X;);=0 with a solution (D;)e[o+] Starting
from the singleton {xo} to the martingale problem associated to (©, £), such that for any stopping
time T" with 7' < T, we have for the conditional laws:

LDy |X) = L(Djo,r|X[0,r)) (14)
L(X7|Djo,r)) = A(Dr,-) (15)

The difficulty behind the proof of such a result is technical, since conceptually it is an immediate
extension of the ideas of Diaconis and Fill [4] in the context of finite Markov chains. An approach
to such couplings via coalescing stochastic flows is proposed in [19], but it needs to be developed
further to deal with our present framework. Conjecture 6 would enable us to come back to our
initial motivation, first by recovering the density theorem for elliptic diffusions:
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Corollary 7 Assume that a coupling of (Xt)i=0 with (Dt)e[ox] can be constructed as in Conjec-
ture 6. Then for any t > 0, the restriction to V of the law of Xy is absolutely continuous with
respect to the Riemannian measure \.

To obtain this result, only the existence of a domain-valued dual process is needed (as well as
its coupling with the process X), its uniqueness is irrelevant. The well-posedness of the martingale
problems associated to (D, £) is not not crucial for this king of consideration, more important for
us would be the possibility for the dual process to start from singletons.

Another interesting stochastic domain evolution is obtained by removing the isoperimetric ratio
from the generator, namely corresponding to the generator (D, £), where (5) is replaced by

~

VDeD, E[F(D) = JDL[f] dp (16)

for its action on the elementary observables (but (7), (8) and (9) remain unchanged). The associated
Markov processes are the analogues of the evolving sets considered by Morris and Peres [20] in
discrete settings. One downside of the processes (bt)te[o,r) associated to the generator (@,E) is
that they have a strong tendency to collapse in singletons in finite time and they remain singletons
when starting from a singleton. The heuristic reason behind this collapse is that (,u(lN?t))tE[O,T) is a

non-negative martingale, due to E[FH] = 0, and thus converges toward zero in finite time (when it
is not stopped before by T). The convergence toward a singleton can be checked rigorously when
starting from a ball in the constant curvature framework of the next section. In fact, taking into
account the general theory of Doob transforms (with respect to the mappings D 3 D — u(D)),
the processes (Di)se[o,r) correspond to the process (ﬁt)te[(]x) conditioned not to hit the set of

singletons, or more precisely, conditioned so that (,U(f)t))te[oﬂ) does not hit zero. This property
gives an understanding of the emergence of the Bessel-3 process in Theorem 5, seen as the Brownian
motion conditioned not to hit 0 (see also the observations at the end of Section 7).

The plan of the paper is as follows. In the next section, we will deal with the simple but
illustrative situation of the Euclidean, spheric and hyperbolic Brownian motion starting from a
point. In Section 3 we prove Theorem 3 and Theorem 4. Section 4 presents a result on the exis-
tence of stochastic modified mean curvature flows, which was required by the proof of Theorem 4.
Section 5 comes back to the homogeneous situations of Section 2, pursuing further some com-
putations relative to the mean curvature addressed in Section 3. It will also shows some critical
differences between two ways of applying the Doss-Sussman method in these homogeneous geomet-
ric frameworks. In Section 6, Theorem 5 is shown as well as other properties of the solutions to the
martingale problems associated to (D, £). In particular, we will see that if the evolution (D;)¢>¢ is
defined for all times, relatively to the usual Laplacian L = A on the plane, then renormalizing the
domains so that their areas is brought back to 1, we get a convergence in large time toward the
disk centered at 0 of radius 1/4/m. An appendix provides supplementary informations on product
situations and alternative dual processes (on domains whose boundaries are naturally non smooth).

2 Homogeneous situations

There are examples where the radial evolution equation (3) can be globally solved by coming back
to the one-dimensional situation as it is treated in [18] (see also Fill and Lyzinski [8]). They
correspond to spaces V with constant curvature endowed with the Laplacian A and we take p = A
and u = o¢ (denoted o, to simplify), for C' = ¢D and D € D, with the notation of the introduction.
For them, we investigate solutions (D;);>¢ of the form (B(0, R;)):=0, where 0 is any fixed point of
the state space, B(0, ) is the closed ball centered at 0 of radius r» = 0 and (Ry)>0 is a R-valued
diffusion process starting from 0. We will describe separately the three situations of null, negative
and positive constant curvature spaces.



2.1 Euclidean spaces

We consider here the Euclidean space R™, with n € N\{1}. Without loss of generality, we can

assume that 0 is the point zero from R™. For r > 0, the Lebesgue volume of B(0,r) is A(B(0,r)) =

w2 _n and the corresponding hypersurface volume of the sphere 0B(0,7) is o(0B(0,r)) =

T'(n/2+1)
ﬁ/i” "=l The mean curvature of any element z € dB(0,r) is p(z) = (n — 1)/r. Thus a
solution (B(0, R;)):>o of the radial evolution equation (3), is given by
2n n-—1
dR; = +2dB — — dt
t V2 t + (Rt R, )
1
— V2dB, +

t

where (By)i>0 is a standard Brownian motion. Thus (R, /2),5;0 has for generator the operator A
given by

n+1

= ()

VieCH®y), VaeR,,  Alfl@) = ()4

(in the sequel such a generator will be denoted %82 + ”T*ja), namely it is a Bessel process of
dimension n + 2. In particular 0 is an entrance boundary for (R;);>o and we can make it start
from 0, i.e. we can let (B(0, R;))i=0 start from {0}.

Let us check directly that (A(B(0, R;)))i>0 is a Bessel of process of dimension 3, up to a time
change, as announced in Theorem 5. It is sufficient to show that the same is true for (R});=0. We
compute that

AR}

~1
nRy! <\/§dBt > + 2"(”2)Rg2dt
— V2nRM'NdB, + 2n® R 2dt

So the generator of (R}')¢= is 2n?22~2/"[16% + 17]. It follows that (Rp,)t=0 is a Bessel process of
dimension 3, where the time change (6;);>¢ is defined by

0t
Vit=0, J R22"ds = 2n*t
0

2.2 Spherical spaces

We consider now the sphere S* « R"*!, with n € N. Without loss of generality, we can assume that
0 is the point (1,0,0,..,0) from R**!. For any r € [0, 7], B(0,r) is the closed cap centered at 0 of
radius r. In particular, we have B(0,0) = {0} and B(0,7) = S™. Let A be the uniform distribution
on S™ and o be the corresponding hypersurface volume. The projection of A on the first coordinate
of R"*1 is the measure Z, (1 — :UQ)"/Q_lll[_Ll] () dz, where the renormalising factor is given by
the Wallis integral

Zy = Jl 2yn/2=1 gy
-1
= fsm Yu)d
0
F(n 1)

)]



The cap B(0,r) is exactly the set of elements of S” whose first coordinate belongs to [cos(r), 1].
So we get

ANB(0,7)) = z,'I(r) = Z;! frsin"_l(u) du
0
o(0B(0,r)) = Z1 sin"_l(r)

The mean curvature of any element = € 0B(0,r) is p(z) = (n — 1)cot(r). Indeed, the mean
curvature p on 0B(0,r) is the function such that for any C*(S"), we have

Or fdo = LB(O,T) (Vf,vydo+ J fpdo

0B(0,r) oB(0,r)

(for more details, see e.g. Lemma 10 in Section 3 below). Due to the symmetries of dB(0,r), one

sees that p must be constant on ¢B(0,r). Thus considering f = 1 in the above equality, we get
_ 0,0(0B(0,7))
~ o(0B(0,7))
= (n—1)cot(r)

It follows that a solution (B(0, Rt))e[o,r) of the radial evolution equation (3), where T is the hitting
time of 7 by (Ry¢)e[o,r), is given by

24i n—1
dR; = \/§dBt + <M — (n — 1) COt(Rt)) dt (17)
I(Ry)
where (By)i>0 is a standard Brownian motion.
As r — 04, we have
2sin™1(r) 2rn 1 n—1
S (= 1) cot ~ -
I(Ry) (n = 1) cot(r) SS u1du T

_on+1
B r

and this enables us to see that 0 is an entrance boundary for (R)se[o,r) and we can make it start
from 0, namely we can let (B(0, Rt))e[o,r) start from {0}.

In general we did not find a nice expression for the drift of (17), but in the case n = 2, this
evolution equation can be written

dR; = ~/2dB; + (2cot(R;/2) — cot(Ry)) dt

Similarly to the Euclidean situation, let us check directly Theorem 5, i.e. that (A(B(0, Rt)))e[o,7)
is a stopped Bessel of process of dimension 3, up to a time change. It is sufficient to show that the
same is true for (I(R¢))e[o,r)- We compute that

- n—1
W —(n—-1) cot(Rt)> dt> + I"(Ry)dt
2sin?"2(Ry)

I(Ry)
+(n —1)sin" 2(R;) cos(Ry)dt
25in?"2(Ry)

I(Ry)

dI(R) = I'(Ry) <\/§dBt+<

= /2sin" " Y(R,)dB; + < — (n—1)sin" 1(Ry) cot(Rt)> dt

= V2sin" Y(Ry)dB; + dt



So the generator of (I(R:))eo,r) 18 2sin?""2(I~Y(z))[50% + 20], where I~ is the inverse mapping
of I : [0,7] — [0,Z,]. This shows that (I(Rg,))c[o,r) is a Bessel process of dimension 3 starting
from 0 and stopped when it hits Z,, where the time change (6¢);e[o,r) is defined by

0t 1
VtelO ds = 2t
€ [ 7T)7 JO Sin?n—Z(Ifl(Rs)) §

Consider the case where Ry = 0. Then 6; has the same law as the first hitting time of Z, by a
Bessel process of dimension 3 starting from 0. It follows that T is a.s. finite. Thus, starting from
{0}, the process (B(0, Rt))se[0,r] ends up covering the whole sphere S" at the (a.s.) finite time
T. According to the theory of strong duality (see e.g. the initial paper of Diaconis and Fill [4]
for the principe and Section 7 for its application to the present context), this property leads to
the construction of strong stationary times for the Brownian motion on S starting from 0 (and
more generally for any initial distribution on S™, by symmetry and conditioning with respect to
the initial position of the spheric Brownian motion).

2.3 Hyperbolic spaces

Consider the Poincaré’s ball model of the hyperbolic space H" of dimension n € N\{1}. For
references on the subject, one can consult the book of Anderson [1] and we find the unpublished
report of Parkkonen [22] very convenient. As above, the choice of the point 0 is irrelevant, let us
choose for instance the center of the Euclidean ball on which is imposed the classical hyperbolic
metric. Let A be the Riemannian distribution on S™ and ¢ be the corresponding hypersurface
volume. Denote by B(0,r) the closed ball in H" centered at 0 and of radius r = 0. Up to a factor,
we have

AB(0,7)) = forsinhnl(u)du (18)
o(@B(0,7)) = sinh" !(r) (19)

From these formulas (and even only from (19), since (18) is already a consequence of (19)), one can
develop the same arguments as in the spherical situation, replacing the trigonometric functions by
their hyperbolic counter-parts, to get the following results. A solution (B(0, R;)):=0 of the radial
evolution equation (3), is given by

2sinh" 1 (Ry)

dR, = \@dBtJr( )

—(n—1) coth(Rt)> dt (20)

where J : Ry 27— SS sinh” ! (u) du. In particular, for the hyperbolique plane (n = 2), we get
dR;, = ~/2dB; + (2coth(R;/2) — coth(Ry)) dt

Again, 0 is an entrance boundary for (R;):>o and we can make it start from 0, namely we can let
(B(0, R;))=0 start from {0}. From this initial point, the process (A(Rg,))t=0 is a Bessel process of
dimension 3 starting from 0, where the time change (6;);>¢ is defined by

0 1
V>0, ds = 2t
L sinh?2(J-1(Ry))

where J~! is the inverse mapping of J : Ry — R,. This is obtained through computations similar
to those of Subsection 2.2 or as a consequence of Theorem 5.
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3 Smooth initial conditions

After proving Theorem 3, we will show how to solve (3) for small times, when the initial domain
has a smooth boundary. It will provide a solution of the martingale problem associated to £, thus
showing Theorem 4.

As announced, we begin by the

Proof of Theorem 3
Consider R := {(x,y) € R? : y > 0} and the mapping

For any f e C®(V), we have A[f] = f(Fy, F1), so that A[f] € D.
It follows that

ST = o - el -

which can be rewritten under the form

P e[A[f]] = S[Ff]_;FS[FﬁFﬂ]JrFf (;2

1
; Te[F1, Fu] — FHS[FILD

We compute that for any D € D, with C' := 0D, v = v and o = o¢,

L£[F](D) = fD L[1]dp + zﬁggi L Tdu

Furthermore, remark that

Le[Fy, F1](D)

Il
N
Q ?

=

IS
=
~—_
[\

= u(0)
so taking into account that Fy (D) = u(D), we get that

2
ZalelF1 F1] — 7£[Fﬂ] - 0
1

Thus, we have

REAND) - S[Ff]<D>—Firg[Ff7Fﬂ<D>

- | un du+2 ff deg

= f L{f]dp
D
and we conclude to the announced intertwining relation
Frir
e = 2
1

11



In the above proof the definition (5) was helpful. Nevertheless to understand the dynamic of
the domains generated by £, it is preferable to resort to (6), so let us show its equivalence with
(5). It amounts to check that for any D € D and any f € C*(V'), we have

j Lifldu = f (V1,ve)+ By fdu (21)
D C

This equality is based on the integration by parts formula (Stokes’ theorem), stating that for any
smooth vector field v on V', we have

JDdiv(v)d)\ _ L<v,u> do (22)

Indeed, we have

I

f Llf]dp f (Af + (VU + B,V1)) exp(U)dA
D D

JD div(exp(U)V f) + (exp(U)8, V £ dA

By integration by parts formula, we get that

J div(exp(U)Vf)d\ = f (exp(U)V f,v) do
D C

[ w0 a

Recalling that div(exp(U)5) = 0, we have div(exp(U)fp) = {exp(U)B,Vf) + div(exp(U)B)f =
{exp(U)B, Vf), so another integration by parts gives us

J (exp(U)B.Vf) d\ = f (B.v) f d
D C

ending the proof of (21).
[ |

Now that we know that £ satisfies the wanted intertwining relation with L, given Dy € D,
we would like to construct a Markov process (Dt)te[(],’r) starting from Dy and whose generator
is £, where T will be a positive stopping time, in a first step. To do so, we come back to the
radial evolution equation (3) that we reinterpret under the heuristic D-valued stochastic differential
equation

w(Cy)
p(Dy)

where U7 and Uy are “vector fields” on D. This formulation will enable us to adapt the Doss-
Sussman method [5, 26] to this infinite dimensional setting to construct a solution to the martingale
problem associated to the generator £ and to the initial position Dy, at least for small times.

Before explaining in general what we mean by a vector fields on D, we study the flow generated
by U7, which is very simple to describe. For any r € R, denote

dD; = Q]l(Dt) <\/§dBt + 2 dt> + Q]Q(Dt) dt (23)

{xeV :d(z,D)<r} Jifr>0
U(D,r) = D yifr=20 (24)
{reD :dx,D)>=—-r} ,ifr<0

where we recall that for any subset A < D and x € V,

d(z,A) = inf{d(z,y) : ye A}

12



with d the Riemannian distance on V.

It is easy to realize that the family (¥(D,7)),er does not behave well for some r € R: it does
not stay in D and does not satisfy the flow property (see Remark 9 below). So we are going to
restrict the parameter r to a convenient open segment containing 0.

For any z € V and v € TV, let (exp,(7v))rer stands for the geodesic flow whose position and
speed at time 0 are z and v. By our assumption of completeness on V', these geodesic flows are
defined for all times. For any r € R, define the mapping

Yo : C 3 expy(ruc(s)) (25)
Define
R, (D) = inf{re (0,+m) : ¥c, is not a diffecomorphism on its image} (26)
R_(D) = —inf{re(0,4o) : ¢, is not a diffeomorphism on its image} (27)

Due to the existence of a normal tubular neighborhood around the compact set C', we have that
R, (D) > 0 and R_(D) < 0. The interest of the segment (R_(D),R4(D)) is summarized as
follows:

Proposition 8 Let D € D be given. For any r € (R_(D), R+ (D)), we have

a\If(D,’I") = wC,r(C)

{xe D :d(D,z)=r} ,ifr>0

C Cifr=0 (28)
{xeD :dDx)=—-r} ,ifr<0

showing that ¥(D,r) € D.
Furthermore, for any r,r’ € (R_(D), R+ (D)) such that r +r' € (R_(D), R+ (D)), the “semi-
group property” holds:

U(D,r+71") = W(¥(D,r),r) = V(¥(D,r"),r)

Proof

The above result is certainly standard, even we were not able to find a corresponding reference.

For the first assertion, we begin by considering the case r € (0, R4 (D)). For any = € ¥(D,r)\D,
there exists y € C' such that d(z,y) = d(x, D) € (0,7]. Let us check that x = ¥ 4(z,4)(y). Denote
(7(8)) se[0,d(2,y)] @ unitary minimizing geodesic going from y to z. There exists v € T,V with v = 1
such that v(s) = exp, (sv) for all s € [0, d(z,y)]. If v is not orthogonal to T,,C, then for small s > 0,
we could find ys € C with d(ys,v(s)) < d(y,7(s)), contradicting the minimizing property of y, since
we would get d(x,y) = d(y,v(s)) +d(y(s),z) > d(ys,v(s)) + d(v(s), z) = d(x,ys). If v was directed
toward the interior of D, we would also end up with a contradiction, by considering the last time
s € (0,d(w,y)) such that y(s) € D. It follows that v = vc(y), showing that x = ¥ 454 (y). We
furthermore get that such a point y € C' is unique, otherwise we would be in contradiction with
the fact that 1 4, py is injective. Conversely, if s € (0,7] and y € C, then x = ¢ s(y) € ¥ (D, s),
with d(x, D) < d(z,y) < s. Thus we have the description

VTE(OaR+(D))7 \II(D7T) = D U Ql)C’,s(C)
s€(0,7]

Let us show that all the sets of the r.h.s. are disjoint. First we prove by contradiction that

vV se (0,r], Dnycs(C) = & (29)

13



So assume that ¢ s(z) € D, for some x € C. Replacing s by inf{t > 0 : c(z) € D}, which is
still positive, because ¢ ¢(x) does not belong to D for ¢ > 0 small enough, we can assume that
Yo s(x) € C. Consider the mapping ¢ : [0,s] 3t — d(¢c+(x),C). We have seen above that for
t > 0 small enough, we have ¢(t) = t. Since ¢(s) = 0, let u = inf{t > 0 : ¢(t) £ t}, which
belongs to (0,s). Note that for ¢ € [0,u), the directing normal vector %1#0715(30) is orthogonal to
the tangent space of ¥ +(C) at ¢c+(x), otherwise for v € (t,u), we could find a shortest way from
Yo w(r) to Pt (C) than the one given by the geodesic (Ve (7))weft,] and it would follow that
d(Ycv(z),C) < v. The tangent space of ¢c+(C) at c(x) coincides with the image of T,,C' by
T1c (), by the fact that ¢, is a difftomorphism on its image. Letting ¢ go to u, we get that
the directing normal vector %@/}Qt(:n)’ +—,, 1s still orthogonal to the tangent space of ¢ (C) at
Yo u(x). As above, this property insures us that for e > 0 small enough,

d(¢C,u+e(x)7wC,u(C)) = € (30)

namely either d(¢¥c y+e(z),C) = u+e€ or d(Ycute(z),C) = u—e. The first alternative is forbidden
by the definition of u. For the second alternative, we get that for € > 0 small enough, ¢ y1c() +
e u—e(x) belongs to Yey—c(C), thus we can find y € C\{z} with ¥c yic(x) = Vo u—c(y). If follows
from (30) that ¢ (x) = ¥cu(y), in contradiction with the injectivity of ¢¢ . This ends the proof
of (29). The proof that for s 4 s" € (0,7], we have ¢ (C) N o y(C) = & is similar. Indeed,
if this equality was not true, then one would be able to find again = € C' and t € (0, 7] such that
d(Yc(z),C) > t. We end up with the “foliation”

vre(0.R(D),  ¥(Dr) = D || 4.0 (31)
se(0,r]

From this decomposition and the continuity of C' x (0, R4 (D)) 3 (x, s) — %¢,s(x), we deduce that
for r € (0, R+ (D)),

a\I’(D7T) = ¢C,T(O)
= {zeD°:dD,x)=r}

The analogous relations when r € (R_(D),0) are obtained in a similar way, taking into account
that

VTG(R—(D)70)7 \II(D7T> = D\ |_| wC,S(C) (32)
se[r,0)

The semigroup property is also a consequence of (31) and (32), taking into account that for
r,r" as in the above proposition, we have

Yo rpr = Yooy = Yo oo,

(remarking that for any x € C'and r € (R_(D), R+ (D)), we have Tpbc - [vo(x)] = vyor (Yor(T)))-
|

Remark 9 The semi-group property of Corollary 8 is no longer necessarily true if the conditions
on r,r’ € R are not satisfied. Consider first the following (non connected) example: let D be
the union of the open balls B((0,0),3) and B((0,5),1). Then we have ¥(D,—-2) = B((0,0),1)
and ¥(B((0,0),1),2) = B((0,0),3) £ D. This example can be modified into a connected one by
joining B((0,0),3) and B((0,5),1) through the open rectangle [0,5] x [—1,1]. The boundary of
the resulting domain D is not smooth, nevertheless, the definition (24) makes sense. The boundary
0¥ (D, r) makes an “irreversible transition” at r = —1.
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From now on, for r € (R_(D), R+(D)), denote by ¥(C,r) the set described in (28). For given
D e D, the family (Y(C,7)),e(r_(D),r, (D)) is the solution of the normal flow equation, which
can be written under the radial form

U(C,0) = C

{ Vre(R(D).RyD). Y ze¥(Cr), da = vyl (33)

where the points of the boundaries are pushed according to the outward normal.
For our purposes, it is convenient to look at this set-valued evolution through our elementary
observables:

Lemma 10 Let D € D and f € C*(V) be fized. The mapping (R—_(D), Ry (D)) 37 — Fy(¥(D,r)) €
R is C% and for any r € (R_(D), Ry (D)), we have

o-Fp(¥(D, 7)) = L(C )fdg

azFf(‘I/(D7 T)) = J <Vf7 V‘II(C,T)> dfi + J (<VU7 V\II(C,T)> + p\I!(C’,r))f d/i
v (C,r) U(C,r)

)

To simplify the notation, when the set C' will be clear from the context (e.g. coming from the
domain of integration), we will write o, v and p instead of o¢, v and pe, convention which was
already adopted for p. So that the last r.h.s. admits the more readable expression

f <Vf,V>du+f F(U) + p) dp
(C,r) v

C,r

Proof

The first differentiation is a classical result. It can also be deduced from the disintegration of u
with respect to (31) and (32). For instance for r € [0, Ry (D)), we have

Fy(¥(D,r)) = F¢D)+ JOT L’(C )fd/ids

and the r.h.s. is easily differentiated with respect to r.
For the second differentiation, first write that

J fdp = f fexp(U) do
T(C,r) v(Cyr)

To differentiate with respect to r the r.h.s., one has to adapt the arguments of Section 1.2 of the
book of Mantegazza [15], to get

ol geswyds = | Sep@)ydos | fepW)pds
v (C,r) U(C,r)

v (C,r)

f R dwf (YU, v) + p)f du
v(C,r) w(C,r)

We will also need to differentiate ¥ with respect to the first variable D € D. We must first give
a meaning to the underlying notion of differentiation in D.

