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Abstract

On a manifold, consider an elliptic diffusion X admitting an invariant measure µ. The goal
of this paper is to introduce and investigate the first properties of stochastic domain evolutions
pDtqtPr0,τs which are intertwining dual processes for X (where τ is an appropriate positive stopping
time before the potential emergence of singularities). They provide an extension of Pitman’s
theorem, as it turns out that pµpDtqqtPr0,τs is always a Bessel-3 process, up to a natural time-change.
When X is a Brownian motion on a Riemannian manifold, the dual domain-valued process is a
stochastic modification of the mean curvature flow to which is added an isoperimetric ratio drift
to prevent it from collapsing into singletons.
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1 Introduction

In the finite state space framework, Diaconis and Fill [4] have shown that ergodic Markov chains
can be intertwined with Markov chains living on the set of non-empty subsets of the state space
and ending up being absorbed at the full state space. This result enabled them to construct strong
stationary times for ergodic Markov chains, leading to quantitative bounds on their convergence to
equilibrium, in the separation discrepancy and in the total variation distance. In [18], this point of
view was extended to real ergodic diffusion processes, but the one-dimensionality seemed crucial in
the method. As noted in this previous paper, it is quite unfortunate, since otherwise it could lead
to a new probabilistic approach to the hypoellipticity theorem of Hörmander [10]. Here we make an
important step further in this program, by showing that elliptic diffusions on differential manifolds
admitting an invariant measure can indeed be intertwined with domain-valued Markov processes.
Although the hypoellipticity is not yet entering in the game (but see [17] for a first illustration in
dimension 1), the introduced domain-valued processes are already very intriguing and promising
for themselves. When dealing with the Brownian motion on a Riemannian manifold, they are
natural stochastic modifications of the mean curvature flow. In the more general case, when a
gradient drift is added to the Brownian motion, one has to consider some weighted extensions.

Let L be an elliptic diffusion generator on a differentiable manifold V . Here we will not be
interested in regularity problems, so V and the coefficients of L are supposed to be smooth. Assume
there exists a σ-finite measure µ on V which is invariant for L in the sense that

@ f P C8c pV q, µrLrf ss “ 0

where C8c pV q stands for the space of smooth functions on V with compact support. By ellipticity,
the measure µ admits a positive density with respect to the Riemannian measure. Note that in
general µ is not unique, even up to a positive factor, e.g. for the generator B2 ` B on R, all the
measures with a density of the form R Q x ÞÑ a` b exppxq, with a, b ě 0, are invariant. But there
is at most one finite invariant measure and in this case it is usual to normalize µ into a probability
measure.

Let D be the set of non-empty, compact and connected domains D in V , which coincide with
the closure of their interior and whose boundary C B BD is smooth. Denote also D B D \ ttxu :
x P V u, obtained by adjunction of all the singletons to D, and D the set of all measurable subsets
D of V which either satisfy µpV q P p0,`8q or are singletons (so that D Ă D Ă D). Consider the
Markov kernel Λ from D to V given by

@ D P D, @ A P BpV q, ΛpD,Aq B

$

’

&

’

%

µpAXDq

µpDq
, if µpDq ą 0

δxpAq , if D “ txu, with x P V

(1)

where BpV q is the set of measurable subsets of V and δx the Dirac mass at x. As usual, such an
integral kernel can be seen as an operator transforming bounded (respectively positive) measurable
functions on V into finite-valued (resp. p0,`8s-valued) functions on D.

The main goal of this paper is to find a Markov generator L with state space D satisfying, in
an appropriate sense, the intertwining relation

LΛ “ LΛ (2)

and for which the singletons are entrance boundaries.

Remark 1 This was done in [18] when V “ R and when ´8 and `8 were entrance boundaries
for L. The latter assumption was needed to insure that the resulting Markov processes on the set
of the closed segments (which were not assumed to be compact in [18]) end up being absorbed at
the whole state space R, because we were primarily interested in constructing strong stationary
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times. This is no longer our objective here (even if we should come back to this question in a future
work), that is why no assumption is made on the behavior of L at infinity.

Note also that in general there is not a unique Markov generator satisfying the above require-
ments, since in [18] we constructed a whole family of such operators when V “ R. Nevertheless,
among them, one was the fastest to be absorbed at R, it is a generalization of this Markov generator
that will be considered below.

˝

As a consequence of the previous remark, from now on, we assume that the dimension of V is
larger or equal to 2. To describe our candidate L, we need to introduce some notations.

By using the inverse of the matrix diffusion of L to induce a Riemannian structure on V (see
e.g. the book [12] of Ikeda and Watanabe for the details), L can be decomposed as L “ 4 ` b,
where 4 is the Laplacian operator associated to the Riemannian structure and b is a vector
field (seen as a first order differential operator). We assume that V is complete, endowed with
the Riemannian distance d. Let λ be the Riemannian measure on V . It is well-known
that µ is absolutely continuous with respect to λ and that its density is smooth. Let us write
U B lnpdµ{dλq P C8pV q (a priori defined up to an additive constant, except when µ is normalized
into a probability measure). The vector field b can written as ∇U ` β, with the vector field β
satisfying divpexppUqβq “ 0; it corresponds to the µ-weighted Hodge decomposition of b. In the
previous sentence, ∇ and divp¨q are the gradient and divergence operators associated to the
Riemannian structure. Other Riemannian notions that will be useful for our purpose are the
scalar product x¨, ¨y, as well as the exterior normal vector νC , the “mean” curvature ρC
and the pdimpV q ´ 1q-Hausdorff measure σC , all the last three objects being defined on the
boundary C of an element D P D. The mean curvature is signed with respect to our choice of the
orientation of νC and it is not really a mean, since it is the trace (without renormalization) of the
second fundamental form. A priori the orientation of νC and the sign of ρC require to know on
which side of C is the interior of D (except when V is not compact, then the mapping D Q D ÞÑ C
is one-to-one, otherwise it is two-to-one), but ρCνC depends only on C.

Let us first describe heuristically the type of stochastic evolution pDtqtPr0,τq in D we want to
consider. The positive stopping time τ is earlier than the exit time from D, typically due to
the apparition of singularities on the boundary Ct B BDt. We want, as long as t P r0, τq, the
infinitesimal evolution of any Yt P Ct to be given by

dYt “

ˆ

?
2dBt `

ˆ

2
σCtpexppUqq

µpDtq
` xβ ´∇U, νCty pYtq ´ ρCtpYtq

˙

dt

˙

νCtpYtq (3)

where B B pBtqtě0 is a standard real Brownian motion. The evolution (3) can be seen as a
deterministic and stochastic modification of the mean curvature flow, which corresponds to

dyt “ ´ρCtpytqνCtpytq dt

for the points yt on the evolving boundary.
The global term σCtpexppUqq{µpDtq (it does not depend on the position of Yt on Ct) in (3) can

be seen as an isoperimetric ratio with respect to µ. Indeed, it can be rewritten as µpCtq{µpDtq,
where µ is the pdimpV q ´ 1q-dimensional measure on Ct admitting exppUq as density with respect
to σCt . So this term explodes as Dt becomes closer and closer to a point. In some sense, it will
compensate the trend of the mean curvature flow on compact boundaries to make them smaller and
smaller (and rounder and rounder). Though too qualitative to be convincing, this observation is a
first hint of why the singletons will be entrance boundaries for the Markov processes determined
by (3).

The term xβ, νCty pYtqνCtpYtq in (3) could be replaced by βpYtq, since the tangential components
in the description of the evolution of the points on boundary can be removed, up to a diffeomor-
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phism of Ct (see e.g. Section 1.3 of Mantegazza [15]). Only the radial component (i.e. the projection
on the normal vectors νCt) is important, thus an equation such as (3) will be said to be radial.

In fact, the radial stochastic differential equation (3) of the points on the boundary is not
the most convenient way to work with the process pDtqtPr0,τq. In Markov theory, the martingale
problem approach is usually more helpful (for a general introduction and an extensive development
of this notion, cf. for instance the book of Ethier and Kurtz [6]). It needs convenient observables
on the state space. On D, the role of elementary observables is played by the mappings

Ff : D Q D ÞÑ Ff pDq B

ż

D
f dµ (4)

associated to the functions f P C8pV q, the space of smooth mappings on V .
To proceed in the direction of the definition of the generator L on an appropriate algebra D of

functionals defined on D, we begin by defining the action of L on the above elementary observables:
for any f P C8pV q,

@ D P D, LrFf spDq B

ż

D
Lrf s dµ` 2

µpCq

µpDq

ż

C
f dµ (5)

Using Stokes formula, we will check in Section 3 that the above r.h.s. can be written as an integral
over C only:

@ D P D, LrFf spDq “

ż

C
x∇f, νCy `

ˆ

2
µpCq

µpDq
` xβ, νCy

˙

f dµ (6)

Furthermore, we introduce a bilinear form ΓL (which will be the carré du champs associated to
L) on such functionals, via

@ f, g P C8pV q, @ D P D, ΓLrFf , FgspDq B

ˆ
ż

C
f dµ

˙ˆ
ż

C
g dµ

˙

(7)

Since the D-valued Markov processes we are interested in will have continuous sample paths
(namely they will be diffusions), we are naturally led to the following definitions (see e.g. the
book of Bakry, Gentil and Ledoux [2]). Consider D the algebra consisting of the functionals of the
form F B fpFf1 , ..., Ffnq, where n P Z`, f1, ..., fn P C8pV q and f : RÑ R is a C8 mapping, with R
an open subset of Rn containing the image of D by pFf1 , ..., Ffnq. For such a functional F, define

LrFs B
ÿ

jPJ1,nK

BjfpFf1 , ..., FfnqLrFfj s `
ÿ

k,lPJ1,nK

Bk,lfpFf1 , ..., FfnqΓLrFfk , Ffls (8)

To two elements of D, F B fpFf1 , ..., Ffnq and G B gpFg1 , ..., Fgmq, we also associate

ΓLrF,Gs B
ÿ

lPJnK,kPJmK

BlfpFf1 , ..., FfnqBkgpFg1 , ..., FgmqΓLrFfl , Fgks (9)

Remark 2 A priori the above definitions are ambiguous, since they seem to depend on the writing
of F P D under the form fpFf1 , ..., Ffnq and similarly for G. To see that they are indeed well-defined,
note that

@ F,G P D, ΓLrF,Gs “
1

2
pLrFGs ´ FLrGs ´GLrFsq

This property implies that if f is a polynomial in n variables, then for any F B fpf1, ..., fnq, with
f1, ..., fn P C8pV q, the object LrFs is uniquely defined. Indeed, it relies on an iteration on the
degree of f, starting from (6) and (7). The general case of smooth functions f is deduced from their
approximation over compact domains by polynomial mappings.
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˝

Let us come back to the Markov operator Λ defined in (1). For any f P C8pR2q, Λrf s is an
element of D, since it can be written

@ D P D, Λrf spDq “
Ff
F1
pDq

where 1 is the constant function taking the value 1. This relation also leads us to endow D with the
σ-algebra generated by the mappings Ff , for f P C8pV q, so that Λ is really a Markov kernel from
D to V : for any fixed A P BpV q, the mapping D Q D ÞÑ ΛpD,Aq is measurable. For this mapping
to be measurable on D, put on the set tδx : x P V u the σ-algebra obtained by identifying it with
V (seeing δx as x) and consider on D the σ-algebra generated by those on D and on tδx : x P V u.
Since we already mentioned continuity of trajectories, we must also endow D with a topology. The
simplest way to do so would be to consider the smallest topology such that all the mappings Ff ,
for f P C8pV q, are continuous (with the natural extension that the Ff vanish on the singletons).
But for our purpose, we will need a stronger topology making continuous the following functionals,
for any f P C8pV q:

D Q D ÞÑ ΛrFf spDq (10)

D Q D ÞÑ

ż

C
f dµ (11)

with the convention that if D is a singleton, then C “ H (so that the latter r.h.s. is 0). Condi-
tion (10) enables us to topologically identify tδx : x P V u with V . The topology on D will be such
that the σ-algebra put on D is the Borelian one. Condition (11) implies that for any f P C8pV q,
LrFf s is continuous on D. For the precise definition of this topology, see Section 3, where D will
furthermore be endowed with an infinite-dimensional differential structure.

After these structural precisions, let us come back to L, whose main interest is to fulfill our
goal (2):

Theorem 3 For any f P C8pV q, we have

@ D P D, LrΛrf sspDq “ ΛrLrf sspDq

To go further, we want to construct Markov processes whose generator is L and to establish a
link with (3).

Let be given a filtered probability space pΩ,F , pFtqtě0,Pq, all subsequent notions from stochastic
process theory will be relative to the filtration pFtqtě0. Consider a stopped continuous and adapted
stochastic process pDtqtPr0,τq, taking values in D and where τ is a positive stopping time. It is said
to be a solution to the martingale problem associated to pD,Lq, if for all t P p0, τq, Dt P D and
if for any F P D, the process MF B pMF

t qtPr0,τq defined by

@ t P r0, τq, MF
t B FpDtq ´ FpD0q ´

ż t

0
LrFspDsq ds

is a local martingale. More precisely, in this situation we say that pDtqtPr0,τq is a solution to the
martingale problem associated to the generator pD,Lq and to the initial distribution LpD0q, the
law of D0, or starting from D0 P D, when LpD0q is a Dirac mass.

One key to the following result is the adaptation of the Doss [5] and Sussman [26] method to
the infinite dimensional stochastic differential equation (3).

Theorem 4 For any D0 P D, there is a solution to the martingale problem associated to pD,Lq
starting from D0.
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In certain homogeneous spaces, it is possible to start from singletons, because these situations
can be brought back to the 1-dimensional setting treated in [18]. Indeed, the processes pDtqtě0

end up being balls centered at the point from the initial singleton and it is sufficient to study the
evolution of the radius. This is the case of the Laplacian operator on Euclidean, hyperbolic and
spheric spaces. The stopping time τ is infinite in the two former situations and corresponds to the
hitting time of the whole sphere in the latter one. But in general to consider D as state space is
probably too restrictive. We believe there exists a set G of subdomains of V , with D Ă G Ă D, such
that L can be naturally extended to G, in particular one should be able to define µ and νBD, µ-a.e.
Heuristically, the set of singular points of the boundary of a domain from G should be very small.
We hope to investigate this question in a future work via the geometric measure theory, but for
the moment being, let us assume that we are given a such a set G with Theorem 4 holding up to a
positive stopping time earlier than the exit time of G. Still denote by pDtqtPr0,τq the corresponding
Markov processes. Consider

ς B 2

ż τ

0
pµpCsqq

2 ds P p0,`8s (12)

and the time change pθtqtPr0,ςs defined by

@ t P r0, ςs, 2

ż θt

0
pµpCsqq

2 ds “ t. (13)

Theorem 5 The process pµpDθt^ς qqtě0 is a (possibly stopped) Bessel process of dimension 3.

By taking into account that 0 is an entrance boundary for the Bessel process of dimension 3,
a consequence of Theorem 5 is that the set of singletons is an entrance boundary for the Markov
processes associated to pD,Lq, if we were able to extend Theorem 4 to initial conditions that are
singletons. Theorem 5 can be seen as a multidimensional extension of the intertwining relation
between the real standard Brownian motion and the Bessel process of dimension 3 by Pitman [23]:
it corresponds to (2) when L is the Laplacian on R (see also Remark 37 in [18]).

Up to now, we did not consider the Markov processes associated to L, whereas their study is the
first motivation for the above developments. The martingale problems associated to pC8pV q, Lq
are well-posed (see e.g. the book of Ikeda and Watanabe [12]), so to any initial distribution on
V , we can associate a stopped Markov process pXtqtPr0,τq where τ is the explosion time (maybe
infinite). The conjunction of Theorems 3 and 4 should lead to the following result, which is the
reason behind our interest in the relation (2):

Conjecture 6 Assume that the martingale problems associated to pC8pV q, Lq are well-posed and
defined for all times (no explosion). Let x0 P V be given and let X B pXtqtě0 be a solution starting
from x0 P V for the martingale problems associated to pC8pV q, Lq. Up to enlarging the underlying
probability space, it is possible to couple the trajectory pXtqtě0 with a solution pDtqtPr0,τs starting
from the singleton tx0u to the martingale problem associated to pD,Lq, such that for any stopping
time T with T ď τ, we have for the conditional laws:

LpDr0,T s|Xq “ LpDr0,T s|Xr0,T sq (14)

LpXT |Dr0,T sq “ ΛpDT , ¨q (15)

˝

The difficulty behind the proof of such a result is technical, since conceptually it is an immediate
extension of the ideas of Diaconis and Fill [4] in the context of finite Markov chains. An approach
to such couplings via coalescing stochastic flows is proposed in [19], but it needs to be developed
further to deal with our present framework. Conjecture 6 would enable us to come back to our
initial motivation, first by recovering the density theorem for elliptic diffusions:
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Corollary 7 Assume that a coupling of pXtqtě0 with pDtqtPr0,τs can be constructed as in Conjec-
ture 6. Then for any t ą 0, the restriction to V of the law of Xt is absolutely continuous with
respect to the Riemannian measure λ.

To obtain this result, only the existence of a domain-valued dual process is needed (as well as
its coupling with the process X), its uniqueness is irrelevant. The well-posedness of the martingale
problems associated to pD,Lq is not not crucial for this king of consideration, more important for
us would be the possibility for the dual process to start from singletons.

Another interesting stochastic domain evolution is obtained by removing the isoperimetric ratio
from the generator, namely corresponding to the generator pD, rLq, where (5) is replaced by

@ D P D, rLrFf spDq B

ż

D
Lrf s dµ (16)

for its action on the elementary observables (but (7), (8) and (9) remain unchanged). The associated
Markov processes are the analogues of the evolving sets considered by Morris and Peres [20] in
discrete settings. One downside of the processes p rDtqtPr0,τq associated to the generator pD, rLq is
that they have a strong tendency to collapse in singletons in finite time and they remain singletons
when starting from a singleton. The heuristic reason behind this collapse is that pµp rDtqqtPr0,τq is a

non-negative martingale, due to rLrF1s “ 0, and thus converges toward zero in finite time (when it
is not stopped before by τ). The convergence toward a singleton can be checked rigorously when
starting from a ball in the constant curvature framework of the next section. In fact, taking into
account the general theory of Doob transforms (with respect to the mappings D Q D ÞÑ µpDq),
the processes pDtqtPr0,τq correspond to the process p rDtqtPr0,τq conditioned not to hit the set of

singletons, or more precisely, conditioned so that pµp rDtqqtPr0,τq does not hit zero. This property
gives an understanding of the emergence of the Bessel-3 process in Theorem 5, seen as the Brownian
motion conditioned not to hit 0 (see also the observations at the end of Section 7).

The plan of the paper is as follows. In the next section, we will deal with the simple but
illustrative situation of the Euclidean, spheric and hyperbolic Brownian motion starting from a
point. In Section 3 we prove Theorem 3 and Theorem 4. Section 4 presents a result on the exis-
tence of stochastic modified mean curvature flows, which was required by the proof of Theorem 4.
Section 5 comes back to the homogeneous situations of Section 2, pursuing further some com-
putations relative to the mean curvature addressed in Section 3. It will also shows some critical
differences between two ways of applying the Doss-Sussman method in these homogeneous geomet-
ric frameworks. In Section 6, Theorem 5 is shown as well as other properties of the solutions to the
martingale problems associated to pD,Lq. In particular, we will see that if the evolution pDtqtě0 is
defined for all times, relatively to the usual Laplacian L “ 4 on the plane, then renormalizing the
domains so that their areas is brought back to 1, we get a convergence in large time toward the
disk centered at 0 of radius 1{

?
π. An appendix provides supplementary informations on product

situations and alternative dual processes (on domains whose boundaries are naturally non smooth).

2 Homogeneous situations

There are examples where the radial evolution equation (3) can be globally solved by coming back
to the one-dimensional situation as it is treated in [18] (see also Fill and Lyzinski [8]). They
correspond to spaces V with constant curvature endowed with the Laplacian 4 and we take µ “ λ
and µ “ σC (denoted σ, to simplify), for C “ BD and D P D, with the notation of the introduction.
For them, we investigate solutions pDtqtě0 of the form pBp0, Rtqqtě0, where 0 is any fixed point of
the state space, Bp0, rq is the closed ball centered at 0 of radius r ě 0 and pRtqtě0 is a R`-valued
diffusion process starting from 0. We will describe separately the three situations of null, negative
and positive constant curvature spaces.
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2.1 Euclidean spaces

We consider here the Euclidean space Rn, with n P Nzt1u. Without loss of generality, we can
assume that 0 is the point zero from Rn. For r ą 0, the Lebesgue volume of Bp0, rq is λpBp0, rqq “
πn{2

Γpn{2`1qr
n and the corresponding hypersurface volume of the sphere BBp0, rq is σpBBp0, rqq “

n πn{2

Γpn{2`1qr
n´1. The mean curvature of any element x P BBp0, rq is ρpxq “ pn ´ 1q{r. Thus a

solution pBp0, Rtqqtě0 of the radial evolution equation (3), is given by

dRt “
?

2dBt `

ˆ

2n

Rt
´
n´ 1

Rt

˙

dt

“
?