Consider a family (Gs)sefo,5,) taking values in D, for a real number S, > 0. We say this
family is strongly continuous in a neighborhood of s € [0, 5 ) if there exist a neighborhood
Ns of s in [0,5;) and a continuous mapping ¢s : Ns x 0G5 — V such that for any u € Ny, the
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function 0G5 3 x — @s(u,x) is a homeomorphism between 0G, and 0G, and if ps(s,-) is the
identity mapping. In this statement, the boundaries 0G,, for s € [0,5;) are endowed with the
topology inherited from that of V. Similarly, these boundaries will be endowed below with the
smooth differentiable structure inherited from V' as smooth submanifolds. The family (Gs).eo,s,)
is said to be strongly continuous on [0, S ), if for any s € [0,S5), it is strongly continuous in a
neighborhood of s.

Remark 11 Let 0 be the Hausdorff metric on the compact subsets of V. It endows D with a
metric structure. The strong continuity defined above implies the continuity for the Hausdorff
metric, but the converse is not always true, as it is illustrated by the following picture:

SN N

Figure 1: convergence in the Hausdorff topology, not in the strong sense

Note that the restrictions to D of the mappings defined in (10) and (11) are strongly continuous.

By analogy, we say the family (Gs).e[o,5,) is strongly smooth in a neighborhood of s €
[0, S ) if there exist a neighborhood N of s in [0, S} ) and a smooth mapping ¢s : Ny x 0Gs — V
such that for any u € N, the function 0Gs 3 z — ps(u, x) is a diffeomorphism between G, and
0G,, and @4(s,-) is the identity mapping. The family (Gs).eo,s,) is then said to be strongly
smooth if it is strongly smooth in the neighborhood of any s € [0, S} ). For such a family, consider
for any s € [0,54) and x € 0G5, the vector

Xog,(z) = Oups(u, x)|u=s

The T'V-valued vector field Xsa, on 0G5 enables to describe the infinitesimal evolution of G, via
a formula similar to (33)

Vsel0,54),V xedGy, 0st = Xog,(x)

This description is not unique, because the mappings ¢s(u, -) are not unique: they can be composed
by diffeomorphisms of 0G,, depending on s and (smoothly) on u. Indeed, as already mentioned,
the discussion of Section 1.3 of Mantegazza [15] shows that for x € 0Gj, only the radial part
asa, (7) = (Xoq, (), VoG, (x)) is unique. Furthermore, it is possible to choose the mappings ¢, in
such a way so that

vV se[0,54), ¥V xe dGs, Xog.(r) = aac,(T)veg, ()
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and the function « is continuous in the sense that if the sequences (s, )nen in [0, .54) and (2, )pen,
taking values respectively in (0Gs, )nen, are converging toward s € [0,S54) and z € dG,, then
lim,, o aoq,, (Tn) = aog, ().

The family (Gs)sejo,5,) can thus be described more intrinsically as a solution of the radial
equation equation

Vse[0,54), YV xzedGs, 0st = apa,(x)veg, () (34)

This formula enables us to identify the “tangent space” TpD at D € D with the space C*(C)
of real smooth functions on C' (of the form a¢ with the above notation). At least it appears that
TpD < C*(C). Conversely, given o € C*(C), we will see in Remark 15 how to construct a strongly
smooth family (Gs)se[o,s,) such that

{ Go = D
V x € 0Gy, Ostls=0 = a(z)vag, ()
This shows that C*(C) < TpD.

Following the traditional definition in differential geometry, we say that a mapping ® : D — D
is strongly smooth if any strongly smooth family (Gs)se[o,s, ) is transformed by ® into a strongly
smooth family, i.e. (®(Gs))seo,s,) is smooth (to simplify the terminology, from now on, smooth
means strongly smooth). Then there exists a vector field @ on (®(Gs))sefo,5,) such that

Vsel0,S8;), Vaeedd(Gs), dsx = Qpaa,) (@)Vosc,)(T)

(35)

Fix s € [0,5). It is not difficult to see that the function dap(q,) depends on « satisfying (34)
only through aag,. For fixed D € D, consider any smooth and D-valued family (Gs)sefo,s,) with
0 € [0,54) and Go = D. Let a be associated with (Gs)se[o,5,) as in (34). The linear functional
transforming a¢ into dse(py, as above, is called the tangent mapping Tp® of ® at D.

Remark 12 A natural converse question is: given D, D € D and a linear mapping T from C*(C)
to C°(C) (with C := 0D), is there a smooth function ® on D with ®(D) = D and such that
T = Tp®? The investigation of this kind of general issues is out of the scope of the present
paper. Nevertheless, a first step in this direction is as follows. Let o, & be given in TpD and T»D
respectively. Remark 15 shows how to extend « and & on D in order to be able to solve locally in
time (35) to get smooth families (G's)qeo,s, ) and (és)se[oﬁg. Replace S; by S, A S,. Assuming
that o did not vanish identically on 0D, we can furthermore impose that S, is small enough so that
[0,5,) 5 s — Gy is one-to-one. It enables us to define ® on {Gy : s € [0,5,)} via ®(G,) = G, for
all s € [0,54). Then we get that Tp®[a] = &. To go further would require a better understanding
of the neighborhood of D in D.

With all these preliminaries at our disposal, we can now compute the tangent mapping Tp¥ (-, r)
for r € (R-(D), R+ (D)). Rigorously, for given r € R, the mapping W¥(-,7) is not defined on the
whole set D but only on the subset

D, = {DeD:re (R (D),R.(D))} (36)

This subset is open for the strong topology alluded before (but not in the Hausdorff topology, see
Remark 11), so that the notion of tangent mapping can be extended to this setting (as soon as

D, + &).

The tangent mapping Tp¥(-,r) is among the simplest possible ones:

Lemma 13 Let D € D andr € (R_(D), Ry (D)) be given. For any o € C*(C) and x € C, we have
Tp¥(,rlal(@) = o¥g, (@)

where @Z)&lr : U(C,r) — C is the inverse mapping of the function ¢, defined in (25).
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Proof

Let a € C*(C) be given, extend it smoothly on V and solve (35) for ¢ > 0 small enough. For
x € C and s € (—¢,¢), denote p(z,s) = x5 and As = {p(x,s) : © € C}. According to the
previous discussion, to get the wanted result, we just need to check that for any x € C, the part of
Osa, r(p(x,s))|s=0 which is (outwardly) normal to W(A,,r) is equal to a(z), namely that

Ve Ca <551/1A5,r(¢7(967 3))’S=07 Yy (c,r) (w6’7r(x))>war(x) = a(x) (37)
Denote

Vielo,r], o = dshale(x,s))|s=o

so that (Ji)we[o, is a vector field over the geodesic (Y(t))wjor] = (Y ,i(7))iefor)- For all s €
(—€,€), (You(Ts))iefo,r] 18 a geodesic, it follows that (Ji)e[o, is a Jacobi fields (cf. for instance
Proposition 3.45 from the book of Gallot, Hulin and Lafontaine [9], whose Chapter 3 serves as a
reference for all the following considerations). Thus (J¢)se[o,r is defined by its initial conditions J(0)
and J'(0), where the prime corresponds to the covariant derivative with respect to t, and by the
evolution J” = —R(J, %)%, where R is the Riemannian curvature tensor. To prove (37) amounts
to show that the mapping [0,7] 3t — (J(t),¥(t)), ) is constant. The covariant derivative is
constructed so that the scalar product is left invariant, so that

Vielor],  STM A = TEAD)+ IO D).

= <J’(t), '.Y(t)>7(t)

since by definition of a geodesic, we have 4/(t) = 0. Differentiating once more, we get

%<J/(t)’ﬁ(t)>w(t) = A, + <07 (1)
= {05,

= —R(J,')/,’Y,’)/)
= 0

since the (0,4)-curvature tensor R is anti-symmetric in its last two vector variables (as well as
in first two vector variables). Thus, to get the wanted result, we just need to check that J'(0)
is orthogonal to 4(0) = ve(x). From the first equality of Proposition 3.29 of Gallot, Hulin and
Lafontaine [9] (applied with the commutating vector fields X = 05 and J = ; on (—¢,€) x [0,7]
parametrized by (s,t)), it appears that J’(0) coincides with the covariant derivative with respect
to s of the tangent vectors of the geodesic (¢¢,t(Zs))se[0,,]; at s = 0 and ¢ = 0. The latter tangent
vectors are unitary, so their covariant derivatives are orthogonal to them. Thus at s =0and t =0
we get (J'(0),%(0)), = 0, ending the proof of (37).

[

We deduce the differentiation of our favorite observables.

Corollary 14 In the setting of Lemma 13, let be given f € C*(V) and (Gs)seo,s,) with Go = D
and apg, = o (in the sense of (34)). We have

L E(W(Gy0r)

_ J f@)a(th(@)) p(dr)
v(C,r)

s=0

Proof
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As in the first part of the proof of Lemma 10, we get that

d

%F (Gs)

- j f(@)a(z) p(dz)
s=0 C

Taking into account Lemma 13, the announced result follows from this formula, with (Gs).efo,s,)
replaced by (¥ (Gs, T))se[0,5+)~
|

A famous example of radial evolution of the type (34) is the mean curvature flow:
Vsel0,51), Y xe dGs, Ost = —poa,(x)vec,(x)

where G € D is given and [0, Sy ) is the maximum interval on which this flow remains in D (there
are various ways to define the mean curvature flow beyond the times when it gets out of D, see
e.g. Chapter 1 of the book of Mantegazza [15]). When V' = R? endowed with its usual Riemannian
structure, it is possible to compute explicitly the image of the mean curvature vector field p by the
tangent applications to the normal flow ¥, see Subsection 5.1. In general, it is more difficult (see
nevertheless Remark 48 for the usual Riemannian structure on V' = R™), since the curvature of V'
will enter into the game.

The arguments of Section 1.5 of Mantegazza [15] can be adapted to get existence and uniqueness
of the solutions (Gs)sefo,s,) to the radial evolution equations of the form

vV se[0,54),V xe dGs, sz = (—poc,(z) + {b(x), v, (x)), + alx))veg,(x)  (38)

where [0, S ) is a small enough interval containing 0, where G| is a given element from D and where
a and b are respectively a smooth function and a smooth vector field on V. The obtained solution
(Gs)se[O’S ,) is a smooth family. The underlying idea is to consider again the parametrization
(r—,r4) x Go 3 (r,x2) — Yg,r(z) of a tubular neighborhood of Gy, where (r_,r;) is a small
neighborhood of 0. Then one looks for a mapping [0, S+) x Gg 3 (s,z) — y(s,x), whose image is
included into the tubular neighborhood ¥¢, (r_ ,)(Go) and which is such that for any s € [0, S)
and any x € Gy,

y(0,2) = =z
@52, V20, (U5, D yomy = —Poc ((5,2) + G5, 7)), Vo, (4(5, )y ey + A(y(5,)

Then writing y(s, ) = Vg, f(s,2)(®), for all (s,z) € [0,54) x Go, we end up with the quasi-linear
parabolic equation with respect to f:

f(0,z) = 0

Vs€l0,5), Ve Go, { 0uf(5.7) = Daysf(s,o)+ H(z f(5,2), Vagf(s,z) OV
where H is a smooth mapping on R, x TV (interpreting x as the base point of the vector
Vao.sf(s,x)) and where Vg, s, Ag,,s are the gradient and Laplacian relatively to the Rieman-
nian structure on Gg obtained by pushing back through the diffeomorphism Go 3 * — Vg, (s ) (7)
the Riemannian structure on Gy inherited from that of V. The operators Vg, s and Ag, s at
depends only on f(s,z) and on Vg, sf(s,z). Appendix A of Mantegazza [15] shows that such
quasi-linear parabolic equations admits a unique solution on a small time interval containing 0,
due to the strict ellipticity of the operator Ag, s on Gg (it would also be possible to put in front
of the term pag, (z) of (38) a positive quantity depending smoothly on x).

Remark 15 Let us come back to the research of a smooth family (Gs).eo,s,) satisfying (35),
where a € C*(Gyp) is given. First extend psg, + a from 0Gy to V, to obtain a smooth function
a € C*(V) coinciding with psg, + @ on 0Gy. Next define for any D € D,

VaxeC, ac(z) = —pc(z)+ a(z)
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The radial evolution equation
Vsel0,51), Y xe dGs, Ost = apa, (T)veg, (T) (40)

is of the form (38) and so admits a unique solution for small enough intervals [0, S5 ). Restricting
the above equation to s = 0 shows that (Gs).e[o,s,) solves (35).

This construction seems particularly cumbersome, it would be more natural to extend « from
0Go to V to get a smooth function a € C*(V') and to solve the radial evolution equation

Vsel0,54), ¥V ze dGs, Ost = a(x)veg,(x) (41)

Unfortunately, doing so, we end up with a Hamilton-Jacobi equation (see e.g. Chapter 3 of Evans
[7]) instead of the quasi-linear parabolic equation (39). One would then be led to investigate if the
usual conditions for existence and uniqueness of the solutions to the Hamilton-Jacobi equations
are satisfied and thus to describe more precisely the function H appearing in (39), but this is not
SO nice.

The normal flow equation (33), corresponding to a = 1, was simple to solve (in both direction
of the time, contrary to the above quasi-linear parabolic equations), because the normal vectors
are transported in a parallel way by the geodesic flows directed by these normal vectors.

Equations of the type (38) are adapted to our purposes: only considering the last vector field
in (23), i.e. the heuristic D-valued “ordinary” differential equation dD; = Us(D;)dt, amounts to
solve the following modification of the mean curvature flow:

Vsel0,5;),V xe oG, ot = —pla,(@)vec, () (42)
where
VDeD, VzeC, ,olé(x) = po(z) + (VU (z) — B(z),vc(x)), (43)

(despite the b in supscript, remember that b = VU +  and not VU — 3, as the above formula
could suggest).

Let Dy € D be given, as well as (By)=0 a standard (one-dimensional) Brownian motion starting
from 0. To solve (23), we are looking for a stochastic D-valued evolution (D¢)e[o ), Where T > 0
is a stopping time (wrt. to the filtration generated by the Brownian motion), such that

w(Cy)
p(Dy)

Vtel0,1),Vorel, dr = <\/§dBt +2 dt — pb, (a:)dt) ve, (z) (44)

where Cy := 0D;.

To explain the Doss [5] and Sussman [26] approach to such stochastic differential equations, it
is helpful to first replace v/2 dB; + 2u(Cy)/u(Dy) dt by d&; = £, dt, where € : Ry — R is a given C!
function with £y = 0. Still starting from Dy, we would like to solve the radial evolution equation

Viel0,e),YreC,  dx = (g; s (x)) ve, (z) (45)

for some € > 0, without using the derivative (fé)te[o,e]- To do so, we begin by solving another radial
evolution equation

Go = Dy

{ V te0,¢),V xe dGy, dx = g, (®)vog, () (46)
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for some € > 0 small enough, where « is defined by
Vr>0,VYVDeD,,VzeCl, acr(z) = —pl\’p(cﬂ (Yo (x)) (47)
where U (C, r) was defined after Remark 9, taking into account (25), (26), (27), (36). Next, consider
e = inf{te[0,€) : Gi¢Dg} > 0
(with the usual convention that € = € if the set in r.h.s. is empty) and define
Vtel0,e), Dy = V(G &)

Let us check that this is indeed a solution of (45). First, we have VU (Go,&y) = V(D,0) = Dy.
Concerning the evolution, differentiate with respect to the first and second variables of ¥ to find
Vtel0,e),Vaely, Or = (TGt\I/(-,gt)[aaGt,&](:L‘) + 5{) ve, ()

= (~rb(@) + &) v (@)

as wanted, where we used Lemma 13. Denote h the mapping defined on D by

vDeD, wp) - 249
u(D)
For given Dy € D and a C! function ¢ : R, — R, we are now looking for a solution, starting from
Dy, to the radial evolution equation

viele, Yol ax = (G+h(D) - pl,(@)) v, (@) (48)

for some ¢ > 0. Following computations similar to those presented above, we get a solution by
taking, for ¢ > 0 small enough,

Dy = W(Gy, ¢+ 0y) (49)

where the R, x D-valued family (6, Gt)te[o,e)> for € > 0 small enough, is a solution of the system
starting from (6p, Go) = (0, Dy) and satisfying

{ %Qt = h(U(Gy, G+ 6))
VaxedGy, oOx = aaGt,Ct+9t($)V6Gt(x)

The formulations (49) and (50) do not require that the function ( is differentiable.

These remarks suggest to solve (44) by replacing (¢;)i=0 by (v2Bi)i=0 in (49) and (50), up
to the random time 7 these constructions are allowed: 7 will be a stopping time with respect to
the filtration generated by the Brownian motion (B;)¢>o. This is the Doss [5] and Sussman [26]
method, adapted to our evolving domain framework.

So given Dy € D, we are led to consider the following stochastic radial evolution equation
system with respect to (0, Gt)se[o,¢), starting with (6o, Go) = (0, Do):

{ %Qt = h(YU(Gy, V2B + 6;))
VY xedGy, oix = QoG /2B1 +0: (x)VGGt (z)

In Section 4, we show the existence of a solution of (46), where (&)i=0 = (v/2B)i=0 and the
existence of a solution of (51). There, we will only consider the case V = R"*!  the situation
of a general manifold V is similar up to some modifications, which are straightforward from a
conceptual point of view, but induce complicated notations.

Once (51) is solved, define as in (49),

Y tel0,1), Di = U(Gy,V2B; + 6y). (52)

Vtel0,e), (50)

Vitelo,e), (51)

up to the stopping time T until which this construction is permitted.
Let us now check that (52) provides a solution to the martingale problem presented in the
introduction:
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Theorem 16 The stopped stochastic process (Dt)te[()x), defined on the natural filtered probability
space of the standard Brownian motion (By)i=0, is a solution to the stopped martingale problem
associated to the generator (D, L) and to the starting domain D.

Proof
Fix some f € C*(V). On the set I == {(s,7) e Ry xR : G4 € D,}, consider the mapping

(s,7) = Fp((Gs,7)) (53)

According to Lemma 10, this mapping is C? in the second variable. Concerning the first variable,
note that for (s,r) € I, we have

YV x e oG, Osx = —Pl\)p(ags,r) (Yag..r(2))vac, (z) (54)

From Lemma 13, we deduce that

V xe¥(0Gs,r), Osx = —pl\’p(aGs’r) (T)vw @, () (55)
and from Lemma 14, that for any f e C*(V),
d
EEWG) =~ f@)l) ) (56)
S W (0Gs,r)

In particular, the mapping defined in (53) is C! in the first variable.
These observations enable us to apply Itd’s formula to [0,7) 3 ¢ — Fr(¥(Gy, v2B; + 60;)) to get
its stochastic evolution:

de(‘I/(Gt, \/§Bt + Qt))

= — J fpb du | dt + J fdu (ﬁdBt+8t9tdt)
0U(G,V/2Bi+0y) OV (G /2B +6;)

n f (Vf.0) dwf F(p+ (YU, ) dy | dt
0U(Gt,V2Bi+0:) U (Gy,V/2Bi+6;)

= (J (V) + fF(h(9 (G, V2B + 0;)) + (B, v)) dg) dt
OV (Gt,\/2Bt+04)

2 < f fdg> dB,
OV (Gt,\/2Bt+0:)
= S[Ff] (Dt) dt + dM;

where we used (6) and where (My)e[o,r) is a local martingale whose bracket is given by
t

Vie[on), (M), = 2[ Te[Fy, F,](Ds) ds

0

This description and the continuity of the trajectories [0,7T) 3 ¢ — Fy(D;) imply that (Di)se[ox)
is a solution to the martingale problem associated to the generator (9, £) (see e.g. the book of
Bakry, Gentil and Ledoux [2]). Since Dy = D, we conclude to the wanted result.

|

Remark 17 There are potentially other ways to use the Doss-Sussman approach. For instance,
Equation (23) can be rewritten under the form

dD; = ~20,(Dy)dB; + Vo(Dy) dt (57)
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where By(D) = 2h(D)V1 (D) + Vo(D) for any D € D. Similarly to (43) and (47), define

VDeD,VaeC,  phx) pe(x) + (VU (x) — B(x),vo(x)), — h(D)
Vr>0,YDeD,, VazeC, dog(r) = —ﬁg,(c7r)(¢c,r(x))

Next try to construct a family (ét)te[(),e) (where € > 0 is a stopping time) such that

Vite[0,e),V xedGy, x = Qg ap,(@)Vec, ()

Contrary to (51), no auxilliary (6:)sc[o,¢) is needed here, but the above equation is not really of
the type (38), due to the isoperimetric ratio. Nevertheless, it should be possible to adapt to this
situation the fixed point approach presented in Section 4.

Once (ét)te[o,e) has been constructed, consider

Vie[0,1), Dy = U(GyV2By)
with
T = inf{te[0,€) : Gi¢ Dysp,}

Then the stopped stochastic process (Dt)te[O,T)7 defined on the natural filtered probability space of
the standard Brownian motion (By)¢>0, is a solution to the martingale problem associated to the
generator (D, £) and to the starting domain Gjy.

We preferred to present how to solve (23), because the flows associated to U, and Uy are quite
famous (at least when VU = = 0) and well-investigated. But maybe the flow associated to the
radial equation

VeeC,  dw = (WMD) = po(x)) ve,(r)

is also a natural object to study. In the next section we will check in the homogeneous setting of
Section 2 that this alternative Doss-Sussman approach should be preferred to the one considered
in the proof of Theorem 16.

4 Existence of a stochastic modified mean curvature
flow

This section presents the quite technical proofs of the existence of regular solutions to (46) and
(51), respectively the following subsections. As announced before Theorem 16, we only deal with
V = R"*! to avoid complicated notations.

We begin by recollecting our notations: D is the set of non-empty, compact and connected
domains D in V, which coincide with the closure of their interior and whose boundary C = 0D
is smooth. The exterior normal vector v¢ and the mean curvature pc are defined on C. Recall
we were given a function U € C*(V) and a smooth vector field § satisfying div(exp(U)S) = 0,
to which is associated the smooth vector field b := VU + . Denote p = exp(U)\, the measure
admitting the density exp(U) with respect to the Riemannian measure A (when p gives a finite
weight to V, it is normalized into a probability measure, which amounts to add a constant to U).
The interest of p is to be reversible for the operator L := A + b. We associate to the boundary
C the (dim(V) — 1)-Hausdorff measure u~ coming from p, namely admitting the density exp(U)
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with respect to the usual Riemannian (dim(V') — 1)-Hausdorff measure. We also distort pc by
introducing the modified mean curvature plé defined by

vael,  pule) = polx) +{VU(x) - B(x),vo(x)),

Let Do € D be given, as well as (Bi)¢>o a standard real Brownian motion starting from 0. We
are looking for a stochastic D-valued evolution (D¢)se[o,r), where T > 0 is a stopping time, such
that

Vie[0,1),YzeC, dr = (\/idBt + 2h(Dy)dt — b, (ac)dt) ve, () (44)
where
_ o k(0)
VDED, WD) = 275

Resorting to the Doss [5] and Sussman [26] method, we are led to solve consecutively:

e The deterministic radial equation in (Gy)e[o2):

Gy = Dy

{ Vte[0,€),V xe dGy, O = asa.e (2o, (T) (46)

where Ry 3¢ +— & € R is assumed to be a-Holder regular with a € (0,1/2), € is small enough
and

Vr>0V¥DeD,VaeC,  acy(x) = —ply(Wor(r))

with for any r € R,

Yor 0 C3x — exp (rvc(z)) eV
U(C,r) = {¢Yor(x): zeC}
D, = {DeD:re(R_(D),R+(D))}
Ri (D) = inf{re (0,+x) : ¢c, is not a diffeomorphism on its image}
R_(D) = —inf{re (0,4w) : ¢c_, is not a diffeomorphism on its image}

e The radial system in (0, Gt)se[o,e):

40, = h(U(G,V2¢ +6y))

vie [07 6)7 { VzedG, o = aaGt,ﬂtht (x)VaGt (IE)

(50)

where R, 3¢ +— (; € R is assumed to be a-Hdlder regular with « € (0,1/2), € is small enough
and

VreR,YDeD, U(D,r) = U U(C,s)

se(—o0,r]
The interest of these manipulations is that a solution of (44) will be given by
Viel[0,T), D, = (G V2B +6;)

where in (50) we take ((¢)i=0 = (Bt)t=0 and where T is the corresponding €, which ends up being
a stopping time with respect to the filtration generated by (Bi)¢>o.
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4.1 Local existence of a pushed mean curvature flow

Let Fy : M — R™*! be a smooth immersion of an n-dimensional manifold M such that Fy(M) = C.
Let r:t € [0,00) — r(t) € R be a real continuous function. Consider the following equation, which
is similar to (46) (i.e. G = F(t, M)), taking into account the remark made before Lemma 13:

voeM, (HF62)vIE2) = —pyreana) Yreanso @) (58)
F(O,l’) = Fo(x),

where v (t, ) is the normal vector of the hypersurface F(t, M) at F(t, ). The goal of this section
is to show existence in small time of solution of (58) with enough regularity in space and time,
under the hypotheses that r(0) is small enough and that r is a/2-Hdlder regular, for some « € (0, 1).

To get a small time existence of equation (58) we will convert the problem in terms of a quasi-
parabolic equation. We will study the linearisation of this equation, it turns to be linear and
strictly parabolic for small time, with C®/2%([0,T] x M) coefficients when M is a C?*® manifold.
We will resort to an existing result on the existence and regularity of the solution of such a linear
equation. Then we will use the inverse function theorem to get a solution of the original equation
(58).

Let C = Fy(M), we will suppose that M is a C3+® manifold and Fj is a C3+® diffeomorphism
(in general we will denote by reg(M) the manifold regularity of M), so that C is also a O3+
manifold. Small perturbations in time of C' under (58) live in a small tubular neighborhood of C,
and as in Mantegazza [15], a useful way to obtain a quasi-linear equation from (58) is to represent
the solution as graphs over the fixed hypersurface C. The underlying idea is to consider again the
parametrization (r—,74) x C' 3 (r,y) — ¥c,r(y) of a tubular neighborhood of C, where (r_, ) is
a small neighborhood of 0. Let x € M, and vy(x) be the unit outward normal of the hypersurface
C = Fy(M) at the point Fy(x). Then one looks the function f(t,.) : M — R, with enough
regularity, whose image is included into (r_,r;) and which satisfies

F(t,z) = Yo f(1.0)(Fo(z)) = Fo(z) + f(t, z)vo(z),

for all (t,z) € [0,S+) x M, with S, small enough, i.e. we represent F'(t, M) as a graph over C,
since C' = Fy(M) we have f(0,.) = 0 and the existence of S, is due to the regularity of f and the
compactness of M.

Let x; be a local chard of M, g; ;(0,z) = {(0;Fv, 0;Fp) the Riemannian metric at  in this chard,
g7 (0, ) its inverse, h;;(0,z) = (0 Fv, 0;Fy) = (Vo,p(x)v0(x), 0 Fo(x)) where II in the second
fundamental form of C at Fp(z) and define S; ;(0,z) = h; xg"'hy;(0, ), where the convention that
every repeated lower indices and upper indices is considered as a sum is enforced, as in the whole
paper. We end up with the quasi-linear parabolic equation with respect to f in order that F'(t,.)
satisfies (58), after taking care that we have some dilation term r(¢) in the equation. We have for
all i,j € [n], t € [0,S+) and x € M,

%F(tvx) = atf(t,il')Vo(LU)

oivo(x) = hipg™(0,2)0Fy(z)

0;F(t,x) = 0;Fy(x)+ f(t,x)hi,kgk’l(O,x)(?lFo(:c) + 0; f(t, z)vp(x)

gi,j(tax) = <aiF(t7x)vajF(ta l‘)>
= Gi,j(tv:l:afv Vf) (59)
_ wo(@) =0 f(t,x)gh (t,2)0; (Fo(x)+f (t,2)vo(x))

v(t.x) = @ )T Gt (Bt FEv @)l

hi’j(t,l') = —<I/ ,:L‘),aiajF(t,l‘)

), c%&jf(t, a:)yg ) + aza]F()(SC> + (?if(t, a;)&jyo(a:) + @f(t, :c)&zyo(ac)

(t
= —v(t,x (v
t,x)0;0;v(x)) = H;j(t,x, f,Vf,VVf)

+f(t,
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where the second equality is the Gauss-Weingarten formula, where v(¢,z) is the unit normal of
the hypersurface F(t,M) at F(t,z), and where we used the Gram-Schmidt procedure in the
computation of v(t,z) (taking into account that (v; = ,/g"(t,2)d,F(t, ac))ie[nﬂ is an orthonor-
mal basis of T ) F(t, M)). To simplify the notations, denote G = (G ;(t,x, f, V f)); je[n) and
H = (Hi;(t,z, [,Vf,VV))ijen)> Which take values in S™*", the space of symmetric matrices.
Note that G does not depend on VV f and that H has regularity reg(M) — 3 in x (due to the term
al'ajl/o(x) in Hi,j (t, x, f, Vf, VVf))

To manage the right hand side of (58), let M, = U(F(t,M),r(t)) and F(t,z) = U pe @) (F(t,x)) =

F(t,z) + r(t)v(t,z), and denote all the quantities that depend on M; = F'(t, M) by the same let-
ter as for F(t, M) with a tilde. So by the same computation as above we have for all i,j € [n],
te[0,5;) and x € M:

OiF(t,x) = OF(t,z) +rt)ow(t )
OiF(t,x) + r(t)hi kg™ (t,z)0 F(t, x)
§i7j(t, 1’) = gi,j(tv l‘) + QT(t)hiJ'(t, l‘) + T(t)25i7j(t, l’)
= (Gd+2r(t)G'H + r(t)2G*1HG*1H))Z,J.

= (Ca+reTH)?) = Giyt.x £,V VV) (60)
(t,z) = v(t,x)
ii(tx) = —(t,x),0,0;F(t,2)) = Hij — r(t){v(t,x), Gidju(t, )

= H;j+r(t )<8 I/(t x),0v(t,x))

— Hey + (08 (ta) = (H + r(OHG ),y = (HOd+ (G 1)),

= H;(t,z,Vf,VVf)

As usual, denote G = (Gi’j(t,:v,f, V))ijeln]s H = (Ifli’j(t,:v, [V, VVE))ijen and
(éi’j(t,l‘, L5V E))igem) = G—1, all taking values in S™*™, so that we have for the mean curva-
ture

I

—pu(rsn) ) Ve e (@) = —GWH; ;= —tlf(é_1 ~)
— —tr ((d+r()GH) P G H(Id + r(t )G—IH))
- —tr((1+ G H) G R)

= <i>1(t,:v, VT, va)-

for some mapping ®;. Note that in the above formula only H depends on VVf. Furthermore
consider the mapping ®- such that

<VU_/87V\I/( F(t,M), >1Z1F(tM) r(t) (%)

[l [
P NN
<1 <«
s S
e T
= =
s &
| |
= =
LTI ST
- =
& &
< B
= =
& &
N 7
b4 14

= <i>2(ta €, fa vf)
Remark the above expression does not depend on VV f. Define
b(t,w, [, V,VV) = @it 2, f,V],VV]) + ot , £,V ]) (61)

so that Equation (58) becomes the following non-linear parabolic equation
of(t:2) = w2t £,V V)

&(t,z, f,Vf,VV) (62)
f(O,a:) =0
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Note that at time ¢t = 0 we have f(0,2) =0, Vf(0,2) =0, VVf(0,2) = 0.

The application ® defined above will be considered with the following argument ®(¢, z, z,v, q),
where (t,z) € My = [0,T]xM, z € R, v e T, M and q is a symmetric matrix in T, M ©T M. Since
r is continuous and r(0) = 0 (or small enough), for small 7', ® is smooth in three last variables
in a neighborhood (0,0,0) and have at least the regularity reg(M) — 3 in z, and the same Hoélder
regularity in time as r (i.e. it is enough to have G invertible and |r(t)G~'H| < 1). More precisely
we have the following proposition.

Proposition 18 There exist T > 0 and Ry > 0 such that
e the mapping

P : [O7T] x M x B(OR,ORn,OSnxn)(RO) — R (63)
(t7 ‘/E? Z7U7q) = ¢(t’ ‘T’ 27 /U7 q)
1s smooth in the three last components,
e the mapping t — ®(t,x,z,v,q) have the same Hélder reqularity in time as r,
e the mapping x — ®(t,x, z,v,q) have at least the reqularity reg(M) — 3.
Proof
Recall that
G(t,x,z,v) = G(0,z) +22H(0,7) + 225(0,2) + v ® v,
_ vo(z)— vlgi’j(t,x,z,v)(6]-Fo(x)+zhj7kgk’l(O,x)(?lFo(x)+v]-uo(x))
v(t,2,2,v) = @) —vighd (ta,2,0) (0 Fo(@)+ 2h, 16 (0,0)0 Fo(@) +vjv0(2) )| (64)
Hij(t,x,z,0,q) = —vlt,z,2,q),v0(%))q,; —v(t @, 2,q),0:0jFo(x))
—(v(t,x, z,q),v:0;v9(x) + v;0vo(x) + 20;05v(x))

Since G(0, z) is invertible and M is compact, there exist Ry, C1, Co > 0 such that for |z, |v], [|lq]| <
RO:
G(t,x, z,v) is invertible for all x € M,

HGil(taxv z, U)H < Cl7

)

N |

lv(t, @, 2,0) —vo(2)] <
|H(t, 2, 2,0, q)] < Co

Thus, since r is continuous and 7(0) = 0 (or small enough), take 7" > 0 such that

1
T = supsu=0: sup |r(s)| < =—— 65
p{ S ls) 20102} (65)
Then |r(t)G'H| < 4, and (Id+r(t)G™'H) is invertible for all (¢t,z,2,v,q) € [0,T] x M x

B(OR,ORn,OSan)(RO)a and the wanted conclusions easily follow.
|

Lemma 19 Let T' be given by (65). For all (t,z,2,v,q) € [0,T] x M x B, 0pn 04nxn)(F0), we
have:

04, ; @t 2,v,q) = (G—2r(t)H + r(t)zHG_lH)i_,jl

Furthermore, 0,®(t, x, z,v,q) = (04, ; P(t, %, 2,v,q)); je[n] s uniformly elliptic.
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Proof

Let us write H as

H(q) = H(t,z,2z,v,q)
= —((t,x,z,v),v9(x))qg — Hi(t,x, z,v)

and recall that v(t,2) and G do not depend on VVf, ie are constant in ¢q. Consider 1(q) =
—G~'H(q), so

b(t,2,2,0,9) = tr ((1d = r(O)() ' ¥(a)).
Let M e M™™ X € M™ " small and u € R such that |u(M + X)| <1 then

(d—u(M+ X)) "M+ X) = X, uM+X)"(M+ X)
= Ve, (WM 0 Y MPXMTT) S 0(X)(66)
= (Id—uM)"'"M + X, mefong @ 2 MTXM™ + o(X)

so d[(Id — uM)"1M](X) = 2inez, mefon] W' 22 MM X M. Hence

dg(d—up(q) " N(X) = > w"(g)"dy(q)(X)(g)" ™

neZ4, mel0,n]

Thus using the trace property

dgtr((1d — utp(q)) () (X)
tr ( D wMp(g)mdg(g)(X )T/)(Q)nm)

neZy, mel0,n]

_ St ((q)d(q) (X) ()" ™)

neZ4, mel0,n]

=Y W) (@) (X))

neZ4,mel0,n]

’I’LEZ+

= tr ( D+ I)U%(q)"dw(Q)(X))

= tr ((Id — ue(q)) dep(q)(X)) (67)

Thus we have

N

dqq)(tax727U7Q)(X) dq@l(t,x,z,v,q)(X)

= (w(t,z,2z,v),vo(x))tr((Id — r(t)G H(q)) 2G71X)

so for any 14,5 € [n],

aQi,j(i)(t7 x,z,0,q) = {v(t,z,z,v),v(x))((Id — r(t)G_lH(q))_QG—lX)jvi
= @tz 2,0),w@))G - 2r(t)H + r(t)?’HGH);}

where G + 2r(t)H — r(t)?)HG~'H € S™ ™. For the last point of the lemma, use Proposition 18,
and the choice of T in its proof, to get

(G +2r(t)H + r(t)?HG™'H) = G(Id + r(t)G 1H)?
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is invertible for all ¢ € [0,T], and is continuous as function of ¢, so its spectrum remains positive
as the spectrum at time 0, when 7(0) = 0.
|

To show the existence result with sufficient regularity in time and space of Equation (58), we will
show the existence result of the equivalent equation (62) up to a parametrization as in Proposition
1.3.4 in [15]. We will intensively use the existence and regularity result of the linearised equation
exposed in Lunardi [14]. Let us recall briefly this result that appears as Theorem 5.1.10 of Lunardi
[14] and whose extension to the compact Riemannian manifold could be find e.g. as Theorem 2.3
of Huang [11] (with the bundle £ = M x R).

For € (0,1) and T > 0 let

Co0([0,T] x M) = {fec([o,T] x M) : f(-,x) € C*([0,T]), Va € M,
and such that | flceo = sup (17(, @)ooy < o0}

where for any function f : [0,7] — R,

Iflcaqoy = |flleofor) + {foca(o.m) (68)
Deapory = sup{ LIZE 41 o1} (69)
Similarly, we define
O ([0,T] x M) = {fe C([0,T] x M) : f(t,.) € C*(M), ¥t € [0,T],

and such that | f|coe = sup {|f(t)]|ceqr < oo}
te[0,T]

where the norm | - | ca(ar) is defined as in (68) and (69), with [0, 7] replaced by M.
The most important functional spaces for our analysis will be, still for given 0 < o < 1,
C2([0,T] x M) = C¥2°([0,T] x M) n CO*([0,T] x M)
clre/22e (0, 7] x M) {feCY2([0,T] x M) : &,f,8;0;f € C***([0,T] x M), ¥i, j € [n]}

respectively endowed with the norms

[flcara = [flcomo + [ flcoe
n n
[florrarzasa = Iflo + D3 10ifleo + 10cflcara + D5 10101 flgarme
i=1 ij=1

As in Lemma 5.1.1 in Lunardi [14], there exists a uniform constant C, > 0 such that for all
f c Cl+a/2,2+a:

[0 flcararzaa < Cal florarzera (70)

Consider the following linear equation:

{ atf(tv x) EiJ(t’ x)aiajf(t7 x) + Zz Erl,i(ta x)azf(tv fL‘) + ﬁo(ta fL‘)f(t, :L‘) + Q(t’ ‘7:) (71)
f0,2) = folx)

where § = (3" )i jeln]> Hy = (ﬁl,i)ie[n]]a Hy and q (respectively fp) are some given mappings on
M7 =1[0,T] x M (resp. M). As usual we will say that Equation (71) is uniformly elliptic in Mp
when there exists an ellipticity coefficient A > 0 such that for all ¢ € [0,T] and all &, .....&, € R,
we have:

gt a)g = N (72)

We recall the following theorem:
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Theorem 20 (Th 5.1.10 Lunardi [14], Th 2.5 Huong [11]) Let g, H, , Hoy and q belong to
Co2([0,T] x M), with 0 < a < 1 and let £(0,.) € C?**. Assume moreover that (71) is uniformly
elliptic, i.e. (72) holds. Then there exists a quantity C > 0, depending on the norms of g, Hy

and Hy, as well as on the ellipticity coefficient of g, such that Equation (71) has a unique solution
f e Clte/224([0, T x M) and we have the Schauder estimate:

[floriarara < C(lfolczre + gl garza)

Let us come back to the original equation i.e. (62), we will consider the following space M, =
[0,t9] x M where the constant 0 <ty < T is to be chosen later, and let

X = {ue CTPH(M) 2 w(0,.) = 0,max(fuloony s [Vetloonty s [VVUloo,ar,) < Ro}

We define the map:
S:X — CY2e(My)

U —  ou — P(t,x,u, Vu, VVu). (73)

This is clearly a continuously differentiable map.
We have the following theorem.

Theorem 21 Let M be a CT% manifold, for some fized € (0,1). If t — r(t) is a/2-Hélder and
7(0) = 0 then there exists to > 0 such that equation (62) has a unique solution defined in My, with
reqularity C*+/22+e (M, ).

Proof

The above theorem is a consequence of inverse function theorem around a specific function. Let
uo(t,x) = S(t) ®(s,x,0,0,0)ds and note that ug € C1+*/22+® by the assumption on the regularity
of M. The Fréchet derivative of S at ug it is given by

0P 0P 0P

dS(ug)u = 0 — (=—0; ju + —0;u + —u
( 0) t (a%',j (2] ov; t Oz )’
where the coefficients are all evaluated at wug, for instance, % stands for %(t, x, ug, Vug, VVuyg).

By definition of wg, there exists 0 < ¢; < T such that for all 0 < t < t1, (ug, Vug, VVuo)(t,z) €
B(OR,ORn,OSnxn)(R0/2)7 so ug € X. Lemma 19 yields %%’(t,ar,uo,Vuo,VVuo) is strongly elliptic in
M;, and is in C%>®(My,). Using Theorem 20, for the linearisation of (62), we get that dS(ug)
is locally invertible, and its inverse is continuous. By the inverse function theorem there exist
€ > 0,01 > 0 such that for all 0 < ¢ <t and for all g satisfying [|g — S(uo)|ces2.a(rs,) < € there
exists an unique f € C1+/22+()[,) satisfying | f — Uo[ cr+as2.24a g,y < 01 such that S(f) = g. For
[ such that | f —uo|c1ve22ra(pg) < 01, since f(0,2) = ug(0,z) = 0 and using (70), we get

1f = wolloo,nr, + IV (f = wo)lloo,nt, + [VV(f = wo)oonr, < (E+ Cat @2 4 49%)5, (74)

where C,, is the constant appearing in (70). So for ¢ sufficiently small such that (¢t + Cut(@+1/2 4+
t%2)61 < Ry/2, we deduce f e X for 0 < ty < t.

Let us show that with respect to the C%%%(M;) norm, S(ug) tends to 0 as t goes to 04. We
will first show that |S(uo)(t, z) — S(uo)(s, )| < C1(8)|t — s|*/?, for all s,t € [0,5] and = € M, and
with C1(d) tending to 0 as ¢ tends to 0.

Let 0 € [0,1] and
Co(t,z) = o(up(t,x), Vug(t, ), VVu(t, x)),
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by definition of wug, there exists a constant C7 > 0 such that
’CU(t7$) — G5, x)‘ < Cl’t - 3’7

’CU(t?x) - Ccf(ta y)‘ < 01’.%‘ - y’a‘
Let up(t, z) = (uo(t, ), Vuo(t,x), VVu(t,z)), we have:

S(uo)(t,x) = ®(t,2,0,0,0) — ®(t, z,up(t, x), Vug(t, ), VVu(t, x))

1
- _L d3®(t, 2, (o (t, ) (o (t, x)) do

hence

1
|S(uo)(t, ) — S(ug)(s,x)| = ’L (dg@(t,x,gg(t,x))(u_é(t,x)) —d3®(s, 7,5 (s,7))( _é(s,:v))) do‘
1
= ”o (dz®(t, 2, Co(t, 7)) — d3®(s, 2, (o (s, 2))) (o (t, x)) do

1
+ | a5, ol 2) ) — (5,2 do]
0

1
< L |(d3<I>(t,a:,Cg(t, x)) — d3<I)(s,:L‘,Ca(s,x)))(u_{)(t,m)ﬂda

1
+J |(d3<I>(5, x, (o (s, x))) (up(t, x) — up(s,x))| do.

0

We have, since M is compact and ® is regular in the three last variables:

|d3®(t, z, o (t, 7)) — d3®(s, @, (o (s, 7))

< |ds®(t, x, (p(t, ) — d3s®(t, z,(p (s, x))| + |dsP(t, z, (5 (s, 7)) — d3P(s,z,(, (s, x))|
< C1lGo(t, @) = Gols, )| + Chlt — 5|2 '
< (C18" 7 + o)t — 5|2

where C' is a constant whose value can change from one line to the other (also below). Also we
have |up(t,z)| < Ct < C6. On the other hand we have:

|d3q)(57.’l,', CU(57:E)| < C

and
[uo (t, ) — ip(s, )| < C|t — s|.

Putting all things together we get:
[S(uo)(t, ) = S(uo) (s, )| < C(8)[t — 2

with C'(9) tending to 0 as J tends to 0.
Let us show that:
|8 (uo)(t; x) = S(uo)(t, y)| < C(0)|z —y[*

with C(0) tending to 0 as ¢ tends to 0. With the same computation as above, we have:
1
[S(uo)(t, ) = S(uo)(t, y)| < fo |(ds®(t, 2, Co(t, ) — ds®(t, y, G (£, y)) (d(t, )| do
1
| 100G 00 (1. 2) = ()
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We also have, since M is compact:

|d3®(t, 2, (5 (¢, 7)) — ds®(t, y, o (t,y))]
< |dz®@(t, 2, (o (¢ ) — ds®(t,y, Go(t, @) + |d3@(t,y, (o (L, @) — ds®(t, ¥, (o (¢, y))|
< Colz —y|* + C1lGo(t, ) — G (t,y)|
< (Cr+Cy)lr —yl*,

as well as

luo(t,x)] < Co
|ds®(t,y,¢(ty)| < C

Moreover
¢
|u0(t7$> - ’I,L()(t,y)| < J ‘@(S,l‘,0,0,0) - @(s,y,0,0,0)\ ds < C(S|$ - y|a
0

and in the same way, using the regularity of ®(s,z,0,0,0) in terms of x, we get:
up(t, z) —uo(t,y)| < Cdle—yl|®
We deduce that:
S (uo) (@, ) = S(uo)(t, y)| < C(d)|z—y|®

Hence |S(uo)|carz.a(ng,) tends to 0 as ¢ tends to 0.