2dBt `
n` 1

Rt
dt

where pBtqtě0 is a standard Brownian motion. Thus pRt{2qtě0 has for generator the operator A
given by

@ f P C8pR`q, @ x P R`, Arf spxq B
1

2
f2pxq `

n` 1

2x
f 1pxq

(in the sequel such a generator will be denoted 1
2B

2 ` n`1
2x B), namely it is a Bessel process of

dimension n ` 2. In particular 0 is an entrance boundary for pRtqtě0 and we can make it start
from 0, i.e. we can let pBp0, Rtqqtě0 start from t0u.

Let us check directly that pλpBp0, Rtqqqtě0 is a Bessel of process of dimension 3, up to a time
change, as announced in Theorem 5. It is sufficient to show that the same is true for pRnt qtě0. We
compute that

dRnt “ nRn´1
t

ˆ

?
2dBt `

n` 1

Rt
dt

˙

` 2
npn´ 1q

2
Rn´2
t dt

“
?

2nRn´1
t dBt ` 2n2Rn´2

t dt

So the generator of pRnt qtě0 is 2n2x2´2{nr12B
2 ` 1

xBs. It follows that pRnθtqtě0 is a Bessel process of
dimension 3, where the time change pθtqtě0 is defined by

@ t ě 0,

ż θt

0
R2´2n
s ds “ 2n2t

2.2 Spherical spaces

We consider now the sphere Sn Ă Rn`1, with n P N. Without loss of generality, we can assume that
0 is the point p1, 0, 0, .., 0q from Rn`1. For any r P r0, πs, Bp0, rq is the closed cap centered at 0 of
radius r. In particular, we have Bp0, 0q “ t0u and Bp0, πq “ Sn. Let λ be the uniform distribution
on Sn and σ be the corresponding hypersurface volume. The projection of λ on the first coordinate
of Rn`1 is the measure Z´1

n p1 ´ x2qn{2´11r´1,1spxq dx, where the renormalising factor is given by
the Wallis integral

Zn “

ż 1

´1
p1´ x2qn{2´1 dx

“

ż π

0
sinn´1puq du

“
?
π

Γ
`

n`1
2

˘

Γ
`

n
2 ` 1

˘

8



The cap Bp0, rq is exactly the set of elements of Sn whose first coordinate belongs to rcosprq, 1s.
So we get

λpBp0, rqq “ Z´1
n Iprq B Z´1

n

ż r

0
sinn´1puq du

σpBBp0, rqq “ Z´1
n sinn´1prq

The mean curvature of any element x P BBp0, rq is ρpxq “ pn ´ 1q cotprq. Indeed, the mean
curvature ρ on BBp0, rq is the function such that for any C8pSnq, we have

Br

ż

BBp0,rq
f dσ “

ż

BBp0,rq
x∇f, νy dσ `

ż

BBp0,rq
fρ dσ

(for more details, see e.g. Lemma 10 in Section 3 below). Due to the symmetries of BBp0, rq, one
sees that ρ must be constant on BBp0, rq. Thus considering f “ 1 in the above equality, we get

ρ “
BrσpBBp0, rqq

σpBBp0, rqq

“ pn´ 1q cotprq

It follows that a solution pBp0, RtqqtPr0,τq of the radial evolution equation (3), where τ is the hitting
time of π by pRtqtPr0,τq, is given by

dRt “
?

2dBt `

ˆ

2 sinn´1pRtq

IpRtq
´ pn´ 1q cotpRtq

˙

dt (17)

where pBtqtě0 is a standard Brownian motion.
As r Ñ 0`, we have

2 sinn´1prq

IpRtq
´ pn´ 1q cotprq „

2rn´1

şr
0 u

n´1 du
´
n´ 1

r

“
n` 1

r

and this enables us to see that 0 is an entrance boundary for pRtqtPr0,τq and we can make it start
from 0, namely we can let pBp0, RtqqtPr0,τq start from t0u.

In general we did not find a nice expression for the drift of (17), but in the case n “ 2, this
evolution equation can be written

dRt “
?

2dBt ` p2 cotpRt{2q ´ cotpRtqq dt

Similarly to the Euclidean situation, let us check directly Theorem 5, i.e. that pλpBp0, RtqqqtPr0,τq
is a stopped Bessel of process of dimension 3, up to a time change. It is sufficient to show that the
same is true for pIpRtqqtPr0,τq. We compute that

dIpRtq “ I 1pRtq

ˆ

?
2dBt `

ˆ

2 sinn´1pRtq

IpRtq
´ pn´ 1q cotpRtq

˙

dt

˙

` I2pRtqdt

“
?

2 sinn´1pRtqdBt `

ˆ

2 sin2n´2pRtq

IpRtq
´ pn´ 1q sinn´1pRtq cotpRtq

˙

dt

`pn´ 1q sinn´2pRtq cospRtqdt

“
?

2 sinn´1pRtqdBt `
2 sin2n´2pRtq

IpRtq
dt

9



So the generator of pIpRtqqtPr0,τq is 2 sin2n´2pI´1pxqqr12B
2 ` 1

xBs, where I´1 is the inverse mapping
of I : r0, πs Ñ r0, Zns. This shows that pIpRθtqqtPr0,τq is a Bessel process of dimension 3 starting
from 0 and stopped when it hits Zn, where the time change pθtqtPr0,τq is defined by

@ t P r0, τq,

ż θt

0

1

sin2n´2pI´1pRsqq
ds “ 2t

Consider the case where R0 “ 0. Then θτ has the same law as the first hitting time of Zn by a
Bessel process of dimension 3 starting from 0. It follows that τ is a.s. finite. Thus, starting from
t0u, the process pBp0, RtqqtPr0,τs ends up covering the whole sphere Sn at the (a.s.) finite time
τ. According to the theory of strong duality (see e.g. the initial paper of Diaconis and Fill [4]
for the principe and Section 7 for its application to the present context), this property leads to
the construction of strong stationary times for the Brownian motion on Sn starting from 0 (and
more generally for any initial distribution on Sn, by symmetry and conditioning with respect to
the initial position of the spheric Brownian motion).

2.3 Hyperbolic spaces

Consider the Poincaré’s ball model of the hyperbolic space Hn of dimension n P Nzt1u. For
references on the subject, one can consult the book of Anderson [1] and we find the unpublished
report of Parkkonen [22] very convenient. As above, the choice of the point 0 is irrelevant, let us
choose for instance the center of the Euclidean ball on which is imposed the classical hyperbolic
metric. Let λ be the Riemannian distribution on Sn and σ be the corresponding hypersurface
volume. Denote by Bp0, rq the closed ball in Hn centered at 0 and of radius r ě 0. Up to a factor,
we have

λpBp0, rqq “

ż r

0
sinhn´1puq du (18)

σpBBp0, rqq “ sinhn´1prq (19)

From these formulas (and even only from (19), since (18) is already a consequence of (19)), one can
develop the same arguments as in the spherical situation, replacing the trigonometric functions by
their hyperbolic counter-parts, to get the following results. A solution pBp0, Rtqqtě0 of the radial
evolution equation (3), is given by

dRt “
?

2dBt `

ˆ

2 sinhn´1pRtq

JpRtq
´ pn´ 1q cothpRtq

˙

dt (20)

where J : R` Q r ÞÑ
şr
0 sinhn´1puq du. In particular, for the hyperbolique plane (n “ 2), we get

dRt “
?

2dBt ` p2 cothpRt{2q ´ cothpRtqq dt

Again, 0 is an entrance boundary for pRtqtě0 and we can make it start from 0, namely we can let
pBp0, Rtqqtě0 start from t0u. From this initial point, the process pλpRθtqqtě0 is a Bessel process of
dimension 3 starting from 0, where the time change pθtqtě0 is defined by

@ t ě 0,

ż θt

0

1

sinh2n´2pJ´1pRsqq
ds “ 2t

where J´1 is the inverse mapping of J : R` Ñ R`. This is obtained through computations similar
to those of Subsection 2.2 or as a consequence of Theorem 5.

10



3 Smooth initial conditions

After proving Theorem 3, we will show how to solve (3) for small times, when the initial domain
has a smooth boundary. It will provide a solution of the martingale problem associated to L, thus
showing Theorem 4.

As announced, we begin by the

Proof of Theorem 3

Consider R B tpx, yq P R2 : y ą 0u and the mapping

f : R Q px, yq ÞÑ
x

y

For any f P C8pV q, we have Λrf s “ fpFf , F1q, so that Λrf s P D.
It follows that

LrΛrf ss “
1

F1
LrFf s ´

Ff
F 2
1

LrF1s ´
2

F 2
1

ΓLrFf , F1s `
2Ff
F 3
1

ΓLrF1, F1s

which can be rewritten under the form

F1LrΛrf ss “ LrFf s ´
2

F1
ΓLrFf , F1s ` Ff

ˆ

2

F 2
1

ΓLrF1, F1s ´
1

F1
LrF1s

˙

We compute that for any D P D, with C B BD, ν B νC and σ B σC ,

LrF1spDq “

ż

D
Lr1s dµ` 2

µpCq

µpDq

ż

C
1 dµ

“ 2
µpCq2

µpDq

Furthermore, remark that

ΓLrF1, F1spDq “

ˆ
ż

C
1 dµ

˙2

“ µpCq2

so taking into account that F1pDq “ µpDq, we get that

2

F 2
1

ΓLrF1, F1s ´
1

F1
LrF1s “ 0

Thus, we have

F1LrΛrf sspDq “ LrFf spDq ´
2

F1
ΓLrFf , F1spDq

“

ż

D
Lrf s dµ` 2

µpCq

µpDq

ż

f dµ´
2µpCq

µpDq

ż

C
f dµ

“

ż

D
Lrf s dµ

and we conclude to the announced intertwining relation

LrΛrf ss “
FLrf s

F1

�
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In the above proof the definition (5) was helpful. Nevertheless to understand the dynamic of
the domains generated by L, it is preferable to resort to (6), so let us show its equivalence with
(5). It amounts to check that for any D P D and any f P C8pV q, we have

ż

D
Lrf s dµ “

ż

C
x∇f, νCy ` xβ, νCy f dµ (21)

This equality is based on the integration by parts formula (Stokes’ theorem), stating that for any
smooth vector field v on V , we have

ż

D
divpvq dλ “

ż

C
xv, νy dσ (22)

Indeed, we have
ż

D
Lrf s dµ “

ż

D
p4f ` x∇U ` β,∇fyq exppUqdλ

“

ż

D
divpexppUq∇fq ` xexppUqβ,∇fy dλ

By integration by parts formula, we get that
ż

D
divpexppUq∇fq dλ “

ż

C
xexppUq∇f, νy dσ

“

ż

C
x∇f, νy dµ

Recalling that divpexppUqβq “ 0, we have divpexppUqfβq “ xexppUqβ,∇fy ` divpexppUqβqf “
xexppUqβ,∇fy, so another integration by parts gives us

ż

D
xexppUqβ,∇fy dλ “

ż

C
xβ, νy f dµ

ending the proof of (21).
�

Now that we know that L satisfies the wanted intertwining relation with L, given D0 P D,
we would like to construct a Markov process pDtqtPr0,τq starting from D0 and whose generator
is L, where τ will be a positive stopping time, in a first step. To do so, we come back to the
radial evolution equation (3) that we reinterpret under the heuristic D-valued stochastic differential
equation

dDt “ V1pDtq

ˆ

?
2dBt ` 2

µpCtq

µpDtq
dt

˙

`V2pDtq dt (23)

where V1 and V2 are “vector fields” on D. This formulation will enable us to adapt the Doss-
Sussman method [5, 26] to this infinite dimensional setting to construct a solution to the martingale
problem associated to the generator L and to the initial position D0, at least for small times.

Before explaining in general what we mean by a vector fields on D, we study the flow generated
by V1, which is very simple to describe. For any r P R, denote

ΨpD, rq B

$

&

%

tx P V : dpx,Dq ď ru , if r ą 0
D , if r “ 0
tx P D : dpx,Dcq ě ´ru , if r ă 0

(24)

where we recall that for any subset A Ă D and x P V ,

dpx,Aq B inftdpx, yq : y P Au

12



with d the Riemannian distance on V .
It is easy to realize that the family pΨpD, rqqrPR does not behave well for some r P R: it does

not stay in D and does not satisfy the flow property (see Remark 9 below). So we are going to
restrict the parameter r to a convenient open segment containing 0.

For any x P V and v P TxV , let pexpxprvqqrPR stands for the geodesic flow whose position and
speed at time 0 are x and v. By our assumption of completeness on V , these geodesic flows are
defined for all times. For any r P R, define the mapping

ψC,r : C Q x ÞÑ expxprνCpxqq (25)

Define

R`pDq “ inftr P p0,`8q : ψC,r is not a diffeomorphism on its imageu (26)

R´pDq “ ´ inftr P p0,`8q : ψC,´r is not a diffeomorphism on its imageu (27)

Due to the existence of a normal tubular neighborhood around the compact set C, we have that
R`pDq ą 0 and R´pDq ă 0. The interest of the segment pR´pDq, R`pDqq is summarized as
follows:

Proposition 8 Let D P D be given. For any r P pR´pDq, R`pDqq, we have

BΨpD, rq “ ψC,rpCq

“

$

&

%

tx P Dc : dpD,xq “ ru , if r ą 0
C , if r “ 0
tx P D : dpDc, xq “ ´ru , if r ă 0

(28)

showing that ΨpD, rq P D.
Furthermore, for any r, r1 P pR´pDq, R`pDqq such that r ` r1 P pR´pDq, R`pDqq, the “semi-

group property” holds:

ΨpD, r ` r1q “ ΨpΨpD, rq, r1q “ ΨpΨpD, r1q, rq

Proof

The above result is certainly standard, even we were not able to find a corresponding reference.
For the first assertion, we begin by considering the case r P p0, R`pDqq. For any x P ΨpD, rqzD,

there exists y P C such that dpx, yq “ dpx,Dq P p0, rs. Let us check that x “ ψC,dpx,yqpyq. Denote
pγpsqqsPr0,dpx,yqs a unitary minimizing geodesic going from y to x. There exists v P TyV with }v} “ 1
such that γpsq “ expypsvq for all s P r0, dpx, yqs. If v is not orthogonal to TyC, then for small s ą 0,
we could find ys P C with dpys, γpsqq ă dpy, γpsqq, contradicting the minimizing property of y, since
we would get dpx, yq “ dpy, γpsqq`dpγpsq, xq ą dpys, γpsqq`dpγpsq, xq ě dpx, ysq. If v was directed
toward the interior of D, we would also end up with a contradiction, by considering the last time
s P p0, dpx, yqq such that γpsq P D. It follows that v “ νCpyq, showing that x “ ψC,dpx,yqpyq. We
furthermore get that such a point y P C is unique, otherwise we would be in contradiction with
the fact that ψC,dpx,Dq is injective. Conversely, if s P p0, rs and y P C, then x B ψC,spyq P ΨpD, sq,
with dpx,Dq ď dpx, yq ď s. Thus we have the description

@ r P p0, R`pDqq, ΨpD, rq “ D
ď

sPp0,rs

ψC,spCq

Let us show that all the sets of the r.h.s. are disjoint. First we prove by contradiction that

@ s P p0, rs, D X ψC,spCq “ H (29)

13



So assume that ψC,spxq P D, for some x P C. Replacing s by inftt ą 0 : ψC,tpxq P Du, which is
still positive, because ψC,tpxq does not belong to D for t ą 0 small enough, we can assume that
ψC,spxq P C. Consider the mapping φ : r0, ss Q t ÞÑ dpψC,tpxq, Cq. We have seen above that for
t ą 0 small enough, we have φptq “ t. Since φpsq “ 0, let u B inftt ą 0 : φptq ­“ tu, which
belongs to p0, sq. Note that for t P r0, uq, the directing normal vector d

dtψC,tpxq is orthogonal to
the tangent space of ψC,tpCq at ψC,tpxq, otherwise for v P pt, uq, we could find a shortest way from
ψC,vpxq to ψC,tpCq than the one given by the geodesic pψC,wpxqqwPrt,vs and it would follow that
dpψC,vpxq, Cq ă v. The tangent space of ψC,tpCq at ψC,tpxq coincides with the image of TxC by
TψC,tpxq, by the fact that ψC,t is a diffeomorphism on its image. Letting t go to u, we get that
the directing normal vector d

dtψC,tpxq
ˇ

ˇ

t“u
is still orthogonal to the tangent space of ψC,upCq at

ψC,upxq. As above, this property insures us that for ε ą 0 small enough,

dpψC,u`εpxq, ψC,upCqq “ ε (30)

namely either dpψC,u`εpxq, Cq “ u` ε or dpψC,u`εpxq, Cq “ u´ ε. The first alternative is forbidden
by the definition of u. For the second alternative, we get that for ε ą 0 small enough, ψC,u`εpxq ­“
ψC,u´εpxq belongs to ψC,u´εpCq, thus we can find y P Cztxu with ψC,u`εpxq “ ψC,u´εpyq. If follows
from (30) that ψC,upxq “ ψC,upyq, in contradiction with the injectivity of ψC,u. This ends the proof
of (29). The proof that for s ­“ s1 P p0, rs, we have ψC,spCq X ψC,s1pCq “ H is similar. Indeed,
if this equality was not true, then one would be able to find again x P C and t P p0, rs such that
dpψC,tpxq, Cq ą t. We end up with the “foliation”

@ r P p0, R`pDq, ΨpD, rq “ D
ğ

sPp0,rs

ψC,spCq (31)

From this decomposition and the continuity of C ˆ p0, R`pDqq Q px, sq ÞÑ ψC,spxq, we deduce that
for r P p0, R`pDqq,

BΨpD, rq “ ψC,rpCq

“ tx P Dc : dpD,xq “ ru

The analogous relations when r P pR´pDq, 0q are obtained in a similar way, taking into account
that

@ r P pR´pDq, 0q, ΨpD, rq “ Dz

¨

˝

ğ

sPrr,0q

ψC,spCq

˛

‚ (32)

The semigroup property is also a consequence of (31) and (32), taking into account that for
r, r1 as in the above proposition, we have

ψC,r`r1 “ ψC,r ˝ ψC,r1 “ ψC,r1 ˝ ψC,r

(remarking that for any x P C and r P pR´pDq, R`pDqq, we have TxψC,rrνCpxqs “ νΨpC,rqpψC,rpxqq).
�

Remark 9 The semi-group property of Corollary 8 is no longer necessarily true if the conditions
on r, r1 P R are not satisfied. Consider first the following (non connected) example: let D be
the union of the open balls Bpp0, 0q, 3q and Bpp0, 5q, 1q. Then we have ΨpD,´2q “ Bpp0, 0q, 1q
and ΨpBpp0, 0q, 1q, 2q “ Bpp0, 0q, 3q ­“ D. This example can be modified into a connected one by
joining Bpp0, 0q, 3q and Bpp0, 5q, 1q through the open rectangle r0, 5s ˆ r´1, 1s. The boundary of
the resulting domain D is not smooth, nevertheless, the definition (24) makes sense. The boundary
BΨpD, rq makes an “irreversible transition” at r “ ´1.

˝
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From now on, for r P pR´pDq, R`pDqq, denote by ΨpC, rq the set described in (28). For given
D P D, the family pΨpC, rqqrPpR´pDq,R`pDqq is the solution of the normal flow equation, which
can be written under the radial form

"

ΨpC, 0q “ C
@ r P pR´pDq, R`pDqq, @ x P ΨpC, rq, Brx “ νΨpC,rqpxq

(33)

where the points of the boundaries are pushed according to the outward normal.
For our purposes, it is convenient to look at this set-valued evolution through our elementary

observables:

Lemma 10 Let D P D and f P C8pV q be fixed. The mapping pR´pDq, R`pDqq Q r ÞÑ Ff pΨpD, rqq P
R is C2 and for any r P pR´pDq, R`pDqq, we have

BrFf pΨpD, rqq “

ż

ΨpC,rq
f dµ

B2
rFf pΨpD, rqq “

ż

ΨpC,rq

@

∇f, νΨpC,rq

D

dµ`

ż

ΨpC,rq
p
@

∇U, νΨpC,rq

D

` ρΨpC,rqqf dµ

To simplify the notation, when the set C will be clear from the context (e.g. coming from the
domain of integration), we will write σ, ν and ρ instead of σC , νC and ρC , convention which was
already adopted for µ. So that the last r.h.s. admits the more readable expression

ż

ΨpC,rq
x∇f, νy dµ`

ż

ΨpC,rq
fpx∇U, νy ` ρq dµ

Proof

The first differentiation is a classical result. It can also be deduced from the disintegration of µ
with respect to (31) and (32). For instance for r P r0, R`pDqq, we have

Ff pΨpD, rqq “ Ff pDq `

ż r

0

ż

ΨpC,sq
f dµ ds

and the r.h.s. is easily differentiated with respect to r.
For the second differentiation, first write that

ż

ΨpC,rq
f dµ “

ż

ΨpC,rq
f exppUq dσ

To differentiate with respect to r the r.h.s., one has to adapt the arguments of Section 1.2 of the
book of Mantegazza [15], to get

Br

ż

ΨpC,rq
f exppUq dσ “

ż

ΨpC,rq
x∇pf exppUqq, νy dσ `

ż

ΨpC,rq
f exppUqρ dσ

“

ż

ΨpC,rq
x∇f, νy dµ`

ż

ΨpC,rq
px∇U, νy ` ρqf dµ

�

We will also need to differentiate Ψ with respect to the first variable D P D. We must first give
a meaning to the underlying notion of differentiation in D.