So there exist 0 <ty such that [S(uo)|ca2a(n,,) < € Let to = t1 A t2, we get by inverse

function theorem that Sf = 0 has a solution f € C*+e/ 22+ (M, ), this is actually a solution of
equation (62).

For the uniqueness, let f be the solution of (62) constructed above on M;,. Consider another
solution g of (62) on My, in particular ¢ starts with the same initial condition go = fo = 0. Since
g€ C1Ha/22%a et t5 € (0,t9] be the maximum value of ¢ such that

I9llo0, 320 IV gllo0, 02, [VV G001, < Ro

By construction of f, we have

| /1

for any t € [0,%p] and in particular for t € [0, t3].
Let u = f — g, then u satisfies the following linear equation:

o.My [V Fllooats [VV Flloon, < Ro

oru = @(t,.’ﬁ,f, vfa vvf) - ‘I’(t,:z,g,Vg,VVg)
1
0 - -
= L %tﬁ(t,x,af + (1 —0)g)do
L od - . 1oo - .
:J ——(tz,0f + (1-0)§)0i;(f —g)do+ | ——(t,z,0f +(1—0)g)0(f —g)do
0 aqU 0 avz

1 -
v | Staol -0 -0 do

= A;j(t, x)usj + Bi(t, x)u; + C(t, x)u,
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where .

Az](t7$) = J\ aﬁ(tvxuaf—i_ (1 - O—)g) dU,
0 04ij

L oo o .
Bi(t,z) = f F(t,a:,af + (1 —0)g) do,
0 0V

L oo >
C(t,z) = J —(t,z,0f + (1 —0)g) do.
0 0z
According to Lemma 19, A;; is uniformly elliptic. Let A < —[Cay,,, and W := eMu then we have:
oW = Ai,j(t,x)aiajW + Bi(t,x)Wi + (C + /\)W

The proof of uniqueness will be done by contradiction, suppose f # g then there exists for
example 5 > 0 (the negative possibility will be done in a similar way) and (¢, x) € [0, ¢3] x M such
that W (t,z) = 8. Consider the first time ¢y such that there exist x¢g € M such that W (to, zo) = 3,
clearly to > 0. By definition W (tg, z9) = max{W (¢, x), (t,z) € [0,to] x M}, and

W (to, o)
Hess(W)(to, x0)
VW(to, .’1’;0)

VAN

We have at (tg, xo)

0 < oW = Aij(to,l‘o)aiajw—l-(c—f—)\)ﬁ < Aij(to,l')aiajw <0

where the last inequality come from A;;(to, z0)0;0;W = tr(A HessW) < 0, and this is a contradic-
tion, so W < 0. We do the same thing to get W > 0 and so f = g for all ¢ € [0, t3]. It follows in
fact that t3 = tg.

|

Remark 22 From the above proof, we see there exist two quantities 71,72 > 0, only depending
on some bounds on the geometry of C, such that ty can be expressed as

to = m Ainf{s =0 : |r(s)| = n}

Remark 23 Using the a/2-Holder regularity of the Brownian motion, for all 0 < o < 1, we get
the existence and the regularity of the equation, similar to (44), corresponding to the stochastic
modified mean curvature flow:

Dy = D

{ Vte|0,1),VxeC, dr = (v2dB; — p%t (z)dt) v, (z) (75)

where C; := dD;. The solution of this equation is obtained as above, first we solve equation (58)
and we obtain Gy and then Dy = ¥ (G, v/2By).

Remark 24 Note that in the above proof we only need that r(0) is small enough, such that
|r(0)G=YH(0,-)|| < 1, so starting the same procedure at time ty, we have a notion of maximal
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solution of equation (62). A slight modification of the proof of Theorem 21 also yields existence
and uniqueness of solution of (62) for fp small enough, as well as all its derivatives up to order 2.

m]

Using the strong maximum principle instead of the maximum principle in the proof of Theo-
rem 21, we have the following corollary:

Corollary 25 Let U,U € D with C>*® boundaries, a € (0,1), and C = U, C = 0U. Suppose that
Uc U, C#C
and that C belongs to an open tubular neighborhood of C. Let (0Gt)ie0,70) (Tesp- ((9@,5)%[0’7@)) be

a solution of (58) with r(t) = v/2B; started at C (resp. C), then there exist a positive stopping
time T, & > 0 (a priori smaller than 7¢ A Tg because we want 0Gy to remain in an open tubular

neighborhood of (?Gt), such that
Vite(0,750), Gic Gy and G ndGy = &

The above corollary shows that even if the initial hypersurfaces are equal in a large portion,
it is sufficient they are different somewhere for the flow to detach them instantaneously, at least
when one of them lives in a tubular neighborhood of the other. When the latter condition is not
fulfilled, we have to impose that the initial boundaries are disjoint:

Corollary 26 Let U, U € D with C*** boundaries, and C = oU,C = oU. Suppose that
UcU CnC=gg

Let (0Gt)iefo,7o) (resp- (8(}})%[0%)) be a solution of (58) with r(t) = \/2B; started at C (resp.
C’), then for a positive stopping time 7., » > 0, we have

VtE[O,TCé), GtCGt, and &Gtmaét = @

Proof

Since C and C are compact, and ¢ n C' = & we have § = d(C, C’) > 0. Using the continuity
of the solution of (58), we get the existence of 0 < T < 7¢ (resp. 0 < T < 74) such that

for all ¢ € [0,7c], we have d(C,0G;) < § (resp. for all ¢ < Ty we have d(C,0G,) < %). Take

TC,C’ = TC VAN Té'
[

Consider the following stochastic mean curvature evolution starting from Cy = 0Dy
dx = (\deBt — pc, (:C)dt) ve, () (76)

According to the Doss and Sussman approach, a solution of (76) is given by (V(GY, \@Bt))te[()ﬂ')
where (0Gy)iefo,r) is a solution of (58) with r(t) = v/2B;. Equation (76) is a particular case of
equation (75) with b = 0.

Corollary 27 Let D,D € D with C>*® boundaries, o € (0,1), and C = o0D,C = dD. Suppose
that

DcD, CnC=g

Let (0D¢)e[0,r¢) (Tesp- (0ﬁt)te[0770)) be a solution of (76) started at C (resp. C) then for a positive
stopping time 7. s > 0 we have:

Vtel0,7ns), DicDyand dDyndDy = &
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Proof
Use Corollary 26 we get that there exist 7, ~ > 0 such that

Vie[0,7p0), 0Gin G = &

We have 0D; = W(0Gy,\/2By) for t € [0,7¢) (resp. dD; = W(0Gy,v2By) for t € [0,74)). For
t€[0,75a) (., V2By) is a diffeomorphism between 0G; and its image 0D; (resp. between ler

and its image 612). The proof of the corollary will be done by contradiction, suppose that there
exists a time 0 <t < 7, » such that V(0Gy, V2B;) n U (0Gy,\/2B;) # . Then there exist x € Gy

and @ € Gy such that Wog, (v,v2B;) = ¥, (#,v/2B;). We have
dact (‘IjaGt (:Ca \/EBt)) = \/§|Bt| = dﬁét(qjﬁét(‘%7\/§Bt))

where dpg, (+) stands for the distance to 0Gy. If By > 0, then Vg, (2, \@BQ € Gf so the geodesic
curve 7 —> W, (&,7) has to cross 0G; at time g € (0,+/2B;] (since 0G; n 0Gy = & and Gy < Gy).
Hence

V2IBy| = dac,(Voc, (2, V2Br)) < d(Yoe,(&,70), Vg, (2,V2Br) < V2|Bi| =10

so we get a contradiction.
The case B; = 0 is clear.
If B, < 0 namely V¥, (2, V2B;) € Int(Gy), the interior of Gy, and the geodesic Vyg, (2, —7)

have to cross 0G; at time 7 € (0,v/2|By|], so
V2IBi| = dyg (9(2,V2B1) < d(Vog,(x,—r0), Vog, (x,V2By)) < V2|Bi| —ro
and we get a contradiction.
|

We want to control the distance between to different hypersurface evolving by the stochastic
mean curvature by quantities that only depend on the ambient curvature.

Lemma 28 Let D, D € D with C? boundaries in a d-dimensional manifold V, C = 0D, C = 0D,
DcDandCnC=g. Suppose that there exists k € R such that Ric = (d — 1)kg, then at points
(p,q) € C x C such that d(p,q) = d(C,C) (or local minimizers of the distance function restricted
to C x C) we have:

(i) if k > 0, and p is not conjugate to q then

2d - 1)\@(1 — cos(Vkd(p, q)))

i (hd(p.0) pe(a) — pe(p)

(il) if k <0, and p is not conjugate to q then

(1 — cosh(+/[kd(p, q)))
2(d = )/ Ik] sinh(+/[k|d(p, q))

(iii) In particular for all k, if p is not conjugate to q then we have:

(d—1Dkd(p,q) < pa(q)—pc(p)

pe(a) — pe(p)

(iv) IfV =R? then
0 < palg) —pc(p)
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Proof

Let (p,q) € C x C such that d(p, q) = d(C,C). Using the first variation formula, we get that there
exists an unit speed geodesic 7 in V' such that v(0) = ¢, v(d(p, q)) = p, ¥(0) is orthogonal to T,C
and ¥(d(p, q)) is orthogonal to T,,C. Let (€;)ie[1,a—1] be a orthonormal basis of T;C'. Let 1 ;(t)
be a geodesic in C' such that v;,;(0) = ¢ and “;,;(0) = e;. Let v2;(t) be a geodesic in C such that
Y2,i(0) = p and ¥1,:(0) = //4(p,q)€i> Where // is the parallel transport along the geodesic 7. We have
0 = <ei,7(0)) = {/awp,qi>7(dp,q))). Since (p,q) € C x C is a local minimizer of the distance
function restricted to C' x C , we have that

d2

0 < —
dt?|,_q

d(71,i(t), 72,i(1))-

Let Y; be the Jacobi field along v obtained by the variation of geodesic connecting v; ;(t) to
Yo,i(t), we have: Y;(0) = e;, Yi(d(p,q)) = //a@p,q)ei- Using second variation formula, the fact that
4(0) is the exterior normal vector of C at ¢ and 4(d(p,q)) is the exterior normal vector of C' at p
we get that:

2
%d(')/li(t)a72i(t))‘t:0
= [(Vi=092,:(), ¥(d(p; 0))) — {VeoF1,i(1), ¥(0))] + (Y, Y7)
= [(Vizoy2i(t), v (p)) — (Vicohi(t), va(a)] + 1(Yi, Yi)
= [_<’Y2z 0),V 42,:(0 VC>+<’711( v‘yl,i O)VC'>] +1(Y;,Y7)
= _HC(//d(p,q eZ?//d (p,q) 62) + Hc(eu ei) + I(Y{, Yl) (77)

where I(Y;,Y;) is the index of the Jacobi field Y; along v, and Il (resp. Hé) is the second

fundamental form of C' (resp. C). Let X;(s) = f(s)//sei, be a vector field along ~ such that
f(0) = f(d(p,q)) =1 and f” = —kf, using the Index Lemma since p and ¢ are not conjugate along
we have for all i € [1,d — 1]

1V,Y;) < I(Xi, X;)

Taking the sum in (77) we get:

0 < Z — ¢ //dpqela//dpqel)+n (elvel)‘l'l(yvlan))

d—1
< pel@) = polp) + X 1(X:, X5)
=1
dpq 2 . .
— pe(@) — ool +2 f VX[ — CR(X1,7) X3, 4) ds

= PO(Q)—pc(p)JrZL ! /12 = FHCR( seis ) ] sein 7y ds
i=1

d(p,q)
— pala) — pe(p) + fo (d—DIf']? — fRic(3, %) ds
d(p,q)
< pelg) —pelp) +(d—1) L (f")? = fkds

= pelq) = po(p) + (d—=1)(f'(d(p,q)) — f(0)).
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After computations of f, we get the result. For the particular case, we could take X; = //se; in the
above computation and directly get the result.
|

Proposition 29 Let D,D € D with C' boundaries in a d-dimensional manifold V, and C' =
0D,C = 0D. Suppose that

~

D < D

For v € R such that Wc(.,r) (resp. Wil(.,7)) is diffeomorphism onto its image Wo(C,7) (resp.
\I/é(é, r)) then

AW(C, 1), W(C,r) = d(C,0)
Proof
Let (p,q) € C' x C such that
d(p,q) = d(C,C)

If d(C, C’) > (, using Gauss Lemma, and the fact that D c D, we get that the exterior normal
vector of C at p is the parallel transport, along the geodesic v that connects g to p, of the exterior
normal vector of C' at ¢. Hence by definition of U we have d(¥c(p,r), Valg,r)) =d(p,q)

We get that

d(¥(C,r), ¥(C,r)

) \I/C<p7r)7\:[}é(Q7r)) = d(p,Q) = d(C,C)
So d(U(C,r),¥(C,r)) < d(C,C).
q) eV

In a similar way let (p, (C,7) x W(C,r) such that

d(p.q) = d(¥(C,r),¥(C,r))
we have since W¢(.,r) (resp. ¥ (.,7)) is a diffeomorphism onto their respective image,
AC,C) < d(Waiey(p—1) Uye (@ =) = d(p,a) = d(T(C,r), B(C, 1))
Putting all things together we get
d(¥(C,r),¥(C,r) = d(C,0).
It d(p,q) = d(C,C) = 0, since D c D then ve(q) = vo(p) and the result follows as above.

Remark 30 The above proposition also gives an alternative proof of Corollary 27.

Let

weoE inf inf{t > 0,7,(t) is conjugate to v,(0) =
v (p)eV XTpV : |v]=1 { 7(t) Jug Y (0) = p}

where 7, is a geodesic starting at v,(0) = p and 5,(0) = v.

Lemma 31 Let D, D € D with C>*® boundaries, o € (0,1), and C = 0D,C = 0D. Suppose that
there exist k < 0 such that Ric = (d — 1)kg, vy = o (for example if V' have non-positive sectional
curvature) and

ﬁcD, CnC=g.

Let (0Dt)iefo,7) (Tesp- (3ﬁt)te[0;c»)) be a solution of (76) started at C (resp. C) then:
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(i) The mapping t — d(0Dy, 611) is locally Lipschitz in [0,7c A T4)

(ii) For allte [0,7c A Tp)
d(C,0)eF =Dt < d(0Dy,0Dy)

(iii) We have D; n Dy = &5 for all t € [0,7¢ A Té)-
(iv) In particular, if V = R? then t — d(@Dy, dDy) is non decreasing in [0,7c A Te)-

Proof
We have

Dy = \Il(Gt,\@Bt), for t < 7¢
Dt = \I/(Gt,\/ﬁBt), fort < T

where 0G; and Gy are solutions of (58) with r(t) = v/2B; and dGy = C' respectively Gy = C.
Let

T = inf{t > 7,4, st. IDy N oD # @Y A 1o A e
Using Proposition 29 and Corollary 27, we have
Vte[0,7),  d(dDy,0Dy)) = d(0Gy,0Gy)

Recall that Gy = {Fy(x) + fo(t, 2)v§ (x),z € M} with Fo(M) = C, and fo(t,z) the solution of
(62). We have the same construction for G. We recall that fo e C1+®/22+e(M, ) and fe €
Cl+a/2’2+a(MTé). So by definition, for 0 <t < T,

d(0Gy,0G,) = inf  d(Fe(t, @), Fa(t,y))
(z,y)eM x M

where Fo(t,z) = Fy(z) + fo(t,z)v§ (z) and Fp(t,y) = Fy(y) + felt, y)l/g(y) Also t — Fg(t,x)
and t — Fg(t,y) are uniformly Lipschitz on any compact [0,77] < [0, 7). Hence t — d(0Gy, 0Gy) =
d(dDy,Dy)) is Lipschitz on [0, T7], hence almost everywhere differentiable on [0, 7] and absolutely
continuous. At differentiability time ¢ € [0,7'] we have

d

Zd(Dy,0Dy)

d
-0t inf d(z ’
dt((xt’yt)eaatxaétﬁd(xtvyt)—d(aat,aét) (a yt))

d

= R inf N fd(.%'t, yt)
(24,yt)€0G X 0GYy : d(wt,yt) =d(0G¢,0G+) dt
d

. d 3
= _ inf RS 76 (1)) — {5 vt o (y))
(xt,yt)EaGt x0Gl : d(ﬂ?z,yt)=d(aGt7aGt) dt dt

= inf — P ) + A Yo Y
(xt,yt)eaGtx&’G't:d(a:z,yt):d(@Gz,é’Gt) pq}(aGtVﬂBt)( aGt’ﬁBt( t)) p\P(aGhﬁBt)( aGt?ﬂBt( t))

= _inf . —PoDy (z¢) + Pob, ()
(It,yt)eaDt X aDt : d(m‘t,yt)zd(aDt,aDt)

> (d—1)kd(0Dy, 0Dy)
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where in the second equality we use the usual Lagrange Theorem, in the third one we use the
first variation formula, and in the last one we use Lemma 28. Since t — d(8Dy, dD;) is absolutely
continuous we can integrate the above inequality. Hence, using Gronwall’s lemma, we get the
conclusions (i), (i), (iii) and (iv) of the lemma, at least on [0,7). Since d(C,C) > 0, we easily
deduce that 7 = 7¢ A T4.

|

Remark 32 If the D c D¢ and C n C = & for all reasonable 7, we have d(¥c(p,r), Valg,r)) =
d(p,q) — 2r and we could get a similar kind of result.

]

Theorem 33 Let D, D € D with C>*° boundaries, o € (0,1), and C = 0D, C = 0D. Suppose that
there ezist k € R such that Ric = (d — 1)kg and vy > 0 (for example if the sectional curvature is
bounded above by a® then vy > 2, see e.g. [9] page 159) and

DcD, CnC=yg

Let (0Dt)ie)0,7) (Tesp. (6Dt)te[oﬁé)) be a solution of (76) started at C (resp. C) then
(i) The mapping t — d(0Dy,Dy) is locally Lipschitz on [0,7¢ A Ta)
(ii) If k = 0 then for all t € [0,7c A Tp),

(d(C,CYeF =D Ay < d(0Dy, 0Dy)
(iii) If k <0 then for all t € [0,7c A Tp),

(d(C,C) A )PVt < d(oDy, 0D,
(iv) We have D; n Dy = & fort € [0,7¢ A Te)-

Proof

The proof is similar to the proof of Lemma 31. Using (iii) in Lemma 28, we have:

d(0Dy, 0Dy) < vy —> %d(aDt, 0Dy) = (d — 1)kd(0Dy, 0Dy)

We deduce that, if £ > 0 then for all ¢ € [0,7¢ A T4)
(d(C,C)eP =D A vy < d(0Dy, 0Dy)

since after being above vy, d(0Dy, (9Dt) cannot go below ¢y again.
Similarly, if & < 0 then for all ¢ € [0,7¢c A 74)

(d(C,C) A )PVt < d(oD,, 0D,)

As a consequence of Theorem 33, we can extend Corollary 25 under an assumption relaxing
the requirement that one of the initial boundaries must be in a tubular neighborhood of the other
initial boundary:
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Proposition 34 Let D, D € D with C5t® boundaries, a € (0,1), and C = oD,C = 0D. Suppose
that

DcDandC #C

Let (0D¢)ie[0,r0) (Tesp- (aDt)tE[O,Té)) be a solution of (76) started at C' (resp. C’) Suppose that
there exists k € R such that Ric = (d — 1)kg, vy > 0, and

(H): it is possible to interpolate between C' and C by a family of COF° hypersurfaces (Ci)iefo,n] such
that C; = 0D; with D; € D, C; is in a tubular neighborhood C;11, and Dc D11 < D; c D, for
ie0,n—1], Co=C and Cp, = C. Then

(i) The mapping t — d(0Dy, 6Dt) is locally Lipschitz on [0,7c A T4).

(ii) @Dy n Dy = &, for t e (0,7¢ A Ta)-

Proof

We can use Corollary 25 with initial conditions C; and C;;1, and extend this corollary without
the hypothesis that C' belongs to an open tubular neighborhood of €', up to the time 7, » =
infie[1 n—1] 7¢;,Cip, - Hence for all t € (0,7, ) and all i € [1,n — 1] we have

(Git1)e < (Gi)e and 0(Gis1)e 0 0(Gi)e = &
so for all ¢ € (0,7, ) we have
Gy c Gy and 0G; n 0G, = & (78)
Let
T = inf{t> Toéo St 0D, 0D, + By AT A TA

Using the same reasoning as the proof of Theorem 33, since 0D; = V(0Gy,+/2B;) and oD, =
U (0G4, v/2By) for all t € [0,7), we get that

Vte[0,7),  d(dDy,0Dy)) = d(0Gy,dGy)
and t — d(@Dy, dDy) is locally Lipschitz on [0, 7)

Hence using (78) we get that
vtE(O,’T), .DtCDt and 8Dtm(3f)t = @

Let tp = TCT’C, since Dy, © Dy, and d(dDy,,0D;,) > 0 we apply (ii) or (iii) of Theorem 33 to

Dy, < Dy,. We get that independently of the sign of the constant k
Vitelto, e, ATe, ) d(@Dy,éDy) > 0
0

since TCy, = TC — to and ey =T~ to we have 7 = 7¢ A Ta.
[ |

Remark 35 In the above proposition, Hypothesis (H) seems to be satisfied for all D, D € D with

Dc D, even if 0D n oD # & , but for the moment we do not have a complete proof of this fact.

]
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4.2 Local existence of (51)

In this section we will show the existence of a solution to the system of equations (51). We recall
the notations:

u(C
VDeD,C=0D h(D) = 28
= o)
Vr>0,VDeD,,Vzel, acy(z) = _pI\)I/(C,r) (Yor(x)).

For given Dy € D, we are interested in the system of equations:

50 = h(W(Gi,V2B; + ;)
VaoedG:, oOx = QoG 2B +6; (x)yaGt (:E) (79)
(QOaGO) = (07D0)

To prove the existence of a solution to the above system of equations, we consider the equation
described below. Let g : [0,+00) 3¢+ g(t) € R be a real §-Hélder function, such that g(0) = 0
(or small enough), and 0 < a < 1.

The goal of this first step is to show the existence of real numbers ty > 0 and § > 0, such that for
all g € Bga2(0,6) and g(0) = 0 , there exists a family (G7)e[o,4,] solution of

{ Vtel0,to], VxedGY, 0T = Qg9 /3p,+gt) (T)Vace (T) (30)

Gy = Dy

We adopt the same strategy as in the precedent section, in order to deal with the quasi-parabolic
equation, and we adopt the same notation, let 0Dy = Fy(M).
We consider the following equation.

0
{<(%Fg(t7x)7VFg(t7x)> = _pl\)Il(Fg(t,M),\/ﬁBz-}-g(t))(ng(t,M),\/iBH-g(t)(x))

Fo.2) = Fyla), (81)

As before we represent the solution as graphs over the fixed hypersurface C' = Fy(M), and we
write the solution as:

FIt,z) = Yo poa(Fo(x) = Folx) + fI(t x)ro(x)

for a function f9 with enough regularity and f9(0,.) = 0. With similar computations as in the
above section, F9 is a solution of (81) (with r(t) = v/2B; + g(t) for any ¢t > 0) if f9 satisfy the
following non linear parabolic equation:

{étfg(t,a:) = ®I(t,z, f9,VfI,VVfI) (82)

P0,2) = 0,

where ®9 have the same definition as ® in Proposition 18, but with r(t) = v2B; + g(t), for all
t = 0. Taking into account that C' is smooth, Theorem 21 leads to:

Proposition 36 Take g = go = 0. There exists 0 < tg < T (where T comes from Proposition 18)
such that (82) admits a solution f9 belonging to

X(to) = {ueCY22(g ) ¢ w(0,.) = 0, max(|ul

o0, Mg+ | Vttlloo, gy s [ VV Ul 00 01,) < Ro}

We deduce:
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Proposition 37 With the same notation as the above proposition. There exist two real dy, 51 > 0
and a continuously differentiable map

O Bug (oaon(90:0%0) = Boargaraiy, ((F,01)

(83)
g — I
where f9 is a solution of (82). Moreover © is uniformly Lipschitz in BC%([O to])(go’ 90).
Proof
Let N N
S %(to) X Cf([o,to]) — Cf’a<Mt0) (84)

(u,g) +— Ju—®I(t,x,u,Vu, VVu),

is a continuously differentiable map (for g in a small ball). Note that from Proposition 36, there
exists (f9, go) € X(to) x C'2([0,%0]) such that S(f9,gy) = 0. Also

dSu(f*,90)(v) = dS(f*)(v)

where S is defined before the proof of Theorem 21 (with 7(t) := v/2B;). Since f% is in X, dS(f%)
is invertible with continuous inverse, according to Lemma 19 and Theorem 20. The result follows

from implicit function theorem.
|

We will show the existence of solution of (79) by using a fixed point theorem. For g €

BC%([O,to])(‘gO’ dp), define

Fo(t,x) = Fo(z) + f7(t z)vo(x)
and consider the family of hypersurfaces
oG} = FI(t, M)
note that GJ = Dy.

Proposition 38 There exist 0 < t1 < tg and a mapping
L BC%([O’tl])(Qoﬁo) n{ge C%‘Q(O) =0} — BC%([OM])(QO,(;O) n{ge C? 9(0) = 0}

such that
{ v te [O’tl]’ %F(g)(t) = h(\Ij(Gf7\/§Bt + g(t)))’ (85)
I'(g)(0) = 0.

Moreover I is a contraction and there exists an unique fixed point for I' in BC%([O tl])(go, do) N

{ge 03 ([0,11]) : g(0) = 0}.

Proof
Take 0y such that by Proposition 37, © is uniformly Lipschitz in BC%([O to])(go,éo). Let g €
BC%([O tO])(go, dp), 7€ R and f9 = O(g), define for all = € M:

Fi(t,x,r) = F9(t,x) + v ()
= Fy(x) + fI(t,z)vp(x) + rvt? (t,z)
= Fo(z) + fI(t, 2)vo(x) + rv(t o, fI(¢,-), V(L))
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then we have
V(0GY,r(t)) = {Fo(x) + fI(t, x)vo(x) + r(t)v(t, x, f(¢,-), VfI(t,-) : v € M},

and
w(¥(0G], V2B + g(1)))
w(W(GY, V2B, + g(t)))

We have the following formula for the n-volume of the boundary:

h(W(GY, V2B, + g(t))) = 2

Ii(‘l’(aGgy\/iBt +9() = SFi(t7M7\/§Bt+g(t)) d&Fqg(uM,\/iBtJ,-g(t))

=, det[v™V (¢, 2), do FY(t,2,v/2By + g(t))] dpns. (86)

In the above formula, dp )y is a Riemannian measure for a fixed metric in M and d, F’ i (t,z,7/2B;+
g(t)) is evaluated in an orthonormal basis for this metric. Let
dI(t,x) = det[uFi (¢, x),dxFi(t,x, V2Bi+g(t)] = V(z,V2Bi+g(t), fO(t,x), VfI(t,z), VV fI(t, x)),

where V' is a function regular in the four last components. It follows there exists a constant C > 0
such that

(ta) = d(ta)ap < CV2Blcas + lglgan + 1 loreanara)

with the semi-norm

<(t7 x) — dg(t’ x)>a/2

|
w
o=
o

{If(t)—f(S)l

T ,S;ﬁtE[O,to],l‘GM}

We deduce there exists Cy, 5,, depending on dy, §; and on the random quantity |v/2B.| a2, such
that

<t'_)dg(t7x)>a/2 < 0(50,51

and thus

2
[t d2(t, )| carpos < Casolty” +1) + K

with K = ||d9(0, .)| s not depending on g.
Hence t — u(W(0GY,/2B; + g(t))) is in C*/? and

[t = u(W(@GE, V2B, + g(1)) g < (Cs, (1" + 1) + K)u(M), (87)

Using Stoke’s Theorem we have that the volume of u(¥(GY,+/2B; + g(t))) enclosed by the hyper-
surface U(0GY,v/2B; + g(t)) is

— 9 —
N(W(G§7\/§Bt+g(t))) = %HSFi(t,M)@?vVFw>d/iFi(t,M)(x)

) . o (88)
= -9 SM<F¢(t,:c, V2B + g(t)), v (t, 2))dd (t, x) dups ().

As before, we get, for some Cz/h,éo > 0 and K’ > 0 of the same nature as Cs, 5, > 0 and K > 0,
that

[t = (W (G, V2Br + g(1))|cor < (Ch 5, (8> + 1) + K )u(M) (89)

As a quotient, it follows that ¢t — h(¥(GY?,v/2B; + g(t)) is in C%?, as long as the domain
U(GY, V2B; + g(t)) keeps a positive mass, which may lead us to replace ty by a smaller value, and
we deduce that

[t = h((GY,V2B: + g(t)corzog) < C (90)
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for a constant C' that only depends on &y ,01, to and |v/2B.| a2 So T'(g) € C1te/2 We have for
0<s,t<t; <t
[D(9)(t) = T(g)(s)] < |t = s|C < Ot |t — 5],
since I'(¢)(0) = 0 we have:
1—a/2
IT(@)lcorpon) < Ctr+CH2

Take 0 < t1 < tg sufficiently small such that Cty —l—Ct}_a/Q < &g we have I' maps BC%([O tl])(go, dp)N

{g € C%|g(0) = 0} into himself.
Let us show that I' is a contraction.
Let g1,92 € BC%([O’tl])(go,éo), and f9 = O(g1), f9 = ©(g2) then

1(U(0G] V2B, + g1(t))) — (¥ (0GT, V2B + ga(1)))
=y Vi, V2B + g1(t), f91(t, ),V f9'(t,x), VV f91(t, x)) (91)
—V(z, V2B + ga(t), f92(t, ), Vf92(t, ), VV f92(t,2)) ppr (da).

We want to control the norm of the above function in C®/2. Since it vanishes at time 0, we have
only to control its semi-norm {-) /.

We write for simplicity f9(t,z) = (f9(t,z), Vf9(t,z), VV f9(t, x)), and let
J(t,x) = V(e,V2Bi+qi(t), [0 (t,2) = V (2, V2B + g2(1), [ (t, 7))
Let o € [0,1] and
Go(t,z) = o(V2Bi+ gi(t), f9(t,2)) + (1 — 0)(V2B, + g2(t), [ (t, )
we have, for all 0 < s,t < t1,

It — 5|%2(2v/2|| B.| gay2 + 200 + 261)
|t _ S|o</2

|C<T(ta ZL‘) - CU(Sa$)|

<
< C50751

Also using the regularity of V' in the four last variables we have

1
J(t,x) = jdSV(w,Ca(t,x))((gl(t),fgl(tax))—(gz(t)vf”(tax)))d(f

0

Hence,
| J(t, ) — J(s,)]
= | Ll d3V (2, Co (8, ) (91() = ga(t), F7 (t,2) — [2(t, )
~d3V (2, Co(5,2))(91(s) — g2(5), f (s, 2) — f#2(s, 2))do]
< Ll |(d3V (&, o (8, 2)) = d3V (,Co(5,)) (91 () = ga(t), O (£, ) — [ (t,2))| do

1
; f sV (2, Co (5,2)) ((91(£) — ga(t), Fo (£, 2) — F2(t, x))
—(g1(s) — g2(5), f9 (s, 2) — f92(s,2)))| do

Since d3V (x, (s (s, x)) is bounded we have (again the constant C' can change from one line to the
other),
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|5V (, G (5,2)) (g1 (1) = g2(0), f (,@) = F2(t,2)) = (g1(5) — g2(5), f9(5,2) — [P (s,2)))
< Clt=s|"*(lg1 = g2lcore + 1 /% = F2|cosea)
< Ot —s|?(lg1 — g2l sz + [0(91) — O(g2) | cr+ar2.240)
< Clt=s|?(1 +[OlLip) |91 — g2l core

where in the last line we use Proposition 37. Using that d3V (z,.) is Lipschitz in the last variable:

|d3V($,Co—(t,$)) - d3V(3§‘7 QU(Sax)) < C|C0’(t7x) - CO’(S)x)’
< CCsy |t — 5|2

Since (g1(0), f1(0,2)) = 0 = (g2(0), f92(0, z)) we have:
(91(8) = g2(8), f2 (t,2) = [ (8,2))] < Ct*2(1+ |O]Lip) |91 — g2 gare
Putting all things together we get {t — J(t,z))ca2 < C|lg1 — g2/ ca/2 and since J(0,z) = 0,
[t = J(t2)|car < Clor— g2l car

Hence

[t = (YOG V2B + g1(1)) = w(¥(IGF V2By + g2(t)))cor2 < Clgi — g2lcarn (92)
With the same proof we also have:

[t = p(W(GI" V2B + g1(t)) — m(W(GP, V2B + g2 () |cer: < Cllgr = g2llgarz (93)

Let u(g)(t) = (¥ (G{, V2B, + g(t))) and pu(g)(t) = u(¥(3G], V2B + g(1)))

d

%<F(91) _ F(gz)) _ 2(11(91) _ /i(g2))

Hence using (87), (89), (92) and (93),
'jt (F(gl) - F(QQ))

< Cllgr — g2]gorz
C/2([0,t1])

and so

I(g1) —T(g2)) < Clgr = gl

)(0),
1-a/2

IT(91) = T(g2)|cerroryy < (Er+ty )Clg1 — g2l car

H
dt Co([0,t1])
= F(92

Since I'(g1)(0) =0

Reducing t; such that (¢; + t}_a/Q)C < %, we get:

1
IT(91) = Tlg2)lcorrqon)y < 3l91 = g2lcor o)

Hence I' have a unique fixed point in BC%([Otl])@O’ 60) N {g e C2[g(0) = 0}.
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Theorem 39 Let Dy € D, then there exists 0 < t1 such that the system of equations (79) has a
unique solution.

Proof
Let 6 be the fixed point of T', and f = ©(0) then F(t,z) = Fy(z) + fO(t,z)vo(x) solves

0
{ b (0) = (= Aypoqan vas o) (Vroeanvaseon @)V (12)

F(O,l‘) = FO(:L‘)
and so
Vtel0,t1],V e oGy, Ot = Qage /B, o) (.CC)I/aG? (x)
GS = Dy
Also
&0) = FLO))
= h(¥(GY, V2B +6(t)),
r@)o) = o.

Let D € D, C = 0D with C>*® boundaries, o € (0, 1), in a d-dimensional Riemannian manifold
V', and (0;, G¢)o<t<r be a solution of (79) given by Theorem 39. As in the beginning of this section,
the solution of

Vtel0,7),VaxeCy =Dy, de = (\@dBt + 2i§gt))dt - pey (x)dt) ve, (x) (94)

is given by (Dy)se[o,r), Where
Vite [O,T), Dt = \I/(Gt, \/§Bt + gt)

(as a special case of (44)).
Proposition 41 below will give a control of the extrinsic diameter of C; defined by

diam(C;) = sup d(z,y)
(z.y)eC?

where d(-, -) is the Riemannian distance in V. First we need the following proposition bounding the
sum of the mean curvature at points that realize the diameter, in terms of the extrinsic curvature
(by extrinsic we mean in the ambient manifold V', i.e. not intrinsic in the hypersurface). For all
b e R, we denote by V*(d) the d-dimensional manifold with constant curvature b. Let Lyb(qy defined
before Lemma 31. We have:

LVb(d) = o, if b < 0

LVb(d) = % s if b>0
Proposition 40 Let D € D with a C? boundary in a d-dimensional manifold V, and C = éD.
Suppose that there exist b € R such that the sectional curvature Ky of V' is bounded above by b,
i.e. Ky <b. For all (p,q) € C? such that d(p,q) = diam(C) and d(p, q) < Lyb(qy, we have

. 1—cosh bld(p,
1 i< 0 then —po(p) — pola) < 2(d — 1)/ (b PHCA)) o,

2. if b> 0 then —pc(p) — pe(q) < 2(d — 1)Vb(Ihodba)),
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Proof

As in the proof of Lemme 28, consider (p,q) € C? such that d(p,q) = diam(C). Using the first
variation formula, we get that there exists an unit speed geodesic v in V' such that v(0) = ¢,
v(d(p,q)) = p, ¥(0) = —ve(q) and Y(d(p,q)) = vo(p). Let (ei)icfi,a—1) be a orthonormal basis
of T,C. For i € [1,d — 1], let v1,i(t) be a geodesic in C such that 1 ;(0) = ¢ and 1;(0) = e;.
Let 72,i(t) be a geodesic in C' such that 42;(0) = p and 71,,(0) = //q(p,q)€i, Where // is the parallel
transport along the geodesic y. Since (p,q) € C? is a local maximum of the distance function
restricted to C' x C, we have that

d2

2| doni(t),124(1) < 0.

t=0

Let Y; be the Jacobi field along y obtained by the variation of geodesic connecting i ;(t) to
Yo,i(t), we have: Y;(0) = e;, Yi(d(p,q)) = //q(p,q€i- Using second variation formula, we get that:

d? : : . .

%d('}’l,i@)v Yo,it)=0 = [{Vi=0Y2i(t),¥(d(p,q))) — (Ve=0¥1i(t), 7(0))] + 1(Y;,Y5)

= [(Vicot2i(t), ve(p)) = (Vi—od1a(t), —ve(@)] + 1(Y:, Y))

= _HC (//d(p,q) €, //d(p,q) ei) - HC(eia 62’) + I(}/Za Yz)

Put the above two computations together and take the sum to get:

d—1
—pc(q) — po(p) < — Y, 1(V3, Y3),
=1

We have to bound from below the index of the normal Jacobi field Y; for all 7. Since Y; is a normal
Jacobi field, there exist real functions ff for j € [1,d — 1] such that Y;(¢) = Z?;ll fij(t)//tej. By
construction of Y;, we have f/(0) = f/(d(p,q)) = ;. Consider F(t)e[0,d(p,q)]
with same length as 7, take (€;);e[1,4—1] an orthonormal basis of ';y(O)L in T5 () V*(d), and denote by
// the parallel transport along 7. Let X;(t) = Z?;i ff (t)//téj, be a vector field along 7, note that
X;(0) = & and X;(d(p,q)) = //éi. Let Y; be the Jacobi field in V?(d) along 4 such that Y;(0) = &

and Y;(d(p,q)) = / d(p,q) €i- We have by definition:

a geodesic in V?(d)

d(p,q) ) ) )
V.Y, — fo IVYil? — (R(Y,A)Yi, 3 dt
d(p,q)
> f [V, Y52 — b|Yi|? dt
0
d(p,q) - -
_ fo VX2 — b2 dt
d(p,q) 5 -
> j [V, Y% — b2 dt
0

where in the last inequality we used again the Index Lemma, since d(p,q) < tyb). So 7(0)
and 7(d(p, q)) are not conjugate in V?(d). Since Y;(t) = fb(t)/~/téi with f;' = —bfy, and f(0) =
fold(p, q)) =1, we get

d(p,q)

IY,,Y) > jo (F)? — bf2dt

= (fpld(p,q)) — £3(0))
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Hence

—pc(q) —pc(p) < —(d—1)(fz(d(p,q)) — £,(0))

and the result follows by explicit computation of f in different cases.
[

Proposition 41 Let D € D with a C°T boundary C := 0D in a d-dimensional manifold V', for
some fized o € (0,1). Suppose there exist b € R such that the sectional curvature of V' satisfies
Ky < b. Then the evolution of the diameter of the solution (Ci)iejor) of (94) started at C' is
controlled by:

(1) Ifb <0, we get for all0 < t < T,

1 — cosh(y/]b] diam(C})) i@t

ddiam(Cy) < 2(V2dB; + h(Dy)dt) +2(d — 1)+/]b|( sinh(+/]b] diam(C;))

(i) Ifb> 0, we get for all0 <t <T A T (diam(C)))

ddiam(Cy) < 2(v2dB; + h(Dy)dt) + 2(d — 1)\/5(1 — cos(vbdiam(C}))

)dt

sin(v/bdiam(Cy))
where T (diam(C)) = inf{t = 0 : diam(C}) > %}
Proof
Using the construction of (Dy)[or), we get for 0 <t <,
diam(C;) =  sup d(¥g,(z,V2B; + 6;), ¥, (y, V2B + 6;))
(z,y)€0G?
= 2(V2Bi +6;,) + sup d(x,y)

(z,y)e0GF

where in the second equality, we used that for 0 < t < 1, ¥g, (., V2B; + ;) is a diffeomorphism
onto its image, and a reasoning similar to the proof of Proposition 29. Also since

sup d(z,y) = sup d(F’(t,x), F'(t,y)),
(z,y)€0G? x,yeM?

and the mappings t — F(t, ) are uniformly Lipschitz on any compact [0,7T] < [0, T), we deduce
that

t — sup d(z,y)
(z,y)€0G?

is Lipschitz on [0,7"], hence almost everywhere differentiable on [0,7"] and absolutely continuous.
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At a differentiability time ¢ € [0,T], we have, as in the proof of Proposition 29,

d
— sup d(z,y)
At (4y)e0G?

d
= = sup d(xe, yt)
(w4,y¢)€0G? : d(wt,y+) =diam(0G+)
d
= sup %d(mu Yt)
(w4,y:)€0G? : d(z¢,yt)=diam(0Gy)
d d
= sup <£$t7 V0 () + <£yt, V% ()
(zt,y:)€0G? : d(z4,y:)=diam(0Gy)
= sup ) _pq](aGtvﬁBt"Fet)(¢aGt7ﬁBt+9t (xt)) B p‘l’(ath\/iBt"ret)(wath\/iBt"ret (yt))
(z¢,y:)€0G? 1 d(z4,y: ) =diam(0Gy)
= sSup —pon, (xt) — pop, (Yt)

(z¢,yt)€0D? : d(zt,y:)=diam(0Dy)

Taking into account Proposition 40, we obtain the wanted points (i) and (ii).

When (94) is replaced by (76), the previous proof leads to a similar result:

Proposition 42 Let D € D with a C°T boundary C := 0D in a d-dimensional manifold V', for
some fized o € (0,1). Suppose there exist b € R such that the sectional curvature of V' satisfies
Ky < b. Then the evolution of the diameter of the solution (Ci)ejor) of (76) started at C' is
controlled by:

(i) Ifb <0, we get for all0 <t < T,

1 — cosh(y/]b| diam(C}))

ddiam(C;) < 2V2dB; + 2(d—1) |b|( sinh(mdiam(ct))

)dt

(il) If b >0, we get for all0 <t < T A T (diam(C'))

1 — cos(v/bdiam(Cy))

ddiam(Cy) < 2V2dBy +2(d — HV( sin(v/b diam(Cy))

)dt,

where T (diam(C))) = inf{t = 0 : diam(C;) > %}

Remark 43 Proposition 42 may seem simpler than Proposition 41, since it does not require to
deal with the tricky term h(D;). For instance when Ky < 0, we have for all 0 <t < T

diam(Cy) < 2v2(B; — By) + diam(Cp)

It follows that T < 7 aiam(cy) (B.) a.s. But the supplementary term h(D;) in Proposition 41 should
2v/2
prevent this collapsing in finite time.

5 Back to the homogeneous situations

Here we return to the situations encountered in Section 2, where V has a constant curvature and
is endowed with the Laplacian L := A. This section has two main goals developed in the following
subsections:
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e When V is an Euclidean space, it is possible to go further in the considerations of Section 3. In
particular when V' = R?, it is possible to compute explicitly the image of the mean curvature
vector field by the tangent mappings to the normal flow.

e When Dy = B(zg,rg) with zyp € V and 19 > 0 (small enough in the spherical case), the
Doss-Sussman approach can be described explicitly (more generally this is also true when V/
is rotationally symmetric and xg is a center of symmetry). It is then possible to compare the
Doss-Sussman methods in the two decompositions (23) and (57), concerning their respective
time-domains and to see that the method suggested in Remark 17 is stable when we let
r9 go to zero, namely when we try an approximation of the initial conditions consisting of
singletons.

5.1 About the Euclidean and constant curvature spaces

We begin by bringing some precisions about the quantities defined in (26) and (27). They can
always be written

R_(D) = R_(D)v R_(D) and R.(D) = R.(D) A R.(D)

where
R.(D) = inf{re (0,+0) : e is not an immersion}
R_(D) = —inf{re (0,+0) : e,y is not an immersion}
R.(D) = inf{re (0,+0) : tcy is not one-to-one}
}A%_(D) = —inf{r e (0,4+o) : o, is not one-to-one}

(with the usual convention inf ¢§ = +00).
Consider the Euclidean case:

Lemma 44 When V = R"™, with n = 2 and endowed with its Fuclidean structure, we have

~ 1
k(D) = min(0_, min{—\,,_1 c(z) : € C}) € [=2.0)
1

R.(D) = max(04, max{—X\; c(z) : x e C}) € (0, 4]

where A\ ¢(x) < -+ < A—1,0(2) are the eigenvalues of the second fundamental form (defined with
respect to vo) at x € C. The notations 0_ and 04 just indicate that 1/0_ = —o0 and 1/04 = +o0.