Consider a family pGsqsPr0,S`q taking values in D, for a real number S` ą 0. We say this
family is strongly continuous in a neighborhood of s P r0, S`q if there exist a neighborhood
Ns of s in r0, S`q and a continuous mapping ϕs : Ns ˆ BGs Ñ V such that for any u P Ns, the
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function BGs Q x ÞÑ ϕspu, xq is a homeomorphism between BGs and BGu and if ϕsps, ¨q is the
identity mapping. In this statement, the boundaries BGs, for s P r0, S`q are endowed with the
topology inherited from that of V . Similarly, these boundaries will be endowed below with the
smooth differentiable structure inherited from V as smooth submanifolds. The family pGsqsPr0,S`q
is said to be strongly continuous on r0, S`q, if for any s P r0, S`q, it is strongly continuous in a
neighborhood of s.

Remark 11 Let d be the Hausdorff metric on the compact subsets of V . It endows D with a
metric structure. The strong continuity defined above implies the continuity for the Hausdorff
metric, but the converse is not always true, as it is illustrated by the following picture:

Figure 1: convergence in the Hausdorff topology, not in the strong sense

˝

Note that the restrictions to D of the mappings defined in (10) and (11) are strongly continuous.
By analogy, we say the family pGsqsPr0,S`q is strongly smooth in a neighborhood of s P

r0, S`q if there exist a neighborhood Ns of s in r0, S`q and a smooth mapping ϕs : NsˆBGs Ñ V
such that for any u P Ns, the function BGs Q x ÞÑ ϕspu, xq is a diffeomorphism between BGs and
BGu and ϕsps, ¨q is the identity mapping. The family pGsqsPr0,S`q is then said to be strongly
smooth if it is strongly smooth in the neighborhood of any s P r0, S`q. For such a family, consider
for any s P r0, S`q and x P BGs, the vector

XBGspxq B Buϕspu, xq|u“s

The TV -valued vector field XBGs on BGs enables to describe the infinitesimal evolution of Gs via
a formula similar to (33)

@ s P r0, S`q, @ x P BGs, Bsx “ XBGspxq

This description is not unique, because the mappings ϕspu, ¨q are not unique: they can be composed
by diffeomorphisms of BGu, depending on s and (smoothly) on u. Indeed, as already mentioned,
the discussion of Section 1.3 of Mantegazza [15] shows that for x P BGs, only the radial part
αBGspxq B xXBGspxq, νBGspxqy is unique. Furthermore, it is possible to choose the mappings ϕs in
such a way so that

@ s P r0, S`q, @ x P BGs, XBGspxq “ αBGspxqνBGspxq

16



and the function α is continuous in the sense that if the sequences psnqnPN in r0, S`q and pxnqnPN,
taking values respectively in pBGsnqnPN, are converging toward s P r0, S`q and x P BGs, then
limnÑ8 αBGsn pxnq “ αBGspxq.

The family pGsqsPr0,S`q can thus be described more intrinsically as a solution of the radial
equation equation

@ s P r0, S`q, @ x P BGs, Bsx “ αBGspxqνBGspxq (34)

This formula enables us to identify the “tangent space” TDD at D P D with the space C8pCq
of real smooth functions on C (of the form αC with the above notation). At least it appears that
TDD Ă C8pCq. Conversely, given α P C8pCq, we will see in Remark 15 how to construct a strongly
smooth family pGsqsPr0,S`q such that

"

G0 “ D
@ x P BG0, Bsx|s“0 “ αpxqνBG0pxq

(35)

This shows that C8pCq Ă TDD.
Following the traditional definition in differential geometry, we say that a mapping Φ : D Ñ D

is strongly smooth if any strongly smooth family pGsqsPr0,S`q is transformed by Φ into a strongly
smooth family, i.e. pΦpGsqqsPr0,S`q is smooth (to simplify the terminology, from now on, smooth
means strongly smooth). Then there exists a vector field rα on pΦpGsqqsPr0,S`q such that

@ s P r0, S`q, @ x P BΦpGsq, Bsx “ rαBΦpGsqpxqνBΦpGsqpxq

Fix s P r0, S`q. It is not difficult to see that the function rαBΦpGsq depends on α satisfying (34)
only through αBGs . For fixed D P D, consider any smooth and D-valued family pGsqsPr0,S`q with
0 P r0, S`q and G0 “ D. Let α be associated with pGsqsPr0,S`q as in (34). The linear functional
transforming αC into rαBΦpDq, as above, is called the tangent mapping TDΦ of Φ at D.

Remark 12 A natural converse question is: given D, rD P D and a linear mapping T from C8pCq
to C8p rCq (with rC B B rD), is there a smooth function Φ on D with ΦpDq “ rD and such that
T “ TDΦ? The investigation of this kind of general issues is out of the scope of the present
paper. Nevertheless, a first step in this direction is as follows. Let α, rα be given in TDD and T

rD
D

respectively. Remark 15 shows how to extend α and rα on D in order to be able to solve locally in
time (35) to get smooth families pGsqsPr0,S`q and p rGsqsPr0,rS`q. Replace S` by S` ^ rS`. Assuming

that α did not vanish identically on BD, we can furthermore impose that S` is small enough so that
r0, S`q Q s ÞÑ Gs is one-to-one. It enables us to define Φ on tGs : s P r0, S`qu via ΦpGsq “ rGs, for
all s P r0, S`q. Then we get that TDΦrαs “ rα. To go further would require a better understanding
of the neighborhood of D in D.

˝

With all these preliminaries at our disposal, we can now compute the tangent mapping TDΨp¨, rq
for r P pR´pDq, R`pDqq. Rigorously, for given r P R, the mapping Ψp¨, rq is not defined on the
whole set D but only on the subset

Dr B tD P D : r P pR´pDq, R`pDqqu (36)

This subset is open for the strong topology alluded before (but not in the Hausdorff topology, see
Remark 11), so that the notion of tangent mapping can be extended to this setting (as soon as
Dr ­“ H).

The tangent mapping TDΨp¨, rq is among the simplest possible ones:

Lemma 13 Let D P D and r P pR´pDq, R`pDqq be given. For any α P C8pCq and x P C, we have

TDΨp¨, rqrαspxq “ αpψ´1
C,rpxqq

where ψ´1
C,r : ΨpC, rq Ñ C is the inverse mapping of the function ψC,r defined in (25).
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Proof

Let α P C8pCq be given, extend it smoothly on V and solve (35) for ε ą 0 small enough. For
x P C and s P p´ε, εq, denote ϕpx, sq B xs and As B tϕpx, sq : x P Cu. According to the
previous discussion, to get the wanted result, we just need to check that for any x P C, the part of
BsψAs,rpϕpx, sqq|s“0 which is (outwardly) normal to ΨpAs, rq is equal to αpxq, namely that

@ x P C,
@

BsψAs,rpϕpx, sqq|s“0, νΨpC,rqpψC,rpxqq
D

ψC,rpxq
“ αpxq (37)

Denote

@ t P r0, rs, Jt B BsψAs,tpϕpx, sqq|s“0

so that pJtqtPr0,rs is a vector field over the geodesic pγptqqtPr0,rs B pψC,tpxqqtPr0,rs. For all s P
p´ε, εq, pψC,tpxsqqtPr0,rs is a geodesic, it follows that pJtqtPr0,rs is a Jacobi fields (cf. for instance
Proposition 3.45 from the book of Gallot, Hulin and Lafontaine [9], whose Chapter 3 serves as a
reference for all the following considerations). Thus pJtqtPr0,rs is defined by its initial conditions Jp0q
and J 1p0q, where the prime corresponds to the covariant derivative with respect to t, and by the
evolution J2 “ ´RpJ, 9γq 9γ, where R is the Riemannian curvature tensor. To prove (37) amounts
to show that the mapping r0, rs Q t ÞÑ xJptq, 9γptqyγptq is constant. The covariant derivative is
constructed so that the scalar product is left invariant, so that

@ t P r0, rs,
d

dt
xJptq, 9γptqyγptq “

@

J 1ptq, 9γptq
D

γptq
`
@

Jptq, 9γ1ptq
D

γptq

“
@

J 1ptq, 9γptq
D

γptq

since by definition of a geodesic, we have 9γ1ptq “ 0. Differentiating once more, we get

d

dt

@

J 1ptq, 9γptq
D

γptq
“

@

J2ptq, 9γptq
D

γptq
`
@

J 1ptq, 9γ1ptq
D

γptq

“
@

J2ptq, 9γptq
D

γptq

“ ´RpJ, 9γ, 9γ, 9γq

“ 0

since the p0, 4q-curvature tensor R is anti-symmetric in its last two vector variables (as well as
in first two vector variables). Thus, to get the wanted result, we just need to check that J 1p0q
is orthogonal to 9γp0q “ νCpxq. From the first equality of Proposition 3.29 of Gallot, Hulin and
Lafontaine [9] (applied with the commutating vector fields X “ Bs and J “ Bt on p´ε, εq ˆ r0, rs
parametrized by ps, tq), it appears that J 1p0q coincides with the covariant derivative with respect
to s of the tangent vectors of the geodesic pψC,tpxsqqtPr0,rs, at s “ 0 and t “ 0. The latter tangent
vectors are unitary, so their covariant derivatives are orthogonal to them. Thus at s “ 0 and t “ 0
we get xJ 1p0q, 9γp0qyx “ 0, ending the proof of (37).

�

We deduce the differentiation of our favorite observables.

Corollary 14 In the setting of Lemma 13, let be given f P C8pV q and pGsqsPr0,S`q with G0 “ D
and αBG0 “ α (in the sense of (34)). We have

d

ds
Ff pΨpGs, rqq

ˇ

ˇ

ˇ

ˇ

s“0

“

ż

ΨpC,rq
fpxqαpψ´1

C,rpxqqµpdxq

Proof
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As in the first part of the proof of Lemma 10, we get that

d

ds
Ff pGsq

ˇ

ˇ

ˇ

ˇ

s“0

“

ż

C
fpxqαpxqµpdxq

Taking into account Lemma 13, the announced result follows from this formula, with pGsqsPr0,S`q
replaced by pΨpGs, rqqsPr0,S`q.

�

A famous example of radial evolution of the type (34) is the mean curvature flow:

@ s P r0, S`q, @ x P BGs, Bsx “ ´ρBGspxqνBGspxq

where G0 P D is given and r0, S`q is the maximum interval on which this flow remains in D (there
are various ways to define the mean curvature flow beyond the times when it gets out of D, see
e.g. Chapter 1 of the book of Mantegazza [15]). When V “ R2 endowed with its usual Riemannian
structure, it is possible to compute explicitly the image of the mean curvature vector field ρ by the
tangent applications to the normal flow Ψ, see Subsection 5.1. In general, it is more difficult (see
nevertheless Remark 48 for the usual Riemannian structure on V “ Rn), since the curvature of V
will enter into the game.

The arguments of Section 1.5 of Mantegazza [15] can be adapted to get existence and uniqueness
of the solutions pGsqsPr0,S`q to the radial evolution equations of the form

@ s P r0, S`q, @ x P BGs, Bsx “ p´ρBGspxq ` xbpxq, νBGspxqyx ` apxqqνBGspxq (38)

where r0, S`q is a small enough interval containing 0, where G0 is a given element from D and where
a and b are respectively a smooth function and a smooth vector field on V . The obtained solution
pGsqsPr0,S`q is a smooth family. The underlying idea is to consider again the parametrization
pr´, r`q ˆ G0 Q pr, xq ÞÑ ψG0,rpxq of a tubular neighborhood of G0, where pr´, r`q is a small
neighborhood of 0. Then one looks for a mapping r0, S`q ˆG0 Q ps, xq ÞÑ yps, xq, whose image is
included into the tubular neighborhood ψG0,pr´,r`qpG0q and which is such that for any s P r0, S`q
and any x P G0,

yp0, xq “ x

xBsyps, xq, νBGspyps, xqqyyps,xq “ ´ρBGspyps, xqq ` xbpyps, xqq, νBGspyps, xqqyyps,xq ` apyps, xqq

Then writing yps, xq “ ψG0,fps,xqpxq, for all ps, xq P r0, S`q ˆ G0, we end up with the quasi-linear
parabolic equation with respect to f :

@ s P r0, S`q, @ x P G0,

"

fp0, xq “ 0
Bsfps, xq “ 4G0,sfps, xq `Hpx, fps, xq,∇G0,sfps, xqq

(39)

where H is a smooth mapping on R` ˆ TV (interpreting x as the base point of the vector
∇G0,sfps, xq) and where ∇G0,s, 4G0,s are the gradient and Laplacian relatively to the Rieman-
nian structure on G0 obtained by pushing back through the diffeomorphism G0 Q x ÞÑ ψG0,fps,xqpxq
the Riemannian structure on Gs inherited from that of V . The operators ∇G0,s and 4G0,s at x
depends only on fps, xq and on ∇G0,sfps, xq. Appendix A of Mantegazza [15] shows that such
quasi-linear parabolic equations admits a unique solution on a small time interval containing 0,
due to the strict ellipticity of the operator 4G0,s on G0 (it would also be possible to put in front
of the term ρBGspxq of (38) a positive quantity depending smoothly on x).

Remark 15 Let us come back to the research of a smooth family pGsqsPr0,S`q satisfying (35),
where α P C8pG0q is given. First extend ρBG0 ` α from BG0 to V , to obtain a smooth function
a P C8pV q coinciding with ρBG0 ` α on BG0. Next define for any D P D,

@ x P C, αCpxq “ ´ρCpxq ` apxq
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The radial evolution equation

@ s P r0, S`q, @ x P BGs, Bsx “ αBGspxqνBGspxq (40)

is of the form (38) and so admits a unique solution for small enough intervals r0, S`q. Restricting
the above equation to s “ 0 shows that pGsqsPr0,S`q solves (35).

This construction seems particularly cumbersome, it would be more natural to extend α from
BG0 to V to get a smooth function a P C8pV q and to solve the radial evolution equation

@ s P r0, S`q, @ x P BGs, Bsx “ apxqνBGspxq (41)

Unfortunately, doing so, we end up with a Hamilton-Jacobi equation (see e.g. Chapter 3 of Evans
[7]) instead of the quasi-linear parabolic equation (39). One would then be led to investigate if the
usual conditions for existence and uniqueness of the solutions to the Hamilton-Jacobi equations
are satisfied and thus to describe more precisely the function H appearing in (39), but this is not
so nice.

The normal flow equation (33), corresponding to a “ 1, was simple to solve (in both direction
of the time, contrary to the above quasi-linear parabolic equations), because the normal vectors
are transported in a parallel way by the geodesic flows directed by these normal vectors.

˝

Equations of the type (38) are adapted to our purposes: only considering the last vector field
in (23), i.e. the heuristic D-valued “ordinary” differential equation dDt “ V2pDtqdt, amounts to
solve the following modification of the mean curvature flow:

@ s P r0, S`q, @ x P BGs, Bsx “ ´ρbBGspxqνBGspxq (42)

where

@ D P D, @ x P C, ρbCpxq B ρCpxq ` x∇Upxq ´ βpxq, νCpxqyx (43)

(despite the b in supscript, remember that b “ ∇U ` β and not ∇U ´ β, as the above formula
could suggest).

Let D0 P D be given, as well as pBtqtě0 a standard (one-dimensional) Brownian motion starting
from 0. To solve (23), we are looking for a stochastic D-valued evolution pDtqtPr0,τq, where τ ą 0
is a stopping time (wrt. to the filtration generated by the Brownian motion), such that

@ t P r0, τq, @ x P Ct, dx “

ˆ

?
2dBt ` 2

µpCtq

µpDtq
dt´ ρbCtpxqdt

˙

νCtpxq (44)

where Ct B BDt.

To explain the Doss [5] and Sussman [26] approach to such stochastic differential equations, it
is helpful to first replace

?
2 dBt` 2µpCtq{µpDtq dt by dξt “ ξ1t dt, where ξ : R` Ñ R is a given C1

function with ξ0 “ 0. Still starting from D0, we would like to solve the radial evolution equation

@ t P r0, εq, @ x P Ct, Btx “

´

ξ1t ´ ρ
b
Ctpxq

¯

νCtpxq (45)

for some ε ą 0, without using the derivative pξ1tqtPr0,εs. To do so, we begin by solving another radial
evolution equation

"

G0 “ D0

@ t P r0,rεq, @ x P BGt, Btx “ αBGt,ξtpxqνBGtpxq
(46)
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for some rε ą 0 small enough, where α is defined by

@ r ą 0, @ D P Dr, @ x P C, αC,rpxq B ´ρbΨpC,rqpψC,rpxqq (47)

where ΨpC, rq was defined after Remark 9, taking into account (25), (26), (27), (36). Next, consider

ε B inftt P r0,rεq : Gt R Dξtu ą 0

(with the usual convention that ε “ rε if the set in r.h.s. is empty) and define

@ t P r0, εq, Dt B ΨpGt, ξtq

Let us check that this is indeed a solution of (45). First, we have ΨpG0, ξ0q “ ΨpD, 0q “ D0.
Concerning the evolution, differentiate with respect to the first and second variables of Ψ to find

@ t P r0, εq, @ x P Ct, Btx “
`

TGtΨp¨, ξtqrαBGt,ξtspxq ` ξ
1
t

˘

νCtpxq

“

´

´ρbCtpxq ` ξ
1
t

¯

νCtpxq

as wanted, where we used Lemma 13. Denote h the mapping defined on D by

@ D P D, hpDq “ 2
µpCq

µpDq

For given D0 P D and a C1 function ζ : R` Ñ R, we are now looking for a solution, starting from
D0, to the radial evolution equation

@ t P r0, εq, @ x P Ct, Btx “

´

ζ 1t ` hpDtq ´ ρ
b
Ctpxq

¯

νCtpxq (48)

for some ε ą 0. Following computations similar to those presented above, we get a solution by
taking, for t ą 0 small enough,

Dt B ΨpGt, ζt ` θtq (49)

where the R` ˆ D-valued family pθt, GtqtPr0,εq, for ε ą 0 small enough, is a solution of the system
starting from pθ0, G0q “ p0, D0q and satisfying

@ t P r0, εq,

"

d
dtθt “ hpΨpGt, ζt ` θtqq

@ x P BGt, Btx “ αBGt,ζt`θtpxqνBGtpxq
(50)

The formulations (49) and (50) do not require that the function ζ is differentiable.
These remarks suggest to solve (44) by replacing pζtqtě0 by p

?
2Btqtě0 in (49) and (50), up

to the random time τ these constructions are allowed: τ will be a stopping time with respect to
the filtration generated by the Brownian motion pBtqtě0. This is the Doss [5] and Sussman [26]
method, adapted to our evolving domain framework.

So given D0 P D, we are led to consider the following stochastic radial evolution equation
system with respect to pθt, GtqtPr0,εq, starting with pθ0, G0q “ p0, D0q:

@ t P r0, εq,

"

d
dtθt “ hpΨpGt,

?
2Bt ` θtqq

@ x P BGt, Btx “ α
BGt,

?
2Bt`θt

pxqνBGtpxq
(51)

In Section 4, we show the existence of a solution of (46), where pξtqtě0 “ p
?

2Btqtě0 and the
existence of a solution of (51). There, we will only consider the case V “ Rn`1, the situation
of a general manifold V is similar up to some modifications, which are straightforward from a
conceptual point of view, but induce complicated notations.

Once (51) is solved, define as in (49),

@ t P r0, τq, Dt B ΨpGt,
?

2Bt ` θtq. (52)

up to the stopping time τ until which this construction is permitted.
Let us now check that (52) provides a solution to the martingale problem presented in the

introduction:
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Theorem 16 The stopped stochastic process pDtqtPr0,τq, defined on the natural filtered probability
space of the standard Brownian motion pBtqtě0, is a solution to the stopped martingale problem
associated to the generator pD,Lq and to the starting domain D.

Proof

Fix some f P C8pV q. On the set I B tps, rq P R` ˆ R : Gs P Dru, consider the mapping

ps, rq ÞÑ Ff pΨpGs, rqq (53)

According to Lemma 10, this mapping is C2 in the second variable. Concerning the first variable,
note that for ps, rq P I, we have

@ x P BGs, Bsx “ ´ρbΨpBGs,rqpψBGs,rpxqqνBGspxq (54)

From Lemma 13, we deduce that

@ x P ΨpBGs, rq, Bsx “ ´ρbΨpBGs,rqpxqνΨpBGs,rqpxq (55)

and from Lemma 14, that for any f P C8pV q,

d

ds
Ff pΨpGs, rqq “ ´

ż

ΨpBGs,rq
fpxqρbpxqµpdxq (56)

In particular, the mapping defined in (53) is C1 in the first variable.
These observations enable us to apply Itô’s formula to r0, τq Q t ÞÑ Ff pΨpGt,

?
2Bt` θtqq to get

its stochastic evolution:

dFf pΨpGt,
?

2Bt ` θtqq

“ ´

˜

ż

BΨpGt,
?

2Bt`θtq
fρb dµ

¸

dt`

˜

ż

BΨpGt,
?

2Bt`θtq
f dµ

¸

p
?

2dBt ` Btθtdtq

`

˜

ż

BΨpGt,
?

2Bt`θtq
x∇f, νy dµ`

ż

BΨpGt,
?

2Bt`θtq
fpρ` x∇U, νyq dµ

¸

dt

“

˜

ż

BΨpGt,
?