Proof

Recall that the tangent mapping dve associated to the mapping C' 3 x — ve(z) can be seen as a
linear mapping from 7,,C (the tangent space of C at z) to itself, and that the second fundamental
form is given at x € C by

T,C x T,C 3 (v,w) — (v,dvc[w])
We deduce that for r € R, the tangent mapping dic, satisfies
YV v,weT,C, v, dperlw]y = (v,w) +rv,dvclw])

It follows that if 7 is such that all the quantities 1 + rAc1(x), ..., 1 + rAcpn—1(z) are either all
positive or all negative, then the tangent mapping dic, is not degenerate at x. As a consequence,
for r € (R_(D),R+(D)), dipc, is not degenerate on C. More precisely, (R_(D), Ry (D)) is the
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largest interval I containing 0 on which the tangent mapping dic, is not degenerate on C for all
r € I. Indeed, when for some z € C and r € R, the values 1 +rAc (), ..., 1 +7Ac,—1(x) are not of
the same sign, we can find " € (—|r|,|r|) such that 1 +7'Ac1(z) = 0, so that dic, is degenerate
at .

|

Remark 45 Consider the case where V = R? endowed with its usual Riemannian structure
(coming from its Euclidean structure). The following picture (where the boundary of the C' in
black stands for C', while the line in red is a portion of its image by ¢ ., for some positive element
r € (R_(D), R.(D))), shows that in general the mapping e, is not an embedding of C' in the
plane.

Figure 2: example of a non injective mapping ¥ ¢,

In this picture, if r is reduced a little to be equal to ]§+ (D) and if z + 2/ € C are such that
Yor(z) = Yo, (2), it appears that vo(z) = —ve(2’) and 2’ belongs to the line passing by « and
directed by ve(x).

The last observation of the above remark corresponds to a general phenomenon that we now
describe, coming back to the situation of an abstract Riemannian manifold V.
For any D € D and x € C, consider

=<
—+
~~
~—

I

%inf {r >0 : exp,(rve(x)) € C and veo(exp,(rve(z))) = _dir expl,(ruc(x))}
R.(D) = inf{R (z): zeC}

Similarly, let

R_(z) = %sup {7" <0 : exp,(rve(x))) € C and ve(exp,(rve(z))) = % expx(ruc(a:))}

R (D) = sup{R_(z) : z€C}
The interest of these quantities is:
(D), it means that Ry (D) = ]§+(D) = R(D) > 0. Similarly,
%

Lemma 46 When ]§+( ) < Ry (D),
D)v R_(D) <0.

we always have R_(D) = R_(

N
)
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Proof

We only prove the first assertion, since the second one can be shown in the same way, by reversing
the time (or, when V' is compact, by replacing D by D¢).

We begin by remarking that for any = € C, we can find a neighborhood U of x such that the
intersection of U n C and U n exp,([—¢, €]vc(z)) is reduced to = for € > 0 small enough (this
is a consequence of the assumption that C' is a smooth submanifold of V). It follows that the
set {r > 0 : exp,(rve(z)) € C and vo(exp, (rve(z))) = —d% exp,(rve(z))} does not contain 0
as an accumulation point. Since it is also closed, for any z € C, the infimum defining R () is
either attained and positive or infinite. Assume that R (D) < +0 and let (zy)nen be a sequence
of elements of C such that R, (xn,) converges toward }VL(D). By compactness, we can assume
that (xy,)nen converges toward some x € C. Passing to the limit in y(;(e><pg,;n(2]~!br (xn)ve(zy))) =

—% exp, (ryc(xn))|T:2R+($n), we obtain vo(exp,(2R4(D)ve(x))) = —d% expx(ryc(:c))|T:2R+(D).
In particular R, (D) > 0, otherwise we would end up with v (z) = —vo(x). As a consequence, we
get Ry (z) < R (D) and finally R, (D) = R, (2), namely the infimum defining R, (D) is attained
and is positive. Then the mapping 1[}07 74 (D) is not injective, since

9 9

wC,RJr(D)(x) = exp, (R4 (D)ve(z)) = wc,R+(D)(epr(2R+(D)VC(*T)))

where x is still a minimizer in the definition of R (D). Thus we get R, (D) < R (D).

Next, assuming that R, (D) < R4 (D), let us show conversely that Ry (D) > R, (D). Indeed, we
can find distinct 2,2’ € C and r € (0, Ry (D)) such that ¢c,(z) = ¢¢,(2'). Since r € (0, R (D)),
we can find a neighborhood A of z (respectively A’ of 2/, disjoint from A) in C such that ¢c, is
a diffeomorphism of A (resp. A’) on its image. If the tangent space Tye . @)V (A) of Yo, (A) at
Yc,(v) is not equal to the tangent space Ty () ¥or(A') of Yc,(A') at Ye,(2'), then Yo, (A)
and ¢ (A’) are crossing each other at ¢, (z). Then by decreasing a little r into 7’ < 7, ¢c v (A)
and ¢, (A’) are still crossing each other. One can then find y € A and 3y € A’ such that
Yo (y) = Yo (Y) € Yor(A) N e, (A'). This is in contradiction with the definition of }ALF(D).
Thus we get that Ty ()¥cr(A) = Tye, @)¥cr(A'). Note that by parallel transport along the
geodesic, L exp, (rvc(x)) is orthogonal to Tye., ()%c,r(A) and similarly for 4 oxpy (rve(a’)). Tt

follows that the two unit vectors d% exp, (rve(z)) and d% exp, (rvo(x')) are proportional. They

cannot be equal, otherwise by reversing time in the geodesics, we would end up with z = 2/.

So d% exp, (rve(z)) = —% exp, (rve(2’)) and by considering the geodesic starting from ¢ ,(x)
with speed %expx(ryc(as)) and its reversed time geodesic, we get that exp, (2rvc(x)) = 2/ and
%expm(suc(m))lszy = —vp(a’), namely 7 > R, (D) and as a consequence, R, (D) = R, (D), i.c.
R.(D) = Ry(D).

|

We now come to the specific situation of the Euclidean plane.

Lemma 47 Assume that V = R2, endowed with its usual Euclidean structure. For any D € D
and r € (R_(D), R+(D)), we have

pc ()
Vzel, - r =
T pw(c,r) (Ve (T)) T+ rpo(@)
In the context of Lemma 13, if « is given by
VazeC, alz) = _po()
1 —rpc(x)

then we have

Vaeew(@r),  Tp¥(.nlal@) = pucn ()
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Proof

One way to compute the curvature py (o, (¢Yc,(7)), for z € C, is to consider a parametrization
(y(s))s of ¥(C,r) by its length such that y(0) = ¥, (z). The quantity pg(c,(Ycor(x)) is then
obtained by specializing the following formula at s = 0,

aST\I/(C,T) (y(s)) = —Py(Cr) (y(s))V\I/(C,r) (y(S))

where Ty (¢ (y(s)) is the unit vector dsy(s).
Let (z(s))s be a parametrization of C' by its length, with 2(0) = x. A parametrization of
U(C,r) is then given by (¢c,(x(s)))s, but it is not by its length, due to the relation

Osor(x(s)) = (1+rpo(x(s)))re(x(s))

To get a parametrization by the length, consider the time change (65)s given by

0s
f 1+ rpc(Yor(z(uw))du = s

0

and define y(s) = ¢ (z(0s)). We compute that

asy(s) = Tl/}C'm[TC(x(GS))]aSHS
= 7c(x(0s))

which is a unitary vector. We are thus led to differentiate

Oste(x(05)) = —pc(x(8s))ve(x(8s))0s0s

This computation proves that

pc(x(05))
1+ rpc(ver(x(s)))

(and that vy (y(s)) = vo(x(6s)), but that was already clear), which at s = 0 is the first assertion
of the above lemma.

For the second one, note that for any D € D and r € (R_(D), R4+ (D)), we have

Vze \II(C7T)7 w&lr(x) = w\II(C,r),—r(x)

(note that r € (R_(D), Ry (D)) implies that —r € (R_(¥(D,r)), R4 (¥(D,r)))). It follows that for
xeC,

pucr)(y(s) =

pc(¥e, ()
1 —rpo (g ()
pc(Vw(cr),—r())

1—=rpc (¢W(C,T),—’!’ (i’))
pw(c,r)(T)
1+rpy(c,r (@)
o P\Iz(c,r)(ﬂﬁ)
= M sion @

= pPy(Cr) (l’)

a(on(x) =

So Lemma 13 leads to the announced result.
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Remark 48 Lemma 47 is only valid in dimension 2. If R? is replaced by R”, with n > 2, recall
that the mean curvature p(z) at a point x from C' := dD, where D is a non-empty, open, bounded,
connected domain with smooth boundary, is given by A c(x) +--- 4+ Ap—1,c(z) (with the notation
introduced in Lemma 44). Extending in the natural way the previous notions, it appears that

)\m,C(ZE)

VexeC,Vme[n—1], Ay (Yor(T)) = T4 rmo@)

(as long as 7 € R is such that mingec 14 rA; c(x) > 0). Thus to recover the mean curvature vector
through the tangent mapping of ¥(-,r), one must consider the vector ac above D given by

Vxel, alz) = Z )\7:;\2(?(:6)

me[n—1]

(as long as r € R is such that mingec 1 —rA,—1 c(z) > 0).

Lemma 49 Assume that V is a surface of constant curvature K, D € D and r € (R_, Ry) then
we have:
e if K >0 and x € C,

(P2(w) — K) 2L 4 oo () cos (2v/Kr)
(cos(f’r’) Smfr)/) (z ))2

Pu(C,r) (wc,r (l‘)) =

e if K <0andzeC,

P (Wen(z) = (pa(z) — K)slnhQ(?)erc( )COSh(2\éjT)
) ’ (COSh (\/jr)_’_ blnh\(/\/:,,‘)p ( ))

By letting K go to zero in both cases, we recover Lemma 47.

Proof

We only give the proof when K > 0, the case K < 0 can be deduced by similar computations.
For z € C, let (7.(s))s be a curve parametrized by its arc length with values in C' and 7,(0) = x.
Denote 7(s) := 4,(s) its unitary tangent vectors. Consider for any ¢, s,

V(s t) = expa, () (tr(12(s)))
= 0s(v(s1))

As a variation of a geodesic (for all the following Riemannian geometry notions, see e.g. the
book of Gallot, Hulin and Lafontaine [9]), (Js(t)); is a Jacobi field. We have J4(0) = 7(s) and
J5(0) = Va,r(ve(s)) = pe(ve(s))7(s). So there exist o, 8 € R such that Jy(t) = (acos(vVKt) +
Bsin(\/Ft))//tHv(&t)T(s), where //1,+(s) is the parallel transport above the curve t +— (s, t).
Adjusting with the initial condition, we get:

PN
—~
~
~—
I

Js(t) = (cos(ft) (\/E())sm(\/it)) Nty (s,) T (S)

54



For fixed and small enough ¢, to get the arc length parametrization of s — ~(s,t), let us consider
the time-change solution of the following equation:

0 = 0

d%eﬁ“ = (cos(\/it%l—pcwx”;; sm(ft))

-1

Let us denote §(s,u) = 7(99, u), we have

~pucn (a0 = (Vo 2050, vuc (3(5.0)

0 . -
= <v656787(37t)767u‘u:t7(57u)>
0 . 0
= <v656787(57u))a’}/(57u)>’u:t
Then
0 . 0 .
—pyo (Yor(r)) = <Vas|8:o§7(sau)75*’7(07“>>}u=t
9
0

t 0 _ . 0 . -
= J;) Vau<vas|s:0 5’7(57 U), ’7(07 u)>du + <Vas\szo 677(57 0)7 6u|u:0’7(01 u)>

Recall that

Vo g 105:0): Q30,0 = (T 2 OO, o)

ASHIESS

(6))?

—pc(.r)( }3:0

O

pc(z)

(cos(\/>t) + £clz) sm(\/>t))

On the other hand, let J ) (u) = %’?(s, u) and let R(-,-) be the curvature tensor, since u — (s, u)
is a geodesic, we have

0 . 0 .
v8u<v83|5:0 5’7(& u)v 677(0’ u))>

0 . 0 .
= (Vo Va, o578 0), 57(0 u))
0 . 0 0 . 0 . 0 - 0 .
= <V65|S:0v5u 5757(8’ u) ai (07 u)> + <R(57‘ 7(81 U), 57(07 u)) 58|s:07(87 u): 57“'7(07 u)>

— (oo VouTyo (), 3(0,0) + (R (T (), 2-3(0.0) 0 1), +-30,10))
(o

= Vo Jy (1), Vo, Iy (W) + KTy (), Jyo ()

where in the last equality, we took into account that Vo, (Va,Jyw (u), %1(8, u)y = 0. Since

Sy w) = 3 lecol0) cos(VR W) + LI sin( VR ) 0 7()
Vang(()t)(u) = §|5 0 (0N (—VK sin(VKu) + po(x )COS(\/EU))//U,_):Y(O’U)T(;L‘)

1
cos(VKt) + pc 2) sm(\ﬁt)

d
gm0 =
ds| =0%s
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we deduce:

pc(x)
(cos(ft)%—pc s1n(\/>t)>

= (cos(\/Ft) v pi«(x . 2 (L <—\/Esin(\/gu) + pc(z) COS(\/Eu))2

(z) ’
-K <cos(\/ﬁu) + p\C}? sin(ﬁu)) du + pc(x)>

(P(e) — K) VKD |0 () cos (2VEH)

t
pueabei@) = | 19a.dy0 )17 = K70 ()| du +

e
E

2VK
(con (VR) + 258 o))

When the curvature is negative K < 0, except for the sign change in the second order differential

equation for the Jacobi field, all the computations are similar.
|

Remark 50 In the context of the above lemma, let V' be a (n + 1)-dimensional manifold with
constant curvature K > 0, D € D, r € (R_,Ry) and Ac1(x) < ... < Agp(x) be the principal
curvatures of C. It is not so clear how to control the principal curvatures of W(C,r) at the point
Yo, (x), but for the mean curvature we have:

n (A, (z) — K)Smf\\/F»T) + Ac, () cos (2VKT)
puen(Cop(z) = D — ) 5
=1 <cos (VEKr) + —Jr A 1(x ))

A similar formula holds for K < 0.

5.2 Comparison of two Doss-Sussman approaches

Consider the Doss-Sussman method corresponding to the decomposition (57) of Remark 17. Sim-
ilarly to (43) and (47), define in the present Riemannian Brownian setting,

po(x) —h(D)
_5\11(0,7‘) (wC,r («T))

VDeD,Vxel, pc(x)
Vr>0,VDeD, VxeC, acr(z)

We are interested in constructing a family (ét>te[0,’r) such that

éO B(IE?TO)

{ Vie[0,1), Ve, ar = sy sap @Va (2) (95)

since the process (Dy)e[o,r) Obtained by a particular composition of the normal flow ¥ and of the
flow (95), namely
Vtel0,T), D; = U(GyV2B) (96)

will provide a solution to the martingale problem associated to (®, £), as in Theorem 16.
In the following subsections we reformulate the results of Section 2, using this Doss-Sussman
approach.
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5.2.1 FEuclidean spaces

Let V. = R", fix zgp € R" and rg > 0 and consider the initial condition CNJO = B(xg,7r0) and
Co = 0Gy. According to Lemma 47 (also by direct computation) we have for all r > —r,

1

n—1
w(Cor) (Yo r(2)) = (n—1)—"0% =
0,7 0,7 1+% r+7y
2n
h(¥ (D =
(¥(Dor)) = =
SO
n+1
Y C o =
x € G, aCo,T(x) r+7ro

Since the above quantity does not depend on z, the solution of (95) is radial and G; = B(z, Ry).
According to (95), the radius starts with Ry = r¢ and its evolution is described by
n+1

Viel0,1), dRy = ——"' 97
[0,7) ¢ % + 35, (97)

this equation being well-defined up to the stopping time
T = inf{t=0: R, =—V2B; or R;=0}

The condition R, > 0 comes from the fact ‘that the normal flow W(C,r) is not defined when C' is
reduced to a singleton, and the condition Rt > —+/2B; comes from the fact that the normal flow
U(0B(zo, Ry),7) is well-defined only for r > —R,.
We get the following equation:
n+1

Vte[0,1), d(Ri++V2B) = ————dt++2dB,
t+\/7t

SO (Rt +2B;)i=0 = (Bes( o )(TQ))tz(), where Bes(™+2) (1) := (Besgnw) (ro))e=0 is a Bessel process
of dimension n + 2 > 2 starting from ro > 0. For all t > 0, R + V2B; > 0, so (dRy)/(dt) > 0 and
R = ro > 0, hence Equation (97) is well-defined for all times, i.e. T = o0, and

Vit = 0, Dt = \If(ét, \/iBt) = B(LEO, ét + \/§Bt)

Since 0 is a entrance boundary for the Bessel process of dimension n + 2, it is possible to solve
the martingale problem associated to the generator (D, £) and to the initial singleton condition
Do = {zo} as follow: let Bes"" ™2 (0) be a Bessel process of dimension n + 2 starting at 0, and
(Bt)t=0 be the associated Brownian motion, namely such that

2t
n 1
V t = O, Besgt+2) = \/iBt + f IBTL("—:"Q)() dS
0 2Bes; 0

t
V2B, + f e
0 Bess, ~(0)

Consider for any ¢ > 0,

D, = B(a:o,BengH))
Gi = U (D, V2By)
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(n

where the latter is well-defined since Be52t+2) > —/2B, for all t > 0. It appears that
t
Vt>0, Besyt = V2B, +j h(Ds) — pop., ds
0

hence

VaedG, aw = (MDi) = pyeq,vas) Ve ()
= aaGt,\/iBt (z)vac, (z)
According to Lemma 10 and (56), we have for any f € C*(R"),
dFy(Dy) = dFy(¥(Gy,V2By))

( op, (D) = pon.) dfi) dt + (LD f du) (v2dB;)

+ ( <Vf, V@Dt> dﬂ + f fpaDt dﬂ) dt
aDt aDt

<LDt Vi vepo + fH(D)) dli) dt

e ( fd,@) dB,
0D,
— [F/|(Dy) dt + dM,

where

(My)=0 = (ﬁﬂ ( . fd@) st>t>0

is a martingale. We get for all t = s > 0,

t
F¢(Dy) — Fy(Ds) = j LIF¢](Dy) du + My — M (98)
Since a.s.
lim Fy(Ds;) = 0
8*>0+
and
. 0 ,ifn>3
ilir(l)g[Ff](Ds) B { 8nf(xg) ,ifn=2

we can pass to the limit in (98) to get that (D;);>0 solves the martingale problem associated to
the generator (®, £) and to the singleton initial condition Dy = {zo}.

Let us now consider the Doss-Sussman method relative to the decomposition (23), for simplicity
only in the illustrative Euclidean plane V = R2. For zo € R? and ry > 0, we are interested in the
initial condition Dy = B(xg,r). Starting with (6o, Go) = (0, Dy), we solve the evolution equation
system (51) with respect to (6¢, Gt)sefor,,)- The solution (Gt)e[o.r,,) remains radial, so let us write

it as Gy = B(x, Ry) for all t € [0, 7T,,). Equation (51) becomes:

dRy = —s—>L—dt, Ro=r
v te[0,1,), " Rery2Burl R (99)
Ay = F—pedh fo=0
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where
Trg = inf{t =0, fl)t =0 or \/iBt + 6, = —Rt}

It follows that (R, + v/2B; + et)te[o,no) = (Bes(ﬁ) (ro))tE[O,TTO) where Bes (r) is a Bessel process
of dimension 4 starting from 7o We deduce that T,, = inf{t > 0, R; = 0} and for any ¢ € [0,T,,),

ds

t
. 1
Ri—ry = J _
£ 0 Rs + /2B + 0,

_ _1Ft1ds
2 Jo Bes§4)(r0)

Using the iterated logarithm law for the Bessel process for large times, we get that
+00 1
J T dS = +00
0 Bess ' (ro)
It follows that necessarily, a.s. T,, < 00 and more precisely that
2TTO 1
2rg = J @ ds (100)
0 Bess’(r9)
Taking into account that for any ¢ > 0, we have (a.s.)
Jy e
—————ds € (0,4x0)
0 Bes!? (0)
we can let 7o go to 04 in (100) to see that

lim ©,, = 0
ro—04+

Thus, the Doss-Sussman method relative to the decomposition (23) does not enable to define
the dual process for all times nor permits approximations of singleton initial condition, contrary
to the Doss-Sussman method associated to the decomposition (57).

5.2.2 Hyperbolic spaces

Let V = H"™ be the hyperbolic space of dimension n. Fix some zg € H" and rg > 0 and consider
the initial condition Gy = Dy = B(zg,19), and Cy = 0Gy. We have for any r > —rg,

Pu(Co.r)(YCor(x)) = (n—1)coth(r + ro)
sinh" 1 (r 4 rg)
h(W(D =
(¥(Do, ) J(r+ro)
hence
: hnfl
V x € Cy, acyr(z) = 2st(r irr:)m) — (n—1) coth(r + rog)
where

Vr=0, J(r) = J sinh™ ! (u) du
0
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The solution of (95) is radial, say Gy = B(z, R;), and we have, starting with Ry = ro:

in—1/D
B, - 2smh ~ (R +/2By)
J(R; +~/2By)

Vtel0,1), — (n — 1) coth(R; + \/§Bt)> dt  (101)

where,
T = 1nf{t>0 : EtZ—ﬁBt or ﬁtZO}
We get for all ¢ € [0, T),

sinh™ ' (Ry + v/2B;)
J(ét +/2By)

d(R; + V2B, = (2 — (n—1) coth(R; + \/§Bt)) dt + \/2dB;

Note that as r > 0 goes to zero,

sinh"fl(r)_n_ coth(r) ~ n+1
BT - = eothr) ~

This behavior is sufficient to insure that 0 is an entrance boundary for the diffusion (ﬁt + \/§Bt)t>0
(see for instance the classical computations of Chapter 15 of Karlin and Taylor [13]). In particular,
since (Rt +4/2 Bt)t>0 starts from rg > 0, it will never reach 0 (a.s.). Furthermore, let us check that
the radius process (Rt)t>0 of (Gt)t>0 is non-decreasing. Indeed, after an integration by parts, we
obtain for all r > 0:

r . sinh(r) o1
sinh" ™" (u) du j ——dv
JO () 0 V1+ 02

sinh”(r) sinh(r) Tt
n cosh(r) " L nvV1 +v2(1 + v?)
sinh"(r) 1 Jsmh(r) L o

0 V1402

dv

N

ncosh(r) ' n

Hence we have for any r > 0,

f sinh™ ()

1
sinh" ™ (u) du <

0 (n — 1) cosh(r)
namely
sinh™ 1 (r)
G > (n—1)coth(r)
and
2sinh" 1 (r) 1) coth(r sinh™~1(r)
I (n—1)coth(r) = RVIORE 0

This non-negativity and (101) show that (Z;)s=0 is non-decreasing.
From these observations, we get that the solution of (101) is defined for all times, i.e. T = o0,
and finally

¥t>0, D; = Bluo,Ri+V2B)

provides a solution to the martingale problem associated to the generator (©, £) and starting from
B(zo,0)-

As in the Euclidean case, by letting g go to zero, we solve the martingale problem associated
to the generator (D, £) starting from the singleton {x}.
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5.2.3 Spherical spaces

Let V = 8§" be the sphere of dimension n € N. Fix zg € S” and r¢ € (0, 7), and consider the initial
condition Gy = B(xg,79), and Cy = 0Gy. We have for any r € (—rg, m — r¢) (note that the normal
flow in not well-defined for all positive times):

- sin” Yr 4+ r
OZCOJ-(I') = 2W — (n — 1) COt(T + 7"0)
where I(s) = §; sin™ ! (u) du, for any s € [0, ].
The solution of (95) is radial, say Gy = B(x, Ry). According to (95), starting from Ry = rg, we
have

Viel0,1), dR, = <2Sinn_i(§t V2B (n—1) cot(R; + \@Bt)) dt (102)
J(Ry ++/2By)
where
T = inf{t=0: Ry,=7—+2B, or R;,=—-+2B, or RgzO}
We get

sin” (R, + v2B,)
I(R; + V2By)

Viel0,1), d(R ++V2B) = (2 — (n—1) cot(R; + \@Bt)> dt + v/2dB;

Again, we have as r goes to 0,

sin”_l(r)_ n— 1) eot(r) ~ n+1
=Dt ~

2

and this behavior is sufficient to get that 0 is an entrance boundary for the diffusion (Rt +\/§Bt)t>0.
It follows that it never hits 0. To show that (R;)¢>0 is non-decreasing, let us check that

on—1
Vre(0,m), 2W(nl)cot(r) > 0
Observe that it is clearly satisfied for r € [5,m). For r € (0, §), we have:
T sin(r) o1
on—1
sin u)du = ——dv
| st = [ 2=
_osin"(r) fsm(r) Tl v
neos(r) o mvi= (1= )
- sin™(r) sin™(r)
= ncos(r)  (n—1)cos(r)
We deduce that r € (0, 5),
sin®~1(r) sin™ 1 (r)
22— (n—1)cot(r) = ——2 >0
) (n — 1) cot(r) 0

From these considerations, it appears that the solution to (102) is well-defined until the (a.s. finite)
stopping time

T = inf{t>0: R + V2B, =}
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and we have
Vtel0,t1], Dy = B(z R +V2By)

In fact T is the hitting time of the whole sphere S™ by (D;)c[0]- Since for all f € C*(S"), we have
L[F¢](S™) = 0, it is natural to let the latter process be absorbed at S", namely to extend it by

Yt = T, Dt = Sn
so that (Dy)i=0 provides a solution to the martingale problem associated to the generator (D, £)

and starting from B(xg, 7).

As in the Euclidean and hyperbolic cases, the martingale problem associated to the generator
(D, £) and starting from the singleton {x(} is solved by letting ¢ go to zero.

6 About the martingale problems associated to £

After proving Theorem 5, we will show that the martingales naturally associated to £ are directed
by a unique Brownian motion, property corresponding to the radial evolution (3). Next, we will
enrich the set of elementary observables and see in the particular example of the Brownian motion
in the FEuclidean plane how the enriched martingale problem is sufficient to deduce that the dual
domain-valued process end up looking like a big disk, at least if it can be defined for all times.

6.1 Proof of Theorem 5

As explained above Theorem 5, we assume we are given a stochastic process (Dt)te[(),T) taking values
in G for positive times and solution to the martingale problem associated to (D, £), defined as in
the introduction, except that the elementary observables are defined on G instead of D. Despite
this generalization, the following arguments are similar to those given in the one-dimensional case
treated in [18].

Let a test function f € C*(R) be given and consider the process (St)se[o,r) defined by

Vtel0,7), Sy = f(u(Dy))
= f(F'1(Dy))

Since the mapping G 5 D — §(F1(D)) belongs to D, there exists a local martingale (M );e[o,r) such
that for all ¢t € [0, T),

Sy = Sy + f()t E[fo Fﬂ](Ds) ds + M, (103)

By definition of £, we have
Llfo Fal(D) = §(Fn)L[F1] + " (F1)le[Fy, Fa]

Recall that in the proof of Theorem 3, we computed that for any D € G, with C' = dD,

2
e[R)(D) = Q'i((%)) (104)
Le[F1, F1)(D) = w(C) (105)

so that

o AI(D) = u(©) <f”(Fn) " 2”“)) (D)



where
1282 1
V xX € Rj_, ,C = 55 + 5(9

is the generator of the Bessel process of dimension 3 on Ry (see e.g. Chapter 11 of the book [24]
of Revuz and Yor). Thus we obtain, for all ¢ € [0, T),

t

S = S0 +2 L W(Co2 LI (D)) ds + M,

It leads us to introduce the time change described by (12) and (13) and
Vie [07g>7 Ry = IU’(DG(t)>

to get that (R¢)i[o,) i a stopped continuous solution to the martingale problem associated to the
generator (C*(R4), £). It follows that (R¢)e[o,) is a stopped Bessel process of dimension 3. For
completeness, let us just recall the underlying argument.

Define for t € [0, <),

t
1
Wy = Rt—RO—LRSds

According to the martingale problem, the process (Wt)te[07§) is a continuous local martingale whose
bracket is given by

¢
Vielo), (W), — f T ofid, id](Ry) ds
0
where I'y is the carré du champ operator associated to £ and id : R% 3 x — z is the identity
mapping on R* . Since I'z[id,id] = (id")? = 1, we get that
VtE[O,§), <W>t =t

so Lévy’s theorem shows that (W;)e[o,) is a stopped Brownian motion. Then (R;)e[o,) is solution
to the stochastic differential solution

1
Vite [O,g), dR; = thﬁ-ﬁdt
t

which admits a unique strong solution, once Ry is given. In particular the law of (Rt)te[O,g) is
determined by the initial distribution of Ry, it is the Bessel process of dimension 3 with initial law
L(Xp).

|

6.2 The stochastic differential equation associated with the mar-
tingale problem

With the notation of the above proof, for § = id in (103), we get My, = W, for t € [0,¢), or

Vtel0,T), My = Wy
where 61 : [0,T) — [0,¢) is the inverse mapping of # given in (13). In particular, we get

Y tel0,1), (My, = 0;*
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so that we can find a Brownian motion (B;);>0 (up to enlarging the underlying probability space)
such that

Vtelo,1), M; = ﬁfg(C)dB
0

Namely we have

w(Cy)?
p(Dy)

The same Brownian motion (By)i=o is driving all the (Fy(Dy))seor), for all f e C*(V), and
even more:

Vtelo,7), du(D;) = 2 dt +2u(Cy) dB, (106)

Proposition 51 For all F €®, we have

t t
ViE®.  HD) = S0+ | SBUD)ds V2 | VRSP B (07)
where the determination of the sign of \/T¢|§,§] is

VY DeD, Te[3.81(D) = > af(Fy,.... Fy,)(D) L fido

le[n]

when § = {(FYy,, ..., Fy,), with the notation of the introduction.

Proof

By definition of (D, £) and due to the usual rules of continuous stochastic calculus (see for instance
the book [24] of Revuz and Yor), it is sufficient to check the above formula on the elementary
observables, namely that for all f € C*(V),

Vite [O,T), Ff(Dt) = Ff(Do) + J: Q[Ff](DS) ds + ﬁLtq/Fg[Ff,Ff](Ds dBg

with the determination of sign: /Te[Fy, Fy] == § fdo. From the martingale problem, we know
that for any f € C*(V), the process

t
vielo,t), M} = Fy(D:)— Fp(Dy)— f L[F;](Ds) ds
0
is a local martingale whose bracket is given by

Vte[0,1), <Mf> f Te[Fy, Ff|(Dy) ds

So our goal is to check that

tJTolF;. F
veelow, - [ V)l

Since all the considered martingales start from 0, it is equivalent to show that

VTe[Fy, Ff]
Y te0,1), s - [Vl f](DS)dM;L = 0
Le[Fy, F]
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Developing by polarization the 1.h.s., we obtain

F [Fr, Frl ALl Fye, F
<Mf> J VLelFy, Fy] (Dt —2{ mr, e[Fy, f](DS)dM}
Le[F1, Iy . 0 v/ Te[F1, F1] .

Te[Fy, Fy] t /el Fy, Fyl
- (mf J Te[Fy, Fy] f D) d{MY —2 MDsd M, Mt
< > FQ Fﬂ,Fﬂ ) < >S F{:[FIL,FIL]( ) < >

S

_ " To[Fy, Fy]
- fo TolFy, FYDs) ds+2 | Db (D) TP R)(D.)ds

t Fﬂ[FfaFf]
Le[Fy, I1]

[ _ /TelFy, Fyl
_ L (rg[Ff,Ff] rg[Fﬂ,Fﬂ]F’Z[F“’FfO (D,) ds

(DS) Fg[Ff, Fﬂ](DS)dS

= 0
where we used that for any D € G,

e[ Fy, Fy] - 2
(Fs[FfaFf] - MFQ[FLFM) (D) = (Lfdli>
— 0

) Lfdu

Remark 52 The stopped standard Brownian motion (Bi)e[o,r) in (107) is (a.s.) on the random
interval [0,T), the same as the one appearing in Theorem 16, when above, one considers the
stochastic process (D¢)se[o,r) constructed in Theorem 16. This is a consequence, on one hand of
(106), which enables to recover (Bt)e[o,r) from (D¢)e[o,r), since By = 0 and u(Cy) > 0 for ¢ € [0, T),
and on the other hand of the fact that in the proof of Theorem 16, we have

Vtelo,T), M; = fzﬂ <fcsfdg)ds

so by taking f = 1, we can recover (B¢)e[or) in the same way.

In the same spirit as Theorem 5 and similarly to [18], we also have
Proposition 53 Under the setting of Theorem 5, the process (1/p(Dt))ie[ox) s a positive local
martingale. It follows that limy_,_ u(Dy) exists a.s. in (0, +o0].

Proof

Consider the mapping § : G 3 D +— 1/u(D), which belongs to ®. To see that (1/u(D¢))e[o,) s a
local martingale, it is sufficient to check that £[§] = 0. By definition,

vDeg,  E[F(D) = - LF(D) + Le[F1, Fi](D)

( F (D)
1 u(C)? 2

") w0y " oM
— 0

where (104) and (105) were taken into account.
Thus as a positive submartingale 1/u(Dy), converges a.s. as t goes to T from below, to a limit
belonging to [0, +00). By taking the inverse, we get the announced result.
|
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6.3 Enrichment of the elementary observables

Up to now, we only considered elementary observables of type (4), since they were sufficient for
our purposes, but other functionals are interesting to go further. To simplify the presentation, we
restrict ourselves to the situation of the Brownian motion on a Riemannian manifold, namely we
take b = 0, so that u = A\, g = o and p’ = p. The general case can be treated similarly (see the
manipulations of the proof of Theorem 3).

The first of new elementary observables we would like to add have the following form, for any
felC®(V),
Gy :DsD — Gy(D) :=J fdo (108)
C

Indeed, the action (6) of the generator £ can then be rewritten, taking into account Stokes’ theorem
(22), as

o) o
JC<Vf,V>+20(D)fd

G1(D)G¢(D)
Fy(D)

VDeD,  L[F(D)

FAf(D) + 2

so it seems natural to study the evolution of (Gz(D¢))te[o,r), When (D¢)sefor) is a solution to the
martingale problem associated to £.

Unfortunately, it seems difficult to work directly from this martingale problem, while we still
don’t know if it is well-posed. Our hope is that by enriching the domain of functionals to which it is
applied, we should be more able to obtain that it is well-posed. So we rather consider the process
(Dt)tefo,r) given by (52) and construct new martingales for it. More precisely, up to reducing
T (replacing it by its minimum with the first time D; is no longer included into a nice tubular
neighborhood of Dy), we will assume that Dy is defined and belong to D. Before investigating the
functionals of the form (108), we are interested in the composition of the process (D¢)se[o,] With
the normal flow, which already played a crucial role in the construction of (Dy)se[o]- So define

R = {reR:Vtel0,], D;eD,}
VreR,Vte[0,1), D = U(Dy,r) (109)
= \I/(Gt,\/iBt—i—@t—l—r)

where (Gt)e[o,] and (0t)se[0,«] are defined as in (51). For any r € R, consider

VDeD,VzeC, af@) = polz)— pucn o (@)

and the operator £(") acting on D_, via

VfeC®(V),¥Y DeD_, £V[F(D) A (D, =)

(\I/(C,—T Scde' Oz(iT)
A@(D, 7)) *f ¢

L (Vfvy+ (2(M + aé”) fdo

j AfdX+2 £do110)
D

Its interest comes from:

Lemma 54 For any f e C*®(V), t€[0,T] and r € R, we have

t
FrD")) = Ff<Dé”)>+j COF(DD) ds +v/2 fo G(D) dB,



Proof

The arguments are similar to those of the proof of Theorem 16, which lead to

de Gt,\th—l-et—l-?“))

—1
Pow(Gi/2Bi+0) © Yo vaB,+0, OV fdo | dt
< OU(Gi /2By +0:47) (Gt,v/2B:+6:) £,/ 2B 40 0G¢ 2By +0;+r

+ J f do (\/ﬁdBt + 6t«9tdt)
0V (G, V2B +6s+7)

+

<1/,Vf>da+f pf do
OV (Gt,V/2Bt+0¢+7)

L\I/ (Gt,V2By+0;+7)

= P o o Jdo )| dt
(L\II Gt7\/§Bt+9t+r) a\I/(Gt,\/iBt-i-@t) a‘l’(Gt,\/iBt-i-et"r ), )

+ W,V Y+ pf + ol f dO‘) dt

L\D(Gt ,\/iBt +04 +T’)

+4/2 f fdo | dB,
G\P(Gt,\/ﬁBt+9t+r)
- J W, V) + (h(qz(Gt,\@Bt+0t))+a<"3)>fda dt
O (G V2B +04+7) oDy

+/2 f fdo | dB,
OV (G, V2B +04+7)

— eO[F)D)dt + 2 (J . fda) dB,
oD{"

For any D € D, define
1
veeC,  pd@) = rpwcr)(wc?«( 2))lr=0 (111)
= —0 ac ( )r=0
= &ra(c (l’ ’r=0
By differentiation with respect to r at 0 in Lemma 54, we get:

Proposition 55 For any f € C*(V), we have

v tel0,1], G¢(Dy) = Gy(Do) +Lt£[Gf](Ds)ds+\/§£ <L <Vf,u>+pfda> dB

where

V DeD, LlGf)(D JAf+2ég;< Vf>+< Eg;p+p )fda

Proof

Consider the evolution described in Lemma 54. Certain terms are very easy to differentiate with
respect to r: according to the first part of Lemma 10

Vielo,r],  Fy Dm0 = Gy[Di]
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For the Brownian part, use the second part of Lemma 10:

Vtel0,7], aD(T)de = JC (Vf,vy+pfdo

For the remaining term, we decompose the derivative in

O LOFAD rmo = (220 ,—0)[Ff1(D) + 0, L[Ff1(D{”) =0

Use (110) for both terms of the r.h.s. For the first one, we get for any D € D,

o g o 2 g
@ lFD) = S 2T [0

(0)

For the second one, again for any D € D, taking into account that o’ =0, we have

o(¥(C,r)) S\D(C,r) fdo

OSLENWD. 0 = 0 | Afdye

NE(D,) |
SpdoS§o fdo  o(C)?S,fdo _o(C)§. v, VI)+pfdo
- LAfda+2 /\(g) —2 /\(DC;2 +2 ¢ D)

Putting together these computations, we obtain

oD = [ 8740 5dn 425 [ 09+ prao

which leads to the definition of L[G].

Note that for any f e C*®(V) and D € D, we have

_ G1(D) Gy (D)
L[GAD) = Cap(D)+ 25 Far(D) + 2515 L pf do + L PV fdo

but neither § pf do nor §, pW fdo are of the form F, of G4 for some g € C*(V). We are thus
lead to introduce two new types of elementary observables:

Hy :D3D — Hf(D):=prfd0
1
HY DD Hf(D)::LpU)fda

Investigating the evolution of these observables, one will have to consider more generally for any
leZ,

HY DD — HH(D):= Lp(”fda (112)

where by iteration, for any n € Z,,

vaeC,  pi@) = apl, (o (@))l-o

Probably other functionals will also appear (such as D 3 D — §.p{v,Vf)do or D 3 D
SC p*f do, see the next lemma), but the study of these iterations, as well as their impact on the
well-posedness of the corresponding martingale problems, is left for a future work.

In the same spirit, we remark that the introduction of p) and H®) are already needed to
consider a third derivative in Lemma 10:
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Lemma 56 For any f € C*(V) and D € D, we have
OV H (U(D, )l = f p (V1> + pVf 1 P do
C
It follows that

BF (D)o = L Af+p@. Yy +pOf + g f do

Proof

The domain D € D being fixed, consider a tubular neighborhood T of D such that for any y € T,
there exist a unique r € R and = € C such that y = ¢¢,(x). Consider then the mapping p : T — R
given by p(y) = py(c,r)(y). With this definition, we have for r sufficiently small, H;(V(D,r)) =
Gy¢(¥(D,r)). It follows that

8er(\II(D, 7'))|7°=0 = arGﬁf(‘ll(Dv T))
| w5 @)+ ot ao

It remains to note that on C, we have

W,V @f) = pwVH+ VD)
= pw, V) + fo
to get the first identity.

The second one comes from the rewriting, in our present context, of the second equality in
Lemma 10 as

OZF (¥ (D,r)) = f Afd)\+J pf do
v(D,r) v(C,r)

= Fpp(T(D,r)) + Hy(¥(D,7))

and by differentiating with respect to r at 0.
|

The case f = 1 is particularly interesting, since G4 (D) = o(C) for any D € D. The quantity
SC p do is called the total mean curvature of C' and according to the previous lemma, SC pWM +p? do is
the derivative of the total mean curvature along the normal radial flow. In the situation of constant
curvature in dimension 2, the terms p®) and p? are in fact comparable:

Lemma 57 Assume that V is a surface of constant curvature K € R. Then we have

vDeD, pN = —pP-K

Proof

When V is the Euclidean plane, the result follows by differentiating at » = 0 the first formula
given in Lemma 47. The other null curvature situations (cylinders and flat torus) can be treated
similarly, since they can be up-lifted to their locally isometric covering R2.

For the other constant curvature cases, use instead Lemma 49 of Subsection 5.1.

Remark 58 (a) When V is the Euclidean plane, it follows from Lemma 57 that

6TJ pdoc = 0
(C,r)
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namely locally the normal radial flow leaves the total curvature of a smooth curve invariant. This
is in fact a consequence of Hopf’s Umlaufsatz Theorem, stating that for any piecewise differentiable
curve C in R?

dea = 2 (113)
C

(with an appropriate convention for the jumps of the tangent vectors, where pdo has to be seen
as the difference of angles times a Dirac mass at the considered singular point). When C is the
smooth boundary of a convex domain, this can be obtained by letting r go to +o0 in

fpda = J pdo
C v (C,r)

and by remarking that for large r > 0, U(C,r) is quite close to a circle of radius r.
It would be interesting to see if this argument could be adapted to treat the general case.

(b) Consider the Euclidean space (or any null curvature space) of dimension larger than 2.
From Remark (48), we deduce that

PN = — > @

me[n—1]

More generally, when V has a constant sectional curvature K, we get

pV() = —Kmn-1)— Y X2 )

me[n—1]

Recall that the Gauss curvature at z € C' is given by

ko) = [ Ame(@)

me[n—1]

Similarly to (111), we can introduce

Vzel, Hg)(l') = Orkw(cr) (Yo (2))lr=o

and, if one has indexed in a coherent (e.g. nondecreasing) way the eigenvalues of the second
fundamental form,

veeC,¥Ymeln—1],  Ao@) = aMmwen o (@)l—o

Then we have, at least if none of the eigenvalues vanishes,

(1)
A
VazeC, mg)(x) = ko(z) Z L’C(x)
>\m C
me[n—1] ’
As in the proof of Lemma 56, we deduce that
Or kdo = j kW + prdo (114)
w(C,r) r—0 C

The last two formulas are valid on any Riemannian manifold V' of dimension n.
But when V has a constant sectional curvature K, since

VaeeC,Vme[n-—1], )\(I)C(x) = —-K-—- A?mC



we obtain that, at least if none of the eigenvalues vanishes,

VeeC, kW@ = — J+HE Y () k()

me[n— 1]]

Integrating this relation with respect to o on C, it follows from (114) that

(?Tj ko do = —Kf
U(C,r)

1 1
< + ) Ko = )\LC + )\270

mc do

me[[n 1]]

When n = 3, we have

)\110 )\Q,C
= pc
thus
won |, c
= K ar)\(\Ij(D7T))|7‘=O
Namely the quantity
f KRC do + K)\(D)
c

is invariant under the normal radial flow (as long as it remains in D). This is a very special case
of the Gauss-Bonnet theorem, asserting that the above quantity is equal to 27 times the Euler
characteristic of V.

Again, one is left wondering about possible links between the normal radial flow and the gen-
eralized Gauss-Bonnet theorem.

(c) It is also natural to ask for a generalization of Lemma 57 when V' is a surface whose curvature
is not constant.

Let us come back to our martingale problem and to Proposition 55. The explicit description
of the martingale associated to the evolution of (G(D¢))e[o] in terms of the stopped Brownian
motion (Bj)se[o,1], enables us to see that for any f,g € C*(V) and D € D,

Lel[Fy, Gol(D) = G§(D) (Fag(D) + Hy(D))
Le[Gr, Gol(D) = (Fap(D) + Hp(D)) (Fag(D) + Hy(D))

These formulas leads to an enrichment of the algebra ® of the introduction. Indeed, consider
the new algebra © consisting of the functionals of the form § = f(A,...,Ay,), where n € Z,,
Ay, ..., A, are elementary observables of the form (4) or (108) and f : R — R is a C* mapping,
with R an open subset of R™ containing the image of D by (Aj, ..., A,). For such a functional §,
define

LE] = D oA ALA]+ Y Gkaf(Ar, ... An)Te[Ap, Al

jeli,n] k,le[1,n]
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To two elements of D, § = §(A1, ..., Ay) and & = g(Ay, ..., A, we also associate

Fg[g, QS] = Z 6lf(A1,...,An)ékg(fll,...,/Nlm)l“g[Al,ﬁk]
le[n],ke[m]

These formulas can be directly obtained as consequences of 1t6’s formula applied to the expressions
given in (107) and Proposition 55, since the corresponding Brownian motions are the same (cf.
Remark 52).

6.4 Asymptotic behavior for large times on the plane

In this last subsection, we present an example of application of the above extension of the domain
of £. We consider the Laplacian L = A on the Euclidean plane R2. We assume the domain of £
has been extended to contain all mappings of the forms (4) and (108), defined on G, an extension
of D as described before Theorem 5. Just make the hypothesis that the boundaries of the elements
of G are piecewise differentiable curves.

Theorem 59 Let (Dy)i=0 be a solution to the martingale problem associated to £ defined for all
times. Then we have a.s. in the Hausdorff metric,

D
Am, Aoy~ BOeVm

where B(0,1/+/7) is the Euclidean ball centered at 0 of radius 1/+/m.

Proof
From Theorem 5, we know that for any ¢ > 0, A(D;) > 0, namely D; is not a singleton and belongs
to G by assumption. Up to replacing (Dy)¢=0 by (D14+)i>0, we assume in this proof that D; belongs
to G for all t = 0.