2Bt`θtq
x∇f, νy ` fphpΨpGt,

?
2Bt ` θtqq ` xβ, νyq dµ

¸

dt

`
?

2

˜

ż

BΨpGt,
?

2Bt`θtq
f dµ

¸

dBt

“ LrFf spDtq dt` dMt

where we used (6) and where pMtqtPr0,τq is a local martingale whose bracket is given by

@ t P r0, τq, xMyt “ 2

ż t

0
ΓLrFf , FgspDsq ds

This description and the continuity of the trajectories r0, τq Q t ÞÑ Ff pDtq imply that pDtqtPr0,τq
is a solution to the martingale problem associated to the generator pD,Lq (see e.g. the book of
Bakry, Gentil and Ledoux [2]). Since D0 “ D, we conclude to the wanted result.

�

Remark 17 There are potentially other ways to use the Doss-Sussman approach. For instance,
Equation (23) can be rewritten under the form

dDt “
?

2V1pDtq dBt ` rV2pDtq dt (57)
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where rV2pDq B 2hpDqV1pDq `V2pDq for any D P D. Similarly to (43) and (47), define

@ D P D, @ x P C, rρbCpxq B ρCpxq ` x∇Upxq ´ βpxq, νCpxqyx ´ hpDq
@ r ą 0, @ D P Dr, @ x P C, rαC,rpxq B ´rρbΨpC,rqpψC,rpxqq

Next try to construct a family p rGtqtPr0,εq (where ε ą 0 is a stopping time) such that

@ t P r0, εq, @ x P B rGt, Btx “ rα
BGt,

?
2Bt
pxqνBGtpxq

Contrary to (51), no auxilliary pθtqtPr0,εq is needed here, but the above equation is not really of
the type (38), due to the isoperimetric ratio. Nevertheless, it should be possible to adapt to this
situation the fixed point approach presented in Section 4.

Once p rGtqtPr0,εq has been constructed, consider

@ t P r0, τq, Dt B Ψp rGt,
?

2Btq

with

τ B inftt P r0, εq : rGt R D?2Bt
u

Then the stopped stochastic process pDtqtPr0,τq, defined on the natural filtered probability space of
the standard Brownian motion pBtqtě0, is a solution to the martingale problem associated to the
generator pD,Lq and to the starting domain G0.

We preferred to present how to solve (23), because the flows associated to V1 and V2 are quite
famous (at least when ∇U “ β “ 0) and well-investigated. But maybe the flow associated to the
radial equation

@ x P Ct, Btx “ phpDtq ´ ρCtpxqq νCtpxq

is also a natural object to study. In the next section we will check in the homogeneous setting of
Section 2 that this alternative Doss-Sussman approach should be preferred to the one considered
in the proof of Theorem 16.

˝

4 Existence of a stochastic modified mean curvature

flow

This section presents the quite technical proofs of the existence of regular solutions to (46) and
(51), respectively the following subsections. As announced before Theorem 16, we only deal with
V “ Rn`1 to avoid complicated notations.

We begin by recollecting our notations: D is the set of non-empty, compact and connected
domains D in V , which coincide with the closure of their interior and whose boundary C B BD
is smooth. The exterior normal vector νC and the mean curvature ρC are defined on C. Recall
we were given a function U P C8pV q and a smooth vector field β satisfying divpexppUqβq “ 0,
to which is associated the smooth vector field b B ∇U ` β. Denote µ B exppUqλ, the measure
admitting the density exppUq with respect to the Riemannian measure λ (when µ gives a finite
weight to V , it is normalized into a probability measure, which amounts to add a constant to U).
The interest of µ is to be reversible for the operator L B 4 ` b. We associate to the boundary
C the pdimpV q ´ 1q-Hausdorff measure µC coming from µ, namely admitting the density exppUq
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with respect to the usual Riemannian pdimpV q ´ 1q-Hausdorff measure. We also distort ρC by
introducing the modified mean curvature ρbC defined by

@ x P C, ρbCpxq B ρCpxq ` x∇Upxq ´ βpxq, νCpxqyx

Let D0 P D be given, as well as pBtqtě0 a standard real Brownian motion starting from 0. We
are looking for a stochastic D-valued evolution pDtqtPr0,τq, where τ ą 0 is a stopping time, such
that

@ t P r0, τq, @ x P Ct, dx “

´?
2dBt ` 2hpDtqdt´ ρ

b
Ctpxqdt

¯

νCtpxq (44)

where

@ D P D, hpDq B 2
µpCq

µpDq

Resorting to the Doss [5] and Sussman [26] method, we are led to solve consecutively:

• The deterministic radial equation in pGtqtPr0,rεq:

"

G0 “ D0

@ t P r0,rεq, @ x P BGt, Btx “ αBGt,ξtpxqνBGtpxq
(46)

where R` Q t ÞÑ ξt P R is assumed to be α-Hölder regular with α P p0, 1{2q, rε is small enough
and

@ r ą 0, @ D P Dr, @ x P C, αC,rpxq B ´ρbΨpC,rqpψC,rpxqq

with for any r P R,

ψC,r : C Q x ÞÑ expxprνCpxqq P V

ΨpC, rq B tψC,rpxq : x P Cu

Dr B tD P D : r P pR´pDq, R`pDqqu

R`pDq B inftr P p0,`8q : ψC,r is not a diffeomorphism on its imageu

R´pDq B ´ inftr P p0,`8q : ψC,´r is not a diffeomorphism on its imageu

• The radial system in pθt, GtqtPr0,εq:

@ t P r0, εq,

"

d
dtθt “ hpΨpGt,

?
2ζt ` θtqq

@ x P BGt, Btx “ α
BGt,

?
2ζt`θt

pxqνBGtpxq
(50)

where R` Q t ÞÑ ζt P R is assumed to be α-Hölder regular with α P p0, 1{2q, ε is small enough
and

@ r P R, @ D P D, ΨpD, rq B
ď

sPp´8,rs

ΨpC, sq

The interest of these manipulations is that a solution of (44) will be given by

@ t P r0, τq, Dt B ΨpGt,
?

2Bt ` θtq

where in (50) we take pζtqtě0 “ pBtqtě0 and where τ is the corresponding ε, which ends up being
a stopping time with respect to the filtration generated by pBtqtě0.
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4.1 Local existence of a pushed mean curvature flow

Let F0 : M Ñ Rn`1 be a smooth immersion of an n-dimensional manifoldM such that F0pMq “ C.
Let r : t P r0,8q ÞÑ rptq P R be a real continuous function. Consider the following equation, which
is similar to (46) (i.e. BGt “ F pt,Mq), taking into account the remark made before Lemma 13:

#

@ x PM,
@

B
BtF pt, xq, ν

F pt, xq
D

“ ´ρbΨpF pt,Mq,rptqqpψF pt,Mq,rptqpxqq

F p0, xq “ F0pxq,
(58)

where νF pt, xq is the normal vector of the hypersurface F pt,Mq at F pt, xq. The goal of this section
is to show existence in small time of solution of (58) with enough regularity in space and time,
under the hypotheses that rp0q is small enough and that r is α{2-Hölder regular, for some α P p0, 1q.

To get a small time existence of equation (58) we will convert the problem in terms of a quasi-
parabolic equation. We will study the linearisation of this equation, it turns to be linear and
strictly parabolic for small time, with Cα{2,αpr0, T s ˆMq coefficients when M is a C2`α manifold.
We will resort to an existing result on the existence and regularity of the solution of such a linear
equation. Then we will use the inverse function theorem to get a solution of the original equation
(58).

Let C “ F0pMq, we will suppose that M is a C3`α manifold and F0 is a C3`α diffeomorphism
(in general we will denote by regpMq the manifold regularity of M), so that C is also a C3`α

manifold. Small perturbations in time of C under (58) live in a small tubular neighborhood of C,
and as in Mantegazza [15], a useful way to obtain a quasi-linear equation from (58) is to represent
the solution as graphs over the fixed hypersurface C. The underlying idea is to consider again the
parametrization pr´, r`q ˆ C Q pr, yq ÞÑ ψC,rpyq of a tubular neighborhood of C, where pr´, r`q is
a small neighborhood of 0. Let x PM , and ν0pxq be the unit outward normal of the hypersurface
C “ F0pMq at the point F0pxq. Then one looks the function fpt, .q : M Ñ R, with enough
regularity, whose image is included into pr´, r`q and which satisfies

F pt, xq “ ψC,fpt,xqpF0pxqq “ F0pxq ` fpt, xqν0pxq,

for all pt, xq P r0, S`q ˆM , with S` small enough, i.e. we represent F pt,Mq as a graph over C,
since C “ F0pMq we have fp0, .q “ 0 and the existence of S` is due to the regularity of f and the
compactness of M .

Let xi be a local chard of M , gi,jp0, xq “ xBiF0, BjF0y the Riemannian metric at x in this chard,
gi,jp0, xq its inverse, hi,jp0, xq B ΠpBiF0, BjF0q “ x∇BiF0pxqν0pxq, BjF0pxqy where Π in the second

fundamental form of C at F0pxq and define Si,jp0, xq “ hi,kg
k,lhljp0, xq, where the convention that

every repeated lower indices and upper indices is considered as a sum is enforced, as in the whole
paper. We end up with the quasi-linear parabolic equation with respect to f in order that F pt, .q
satisfies (58), after taking care that we have some dilation term rptq in the equation. We have for
all i, j P JnK, t P r0, S`q and x PM ,

B
BtF pt, xq “ Btfpt, xqν0pxq
Biν0pxq “ hi,kg

k,lp0, xqBlF0pxq
BiF pt, xq “ BiF0pxq ` fpt, xqhi,kg

k,lp0, xqBlF0pxq ` Bifpt, xqν0pxq
gi,jpt, xq “ xBiF pt, xq, BjF pt, xqy

“ gi,jp0, xq ` 2fpt, xqhi,jp0, xq ` f
2pt, xqSi,jp0, xq ` Bifpt, xqBjfpt, xq

C Gi,jpt, x, f,∇fq

νpt, xq “
ν0pxq´Bifpt,xqg

i,jpt,xqBjpF0pxq`fpt,xqν0pxqq
}ν0pxq´Bifpt,xqgi,jpt,xqBjpF0pxq`fpt,xqν0pxqq}

hi,jpt, xq “ ´xνpt, xq, BiBjF pt, xqy
“ ´xνpt, xq, BiBjfpt, xqν0pxq ` BiBjF0pxq ` Bifpt, xqBjν0pxq ` Bjfpt, xqBiν0pxq

`fpt, xqBiBjν0pxqy C Hi,jpt, x, f,∇f,∇∇fq

(59)
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where the second equality is the Gauss-Weingarten formula, where νpt, xq is the unit normal of
the hypersurface F pt,Mq at F pt, xq, and where we used the Gram-Schmidt procedure in the
computation of νpt, xq (taking into account that

`

vi B
?
gi,lpt, xqBlF pt, xq

˘

iPJnK is an orthonor-

mal basis of TF pt,xqF pt,Mq). To simplify the notations, denote G B pGi,jpt, x, f,∇fqqi,jPJnK and
H B pHi,jpt, x, f,∇f,∇∇fqqi,jPJnK, which take values in Snˆn, the space of symmetric matrices.
Note that G does not depend on ∇∇f and that H has regularity regpMq´ 3 in x (due to the term
BiBjν0pxq in Hi,jpt, x, f,∇f,∇∇fq).

To manage the right hand side of (58), let ĂMt B ΨpF pt,Mq, rptqq and rF pt, xq B ΨF pt,Mq,rptqpF pt, xqq “

F pt, xq ` rptqνpt, xq, and denote all the quantities that depend on ĂMt “ rF pt,Mq by the same let-
ter as for F pt,Mq with a tilde. So by the same computation as above we have for all i, j P JnK,
t P r0, S`q and x PM :

Bi rF pt, xq “ BiF pt, xq ` rptqBiνpt, xq
“ BiF pt, xq ` rptqhi,kg

k,lpt, xqBlF pt, xq
rgi,jpt, xq “ gi,jpt, xq ` 2rptqhi,jpt, xq ` rptq

2Si,jpt, xq
“

`

GpId` 2rptqG´1H ` rptq2G´1HG´1Hq
˘

i,j

“

´

G
`

Id` rptqG´1H
˘2
¯

i,j
C rGi,jpt, x, f,∇f,∇∇fq

rνpt, xq “ νpt, xq
rhi,jpt, xq “ ´xνpt, xq, BiBj rF pt, xqy “ Hi,j ´ rptqxνpt, xq, BiBjνpt, xqy

“ Hi,j ` rptqxBiνpt, xq, Bjνpt, xqy
“ Hi,j ` rptqSi,jpt, xq “ pH ` rptqHG

´1Hqi,j “
`

HpId` rptqG´1Hq
˘

i,j

C rHi,jpt, x,∇f,∇∇fq

(60)

As usual, denote rG B p rGi,jpt, x, f,∇fqqi,jPJnK, rH B p rHi,jpt, x, f,∇f,∇∇fqqi,jPJnK and

p rGi,jpt, x, f,∇fqqi,jPJnK B rG´1, all taking values in Snˆn, so that we have for the mean curva-
ture

´ρΨpF pt,Mq,rptqqpψF pt,Mq,rptqpxqq “ ´ rGi,j rHi,j “ ´trp rG´1
rHq

“ ´tr
´

`

Id` rptqG´1H
˘´2

G´1HpId` rptqG´1Hq
¯

“ ´tr
´

`

Id` rptqG´1H
˘´1

G´1H
¯

C Φ̂1pt, x, f,∇f,∇∇fq.

for some mapping Φ̂1. Note that in the above formula only H depends on ∇∇f . Furthermore
consider the mapping Φ̂2 such that

@

∇U ´ β, νΨpF pt,Mq,rptqq

D

ψF pt,Mq,rptqpxq
“

A

∇Up rF pt, xqq ´ βp rF pt, xqq, rνpt, xq
E

rF pt,xq

“

A

∇Up rF pt, xqq ´ βp rF pt, xqq, νpt, xq
E

rF pt,xq

C Φ̂2pt, x, f,∇fq

Remark the above expression does not depend on ∇∇f . Define

Φ̂pt, x, f,∇f,∇∇fq B Φ̂1pt, x, f,∇f,∇∇fq ` Φ̂2pt, x, f,∇fq (61)

so that Equation (58) becomes the following non-linear parabolic equation

$

’

&

’

%

Btfpt, xq “ 1
xν0pxq,νpt,xqy

Φ̂pt, x, f,∇f,∇∇fq
C Φpt, x, f,∇f,∇∇fq

fp0, xq “ 0

(62)
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Note that at time t “ 0 we have fp0, xq “ 0 , ∇fp0, xq “ 0, ∇∇fp0, xq “ 0.
The application Φ defined above will be considered with the following argument Φpt, x, z, v, qq,

where pt, xq PMT B r0, T sˆM , z P R, v P TxM and q is a symmetric matrix in T ˚xMdT ˚xM . Since
r is continuous and rp0q “ 0 (or small enough), for small T , Φ is smooth in three last variables
in a neighborhood p0, 0, 0q and have at least the regularity regpMq ´ 3 in x, and the same Hölder
regularity in time as r (i.e. it is enough to have G invertible and }rptqG´1H} ă 1). More precisely
we have the following proposition.

Proposition 18 There exist T ą 0 and R0 ą 0 such that

• the mapping

Φ : r0, T s ˆM ˆBp0R,0Rn ,0Snˆn qpR0q Ñ R
pt, x, z, v, qq ÞÑ Φpt, x, z, v, qq

(63)

is smooth in the three last components,

• the mapping t ÞÑ Φpt, x, z, v, qq have the same Hölder regularity in time as r,

• the mapping x ÞÑ Φpt, x, z, v, qq have at least the regularity regpMq ´ 3.

Proof

Recall that

Gpt, x, z, vq “ Gp0, xq ` 2zHp0, xq ` z2Sp0, xq ` v b v,

νpt, x, z, vq “
ν0pxq´vig

i,jpt,x,z,vqpBjF0pxq`zhj,kg
k,lp0,xqBlF0pxq`vjν0pxqq

}ν0pxq´vigi,jpt,x,z,vqpBjF0pxq`zhj,kgk,lp0,xqBlF0pxq`vjν0pxqq}
,

Hi,jpt, x, z, v, qq “ ´xνpt, x, z, qq, ν0pxqyqi,j ´ xνpt, x, z, qq, BiBjF0pxqy
´xνpt, x, z, qq, viBjν0pxq ` vjBiν0pxq ` zBiBjν0pxqy

(64)

Since Gp0, xq is invertible and M is compact, there exist R0, C1, C2 ą 0 such that for |z|, }v}, }q} ď
R0,

Gpt, x, z, vq is invertible for all x PM,

}G´1pt, x, z, vq} ď C1,

}νpt, x, z, vq ´ ν0pxq} ď
1

2
,

}Hpt, x, z, v, qq} ď C2.

Thus, since r is continuous and rp0q “ 0 (or small enough), take T ą 0 such that

T B sup

#

u ě 0 : sup
sPr0,us

|rpsq| ď
1

2C1C2

+

(65)

Then }rptqG´1H} ď 1
2 , and

`

Id` rptqG´1H
˘

is invertible for all pt, x, z, v, qq P r0, T s ˆ Mˆ
Bp0R,0Rn ,0Snˆn qpR0q, and the wanted conclusions easily follow.

�

Lemma 19 Let T be given by (65). For all pt, x, z, v, qq P r0, T s ˆM ˆ Bp0R,0Rn ,0Snˆn qpR0q, we
have:

Bqi,jΦpt, x, z, v, qq “ pG´ 2rptqH ` rptq2HG´1Hq´1
i,j

Furthermore, BqΦpt, x, z, v, qq B pBqi,jΦpt, x, z, v, qqqi,jPJnK is uniformly elliptic.
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Proof

Let us write H as

Hpqq B Hpt, x, z, v, qq

C ´xνpt, x, z, vq, ν0pxqyq ´H1pt, x, z, vq

and recall that νpt, xq and G do not depend on ∇∇f , ie are constant in q. Consider ψpqq B
´G´1Hpqq, so

Φ̂pt, x, z, v, qq “ tr
´

pId´ rptqψpqqq´1 ψpqq
¯

.

Let M PMnˆn, X PMnˆn small and u P R such that }upM `Xq} ă 1 then

pId´ upM `Xqq´1pM `Xq “
ř

nPZ`pupM `XqqnpM `Xq

“
ř

nPZ`

´

unMn`1 ` un
ř

mPJ0,nKM
mXMn´m

¯

` opXq

“ pId´ uMq´1M `
ř

nPZ`,mPJ0,nK u
n
ř

MmXMn´m ` opXq

(66)

so drpId´ uMq´1M spXq “
ř

nPZ`,mPJ0,nK u
n
ř

MmXMn´m. Hence

dqppId´ uψpqqq
´1
qpXq “

ÿ

nPZ`,mPJ0,nK

unψpqqmdψpqqpXqψpqqn´m

Thus using the trace property

dqtrppId´ uψpqqq
´1ψpqqqpXq

“ tr

¨

˝

ÿ

nPZ`,mPJ0,nK

unψpqqmdψpqqpXqψpqqn´m

˛

‚

“
ÿ

nPZ`,mPJ0,nK

untr
`

ψpqqmdψpqqpXqψpqqn´m
˘

“
ÿ

nPZ`,mPJ0,nK

untr pψpqqndψpqqpXqq

“ tr

¨

˝

ÿ

nPZ`

pn` 1qunψpqqndψpqqpXq

˛

‚

“ tr
`

pId´ uψpqqq´2dψpqqpXq
˘

(67)

Thus we have

dqΦ̂pt, x, z, v, qqpXq “ dqΦ̂1pt, x, z, v, qqpXq

“ xνpt, x, z, vq, ν0pxqytrppId´ rptqG
´1Hpqqq´2G´1Xq

so for any i, j P JnK,

Bqi,j Φ̂pt, x, z, v, qq “ xνpt, x, z, vq, ν0pxqyppId´ rptqG
´1Hpqqq´2G´1Xqj,i

“ xνpt, x, z, vq, ν0pxqypG´ 2rptqH ` rptq2HG´1Hq´1
i,j

where G ` 2rptqH ´ rptq2HG´1H P Snˆn. For the last point of the lemma, use Proposition 18,
and the choice of T in its proof, to get

pG` 2rptqH ` rptq2HG´1Hq “ GpId` rptqG´1Hq2
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is invertible for all t P r0, T s, and is continuous as function of t, so its spectrum remains positive
as the spectrum at time 0, when rp0q “ 0.

�

To show the existence result with sufficient regularity in time and space of Equation (58), we will
show the existence result of the equivalent equation (62) up to a parametrization as in Proposition
1.3.4 in [15]. We will intensively use the existence and regularity result of the linearised equation
exposed in Lunardi [14]. Let us recall briefly this result that appears as Theorem 5.1.10 of Lunardi
[14] and whose extension to the compact Riemannian manifold could be find e.g. as Theorem 2.3
of Huang [11] (with the bundle E “M ˆ R).

For α P p0, 1q and T ą 0 let

Cα,0pr0, T s ˆMq B
!

f P Cpr0, T s ˆMq : fp¨, xq P Cαpr0, T sq, @x PM,

and such that }f}Cα,0 B sup
xPM

t}fp¨, xq}Cαpr0,T sq ă 8
)

where for any function f : r0, T s Ñ R,

}f}Cαpr0,T sq B }f}8,r0,T s ` xfyCαpr0,T sq (68)

xfyCαpr0,T sq B sup

"

|fptq ´ fpsq|

|t´ s|α
, s ­“ t P r0, T s

*

(69)

Similarly, we define

C0,αpr0, T s ˆMq B
!

f P Cpr0, T s ˆMq : fpt, .q P CαpMq, @t P r0, T s,

and such that }f}C0,α B sup
tPr0,T s

t}fpt, ¨q}CαpMq ă 8
)

where the norm } ¨ }CαpMq is defined as in (68) and (69), with r0, T s replaced by M .
The most important functional spaces for our analysis will be, still for given 0 ă α ă 1,

Cα{2,αpr0, T s ˆMq B Cα{2,0pr0, T s ˆMq X C0,αpr0, T s ˆMq

C1`α{2,2`αpr0, T s ˆMq B tf P C1,2pr0, T s ˆMq : Btf, BiBjf P C
α{2,αpr0, T s ˆMq, @i, j P JnKu

respectively endowed with the norms

}f}Cα{2,α B }f}Cα{2,0 ` }f}C0,α

}f}C1`α{2,2`α B }f}8 `
n
ÿ

i“1

}Bif}8 ` }Btf}Cα{2,α `
n
ÿ

i,j“1

}BiBjf}Cα{2,α

As in Lemma 5.1.1 in Lunardi [14], there exists a uniform constant Cα ą 0 such that for all
f P C1`α{2,2`α:

}Bif}Cp1`αq{2,1`α ď Cα}f}C1`α{2,2`α (70)

Consider the following linear equation:
"

Btfpt, xq “ rgi,jpt, xqBiBjfpt, xq `
ř

i
rH1,ipt, xqBifpt, xq ` rH0pt, xqfpt, xq ` qpt, xq

fp0, xq “ f0pxq
(71)

where rg B prgi,jqi,jPJnK, rH1 B p rH1,iqiPJnK, rH0 and q (respectively f0) are some given mappings on
MT B r0, T s ˆM (resp. M). As usual we will say that Equation (71) is uniformly elliptic in MT

when there exists an ellipticity coefficient λ ą 0 such that for all t P r0, T s and all ξ1, ...., ξn P R,
we have:

rgi,jpt, xqξiξj ě λ}ξ}2 (72)

We recall the following theorem:
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Theorem 20 (Th 5.1.10 Lunardi [14], Th 2.5 Huong [11]) Let rg, rH1 , rH0 and q belong to
Cα{2,αpr0, T sˆMq, with 0 ă α ă 1 and let fp0, .q P C2`α. Assume moreover that (71) is uniformly
elliptic, i.e. (72) holds. Then there exists a quantity C ą 0, depending on the norms of rg, rH1,i

and rH0, as well as on the ellipticity coefficient of rg, such that Equation (71) has a unique solution
f P C1`α{2,2`αpr0, T s ˆMq and we have the Schauder estimate:

}f}C1`α{2,2`α ď C
`

}f0}C2`α ` }q}Cα{2,α
˘

Let us come back to the original equation i.e. (62), we will consider the following space Mt0 “

r0, t0s ˆM where the constant 0 ă t0 ď T is to be chosen later, and let

X B tu P C1`α{2,2`αpMt0q : up0, .q “ 0,maxp}u}8,Mt0
, }∇u}8,Mt0

, }∇∇u}8,Mt0
q ď R0u

We define the map:
S : X Ñ Cα{2,αpMt0q

u ÞÑ Btu´ Φpt, x, u,∇u,∇∇uq. (73)

This is clearly a continuously differentiable map.
We have the following theorem.

Theorem 21 Let M be a C5`α manifold, for some fixed α P p0, 1q. If t ÞÑ rptq is α{2-Hölder and
rp0q “ 0 then there exists t0 ą 0 such that equation (62) has a unique solution defined in Mt0 with
regularity C1`α{2,2`αpMt0q.

Proof

The above theorem is a consequence of inverse function theorem around a specific function. Let
u0pt, xq B

şt
0 Φps, x, 0, 0, 0q ds and note that u0 P C

1`α{2,2`α by the assumption on the regularity
of M . The Fréchet derivative of S at u0 it is given by

dSpu0qu “ Btu´
` BΦ

Bqi,j
Bi,ju`

BΦ

Bvi
Biu`

BΦ

Bz
u
˘

,

where the coefficients are all evaluated at u0, for instance, BΦ
Bqi,j

stands for BΦ
Bqi,j

pt, x, u0,∇u0,∇∇u0q.

By definition of u0, there exists 0 ă t1 ď T such that for all 0 ď t ď t1, pu0,∇u0,∇∇u0qpt, xq P
Bp0R,0Rn ,0Snˆn qpR0{2q, so u0 P X. Lemma 19 yields BΦ

Bq pt, x, u0,∇u0,∇∇u0q is strongly elliptic in

Mt1 and is in Cα{2,αpMt1q. Using Theorem 20, for the linearisation of (62), we get that dSpu0q

is locally invertible, and its inverse is continuous. By the inverse function theorem there exist
ε ą 0, δ1 ą 0 such that for all 0 ď t ď t1 and for all g satisfying }g ´ Spu0q}Cα{2,αpMtq

ă ε, there

exists an unique f P C1`α{2,2`αpMtq satisfying }f ´u0}C1`α{2,2`αpMtq
ă δ1 such that Spfq “ g. For

f such that }f ´ u0}C1`α{2,2`αpMtq
ă δ1, since fp0, xq “ u0p0, xq “ 0 and using (70), we get

}f ´ u0}8,Mt ` }∇pf ´ u0q}8,Mt ` }∇∇pf ´ u0q}8,Mt ď pt` Cαt
pα`1q{2 ` tα{2qδ1 (74)

where Cα is the constant appearing in (70). So for t sufficiently small such that pt` Cαt
pα`1q{2 `

tα{2qδ1 ď R0{2, we deduce f P X for 0 ă t0 ď t.
Let us show that with respect to the Cα{2,αpMtq norm, Spu0q tends to 0 as t goes to 0`. We

will first show that }Spu0qpt, xq ´ Spu0qps, xq} ď C1pδq|t´ s|
α{2, for all s, t P r0, δs and x PM , and

with C1pδq tending to 0 as δ tends to 0.

Let σ P r0, 1s and
ζσpt, xq “ σpu0pt, xq,∇u0pt, xq,∇∇u0pt, xqq,
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by definition of u0, there exists a constant C1 ą 0 such that

|ζσpt, xq ´ ζσps, xq| ď C1|t´ s|,

|ζσpt, xq ´ ζσpt, yq| ď C1|x´ y|
α.

Let ~u0pt, xq B pu0pt, xq,∇u0pt, xq,∇∇u0pt, xqq, we have:

Spu0qpt, xq “ Φpt, x, 0, 0, 0q ´ Φpt, x, u0pt, xq,∇u0pt, xq,∇∇u0pt, xqq

“ ´

ż 1

0
d3Φpt, x, ζσpt, xqqp ~u0pt, xqq dσ

hence

|Spu0qpt, xq ´ Spu0qps, xq| “

ˇ

ˇ

ˇ

ż 1

0

`

d3Φpt, x, ζσpt, xqqp ~u0pt, xqq ´ d3Φps, x, ζσps, xqqp ~u0ps, xqq
˘

dσ
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ż 1

0

`

d3Φpt, x, ζσpt, xqq ´ d3Φps, x, ζσps, xqq
˘

p ~u0pt, xqq dσ

`

ż 1

0

`

d3Φps, x, ζσps, xqq
˘

p ~u0pt, xq ´ ~u0ps, xqq dσ
ˇ

ˇ

ˇ

ď

ż 1

0
|
`

d3Φpt, x, ζσpt, xqq ´ d3Φps, x, ζσps, xqq
˘

p ~u0pt, xqq| dσ

`

ż 1

0
|
`

d3Φps, x, ζσps, xqq
˘

p ~u0pt, xq ´ ~u0ps, xqq| dσ.

We have, since M is compact and Φ is regular in the three last variables:

|d3Φpt, x, ζσpt, xqq ´ d3Φps, x, ζσps, xqq|

ď |d3Φpt, x, ζσpt, xqq ´ d3Φpt, x, ζσps, xqq| ` |d3Φpt, x, ζσps, xqq ´ d3Φps, x, ζσps, xqq|

ď C1|ζσpt, xq ´ ζσps, xq| ` C2|t´ s|
α{2

ď pC1δ
1´α{2 ` C2q|t´ s|

α{2

.

where C is a constant whose value can change from one line to the other (also below). Also we
have | ~u0pt, xq| ď Ct ď Cδ. On the other hand we have:

|d3Φps, x, ζσps, xq| ď C

and
| ~u0pt, xq ´ ~u0ps, xq| ď C|t´ s|.

Putting all things together we get:

|Spu0qpt, xq ´ Spu0qps, xq| ď Cpδq|t´ s|α{2

with Cpδq tending to 0 as δ tends to 0.
Let us show that:

|Spu0qpt, xq ´ Spu0qpt, yq| ď Cpδq|x´ y|α

with Cpδq tending to 0 as δ tends to 0. With the same computation as above, we have:

|Spu0qpt, xq ´ Spu0qpt, yq| ď

ż 1

0
|
`

d3Φpt, x, ζσpt, xqq ´ d3Φpt, y, ζσpt, yqq
˘

p ~u0pt, xqq| dσ

`

ż 1

0
|
`

d3Φpt, y, ζσpt, yqq
˘

p ~u0pt, xq ´ ~u0pt, yqq| dσ
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We also have, since M is compact:

|d3Φpt, x, ζσpt, xqq ´ d3Φpt, y, ζσpt, yqq|

ď |d3Φpt, x, ζσpt, xqq ´ d3Φpt, y, ζσpt, xqq| ` |d3Φpt, y, ζσpt, xqq ´ d3Φpt, y, ζσpt, yqq|

ď C2|x´ y|
α ` C1|ζσpt, xq ´ ζσpt, yq|

ď pC1 ` C2q|x´ y|
α,

as well as

| ~u0pt, xq| ď Cδ

|d3Φpt, y, ζσpt, yqq| ď C

Moreover

|u0pt, xq ´ u0pt, yq| ď

ż t

0
|Φps, x, 0, 0, 0q ´ Φps, y, 0, 0, 0q| ds ď Cδ|x´ y|α

and in the same way, using the regularity of Φps, x, 0, 0, 0q in terms of x, we get:

| ~u0pt, xq ´ ~u0pt, yq| ď Cδ|x´ y|α

We deduce that:

|Spu0qpt, xq ´ Spu0qpt, yq| ď Cpδq|x´ y|α

Hence }Spu0q}Cα{2,αpMtq
tends to 0 as t tends to 0.

So there exist 0 ă t2 such that }Spu0q}Cα{2,αpMt2 q
ă ε. Let t0 “ t1 ^ t2, we get by inverse

function theorem that Sf “ 0 has a solution f P C1`α{2,2`αpMt0q, this is actually a solution of
equation (62).

For the uniqueness, let f be the solution of (62) constructed above on Mt0 . Consider another
solution g of (62) on Mt0 , in particular g starts with the same initial condition g0 “ f0 “ 0. Since
g P C1`α{2,2`α, let t3 P p0, t0s be the maximum value of t such that

}g}8,Mt , }∇g}8,Mt , }∇∇g}8,Mt ď R0

By construction of f , we have

}f}8,Mt , }∇f}8,Mt , }∇∇f}8,Mt ď R0

for any t P r0, t0s and in particular for t P r0, t3s.
Let u “ f ´ g, then u satisfies the following linear equation:

Btu “ Φpt, x, f,∇f,∇∇fq ´ Φpt, x, g,∇g,∇∇gq

“

ż 1

0

B

Bσ
Φpt, x, σ ~f ` p1´ σq~gq dσ

“

ż 1

0

BΦ

Bqij
pt, x, σ ~f ` p1´ σq~gqBi,jpf ´ gq dσ `

ż 1

0

BΦ

Bvi
pt, x, σ ~f ` p1´ σq~gqBipf ´ gq dσ

`

ż 1

0

BΦ

Bz
pt, x, σ ~f ` p1´ σq~gqpf ´ gq dσ

“ Aijpt, xquij `Bipt, xqui ` Cpt, xqu,
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where

Aijpt, xq “

ż 1

0

BΦ

Bqij
pt, x, σ ~f ` p1´ σq~gq dσ,

Bipt, xq “

ż 1

0

BΦ

Bvi
pt, x, σ ~f ` p1´ σq~gq dσ,

Cpt, xq “

ż 1

0

BΦ

Bz
pt, x, σ ~f ` p1´ σq~gq dσ.

According to Lemma 19, Aij is uniformly elliptic. Let λ ă ´}C}Mt3
, and W B eλtu then we have:

BtW “ Ai,jpt, xqBiBjW `Bipt, xqWi ` pC ` λqW.

The proof of uniqueness will be done by contradiction, suppose f ‰ g then there exists for
example β ą 0 (the negative possibility will be done in a similar way) and pt, xq P r0, t3s ˆM such
that W pt, xq “ β. Consider the first time t0 such that there exist x0 PM such that W pt0, x0q “ β,
clearly t0 ą 0. By definition W pt0, x0q “ maxtW pt, xq, pt, xq P r0, t0s ˆMu, and

BtW pt0, x0q ě 0

HesspW qpt0, x0q ď 0

∇W pt0, x0q “ 0

We have at pt0, x0q

0 ď BtW “ Aijpt0, x0qBiBjW ` pC ` λqβ ă Aijpt0, xqBiBjW ď 0

where the last inequality come from Aijpt0, x0qBiBjW “ trpAHessW q ď 0, and this is a contradic-
tion, so W ď 0. We do the same thing to get W ě 0 and so f “ g for all t P r0, t3s. It follows in
fact that t3 “ t0.

�

Remark 22 From the above proof, we see there exist two quantities η1, η2 ą 0, only depending
on some bounds on the geometry of C, such that t0 can be expressed as

t0 B η1 ^ infts ě 0 : |rpsq| ě η2u

˝

Remark 23 Using the α{2-Hölder regularity of the Brownian motion, for all 0 ă α ă 1, we get
the existence and the regularity of the equation, similar to (44), corresponding to the stochastic
modified mean curvature flow:

"

D0 “ D

@ t P r0, τq, @ x P Ct, dx “
`?

2dBt ´ ρ
b
Ct
pxqdt

˘

νCtpxq
(75)

where Ct B BDt. The solution of this equation is obtained as above, first we solve equation (58)
and we obtain Gt and then Dt B ΨpGt,

?
2Btq.

˝

Remark 24 Note that in the above proof we only need that rp0q is small enough, such that
}rp0qG´1Hp0, ¨q} ă 1, so starting the same procedure at time t0, we have a notion of maximal
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solution of equation (62). A slight modification of the proof of Theorem 21 also yields existence
and uniqueness of solution of (62) for f0 small enough, as well as all its derivatives up to order 2.

˝

Using the strong maximum principle instead of the maximum principle in the proof of Theo-
rem 21, we have the following corollary:

Corollary 25 Let U, Û P D with C5`α boundaries, α P p0, 1q, and C “ BU, Ĉ “ BÛ . Suppose that

Û Ă U, Ĉ ‰ C

and that Ĉ belongs to an open tubular neighborhood of C. Let pBGtqtPr0,τCq (resp. pBĜtqtPr0,τĈq) be

a solution of (58) with rptq “
?

2Bt started at C (resp. Ĉ), then there exist a positive stopping
time τC,Ĉ ą 0 (a priori smaller than τC ^ τĈ because we want BGt to remain in an open tubular

neighborhood of BĜt), such that

@ t P p0, τC,Ĉq, Ĝt Ă Gt, and BGt X BĜt “ H

The above corollary shows that even if the initial hypersurfaces are equal in a large portion,
it is sufficient they are different somewhere for the flow to detach them instantaneously, at least
when one of them lives in a tubular neighborhood of the other. When the latter condition is not
fulfilled, we have to impose that the initial boundaries are disjoint:

Corollary 26 Let U, Û P D with C5`α boundaries, and C “ BU, Ĉ “ BÛ . Suppose that

Û Ă U, Ĉ X C “ H

Let pBGtqtPr0,τCq (resp. pBĜtqtPr0,τĈq) be a solution of (58) with rptq “
?

2Bt started at C (resp.

Ĉ), then for a positive stopping time τC,Ĉ ą 0, we have

@ t P r0, τC,Ĉq, Ĝt Ă Gt, and BGt X BĜt “ H

Proof

Since C and Ĉ are compact, and Ĉ X C “ H we have δ “ dpC, Ĉq ą 0. Using the continuity
of the solution of (58), we get the existence of 0 ă TC ă τC (resp. 0 ă TĈ ă τĈ) such that

for all t P r0, TCs, we have dpC, BGtq ď
δ
4 (resp. for all t ď TĈ we have dpĈ, BĜtq ď

δ
4). Take

τC,Ĉ “ TC ^ TĈ .
�

Consider the following stochastic mean curvature evolution starting from C0 “ BD0

dx “

´?
2dBt ´ ρCtpxqdt

¯

νCtpxq (76)

According to the Doss and Sussman approach, a solution of (76) is given by pΨpGt,
?

2BtqqtPr0,τq
where pBGtqtPr0,τq is a solution of (58) with rptq “

?
2Bt. Equation (76) is a particular case of

equation (75) with b “ 0.

Corollary 27 Let D, D̂ P D with C5`α boundaries, α P p0, 1q, and C “ BD, Ĉ “ BD̂. Suppose
that

D̂ Ă D, Ĉ X C “ H

Let pBDtqtPr0,τCq (resp. pBD̂tqtPr0,τĈq
) be a solution of (76) started at C (resp. Ĉ) then for a positive

stopping time τC,Ĉ ą 0 we have:

@ t P r0, τC,Ĉq, D̂t Ă Dt and BDt X BD̂t “ H
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Proof

Use Corollary 26 we get that there exist τC,Ĉ ą 0 such that

@ t P r0, τC,Ĉq, BGt X BĜt “ H

We have BDt “ ΨpBGt,
?

2Btq for t P r0, τCq (resp. BD̂t “ ΨpBĜt,
?

2Btq for t P r0, τĈq). For

t P r0, τC,Ĉq, Ψp.,
?

2Btq is a diffeomorphism between BGt and its image BDt (resp. between BĜt

and its image BD̂t). The proof of the corollary will be done by contradiction, suppose that there
exists a time 0 ă t ă τC,Ĉ such that ΨpBGt,

?
2Btq XΨpBĜt,

?
2Btq ‰ H. Then there exist x P Gt

and x̂ P Ĝt such that ΨBGtpx,
?

2Btq “ Ψ
BĜt
px̂,
?

2Btq. We have

dBGtpΨBGtpx,
?

2Btqq “
?

2|Bt| “ d
BĜt
pΨ
BĜt
px̂,
?

2Btqq

where dBGtp¨q stands for the distance to BGt. If Bt ą 0, then ΨBGtpx,
?

2Btq P G
c
t so the geodesic

curve r ÞÑ Ψ
BĜt
px̂, rq has to cross BGt at time r0 P p0,

?
2Bts (since BGt X BĜt “ H and Ĝt Ă Gt).

Hence

?
2|Bt| “ dBGtpΨBGtpx,

?
2Btqq ď dpΨ

BĜt
px̂, r0q,ΨBĜtpx̂,

?
2Btqq ď

?
2|Bt| ´ r0

so we get a contradiction.
The case Bt “ 0 is clear.
If Bt ă 0 namely Ψ

BĜt
px̂,
?

2Btq P IntpĜtq, the interior of Ĝt, and the geodesic ΨBGtpx,´rq

have to cross BĜt at time r0 P p0,
?

2|Bt|s, so

?
2|Bt| “ d

BĜt
pΨpx̂,

?
2Btqq ď dpΨBGtpx,´r0q,ΨBGtpx,

?
2Btqq ď

?
2|Bt| ´ r0

and we get a contradiction.
�

We want to control the distance between to different hypersurface evolving by the stochastic
mean curvature by quantities that only depend on the ambient curvature.

Lemma 28 Let D, D̂ P D with C2 boundaries in a d-dimensional manifold V, C “ BD, Ĉ “ BD̂,
D̂ Ă D and Ĉ XC “ H. Suppose that there exists k P R such that Ric ě pd´ 1qkg, then at points
pp, qq P C ˆ Ĉ such that dpp, qq “ dpC, Ĉq (or local minimizers of the distance function restricted
to C ˆ Ĉ) we have:

(i) if k ą 0, and p is not conjugate to q then

2pd´ 1q
?
k

`

1´ cosp
?
kdpp, qqq

˘

sinp
?
kdpp, qqq

ď ρĈpqq ´ ρCppq

(ii) if k ď 0, and p is not conjugate to q then

2pd´ 1q
a

|k|

`

1´ coshp
a

|k|dpp, qqq
˘

sinhp
a

|k|dpp, qqq
ď ρĈpqq ´ ρCppq

(iii) In particular for all k, if p is not conjugate to q then we have:

pd´ 1qkdpp, qq ď ρĈpqq ´ ρCppq

(iv) If V “ Rd then

0 ď ρĈpqq ´ ρCppq
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Proof

Let pp, qq P C ˆ Ĉ such that dpp, qq “ dpC, Ĉq. Using the first variation formula, we get that there
exists an unit speed geodesic γ in V such that γp0q “ q, γpdpp, qqq “ p, 9γp0q is orthogonal to Tq pC
and 9γpdpp, qqq is orthogonal to TpC. Let peiqiPJ1,d´1K be a orthonormal basis of TqĈ. Let γ1,iptq

be a geodesic in Ĉ such that γ1,ip0q “ q and 9γ1,ip0q “ ei. Let γ2,iptq be a geodesic in C such that
γ2,ip0q “ p and 9γ1,ip0q “ {{dpp,qqei, where {{ is the parallel transport along the geodesic γ. We have

0 “ xei, 9γp0qy “ x{{dpp,qqei, 9γpdpp, qqqy. Since pp, qq P C ˆ Ĉ is a local minimizer of the distance

function restricted to C ˆ Ĉ, we have that

0 ď
d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

dpγ1,iptq, γ2,iptqq.