In the Euclidean plane, the following isoperimetric inequality holds:

VDeg, > Ar (115)

with equality if and only if D is a ball.
From Proposition 53 and T = +00, we deduce that

liminfo(Cy) = 2 lim +/7wA(D;) > 0

t—+00 t—+00

Thus in (12) we get ¢ = 400 and in (13), limy—, 1o 6; = +0.
In these circunstances, Theorem 5 asserts that (A(Dp,))i>0 is a Bessel process of dimension 3
and in particular

t—+00

We now use Proposition 55. From the relation G4 (D) = o(C'), we get in general that

do(Cy) = (L p® + zi((gg pda) dt + /2 ( Lt pda> dB;

But for the Euclidean space, we have p() = —p? and §pdo = 2m, according to Lemma 57 and
Hopf’s Umlaufsatz Theorem (113) (taking into account that the considered boundaries are piece-
wise differentiable), respectively. Thus we get

do(Cy) = (— L p?do + 47r§((gtt))> dt + 2v/2r dB,
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and

do(Cy)? = 2 < f p?do + 477‘;(((;;) o (Cy) dt + 4v/2r0(Cy) dBy + 8mdt
Ct t

Recall from (106) that

d)\(Dt) = 23((%))2 dt + \/50'(0,5) dB;

Consider the process Z = (Z;)¢>0 defined by
V=0, Z = o(C)%—4x\Dy)

From the above computations, we deduce that
Vt=0, dZ; = 2 (47?2 - a(ct)f p? da) dt
Ct

By Cauchy-Schwarz’ inequality, we have for any ¢ > 0,

2
4% = <f pda) < O'(Ct)f p? do
Ct Ct

showing that Z is a.s. non-increasing. Thus we have
Vit=D0, Zy < Zo (116)
For any ¢ > 0, denote Dy := D;/+/A(Dy). We have for any ¢ > 0,

a(Cy)? — 4n\(Dy)
A(Dy)
0(Cp)? — 4\ (Dy)
A Dy)
and the last expression goes to zero as t goes to +00. From Bonnesen’s inequality (see e.g. the book
of Burago and Zalgaller [3]), we deduce that as ¢ goes to infinity, D; becomes closer and closer to

a disk of volume 1. To see the announced result, it is sufficient to see that the barycenter of Dy,
which is the barycenter of D; divided by +/A(Dy), i.e.

1
7)\(Dt)3/2 JDt x A(dx)

converges a.s. to 0 as ¢ goes to 4+00. It amounts to see that Ff/Fl?p(Dt) converges to zero for
t large, where f is either the first or the second canonical projection of R2. So let f be the
first coordinate mapping (the second coordinate can be treated similarly, note that a symmetry
argument cannot be used here, since the well-posedness is missing). Before investigating the

o(Cy)? — 4x\(Dy) =

~

evolution of Ry 3¢ — Fy /FI“?/ 2 (Dy), we need a preliminary result.

Lemma 60 A transition phenomenon occurs:

+0o0 1
Ya>1, J ds < 4o
o A(Dp)*

while

+00 1
Va<l, f ds = 4o




Proof

This is based on the fact that A(Dy) goes to infinity as t goes to infinity. More precisely, taking
into account (104) and (105), we compute that for any a > 0 and any D € G,

1 a ala
L [Fff] (D) = _WS[FB](D) + (F,IJFQ)FE[FLFn](D)
a(C)?
= ala—1)— D)+

and in the sense of Proposition 51

Vs || D) = )

I Fi*Y(D)
~ao(C)
A(D)et!

where /T¢[1/F{] stands for 4/Te[1/F¢, 1/F{]. Since for any a > 0, we know that 1/F{(D;)
converges to zero as t goes to infinity, we deduce that

;G(Dt) Fla(DO) fts[Fa] ds+xffﬁ[ ] ) dB,
= ala-1) f A(<>a+2 ~ V2 f (17

0

converges for large t > 0. By a contradictory argument, assume that

FOO 7(Cs)?

TS ge =
o A(D,)2a+2 5 T

which implies in particular that

FOOU(CS)Q ds = 4w (118)

0 )\(Ds)a+2

since limy_, 4o A(D;) = 4+00. The bracket of the local martingale (Sé «/Fg[%f](Ds) dBs)i=0 is given

<L\/E[Fln] (DS)dBS>t = Ltfs[;n](ps)ds

t 2
2 a(Cs)
= a L )\(DS)Q‘”'Q ds

for any t = 0 by

so that the iterated logarithm law for continuous local martingales implies

limsupj A/ Te [Fa] = 400

t—+00
it [ Vs [ g Prame =

In view of (118), it would follow that for large ¢ > 0, the expression in (117) admits —co as liminf
if a < 1 and 400 as limsup if @ > 1, this is in contradiction with the existence of a finite limit.
Thus we get that

+00 O’( )
—
fo A(DS)2a+2 s < +©
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We get the first announced result, remembering that for large t = 0, o(Cy) ~ 24/TA(Dy).
For the second result with a = 1, rather consider the observable In(1/Fy). We have for any
Deg,

= ! o(C)?
77Dy SFD) — Fappy TelAID) =

Ln(F)] (D) =

and

Ie[In(F1)] (D) = ——=G1(D) =
VIR (D) = 55Ga(D) = {5
So via similar contradictory arguments as before with

o(Cs)
ND.) dB; (119)

t o ; 2 t
In(Fy)(Dy) — In(Fy)(Dg) = L A((gs))2 ds — x@L

which diverges to +00 as ¢ goes to infinity, we end up with

+00 0'(05)2
)y X

= 4o

For the last result, we need to apply more carefully the iterated logarithm law. Let (M;);>¢ be the
continuous local martingale defined by

t
Cs
Viz0, M, = f"( ) 4B,

Its bracket is given by

tO.(CS)Q
t=0, My, = d
vizo. Qn, = | S5
Since (M), diverges to +c0 for large t > 0, the iterated logarithm law asserts that

lim sup ||
t——400 \/<M>t ln(ln(<M>t))

It follows that for large ¢ > 0,

400 0(05)2
|My] « Jo )\(Ds)QdS

and the last statement of the lemma is a direct consequence of (119) and of the fact that o(C;)? ~
4w A(Dy), for large ¢t = 0.
|

Let us come back to our objective to show that & converges a.s. toward 0, where
Fy(Dy)

Vit=0, & =
Fy*(Dy)

with f the first coordinate mapping of R?. Instead of applying the martingale problem directly
to the composed observable D 5 D +— F /F]?/ 2(D)7 it seems more convenient to decompose & into

M;/A/A(Dy), where (My;)i>o is defined by

Vt=0, My = —(Dy) = A[f](Dy)



From Theorem (3), we have

so it follows that (M;);>0 is a local martingale. More precisely, we get from Proposition 51 that
¢
Vi=0, M, = M0+Jhsst
0

where for any s > 0,

hs = /Te[F/Fu](Dy)

_ Gy Ey
= E(DS>_F%(DS)G1(DS)

_ & Gy _ 5
- oo (G- ) o

When f is replaced by the identity mapping id: R? — R2, for any D € G, the vector <%—f — %) (D)
is the difference between the barycenter of C' and the barycenter of D, so it appears easily that for
any s = 0,

Fiq

(Ds) — E(Ds)

< a(Cs)?
2A(Ds)

o(Cs) || Gia
‘h‘5’ < DS) ‘

D, | Gy

More precise computations, separately presented in [16] because they rely on techniques belonging
to the field of isoperimetric stability, show that there exists a universal constant ¢ > 0 such that
for any D € G with o(C)? — 47n\(D) < A(D)/7, we have

‘ Gia D F;

(D)~ D) < ND)o(CP - amA (D)

Thus taking into account the decreasing property (116) and the fact that A(Ds) diverges to +o0
as s goes to infinity, we get there exists (a.s.) a random time S and a constant y (depending on
Dy) such that

X

VS?S, |hs| < W

From the iterated logarithm law, we deduce that as t goes to +0,

~ t 1
M| — o( Lwds> (120)

where the notation ¢(t) = O(¢(t)), for two functions ¢, p : Ry — R with limy_, o @(t) = +00,
means that

(1)

s O (ne@)) ~ 7

Applying the martingale problem to the composed functional 4/ Fy, we get that for any ¢ > 0,

- 3 [t 0(05)2 1 ¢ U(Cs)
\/Fﬂ(Dt)_\/F]I(DO)+4LWd8+ﬁLmst

76



Using again, on one hand that (Cs)? and A\(Ds) are of the same order for large s > 0, and on the
other hand the iterated logarithm law, we deduce that for large ¢ > 0,

¢
1 ~
————ds = ORADy) ++1) (121)
|y gt = ow
Another application of the iterated logarithm law to three independent Brownian motions enables
to see that if (R;);>0 is a Bessel process of dimension 3, then a.s.,

R, = OW?t) (122)
Recall that (R;)i=0 = A(Dg,)t>0 is a Bessel process of dimension 3, according to Theorem 5, where

(0¢)¢=0 is defined by

0
Yt=0, 2J 0(Cy)?ds = t
0

The martingale problem applied to Fy shows that for any ¢ = 0,

AD)) = A(Do) +2£ i((%); ds+\/§£a C

Replacing ¢ by 6;, we deduce that

0y ~

J, 5@
<>\ Dy,) — M(Dg) — V2 f " >

Vit + L o(Cy)?ds

Fl= §l=

I
Qe

(V)

I
Ge

It follows that

where §~! stands for the inverse mapping of # : R, — R, . Finally we obtain

Vi = O(/ADy)) (123)
and this is sufficient to insure that a.s.
M, _ 0
t—+00 )\(Dt)
in view of (120) and (121).
|
Remark 61 From (123), it appears that
In(t
lim sup n(t) < 1

t—+00 ln()\(Dt»
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We believe (in accordance with the beginning of Lemma 60) that

t>+o0  In(t)

but we have not been able to show it, even taking into account a lower bound on the rate of escape
for the Bessel process (R¢)i>0 of dimension 3, stating that for any a > 1,
RyIn®(t

lim inf L() = 4w

t—+00 NG
according to Theorem 3.2 (ii) of Shiga and Watanabe [25], see also Motoo [21] (the part (i) of their
theorem extends (122) to any Bessel process with a positive parameter). This implies that

ln(Rt) 1

I - =
t—460 In(t) 2

Furthermore, note that in the above proof we did not use the last part Lemma 60, which also
gives an equivalent of In(A(Dy)) for large ¢ > 0.

These shortcomings are an invitation to study further the asymptotic behavior of the renor-
malized domains (D;/A/A(Dt))t>0, in particular their fluctuations around the convergence of The-
orem 59.

7 Elliptic density theorem revisited

Here we assume that Conjecture 6 is true: not only we can construct a solution (Dp)sefo, to the
martingale problem associated to (D, £) and starting from any singleton {xo} < V, but it can be
coupled with the primal diffusion X starting from zo so that (14) and (15) are satisfied. Let us
show how to quickly recover the density theorem for elliptic diffusion from this property.

The proof is based on the following elementary observation:

Lemma 62 Let A c V be a negligible event with respect to p and denote f its indicator function.
For any measurable D  V with u(D) > 0 and s = 0, we have

AB[AI(D) = 0

where (Py)i=o is the Markov semi-group associated to L, seen as a family of Markov kernels.

Proof

Taking into account that p is invariant for (P;);>0, we have

APy = el

ulf]

(D)
0
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We can now come to the

Proof of Corollary 7

With the notations of the above lemma and Corollary 7, we want to check that for any xg € V
and any r > 0, Pr[f](x[)) = Ewo [f(XT)] = 0.

For any t > 0, let F; be the o-field generated by X[g, and Do ;.. From (14), we get that the
diffusion X = (X¢)=0 is also strongly Markovian with respect to the filtration (F);>0. Remark
that T > 0, the stopping time entering into the definition of (Dt)te[();t]a is also a stopping time with
respect to (F)i=0. It follows that

Eq, [f(Xr)] =

20 [Bao [f (Xr) | Fraxl]
zo[Pr—r at[ f1(Xrnav)]

For any t > 0, let D; be the o-field generated by Djg¢«]- It follows from (14) with 7' =7 A T,
that

E
E

E[h(r A T, Xrat)|Drax] = A(Dpax,h(r A T,-))
for any non-negative measurable mapping h : Ry x V — R,. We deduce that

Ezo [f(Xr)] = Exo [Ewo [Prfr/\"r[f] (XTAT)|DTAT]]
= IE:vo [A[PrfrAT[f]](DMT)]
=0

according to Lemma 62. Indeed, we took into account Theorem 5, insuring that for any ¢ € (0, ],
we have p(Dy) > 0.
|

With Marc Arnaudon, we are currently working on the existence of a coupling as in Conjecture 6
and some results in this direction will be presented in a future paper.

When the solutions to the martingale problems associated to (D, £) and to initial singleton sets
can be defined for all times, there is no need to have such a coupling at our disposal to recover
the density theorem for elliptic diffusions. Indeed, assume that for any zg € V', we can construct
a solution (D;):>0 to the martingale problem associated to (©, £) and starting from the singleton
{xo} < V. First, we remark that we can enrich the martingale problem by adding a temporal
component. Let us just sketch the argument: when § € ® and f € C!([0,¢]) with ¢ > 0 are given,
define

¥ (s,D)e[0,t] xD,  L[f@F](s,D) = 0sf(s)3(D)+ f(s)L[F](D) (124)

A simple computation shows that the process (M, sf @g) sef0,¢] given by
Vselod,  MIS = f)3D) - FOFD0) - [ @S D) du

0

is a martingale, whose bracket process is given by

Y s e [0,t], <M,f®5>s = JOS £ ()T e[F, §1(Dy) du

By traditional approximations, these considerations can be generalized to more general mappings
T : [0,] x D — R, in particular they must be C! with respect to the time component so that (124)
can be extended to

V(s,D)e[0,t] xD,  £[§](s,D) = 0s3(s, D)+ L[F(s,)](D)
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The fact that the corresponding process defined by

S

Vsel0,t], M5 = §(s,Ds)—F0,Dp) L 2[5 (u, D) du

is a martingale is called the Dynkin’s formula.
Fix g € C*(V), the above considerations can be applied to the mapping

5:00,1xD3(s,D) — A[P_[gll(D)

for which we compute that £[F] = 0, due to the intertwining relation of Theorem 3. Taking
expectations, it follows that

Egao} [Alg](D)] = A[P[g]]({zo})

which amounts to intertwining relations at the level of semi-groups:

VgeC(V),  BulAlgll({zo}) AP [g]]({zo})
Filg](zo)

where (P¢)¢>0 is the Markov semi-group associated to £. Since both the Lh.s. and the r.h.s. can
be seen as integration of the mapping g, this relation is extended to any non-negative measurable
function g. When we take for g the indicator function of a measurable set negligible with respect
to u, we get that

Vi>0,  EgylAlgl(D)] = 0

according to Lemma 62 and due to the fact that p(D;) > 0, from Theorem 5. We deduce that
Pi[g](z) = 0, for any ¢ > 0 and zo € V, as wanted.
An immediate extension is:

Proposition 63 Assume that there exists € > 0 such that for any xo € V, we can construct a
solution (Di)sefo,q to the martingale problem associated to (D, L) and starting from the singleton
{zo} < V. Then for any t > 0 and whatever the initial law L(Xy), the law of X; is absolutely
continuous with respect to .

Proof

The arguments presented above the statement of this proposition show that for any s € (0, €] and
any function f : V — R, negligible with respect to p, we have that Ps[f] = 0. By invariance of
i, we also have that for any u > 0, P,[f] is negligible with respect to u: pu[P,[f]] = u[f] = 0. We
deduce that Psy,[f] = Ps[Pulf]] = 0 and the announced result follows.

|

Of course Corollary 7 and Proposition 63 are well-known in the present elliptic diffusion frame-
work. Nevertheless, we think this new approach can be adapted to more complicated context, as
Theorem 5 is quite universal (it was shown to hold also for hypoelliptic diffusions, for the moment
in dimension 1, in [17]). We believe it should always be possible to associate to a diffusion some
evolving sets (as mentioned in the introduction) whose weights for an invariant measure behave
like a continuous martingale. By conditioning the primal diffusion X to remain inside these sets,
we would be led to a Bessel-3 process, up to a time-change and at least if the randomness of X is
sufficient, as the Brownian motion conditioned to stay positive ends up being a Bessel-3 process.

Another noticeable downside of Corollary 7 is that it requires the a priori knowledge that p is
absolutely continuous with respect to the Riemannian measure. A more general statement would
only conclude, at positive times, to the absolute continuity of the time-marginal laws with respect
to the invariante measure. In this paper we only considered kernels A which are directly related to
the invariant measure p, but it would be instructive to condition with respect to other measures,
even time-dependent ones.
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A About product situations

As already mentioned in the introduction, there are in general several dual generators intertwined
through A with a given generator L. We consider in this appendix the product situation, where
this multiplicity is particularly obvious.

Let L and L be two smooth generators on the mamfolds V and V of dimension larger or equal
to 1. Consider V := V x V endowed with L := L ® 7 + I ® L (I and T are the 1dent1ty operators
acting on C* (V) and C* (V) respectively). All the notions relative to L (respectively L) will receive
a tilde (resp. a hat). Assume that L admits an invariant Radon measure i and consider on G, an
appropriate set of compact subsets of V with positive measures, the kernel A naturally associated
with i p. Let D be an 1 algebra of observables on G on which we are given an operator 2 intertwined
with L through A: €A = AL. Make similar hypotheses for L. Next define

~ ~

- De QNandDeg}

~—

gindep =
Qindep = 55 ® @
Cindep = LOIZ+I3®L

where Iy and Iy are the identity operators on D and D respectively. It is immediate to check
that LingepA = AL, where A = A ® A is the natural Markov kernel associated with the measure
W= [t ® fi, invariant for L. When (Dt)te[o ) and (Dt)te[ 0,7) are independent processes satisfying

A~ A

the martingale problems associated with (@,2) and (D, £) respectively, then (Dy)o,r), defined
by

T = TAT

Vtel0,7), D, = (Dt,Dt) € Gindep

is a solution to the martingale problem associated with (Dindep, Lindep)-

It should be clear that such a solution is very different from the one obtained from Theorem 4,
due to the fact that the evolutions on § and QA are independent. In fact, the state spaces Gindep
and D are even disjoint. Consider the example where L = L is the Laplacian on R and add the
singletons to G and D. Starting from a singleton, the solution associated with Lingep evolves as
rectangles (centered at the initial point) with independent side-lengths behaving as Bessel processes
of dimension 3, while the solution associated with Theorem 4 evolves as disks (centered at the initial
point) whose radius are Bessel process of dimension 4 (according to Subsection 2.1). It could be
objected that this argument is not really valid, since we did not show uniqueness of the solution
to the martingale problem associated with (©, £), or with formal extensions of (D, £), in the sense
that exactly the same definitions are applied to more general subsets than those from D. But in
Proposition 59, it is proven that a solution to such a martingale problem, which is furthermore
defined for all times, ends up looking like a big disk and this is not true for the processes associated
with (Dindep; Lindep), since starting from a rectangle, it remains in the set of rectangles.

The fact that under £ the evolutions of different parts of the boundary of a domain are strongly
correlated could suggest to try to couple the evolutions under € and €. More precisely, assume
that G = D and that D and £ are constructed as in the introduction, similarly for (g ) 2) Let
(Dt)te[();r) and (Dt)te[[);r) be solutions to the corresponding martingale problems. According to

Proposition 51, there exist Brownian motions (Et)t>0 and (ét)t>0 such that

Viect (), vie[0,7), dFD) = EFAD) dt+xf\f (D) dB,
= L[F}](Dy) dt + V2G (D) dB
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and

viect (), vie[0,), dFND) = S[FA(D) dt+xf\/7 \(Dy) dB,
= §[F ](Dt)dH\FG ~(D,) dB,

In the previous independent framework, (B;)i=o and (Bt)t>0 are independent and we end up
with the generator Lingep- Now we would like to couple (Dt)te[o,T) with (Dt)te[o 7) by taking
(Bi)i=0 = (By)i=0, since this is suggested by a naive extension of the radial evolution (3) to the
domains belonging to Gingep- But again we end up with a process different from the one obtained
from Theorem 4, for the same reason as above: in the case L=1= 02, it will evolve as squares if
it is started from a square. It can also be seen on the action of the generators on observables of
the form Ff@f’ where fe COO(V) and f € COO(XA/). In the general setting, 1t6’s formula leads for
the above coupling to the generator L£equal acting on Gingep as

SequalFrgfl = Fr®L[F;] + F;® £[Ff] +2G;® G

with the notation of Subsection 6.3. But simple computations show that the formal extension of
£ t0 Gindep should be given by

S a Gy Gy
S[F]?@f] = ﬂ[Ff]@Ff—l—Ff@ﬂ[Ff] +2F7iFf®Gf+ 2Gf®FFf

where 1€ C®(V) and 1 € COO(XA/) are the functions always taking the value 1.
But in both cases, we have the same carré du champs: for any f € C*(V) and f € COO( ),

F [Ff®f] = F'Qfequal [Ff®f]
2
- (F;0G;+G;0F)
which is different from
Lt [Fipf]l = Ff% ® Gf? + G} ® F]%

Nevertheless the generator Lequal is not intertwined with L through A. Indeed, for any fN‘ €
C®(V) and f e C®(V), denote

Gy Gi
Gf@GA fFf®Gf—Gf® ?Ff

R —
fFﬁ

jof
so that

'gequal[Ff@f] = S[Ff®f] + 29{

From the proof of Theorem 3, we have, with f := f@ f and 1:=1® ]Al,

F2

2
F]l Sequal [A [f]] = Sequal [Ff] - F]lrgequal [Ff7 F]l] + Ff (

Fgequal [F]17 Fll] - ;i'gequal[F]l]>
= LequallFy] — il“s[Ff Fy] + Fy <2T2[Fn Fy] - Le 1[F1L]>
equa 2 , 72 , Ty Seaua
Fy
= FILS[A[f]] + 29{]0 — 2F]1£R]1

F
— FA[L[f]] + 2R — 2F—fzm
1
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Thus if the generator Sequal was to be intertwined with L through A, we would have for any
fec®(V) and fe COO(V)

F~

- Yier
SRf@f R . T

F~ ~
ff

This equality holds on Giygep, namely for any DeDand De 13, we have

J(D)ji
F> (D X D) = T~ A~ Nt
fof g(@D)g(@D) fef

The sets D and D being fixed, the mapping f ® f — R

of f®f on the boundary of D®D while f®f — f@f(

f ® f on the interior of D®D Thus for any function f (respectlvely f ) whose support is included

in the interior of D (resp. D), we get that Ff®f(D x D) = 0, i.e. i ® Ji vanishes on the interior of

D® D. Since this is true for any DeDand D e D we would conclude that 1 = 0 and i = 0, a
contradiction.

fol +(D x D) corresponds to an integration

D x D) correspond to an integration of
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