Let Yi be the Jacobi field along γ obtained by the variation of geodesic connecting γ1,iptq to
γ2,iptq, we have: Yip0q “ ei, Yipdpp, qqq “ {{dpp,qqei. Using second variation formula, the fact that

9γp0q is the exterior normal vector of Ĉ at q and 9γpdpp, qqq is the exterior normal vector of C at p
we get that:

0 ď
d2

d2t
dpγ1,iptq, γ2,iptqq|t“0

“
“

x∇t“0 9γ2,iptq, 9γpdpp, qqqy ´ x∇t“0 9γ1,iptq, 9γp0qy
‰

` IpYi, Yiq

“
“

x∇t“0 9γ2,iptq, νCppqy ´ x∇t“0 9γ1,iptq, νĈpqqy
‰

` IpYi, Yiq

“
“

´ x 9γ2,ip0q,∇ 9γ2,ip0qνCy ` x 9γ1,ip0q,∇ 9γ1,ip0qνĈy
‰

` IpYi, Yiq

“ ´ΠCp{{dpp,qqei, {{dpp,qqeiq `ΠĈpei, eiq ` IpYi, Yiq (77)

where IpYi, Yiq is the index of the Jacobi field Yi along γ, and ΠC (resp. ΠĈ) is the second

fundamental form of C (resp. Ĉ). Let Xipsq “ fpsq{{sei, be a vector field along γ such that
fp0q “ fpdpp, qqq “ 1 and f2 “ ´kf , using the Index Lemma since p and q are not conjugate along
γ, we have for all i P J1, d´ 1K

IpYi, Yiq ď IpXi, Xiq

Taking the sum in (77) we get:

0 ď

d´1
ÿ

i“1

`

´ΠCp{{dpp,qqei, {{dpp,qqeiq `ΠĈpei, eiq ` IpYi, Yiq
˘

ď ρĈpqq ´ ρCppq `
d´1
ÿ

i“1

IpXi, Xiq

“ ρĈpqq ´ ρCppq `
d´1
ÿ

i“1

ż dpp,qq

0
}∇sXi}

2 ´ xRpXi, 9γqXi, 9γy ds

“ ρĈpqq ´ ρCppq `
d´1
ÿ

i“1

ż dpp,qq

0
|f 1|2 ´ f2xRp{{sei, 9γq{{sei, 9γy ds

“ ρĈpqq ´ ρCppq `

ż dpp,qq

0
pd´ 1q|f 1|2 ´ f2Ricp 9γ, 9γq ds

ď ρĈpqq ´ ρCppq ` pd´ 1q

ż dpp,qq

0
pf 1q2 ´ f2k ds

“ ρĈpqq ´ ρCppq ` pd´ 1qpf 1pdpp, qqq ´ f 1p0qq.
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After computations of f , we get the result. For the particular case, we could take Xi “ {{sei in the
above computation and directly get the result.

�

Proposition 29 Let D, D̂ P D with C1 boundaries in a d-dimensional manifold V , and C “

BD, Ĉ “ BD̂. Suppose that

D̂ Ă D

For r P R such that ΨCp., rq (resp. ΨĈp., rq) is diffeomorphism onto its image ΨCpC, rq (resp.

ΨĈpĈ, rq) then

dpΨpC, rq,ΨpĈ, rqq “ dpC, Ĉq

Proof

Let pp, qq P C ˆ Ĉ such that

dpp, qq “ dpC, Ĉq

If dpC, Ĉq ą 0, using Gauss Lemma, and the fact that D̂ Ă D, we get that the exterior normal
vector of C at p is the parallel transport, along the geodesic γ that connects q to p, of the exterior
normal vector of Ĉ at q. Hence by definition of Ψ we have dpΨCpp, rq,ΨĈpq, rqq “ dpp, qq

We get that

dpΨpC, rq,ΨpĈ, rqq ď dpΨCpp, rq,ΨĈpq, rqq “ dpp, qq “ dpC, Ĉq

So dpΨpC, rq,ΨpĈ, rqq ď dpC, Ĉq.
In a similar way let pp, qq P ΨpC, rq ˆΨpĈ, rq such that

dpp, qq “ dpΨpC, rq,ΨpĈ, rqq

we have since ΨCp., rq (resp. ΨĈp., rq) is a diffeomorphism onto their respective image,

dpC, Ĉq ď dpΨΨpC,rqpp,´rq,ΨΨpĈ,rqpq,´rqq “ dpp, qq “ dpΨpC, rq,ΨpĈ, rqq

Putting all things together we get

dpΨpC, rq,ΨpĈ, rqq “ dpC, Ĉq.

If dpp, qq “ dpC, Ĉq “ 0, since D̂ Ă D then νĈpqq “ νCppq and the result follows as above.
�

Remark 30 The above proposition also gives an alternative proof of Corollary 27.
˝

Let

ιV B inf
pp,vqPVˆTpV : }v}“1

inftt ą 0, γvptq is conjugate to γvp0q “ pu

where γv is a geodesic starting at γvp0q “ p and 9γvp0q “ v.

Lemma 31 Let D, D̂ P D with C5`α boundaries, α P p0, 1q, and C “ BD, Ĉ “ BD̂. Suppose that
there exist k ď 0 such that Ric ě pd´ 1qkg, ιV “ 8 (for example if V have non-positive sectional
curvature) and

D̂ Ă D, Ĉ X C “ H.

Let pBDtqtPr0,τCq (resp. pBD̂tqtPr0,τĈq
) be a solution of (76) started at C (resp. Ĉ) then:
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(i) The mapping t ÞÑ dpBDt, BD̂tq is locally Lipschitz in r0, τC ^ τĈq

(ii) For all t P r0, τC ^ τĈq

dpC, Ĉqekpd´1qt ď dpBDt, BD̂tq

(iii) We have Dt X D̂t “ H for all t P r0, τC ^ τĈq.

(iv) In particular, if V “ Rd then t ÞÑ dpBDt, BD̂tq is non decreasing in r0, τC ^ τĈq.

Proof

We have

Dt “ ΨpGt,
?

2Btq, for t ă τC

D̂t “ ΨpĜt,
?

2Btq, for t ă τĈ

where BGt and BĜt are solutions of (58) with rptq “
?

2Bt and BG0 “ C respectively BĜ0 “ Ĉ.
Let

τ B inftt ě τC,Ĉ , s.t. BDt X BD̂t ‰ Hu ^ τC ^ τĈ

Using Proposition 29 and Corollary 27, we have

@t P r0, τq, dpBDt, BD̂tqq “ dpBGt, BĜtq

Recall that Gt “ tF0pxq ` fCpt, xqν
C
0 pxq, x P Mu with F0pMq “ C, and fCpt, xq the solution of

(62). We have the same construction for Ĝ. We recall that fC P C1`α{2,2`αpMτC q and fĈ P

C1`α{2,2`αpM̂τĈ
q. So by definition, for 0 ď t ă τ ,

dpBGt, BĜtq “ inf
px,yqPMˆM̂

dpFCpt, xq, FĈpt, yqq

where FCpt, xq “ F0pxq ` fCpt, xqν
C
0 pxq and FĈpt, yq “ F̂0pyq ` fĈpt, yqν

Ĉ
0 pyq. Also t ÞÑ FCpt, xq

and t ÞÑ FĈpt, yq are uniformly Lipschitz on any compact r0, T s Ă r0, τq. Hence t ÞÑ dpBGt, BĜtq “

dpBDt, BD̂tqq is Lipschitz on r0, T s, hence almost everywhere differentiable on r0, T s and absolutely
continuous. At differentiability time t P r0, T s we have

d

dt
dpBDt, BD̂tq

“
d

dt

´

inf
pxt,ytqPBGtˆBĜt : dpxt,ytq“dpBGt,BĜtq

dpxt, ytq
¯

“ inf
pxt,ytqPBGtˆBĜt : dpxt,ytq“dpBGt,BĜtq

d

dt
dpxt, ytq

“ inf
pxt,ytqPBGtˆBĜt : dpxt,ytq“dpBGt,BĜtq

x
d

dt
xt, ν

BGtpxtqy ´ x
d

dt
yt, ν

BĜtpytqy

“ inf
pxt,ytqPBGtˆBĜt : dpxt,ytq“dpBGt,BĜtq

´ρΨpBGt,
?

2Btq
pψ
BGt,

?
2Bt
pxtqq ` ρΨpBĜt,

?
2Btq

pψ
BĜt,

?
2Bt
pytqq

“ inf
pxt,ytqPBDtˆBD̂t : dpxt,ytq“dpBDt,BD̂tq

´ρBDtpxtq ` ρBD̂tpytq

ě pd´ 1qkdpBDt, BD̂tq
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where in the second equality we use the usual Lagrange Theorem, in the third one we use the
first variation formula, and in the last one we use Lemma 28. Since t ÞÑ dpBDt, BD̂tq is absolutely
continuous we can integrate the above inequality. Hence, using Gronwall’s lemma, we get the
conclusions (i), (ii), (iii) and (iv) of the lemma, at least on r0, τq. Since dpC, Ĉq ą 0, we easily
deduce that τ “ τC ^ τĈ .

�

Remark 32 If the D̂ Ă Dc and C X Ĉ “ H for all reasonable r, we have dpΨCpp, rq,ΨĈpq, rqq “
dpp, qq ´ 2r and we could get a similar kind of result.

˝

Theorem 33 Let D, D̂ P D with C5`α boundaries, α P p0, 1q, and C “ BD, Ĉ “ BD̂. Suppose that
there exist k P R such that Ric ě pd ´ 1qkg and ιV ą 0 (for example if the sectional curvature is
bounded above by a2 then ιV ě

π
a , see e.g. [9] page 159) and

D̂ Ă D, Ĉ X C “ H

Let pBDtqtPq0,τCq (resp. pBD̂tqtPr0,τĈq
) be a solution of (76) started at C (resp. Ĉ) then

(i) The mapping t ÞÑ dpBDt, BD̂tq is locally Lipschitz on r0, τC ^ τĈq.

(ii) If k ě 0 then for all t P r0, τC ^ τĈq,

pdpC, Ĉqekpd´1qtq ^ ιV ď dpBDt, BD̂tq

(iii) If k ď 0 then for all t P r0, τC ^ τĈq,

pdpC, Ĉq ^ ιV qe
kpd´1qt ď dpBDt, BD̂tq

(iv) We have Dt X D̂t “ H for t P r0, τC ^ τĈq.

Proof

The proof is similar to the proof of Lemma 31. Using (iii) in Lemma 28, we have:

dpBDt, BD̂tq ă ιV ùñ
d

dt
dpBDt, BD̂tq ě pd´ 1qkdpBDt, BD̂tq

We deduce that, if k ě 0 then for all t P r0, τC ^ τĈq

pdpC, Ĉqekpd´1qtq ^ ιV ď dpBDt, BD̂tq

since after being above ιV , dpBDt, BD̂tq cannot go below ιV again.
Similarly, if k ď 0 then for all t P r0, τC ^ τĈq

pdpC, Ĉq ^ ιV qe
kpd´1qt ď dpBDt, BD̂tq

�

As a consequence of Theorem 33, we can extend Corollary 25 under an assumption relaxing
the requirement that one of the initial boundaries must be in a tubular neighborhood of the other
initial boundary:
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Proposition 34 Let D, D̂ P D with C5`α boundaries, α P p0, 1q, and C “ BD, Ĉ “ BD̂. Suppose
that

D̂ Ă D and C ‰ Ĉ

Let pBDtqtPr0,τCq (resp. pBD̂tqtPr0,τĈq
) be a solution of (76) started at C (resp. Ĉ). Suppose that

there exists k P R such that Ric ě pd´ 1qkg, ιV ą 0, and
(H): it is possible to interpolate between C and Ĉ by a family of C5`α hypersurfaces pCiqiPJ0,nK such

that Ci “ BDi with Di P D, Ci is in a tubular neighborhood Ci`1, and D̂ Ă Di`1 Ł Di Ă D, for
i P J0, n´ 1K, C0 “ C and Cn “ Ĉ. Then

(i) The mapping t ÞÑ dpBDt, BD̂tq is locally Lipschitz on r0, τC ^ τĈq.

(ii) BDt X BD̂t “ H, for t P p0, τC ^ τĈq.

Proof

We can use Corollary 25 with initial conditions Ci and Ci`1, and extend this corollary without
the hypothesis that Ĉ belongs to an open tubular neighborhood of C, up to the time τC,Ĉ B
infiPJ1,n´1K τCi,Ci`1 . Hence for all t P p0, τC,Ĉq and all i P J1, n´ 1K we have

pGi`1qt Ă pGiqt and BpGi`1qt X BpGiqt “ H

so for all t P p0, τC,Ĉq we have

Ĝt Ă Gt and BĜt X BGt “ H (78)

Let

τ B inftt ě τC,Ĉ , s.t. BDt X BD̂t ‰ Hu ^ τC ^ τĈ

Using the same reasoning as the proof of Theorem 33, since BDt “ ΨpBGt,
?

2Btq and BD̂t “

ΨpBĜt,
?

2Btq for all t P r0, τq, we get that

@t P r0, τq, dpBDt, BD̂tqq “ dpBGt, BĜtq

and t ÞÑ dpBDt, BD̂tq is locally Lipschitz on r0, τq

Hence using (78) we get that

@ t P p0, τq, D̂t Ă Dt and BDt X BD̂t “ H

Let t0 “
τC,Ĉ

2 , since D̂t0 Ă Dt0 and dpBDt0 , BD̂t0q ą 0 we apply (ii) or (iii) of Theorem 33 to

D̂t0 Ă Dt0 . We get that independently of the sign of the constant k

@ t P rt0, τCt0 ^ τĈt0
q, dpBDt, BD̂tq ą 0

since τCt0 “ τC ´ t0 and τĈt0
“ τĈ ´ t0 we have τ “ τC ^ τĈ .

�

Remark 35 In the above proposition, Hypothesis (H) seems to be satisfied for all D, D̂ P D with
D̂ Ă D, even if BD X BD̂ ‰ H, but for the moment we do not have a complete proof of this fact.

˝
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4.2 Local existence of (51)

In this section we will show the existence of a solution to the system of equations (51). We recall
the notations:

@ D P D, C “ BD hpDq “ 2
µpCq

µpDq

@ r ą 0, @ D P Dr, @ x P C, αC,rpxq B ´ρbΨpC,rqpψC,rpxqq.

For given D0 P D, we are interested in the system of equations:

$

&

%

d
dtθt “ hpΨpGt,

?
2Bt ` θtqq

@ x P BGt, Btx “ α
BGt,

?
2Bt`θt

pxqνBGtpxq

pθ0, G0q “ p0, D0q

(79)

To prove the existence of a solution to the above system of equations, we consider the equation
described below. Let g : r0,`8q Q t ÞÑ gptq P R be a real α

2 -Hölder function, such that gp0q “ 0
(or small enough), and 0 ă α ă 1.
The goal of this first step is to show the existence of real numbers t0 ą 0 and δ ą 0, such that for
all g P BCα{2p0, δq and gp0q “ 0 , there exists a family pGgt qtPr0,t0s solution of

"

@ t P r0, t0s, @ x P BG
g
t , Btx “ α

BGgt ,
?

2Bt`gptq
pxqνBGgt pxq

Gg0 “ D0
(80)

We adopt the same strategy as in the precedent section, in order to deal with the quasi-parabolic
equation, and we adopt the same notation, let BD0 “ F0pMq.

We consider the following equation.

#

@

B
BtF

gpt, xq, νF
g
pt, xq

D

“ ´ρb
ΨpF gpt,Mq,

?
2Bt`gptqq

pψF gpt,Mq,
?

2Bt`gptq
pxqq

F p0, xq “ F0pxq,
(81)

As before we represent the solution as graphs over the fixed hypersurface C “ F0pMq, and we
write the solution as:

F gpt, xq “ ψC,fgpt,xqpF0pxqq “ F0pxq ` f
gpt, xqν0pxq

for a function fg with enough regularity and fgp0, .q “ 0. With similar computations as in the
above section, F g is a solution of (81) (with rptq “

?
2Bt ` gptq for any t ě 0) if fg satisfy the

following non linear parabolic equation:

"

Btf
gpt, xq “ Φgpt, x, fg,∇fg,∇∇fgq

fgp0, xq “ 0,
(82)

where Φg have the same definition as Φ in Proposition 18, but with rptq “
?

2Bt ` gptq, for all
t ě 0. Taking into account that C is smooth, Theorem 21 leads to:

Proposition 36 Take g “ g0 ” 0. There exists 0 ă t0 ď T (where T comes from Proposition 18)
such that (82) admits a solution fg0 belonging to

Xpt0q B tu P C1`α{2,2`αpMt0q : up0, .q “ 0,maxp}u}8,Mt0
, }∇u}8,Mt0

, }∇∇u}8,Mt0
q ď R0u

We deduce:
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Proposition 37 With the same notation as the above proposition. There exist two real δ0, δ1 ą 0
and a continuously differentiable map

Θ : B
C
α
2 pr0,t0sq

pg0, δ0q Ñ B
C1`α2 ,2`αpMt0 q

pfg0 , δ1q

g ÞÑ fg,
(83)

where fg is a solution of (82). Moreover Θ is uniformly Lipschitz in B
C
α
2 pr0,t0sq

pg0, δ0q.

Proof

Let
S : Xpt0q ˆ C

α
2 pr0, t0sq Ñ C

α
2
,αpMt0q

pu, gq ÞÑ Btu´ Φgpt, x, u,∇u,∇∇uq, (84)

is a continuously differentiable map (for g in a small ball). Note that from Proposition 36, there
exists pfg0 , g0q P Xpt0q ˆ C

α
2 pr0, t0sq such that Spfg0 , g0q “ 0. Also

dSupf
g0 , g0qpvq “ dSpfg0qpvq

where S is defined before the proof of Theorem 21 (with rptq B
?

2Bt). Since fg0 is in X, dSpfg0q

is invertible with continuous inverse, according to Lemma 19 and Theorem 20. The result follows
from implicit function theorem.

�

We will show the existence of solution of (79) by using a fixed point theorem. For g P
B
C
α
2 pr0,t0sq

pg0, δ0q, define

F gpt, xq B F0pxq ` f
gpt, xqν0pxq

and consider the family of hypersurfaces

BGgt B F gpt,Mq

note that Gg0 “ D0.

Proposition 38 There exist 0 ă t1 ď t0 and a mapping

Γ : B
C
α
2 pr0,t1sq

pg0, δ0q X tg P C
α
2 |gp0q “ 0u Ñ B

C
α
2 pr0,t1sq

pg0, δ0q X tg P C
α
2 : gp0q “ 0u

such that
"

@ t P r0, t1s,
d
dtΓpgqptq “ hpΨpGgt ,

?
2Bt ` gptqqq,

Γpgqp0q “ 0.
(85)

Moreover Γ is a contraction and there exists an unique fixed point for Γ in B
C
α
2 pr0,t1sq

pg0, δ0q X

tg P C
α
2 pr0, t1sq : gp0q “ 0u.

Proof

Take δ0 such that by Proposition 37, Θ is uniformly Lipschitz in B
C
α
2 pr0,t0sq

pg0, δ0q. Let g P

B
C
α
2 pr0,t0sq

pg0, δ0q, r P R and fg “ Θpgq, define for all x PM :

F gψpt, x, rq “ F gpt, xq ` rνF
g
pt, xq

“ F0pxq ` f
gpt, xqν0pxq ` rν

F gpt, xq

“ F0pxq ` f
gpt, xqν0pxq ` rνpt, x, f

gpt, ¨q,∇fgpt, ¨qq
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then we have

ΨpBGgt , rptqq “ tF0pxq ` f
gpt, xqν0pxq ` rptqνpt, x, f

gpt, ¨q,∇fgpt, ¨qq : x PMu,

and

hpΨpGgt ,
?

2Bt ` gptqqq “ 2
µpΨpBGgt ,

?
2Bt ` gptqqq

µpΨpGgt ,
?

2Bt ` gptqqq
.

We have the following formula for the n-volume of the boundary:

µpΨpBGgt ,
?

2Bt ` gptqqq “
ş

F gψpt,M,
?

2Bt`gptqq
dµF gψpt,M,

?
2Bt`gptqq

“
ş

M detrνF
g
ψpt, xq, dxF

g
ψpt, x,

?
2Bt ` gptqqs dµM .

(86)

In the above formula, dµM is a Riemannian measure for a fixed metric inM and dxF
g
ψpt, x,

?
2Bt`

gptqq is evaluated in an orthonormal basis for this metric. Let

dgpt, xq B detrνF
g
ψpt, xq, dxF

g
ψpt, x,

?
2Bt`gptqqs C V px,

?
2Bt`gptq, f

gpt, xq,∇fgpt, xq,∇∇fgpt, xqq,

where V is a function regular in the four last components. It follows there exists a constant C ą 0
such that

xpt, xq ÞÑ dgpt, xqyα{2 ď Cp}
?

2B.}Cα{2 ` }g}Cα{2 ` }f
g}C1`α{2,2`αq

with the semi-norm

xpt, xq ÞÑ dgpt, xqyα{2 B sup

"

|fptq ´ fpsq|

|t´ s|α
, s ‰ t P r0, t0s, x PM

*

We deduce there exists Cδ0,δ1 , depending on δ0, δ1 and on the random quantity }
?

2B.}Cα{2 , such
that

xt ÞÑ dgpt, xqyα{2 ď Cδ0,δ1

and thus

}t ÞÑ dgpt, xq}Cα{2r0,t0s ď Cδ1,δ0pt
α{2
0 ` 1q `K

with K “ }dgp0, .q}8 not depending on g.
Hence t ÞÑ µpΨpBGgt ,

?
2Bt ` gptqqq is in Cα{2 and

}t ÞÑ µpΨpBGgt ,
?

2Bt ` gptqqq}Cα{2 ď pCδ1,δ0pt
α{2
0 ` 1q `KqµpMq, (87)

Using Stoke’s Theorem we have that the volume of µpΨpGgt ,
?

2Bt ` gptqqq enclosed by the hyper-
surface ΨpBGgt ,

?
2Bt ` gptqq is

µpΨpGgt ,
?

2Bt ` gptqqq “ 1
n`1

ş

F gψpt,Mq
x~x, νF

g
ψy dµF gψpt,Mq

p~xq

“ 1
n`1

ş

MxF
g
ψpt, x,

?
2Bt ` gptqq, ν

F gψpt, xqydgpt, xq dµM pxq.
(88)

As before, we get, for some C 1δ1,δ0 ą 0 and K 1 ą 0 of the same nature as Cδ1,δ0 ą 0 and K ą 0,
that

}t ÞÑ µpΨpGgt ,
?

2Bt ` gptqqq}Cα{2 ď pC
1
δ1,δ0pt

α{2
0 ` 1q `K 1qµpMq (89)

As a quotient, it follows that t ÞÑ hpΨpGgt ,
?

2Bt ` gptqq is in Cα{2, as long as the domain
ΨpGgt ,

?
2Bt` gptqq keeps a positive mass, which may lead us to replace t0 by a smaller value, and

we deduce that
}t ÞÑ hpΨpGgt ,

?
2Bt ` gptqqq}Cα{2pr0,t0sq ď C (90)
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for a constant C that only depends on δ0 ,δ1, t0 and }
?

2B.}Cα{2 . So Γpgq P C1`α{2. We have for
0 ă s, t ă t1 ď t0

|Γpgqptq ´ Γpgqpsq| ď |t´ s|C ď Ct
1´α{2
1 |t´ s|α{2,

since Γpgqp0q “ 0 we have:

}Γpgq}Cα{2r0,t1s ď Ct1 ` Ct
1´α{2
1 .

Take 0 ă t1 ď t0 sufficiently small such that Ct1`Ct
1´α{2
1 ď δ0 we have Γ mapsB

C
α
2 pr0,t1sq

pg0, δ0qX

tg P C
α
2 |gp0q “ 0u into himself.

Let us show that Γ is a contraction.
Let g1, g2 P BC

α
2 pr0,t1sq

pg0, δ0q, and fg1 “ Θpg1q, f
g2 “ Θpg2q then

µpΨpBGg1
t ,
?

2Bt ` g1ptqqq ´ µpΨpBG
g2
t ,
?

2Bt ` g2ptqqq

“
ş

M V px,
?

2Bt ` g1ptq, f
g1pt, xq,∇fg1pt, xq,∇∇fg1pt, xqq

´V px,
?

2Bt ` g2ptq, f
g2pt, xq,∇fg2pt, xq,∇∇fg2pt, xqqµM pdxq.

(91)

We want to control the norm of the above function in Cα{2. Since it vanishes at time 0, we have
only to control its semi-norm x¨yα{2.

We write for simplicity ~fgpt, xq B pfgpt, xq,∇fgpt, xq,∇∇fgpt, xqq, and let

Jpt, xq B V px,
?

2Bt ` g1ptq, ~fg1pt, xqq ´ V px,
?

2Bt ` g2ptq, ~fg2pt, xqq

Let σ P r0, 1s and

ζσpt, xq B σp
?

2Bt ` g1ptq, ~fg1pt, xqq ` p1´ σqp
?

2Bt ` g2ptq, ~fg2pt, xqq

we have, for all 0 ď s, t ď t1,

|ζσpt, xq ´ ζσps, xq| ď |t´ s|α{2p2
?

2}B.}Cα{2 ` 2δ0 ` 2δ1q

ď Cδ0,δ1 |t´ s|
α{2

Also using the regularity of V in the four last variables we have

Jpt, xq “

ż 1

0
d3V px, ζσpt, xqqppg1ptq, ~f

g1pt, xqq ´ pg2ptq, ~f
g2pt, xqqq dσ

Hence,

|Jpt, xq ´ Jps, xq|

“ |

ż 1

0
d3V px, ζσpt, xqqpg1ptq ´ g2ptq, ~f

g1pt, xq ´ ~fg2pt, xqq

´d3V px, ζσps, xqqpg1psq ´ g2psq, ~f
g1ps, xq ´ ~fg2ps, xqqdσ|

ď

ż 1

0
|
`

d3V px, ζσpt, xqq ´ d3V px, ζσps, xqq
˘

pg1ptq ´ g2ptq, ~f
g1pt, xq ´ ~fg2pt, xqq| dσ

`

ż 1

0

ˇ

ˇd3V px, ζσps, xqq
`

pg1ptq ´ g2ptq, ~f
g1pt, xq ´ ~fg2pt, xqq

´pg1psq ´ g2psq, ~f
g1ps, xq ´ ~fg2ps, xqq

˘
ˇ

ˇ dσ

Since d3V px, ζσps, xqq is bounded we have (again the constant C can change from one line to the
other),
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|d3V px, ζσps, xqq
`

pg1ptq ´ g2ptq, ~f
g1pt, xq ´ ~fg2pt, xqq ´ pg1psq ´ g2psq, ~f

g1ps, xq ´ ~fg2ps, xqq
˘

ď C|t´ s|α{2p}g1 ´ g2}Cα{2 ` }
~fg1 ´ ~fg2}Cα{2,αq

ď C|t´ s|α{2p}g1 ´ g2}Cα{2 ` }Θpg1q ´Θpg2q}C1`α{2,2`αq

ď C|t´ s|α{2p1` }Θ}Lipq}g1 ´ g2}Cα{2

where in the last line we use Proposition 37. Using that d3V px, .q is Lipschitz in the last variable:

|d3V px, ζσpt, xqq ´ d3V px, ζσps, xqq ď C|ζσpt, xq ´ ζσps, xq|

ď CCδ0,δ1 |t´ s|
α{2

Since pg1p0q, ~f
g1p0, xqq “ ~0 “ pg2p0q, ~f

g2p0, xqq we have:

|pg1ptq ´ g2ptq, ~f
g1pt, xq ´ ~fg2pt, xqq| ď Ctα{2p1` }Θ}Lipq}g1 ´ g2}Cα{2

Putting all things together we get xt ÞÑ Jpt, xqyCα{2 ď C}g1 ´ g2}Cα{2 and since Jp0, xq “ 0,

}t ÞÑ Jpt, xq}Cα{2 ď C}g1 ´ g2}Cα{2

Hence

}t ÞÑ µpΨpBGg1
t ,
?

2Bt ` g1ptqqq ´ µpΨpBG
g2
t ,
?

2Bt ` g2ptqqq}Cα{2 ď C}g1 ´ g2}Cα{2 (92)

With the same proof we also have:

}t ÞÑ µpΨpGg1
t ,
?

2Bt ` g1ptqqq ´ µpΨpG
g2
t ,
?

2Bt ` g2ptqqq}Cα{2 ď C}g1 ´ g2}Cα{2 (93)

Let µpgqptq B µpΨpGgt ,
?

2Bt ` gptqqq and µpgqptq B µpΨpBGgt ,
?

2Bt ` gptqqq

d

dt

´

Γpg1q ´ Γpg2q

¯

“ 2
´µpg1q

µpg1q
´
µpg2q

µpg2q

¯

“ 2
´µpg1qµpg2q ´ µpg2qµpg1q

µpg1qµpg2q

¯

“ 2
´µpg1qpµpg2q ´ µpg1qq ´ µpg1qpµpg2q ´ µpg1qq

µpg1qµpg2q

¯

Hence using (87), (89), (92) and (93),
›

›

›

›

d

dt

´

Γpg1q ´ Γpg2q

¯

›

›

›

›

Cα{2pr0,t1sq

ď C}g1 ´ g2}Cα{2

and so
›

›

›

›

d

dt

´

Γpg1q ´ Γpg2q

¯

›

›

›

›

C0pr0,t1sq

ď C}g1 ´ g2}Cα{2

Since Γpg1qp0q “ 0 “ Γpg2qp0q,

}Γpg1q ´ Γpg2q}Cα{2pr0,t1sq ď pt1 ` t
1´α{2
1 qC}g1 ´ g2}Cα{2

Reducing t1 such that pt1 ` t
1´α{2
1 qC ď 1

2 , we get:

}Γpg1q ´ Γpg2q}Cα{2pr0,t1sq ď
1

2
}g1 ´ g2}Cα{2pr0,t1sq

Hence Γ have a unique fixed point in B
C
α
2 pr0,t1sq

pg0, δ0q X tg P C
α
2 |gp0q “ 0u.

�
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Theorem 39 Let D0 P D, then there exists 0 ă t1 such that the system of equations (79) has a
unique solution.

Proof

Let θ be the fixed point of Γ, and fθ “ Θpθq then F θpt, xq “ F0pxq ` f
θpt, xqν0pxq solves

#

B
BtF

θpt, xq “
`

´ ρb
ΨpF θpt,Mq,

?
2Bt`θptqq

pψF θpt,Mq,
?

2Bt`θptq
pxqq

˘

νF
θ
pt, xq

F p0, xq “ F0pxq.

and so
"

@ t P r0, t1s, @ x P BG
θ
t , Btx “ α

BGθt ,
?

2Bt`θptq
pxqνBGθt

pxq

Gθ0 “ D0

Also
$

&

%

d
dtθptq “ d

dtΓpθqptq

“ hpΨpGθt ,
?

2Bt ` θptqq,
Γpθqp0q “ 0.

�

Let D P D, C “ BD with C5`α boundaries, α P p0, 1q, in a d-dimensional Riemannian manifold
V , and pθt, Gtq0ďtăτ be a solution of (79) given by Theorem 39. As in the beginning of this section,
the solution of

@ t P r0, τq, @ x P Ct B Dt, dx “

ˆ

?
2dBt ` 2

µpCtq

µpDtq
dt´ ρCtpxqdt

˙

νCtpxq (94)

is given by pDtqtPr0,τq, where

@ t P r0, τq, Dt B ΨpGt,
?

2Bt ` θtq

(as a special case of (44)).
Proposition 41 below will give a control of the extrinsic diameter of Ct defined by

diampCtq B sup
px,yqPC2

t

dpx, yq

where dp¨, ¨q is the Riemannian distance in V . First we need the following proposition bounding the
sum of the mean curvature at points that realize the diameter, in terms of the extrinsic curvature
(by extrinsic we mean in the ambient manifold V , i.e. not intrinsic in the hypersurface). For all
b P R, we denote by V bpdq the d-dimensional manifold with constant curvature b. Let ιV bpdq defined
before Lemma 31. We have:

#

ιV bpdq “ 8 , if b ď 0

ιV bpdq “ π?
b

, if b ą 0

Proposition 40 Let D P D with a C2 boundary in a d-dimensional manifold V , and C “ BD.
Suppose that there exist b P R such that the sectional curvature KV of V is bounded above by b,
i.e. KV ď b. For all pp, qq P C2 such that dpp, qq “ diampCq and dpp, qq ă ιV bpdq, we have

1. if b ď 0 then ´ρCppq ´ ρCpqq ď 2pd´ 1q
a

|b|
`1´coshp

?
|b|dpp,qqq

sinhp
?
|b|dpp,qqq

˘

ď 0,

2. if b ą 0 then ´ρCppq ´ ρCpqq ď 2pd´ 1q
?
b
`1´cosp

?
bdpp,qqq

sinp
?
bdpp,qqq

˘

.
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Proof

As in the proof of Lemme 28, consider pp, qq P C2 such that dpp, qq “ diampCq. Using the first
variation formula, we get that there exists an unit speed geodesic γ in V such that γp0q “ q,
γpdpp, qqq “ p, 9γp0q “ ´νCpqq and 9γpdpp, qqq “ νCppq. Let peiqiPJ1,d´1K be a orthonormal basis
of TqC. For i P J1, d ´ 1K, let γ1,iptq be a geodesic in C such that γ1,ip0q “ q and 9γ1,ip0q “ ei.
Let γ2,iptq be a geodesic in C such that γ2,ip0q “ p and 9γ1,ip0q “ {{dpp,qqei, where {{ is the parallel
transport along the geodesic γ. Since pp, qq P C2 is a local maximum of the distance function
restricted to C ˆ C, we have that

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

dpγ1,iptq, γ2,iptqq ď 0.

Let Yi be the Jacobi field along γ obtained by the variation of geodesic connecting γ1,iptq to
γ2,iptq, we have: Yip0q “ ei, Yipdpp, qqq “ {{dpp,qqei. Using second variation formula, we get that:

d2

d2t
dpγ1,iptq, γ2,iptqq|t“0 “

“

x∇t“0 9γ2,iptq, 9γpdpp, qqqy ´ x∇t“0 9γ1,iptq, 9γp0qy
‰

` IpYi, Yiq

“
“

x∇t“0 9γ2,iptq, νCppqy ´ x∇t“0 9γ1,iptq,´νCpqqy
‰

` IpYi, Yiq

“ ´ΠCp{{dpp,qqei, {{dpp,qqeiq ´ΠCpei, eiq ` IpYi, Yiq

Put the above two computations together and take the sum to get:

´ρCpqq ´ ρCppq ď ´
d´1
ÿ

i“1

IpYi, Yiq.

We have to bound from below the index of the normal Jacobi field Yi for all i. Since Yi is a normal
Jacobi field, there exist real functions f ji for j P J1, d ´ 1K such that Yiptq “

řd´1
j“1 f

j
i ptq{{tej . By

construction of Yi, we have f ji p0q “ f ji pdpp, qqq “ δji . Consider γ̃ptqtPr0,dpp,qqs a geodesic in V bpdq

with same length as γ, take pẽiqiPJ1,d´1K an orthonormal basis of 9̃γp0qK in Tγ̃p0qV
bpdq, and denote by

{̃{ the parallel transport along γ̃. Let X̃iptq “
řd´1
j“1 f

j
i ptq{̃{tẽj , be a vector field along γ̃, note that

X̃ip0q “ ẽi and X̃ipdpp, qqq “ {̃{ẽi. Let Ỹi be the Jacobi field in V bpdq along γ̃ such that Ỹip0q “ ẽi
and Ỹipdpp, qqq “ {̃{dpp,qqẽi. We have by definition:

IpYi, Yiq “

ż dpp,qq

0
}∇tYi}2 ´ xRpYi, 9γqYi, 9γy dt

ě

ż dpp,qq

0
}∇tYi}2 ´ b}Yi}2 dt

“

ż dpp,qq

0
}∇tX̃i}

2 ´ b}X̃i}
2 dt

ě

ż dpp,qq

0
}∇tỸi}2 ´ b}Ỹi}2 dt

where in the last inequality we used again the Index Lemma, since dpp, qq ă ιV bpdq. So γ̃p0q

and γ̃pdpp, qqq are not conjugate in V bpdq. Since Ỹiptq “ fbptq{̃{tẽi with f2b “ ´bfb, and fbp0q “
fbpdpp, qqq “ 1, we get

IpYi, Yiq ě

ż dpp,qq

0
pf 1bq

2 ´ bf2
b dt

“ pf 1bpdpp, qqq ´ f
1
bp0qq
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Hence

´ρCpqq ´ ρCppq ď ´pd´ 1qpf 1bpdpp, qqq ´ f
1
bp0qq

and the result follows by explicit computation of fb in different cases.
�

Proposition 41 Let D P D with a C5`α boundary C B BD in a d-dimensional manifold V , for
some fixed α P p0, 1q. Suppose there exist b P R such that the sectional curvature of V satisfies
KV ď b. Then the evolution of the diameter of the solution pCtqtPr0,τq of (94) started at C is
controlled by:

(i) If b ď 0, we get for all 0 ď t ă τ,

ddiampCtq ď 2p
?

2dBt ` hpDtqdtq ` 2pd´ 1q
a

|b|
`1´ coshp

a

|b| diampCtqq

sinhp
a

|b| diampCtqq

˘

dt

(ii) If b ą 0, we get for all 0 ď t ă τ^ τ π?
b
pdiampC.qq

ddiampCtq ď 2p
?

2dBt ` hpDtqdtq ` 2pd´ 1q
?
b
`1´ cosp

?
bdiampCtqq

sinp
?
bdiampCtqq

˘

dt

where τ π?
b
pdiampC.qq B inftt ě 0 : diampCtq ě

π?
b
u.

Proof

Using the construction of pDtqtPr0,τq, we get for 0 ď t ă τ,

diampCtq “ sup
px,yqPBG2

t

dpΨGtpx,
?

2Bt ` θtq,ΨGtpy,
?

2Bt ` θtqq

“ 2p
?

2Bt ` θtq ` sup
px,yqPBG2

t

dpx, yq

where in the second equality, we used that for 0 ď t ă τ, ΨGtp.,
?

2Bt ` θtq is a diffeomorphism
onto its image, and a reasoning similar to the proof of Proposition 29. Also since

sup
px,yqPBG2

t

dpx, yq “ sup
x,yPM2

dpF θpt, xq, F θpt, yqq,

and the mappings t ÞÑ F θpt, xq are uniformly Lipschitz on any compact r0, T s Ă r0, τq, we deduce
that

t ÞÑ sup
px,yqPBG2

t

dpx, yq

is Lipschitz on r0, T s, hence almost everywhere differentiable on r0, T s and absolutely continuous.
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At a differentiability time t P r0, T s, we have, as in the proof of Proposition 29,

d

dt
sup

px,yqPBG2
t

dpx, yq

“
d

dt
sup

pxt,ytqPBG2
t : dpxt,ytq“diampBGtq

dpxt, ytq

“ sup
pxt,ytqPBG2

t : dpxt,ytq“diampBGtq

d

dt
dpxt, ytq

“ sup
pxt,ytqPBG2

t : dpxt,ytq“diampBGtq

x
d

dt
xt, ν

BGtpxtqy ` x
d

dt
yt, ν

BGtpytqy

“ sup
pxt,ytqPBG2

t : dpxt,ytq“diampBGtq

´ρΨpBGt,
?

2Bt`θtq
pψ
BGt,

?
2Bt`θt

pxtqq ´ ρΨpBGt,
?

2Bt`θtq
pψ
BGt,

?
2Bt`θt

pytqq

“ sup
pxt,ytqPBD2

t : dpxt,ytq“diampBDtq

´ρBDtpxtq ´ ρBDtpytq

Taking into account Proposition 40, we obtain the wanted points (i) and (ii).
�

When (94) is replaced by (76), the previous proof leads to a similar result:

Proposition 42 Let D P D with a C5`α boundary C B BD in a d-dimensional manifold V , for
some fixed α P p0, 1q. Suppose there exist b P R such that the sectional curvature of V satisfies
KV ď b. Then the evolution of the diameter of the solution pCtqtPr0,τq of (76) started at C is
controlled by:

(i) If b ď 0, we get for all 0 ď t ă τ,

ddiampCtq ď 2
?

2dBt ` 2pd´ 1q
a

|b|
`1´ coshp

a

|b|diampCtqq

sinhp
a

|b|diampCtqq

˘

dt

(ii) If b ą 0, we get for all 0 ď t ă τ^ τ π?
b
pdiampC.qq

ddiampCtq ď 2
?

2dBt ` 2pd´ 1q
?
b
`1´ cosp

?
bdiampCtqq

sinp
?
bdiampCtqq

˘

dt,

where τ π?
b
pdiampC.qq B inftt ě 0 : diampCtq ě

π?
b
u.

Remark 43 Proposition 42 may seem simpler than Proposition 41, since it does not require to
deal with the tricky term hpDtq. For instance when KV ď 0, we have for all 0 ď t ă τ:

diampCtq ď 2
?

2pBt ´B0q ` diampC0q

It follows that τ ď τ
´

diampC0q

2
?

2

pB.q a.s. But the supplementary term hpDtq in Proposition 41 should

prevent this collapsing in finite time.
˝

5 Back to the homogeneous situations

Here we return to the situations encountered in Section 2, where V has a constant curvature and
is endowed with the Laplacian L B ∆. This section has two main goals developed in the following
subsections:
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• When V is an Euclidean space, it is possible to go further in the considerations of Section 3. In
particular when V “ R2, it is possible to compute explicitly the image of the mean curvature
vector field by the tangent mappings to the normal flow.

• When D0 “ Bpx0, r0q with x0 P V and r0 ą 0 (small enough in the spherical case), the
Doss-Sussman approach can be described explicitly (more generally this is also true when V
is rotationally symmetric and x0 is a center of symmetry). It is then possible to compare the
Doss-Sussman methods in the two decompositions (23) and (57), concerning their respective
time-domains and to see that the method suggested in Remark 17 is stable when we let
r0 go to zero, namely when we try an approximation of the initial conditions consisting of
singletons.

5.1 About the Euclidean and constant curvature spaces

We begin by bringing some precisions about the quantities defined in (26) and (27). They can
always be written

R´pDq “ rR´pDq _ pR´pDq and R`pDq “ rR`pDq ^ pR`pDq

where

rR`pDq B inftr P p0,`8q : ψC,r is not an immersionu

rR´pDq B ´ inftr P p0,`8q : ψC,´r is not an immersionu

pR`pDq B inftr P p0,`8q : ψC,r is not one-to-oneu

pR´pDq B ´ inftr P p0,`8q : ψC,´r is not one-to-oneu

(with the usual convention infH “ `8).
Consider the Euclidean case:

Lemma 44 When V “ Rn, with n ě 2 and endowed with its Euclidean structure, we have

rR´pDq “
1

minp0´,mint´λn´1,Cpxq : x P Cuq
P r´8, 0q

rR`pDq “
1

maxp0`,maxt´λ1,Cpxq : x P Cuq
P p0,`8s

where λ1,Cpxq ď ¨ ¨ ¨ ď λn´1,Cpxq are the eigenvalues of the second fundamental form (defined with
respect to νC) at x P C. The notations 0´ and 0` just indicate that 1{0´ “ ´8 and 1{0` “ `8.

Proof

Recall that the tangent mapping dνC associated to the mapping C Q x ÞÑ νCpxq can be seen as a
linear mapping from TxC (the tangent space of C at x) to itself, and that the second fundamental
form is given at x P C by

TxC ˆ TxC Q pv, wq ÞÑ xv, dνCrwsy

We deduce that for r P R, the tangent mapping dψC,r satisfies

@ v, w P TxC, xv, dψC,rrwsy “ xv, wy ` r xv, dνCrwsy

It follows that if r is such that all the quantities 1 ` rλC,1pxq, ..., 1 ` rλC,n´1pxq are either all
positive or all negative, then the tangent mapping dψC,r is not degenerate at x. As a consequence,

for r P p rR´pDq, rR`pDqq, dψC,r is not degenerate on C. More precisely, p rR´pDq, rR`pDqq is the
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largest interval I containing 0 on which the tangent mapping dψC,r is not degenerate on C for all
r P I. Indeed, when for some x P C and r P R, the values 1`rλC,1pxq, ..., 1`rλC,n´1pxq are not of
the same sign, we can find r1 P p´|r|, |r|q such that 1` r1λC,1pxq “ 0, so that dψC,r1 is degenerate
at x.

�

Remark 45 Consider the case where V “ R2 endowed with its usual Riemannian structure
(coming from its Euclidean structure). The following picture (where the boundary of the C in
black stands for C, while the line in red is a portion of its image by ψC,r, for some positive element

r P p rR´pDq, rR`pDqq), shows that in general the mapping ψC,r is not an embedding of C in the
plane.

Figure 2: example of a non injective mapping ψC,r

In this picture, if r is reduced a little to be equal to pR`pDq and if x ­“ x1 P C are such that
ψC,rpxq “ ψC,rpx

1q, it appears that νCpxq “ ´νCpx
1q and x1 belongs to the line passing by x and

directed by νCpxq.
˝

The last observation of the above remark corresponds to a general phenomenon that we now
describe, coming back to the situation of an abstract Riemannian manifold V .

For any D P D and x P C, consider

R̆`pxq B
1

2
inf

"

r ą 0 : expxprνCpxqq P C and νCpexpxprνCpxqqq “ ´
d

dr
expxprνCpxqq

*

R̆`pDq B inftR̆`pxq : x P Cu

Similarly, let

R̆´pxq B
1

2
sup

"

r ă 0 : expxprνCpxqqq P C and νCpexpxprνCpxqqq “
d

dr
expxprνCpxqq

*

R̆´pDq B suptR̆´pxq : x P Cu

The interest of these quantities is:

Lemma 46 When pR`pDq ă rR`pDq, it means that R`pDq “ pR`pDq “ R̆`pDq ą 0. Similarly,
we always have R´pDq “ rR´pDq _ R̆´pDq ă 0.
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Proof

We only prove the first assertion, since the second one can be shown in the same way, by reversing
the time (or, when V is compact, by replacing D by Dc).

We begin by remarking that for any x P C, we can find a neighborhood U of x such that the
intersection of U X C and U X expxpr´ε, εsνCpxqq is reduced to x for ε ą 0 small enough (this
is a consequence of the assumption that C is a smooth submanifold of V ). It follows that the
set tr ą 0 : expxprνCpxqq P C and νCpexpxprνCpxqqq “ ´ d

dr expxprνCpxqqu does not contain 0

as an accumulation point. Since it is also closed, for any x P C, the infimum defining R̆`pxq is
either attained and positive or infinite. Assume that R̆`pDq ă `8 and let pxnqnPN be a sequence
of elements of C such that R̆`pxnq converges toward R̆`pDq. By compactness, we can assume
that pxnqnPN converges toward some x P C. Passing to the limit in νCpexpxnp2R̆`pxnqνCpxnqqq “

´ d
dr expxnprνCpxnqq|r“2R̆`pxnq

, we obtain νCpexpxp2R̆`pDqνCpxqqq “ ´
d
dr expxprνCpxqq|r“2R̆`pDq

.

In particular R̆`pDq ą 0, otherwise we would end up with νCpxq “ ´νCpxq. As a consequence, we
get R̆`pxq ď R̆`pDq and finally R̆`pDq “ R̆`pxq, namely the infimum defining R̆`pDq is attained
and is positive. Then the mapping ψC,R̆`pDq is not injective, since

ψC,R̆`pDqpxq “ expxpR̆`pDqνCpxqq “ ψC,R̆`pDqpexpxp2R̆`pDqνCpxqqq

where x is still a minimizer in the definition of R̆`pDq. Thus we get pR`pDq ď R̆`pDq.
Next, assuming that pR`pDq ă rR`pDq, let us show conversely that pR`pDq ě R̆`pDq. Indeed, we

can find distinct x, x1 P C and r P p0, rR`pDqq such that ψC,rpxq “ ψC,rpx
1q. Since r P p0, rR`pDqq,

we can find a neighborhood A of x (respectively A1 of x1, disjoint from A) in C such that ψC,r is
a diffeomorphism of A (resp. A1) on its image. If the tangent space TψC,rpxqψC,rpAq of ψC,rpAq at
ψC,rpxq is not equal to the tangent space TψC,rpx1qψC,rpA

1q of ψC,rpA
1q at ψC,rpx

1q, then ψC,rpAq
and ψC,rpA

1q are crossing each other at ψC,rpxq. Then by decreasing a little r into r1 ă r, ψC,r1pAq
and ψC,r1pA

1q are still crossing each other. One can then find y P A and y1 P A1 such that

ψC,r1pyq “ ψC,r1py
1q P ψC,rpAq X ψC,r1pA

1q. This is in contradiction with the definition of pR`pDq.
Thus we get that TψC,rpxqψC,rpAq “ TψC,rpx1qψC,rpA

1q. Note that by parallel transport along the

geodesic, d
dr expxprνCpxqq is orthogonal to TψC,rpxqψC,rpAq and similarly for d

dr expx1prνCpx
1qq. It

follows that the two unit vectors d
dr expxprνCpxqq and d

dr expx1prνCpx
1qq are proportional. They

cannot be equal, otherwise by reversing time in the geodesics, we would end up with x “ x1.
So d

dr expxprνCpxqq “ ´ d
dr expx1prνCpx

1qq and by considering the geodesic starting from ψC,rpxq

with speed d
dr expxprνCpxqq and its reversed time geodesic, we get that expxp2rνCpxqq “ x1 and

d
ds expxpsνCpxqq|s“2r “ ´νCpx

1q, namely r ě R̆`pDq and as a consequence, pR`pDq ě R̆`pDq, i.e.
pR`pDq “ R̆`pDq.

�

We now come to the specific situation of the Euclidean plane.

Lemma 47 Assume that V “ R2, endowed with its usual Euclidean structure. For any D P D
and r P pR´pDq, R`pDqq, we have

@ x P C, ρΨpC,rqpψC,rpxqq “
ρCpxq

1` rρCpxq

In the context of Lemma 13, if α is given by

@ x P C, αpxq “
ρCpxq

1´ rρCpxq

then we have

@ x P ΨpC, rq, TDΨp¨, rqrαspxq “ ρΨpC,rqpxq
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Proof

One way to compute the curvature ρΨpC,rqpψC,rpxqq, for x P C, is to consider a parametrization
pypsqqs of ΨpC, rq by its length such that yp0q “ ψC,rpxq. The quantity ρΨpC,rqpψC,rpxqq is then
obtained by specializing the following formula at s “ 0,

BsτΨpC,rqpypsqq “ ´ρΨpC,rqpypsqqνΨpC,rqpypsqq

where τΨpC,rqpypsqq is the unit vector Bsypsq.
Let pxpsqqs be a parametrization of C by its length, with xp0q “ x. A parametrization of

ΨpC, rq is then given by pψC,rpxpsqqqs, but it is not by its length, due to the relation

BsψC,rpxpsqq “ p1` rρCpxpsqqqτCpxpsqq

To get a parametrization by the length, consider the time change pθsqs given by

ż θs

0
1` rρCpψC,rpxpuqqq du “ s

and define ypsq “ ψC,rpxpθsqq. We compute that

Bsypsq “ TψC,rrτCpxpθsqqsBsθs

“ τCpxpθsqq

which is a unitary vector. We are thus led to differentiate

BsτCpxpθsqq “ ´ρCpxpθsqqνCpxpθsqqBsθs

“ ´
ρCpxpθsqq

1` rρCpψC,rpxpsqqq
νCpxpθsqq

This computation proves that

ρΨpC,rqpypsqq “
ρCpxpθsqq

1` rρCpψC,rpxpsqqq

(and that νΨpC,rqpypsqq “ νCpxpθsqq, but that was already clear), which at s “ 0 is the first assertion
of the above lemma.

For the second one, note that for any D P D and r P pR´pDq, R`pDqq, we have

@ x P ΨpC, rq, ψ´1
C,rpxq “ ψΨpC,rq,´rpxq

(note that r P pR´pDq, R`pDqq implies that ´r P pR´pΨpD, rqq, R`pΨpD, rqqq). It follows that for
x P C,

αpψ´1
C,rpxqq “

ρCpψ
´1
C,rpxqq

1´ rρCpψ
´1
C,rpxqq

“
ρCpψΨpC,rq,´rpxqq

1´ rρCpψΨpC,rq,´rpxqq

“

ρΨpC,rqpxq

1`rρΨpC,rqpxq

1´ r
ρΨpC,rqpxq

1`rρΨpC,rqpxq

“ ρΨpC,rqpxq

So Lemma 13 leads to the announced result.
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Remark 48 Lemma 47 is only valid in dimension 2. If R2 is replaced by Rn, with n ą 2, recall
that the mean curvature ρpxq at a point x from C B BD, where D is a non-empty, open, bounded,
connected domain with smooth boundary, is given by λ1,Cpxq` ¨ ¨ ¨ `λn´1,Cpxq (with the notation
introduced in Lemma 44). Extending in the natural way the previous notions, it appears that

@ x P C, @ m P Jn´ 1K, λm,ΨpC,rqpψC,rpxqq “
λm,Cpxq

1` rλm,Cpxq

(as long as r P R is such that minxPC 1` rλ1,Cpxq ą 0). Thus to recover the mean curvature vector
through the tangent mapping of Ψp¨, rq, one must consider the vector α above D given by

@ x P C, αpxq “
ÿ

mPJn´1K

λm,Cpxq

1´ rλm,Cpxq

(as long as r P R is such that minxPC 1´ rλn´1,Cpxq ą 0).
˝

Lemma 49 Assume that V is a surface of constant curvature K, D P D and r P pR´, R`q then
we have:
‚ if K ą 0 and x P C,

ρΨpC,rqpψC,rpxqq “
pρ2
Cpxq ´Kq

sinp2
?
Krq

2
?
K

` ρCpxq cos p2
?
Krq

´

cos p
?
Krq ` sinp

?
Krq

?
K

ρCpxq
¯2

‚ if K ă 0 and x P C,

ρΨpC,rqpψC,rpxqq “
pρ2
Cpxq ´Kq

sinhp2
?
´Krq

2
?
´K

` ρCpxq coshp2
?
´Krq

´

cosh p
?
´Krq ` sinhp

?
´Krq

?
´K

ρCpxq
¯2

By letting K go to zero in both cases, we recover Lemma 47.

Proof

We only give the proof when K ą 0, the case K ă 0 can be deduced by similar computations.
For x P C, let pγxpsqqs be a curve parametrized by its arc length with values in C and γxp0q “ x.
Denote τpsq B 9γxpsq its unitary tangent vectors. Consider for any t, s,

γps, tq B expγxpsqptνpγxpsqqq

Jsptq B Bspγps, tqq

As a variation of a geodesic (for all the following Riemannian geometry notions, see e.g. the
book of Gallot, Hulin and Lafontaine [9]), pJsptqqt is a Jacobi field. We have Jsp0q “ τpsq and
9Jsp0q “ ∇Bsνpγxpsqq “ ρCpγxpsqqτpsq. So there exist α, β P R such that Jsptq “ pα cosp

?
Ktq `

β sinp
?
Ktqq{{tÞÑγps,tqτpsq, where {{tÞÑγps,tq is the parallel transport above the curve t ÞÑ γps, tq.

Adjusting with the initial condition, we get:

Jsptq “

ˆ

cosp
?
Ktq `

ρCpγxpsqq
?
K

sinp
?
Ktq

˙

{{tÞÑγps,tqτpsq
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For fixed and small enough t, to get the arc length parametrization of s ÞÑ γps, tq, let us consider
the time-change solution of the following equation:

$

’

&

’

%

θ
ptq
0 “ 0

d
dsθ

ptq
s “

ˆ

cosp
?
Ktq ` ρCpγxpθ

ptq
s qq?

K
sinp

?
Ktq

˙´1

Let us denote γ̃ps, uq B γpθ
ptq
s , uq, we have

´ρΨpC,tqpψC,tpγxpθ
ptq
s qqq “ x∇Bs

B

Bs
γ̃ps, tq, νΨpC,tqpγ̃ps, tqy

“ x∇Bs
B

Bs
γ̃ps, tq,

B

Bu

∣∣
u“t

γ̃ps, uqy

“ x∇Bs
B

Bs
γ̃ps, uq,

B

Bu
γ̃ps, uqy

∣∣
u“t

Then

´ρΨpC,tqpψC,tpxqq “ x∇Bs|s“0

B

Bs
γ̃ps, uq,

B

Bu
γ̃p0, uqy

∣∣
u“t

“

ż t

0
∇Bux∇Bs|s“0

B

Bs
γ̃ps, uq,

B

Bu
γ̃p0, uqy du` x∇Bs|s“0

B

Bs
γ̃ps, 0q, Bu|u“0γ̃p0, uqy

Recall that

x∇Bs|s“0

B

Bs
γ̃ps, 0q, Bu|u“0γ̃p0, uqy “ x∇Bs|s“0

B

Bs
pθptqs qτpθ

ptq
s q, νCpxqy

“ ´ρCpxqp
B

Bs

ˇ

ˇ

s“0
pθptqs qq

2

“ ´
ρCpxq

´

cosp
?
Ktq ` ρCpxq?

K
sinp

?
Ktq

¯2

On the other hand, let J
θ
ptq
s
puq “ B

Bs
γ̃ps, uq and let Rp¨, ¨q be the curvature tensor, since u ÞÑ γ̃ps, uq

is a geodesic, we have

∇Bux∇Bs|s“0

B

Bs
γ̃ps, uq,

B

Bu
γ̃p0, uqqy

“ x∇Bu∇Bs|s“0

B

Bs
γ̃ps, uq,

B

Bu
γ̃p0, uqy

“ x∇Bs|s“0
∇Bu

B

Bs
γ̃ps, uq,

B

Bu
γ̃p0, uqy ` xR

` B

Bs

ˇ

ˇ

s“0
γ̃ps, uq,

B

Bu
γ̃p0, uq

˘ B

Bs
|s“0γ̃ps, uq,

B

Bu
γ̃p0, uqy

“ x∇Bs|s“0
∇BuJθptqs puq,

B

Bu
γ̃p0, uqy ` xR

`

J
θ
ptq
0
puq,

B

Bu
γ̃p0, uq

˘

J
θ
ptq
0
puq,

B

Bu
γ̃p0, uqy

“ ´x∇BuJθptq0
puq,∇BuJθptq0

puqy `KxJ
θ
ptq
0
puq, J

θ
ptq
0
puqy

where in the last equality, we took into account that ∇Bsx∇BuJθptqs puq,
B
Bu
γ̃ps, uqy “ 0. Since

J
θ
ptq
0
puq “

B

Bs
|s“0pθ

ptq
s qpcosp

?
Kuq `

ρCpxq
?
K

sinp
?
Kuqq{{uÞÑγ̃p0,uqτpxq

∇BuJθptq0
puq “

B

Bs
|s“0pθ

ptq
s qp´

?
K sinp

?
Kuq ` ρCpxq cosp

?
Kuqq{{uÞÑγ̃p0,uqτpxq

d

ds
|s“0θ

ptq
s “

1

cosp
?
Ktq ` ρCpxq?

K
sinp

?
Ktq
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we deduce:

ρΨpC,tqpψC,tpxqq “

ż t

0
}∇BuJθptq0

puq}2 ´K}J
θ
ptq
0
puq}2 du`

ρCpxq
´

cosp
?
Ktq ` ρCpxq?

K
sinp

?
Ktq

¯2

“
1

pcosp
?
Ktq ` ρCpxq?

K
sinp

?
Ktqq2

´

ż t

0

´

´
?
K sinp

?
Kuq ` ρCpxq cosp

?
Kuq

¯2

´K

ˆ

cosp
?
Kuq `

ρCpxq
?
K

sinp
?
Kuq

˙2

du` ρCpxq
¯

“
pρ2
Cpxq ´Kq

sinp2
?
Ktq

2
?
K

` ρCpxq cos p2
?
Ktq

´

cos p
?
Ktq ` sinp

?
Ktq

?
K

ρCpxq
¯2 .

When the curvature is negative K ă 0, except for the sign change in the second order differential
equation for the Jacobi field, all the computations are similar.

�

Remark 50 In the context of the above lemma, let V be a pn ` 1q-dimensional manifold with
constant curvature K ą 0, D P D, r P pR´, R`q and λC,1pxq ď ... ď λC,npxq be the principal
curvatures of C. It is not so clear how to control the principal curvatures of ΨpC, rq at the point
ψC,rpxq, but for the mean curvature we have:

ρΨpC,rqpψC,rpxqq “

n
ÿ

l“1

pλ2
C,lpxq ´Kq

sinp2
?
Krq

2
?
K

` λC,lpxq cos p2
?
Krq

´

cos p
?
Krq ` sinp

?
Krq

?
K

λC,lpxq
¯2

A similar formula holds for K ă 0.
˝

5.2 Comparison of two Doss-Sussman approaches

Consider the Doss-Sussman method corresponding to the decomposition (57) of Remark 17. Sim-
ilarly to (43) and (47), define in the present Riemannian Brownian setting,

@ D P D, @ x P C, rρCpxq B ρCpxq ´ hpDq

@ r ą 0, @ D P Dr, @ x P C, rαC,rpxq B ´rρΨpC,rqpψC,rpxqq

We are interested in constructing a family p rGtqtPr0,τq such that

#

rG0 “ Bpx, r0q

@ t P r0, τq, @ x P B rGt, Btx “ rα
B rGt,

?
2Bt
pxqν

B rGt
pxq

(95)

since the process pDtqtPr0,τq obtained by a particular composition of the normal flow Ψ and of the
flow (95), namely

@ t P r0, τq, Dt B Ψp rGt,
?

2Btq (96)

will provide a solution to the martingale problem associated to pD,Lq, as in Theorem 16.
In the following subsections we reformulate the results of Section 2, using this Doss-Sussman

approach.
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5.2.1 Euclidean spaces

Let V “ Rn, fix x0 P Rn and r0 ą 0 and consider the initial condition rG0 “ Bpx0, r0q and
C0 “ B rG0. According to Lemma 47 (also by direct computation) we have for all r ą ´r0,

ρΨpC0,rqpψC0,rpxqq “ pn´ 1q
1
r0

1` r
r0

“
n´ 1

r ` r0

hpΨpD0, rqq “
2n

r ` r0

so

@ x P C0, rαC0,rpxq “
n` 1

r ` r0

Since the above quantity does not depend on x, the solution of (95) is radial and rGt “ Bpx, rRtq.
According to (95), the radius starts with rR0 “ r0 and its evolution is described by

@ t P r0, τq, d rRt “
n` 1

rRt `
?

2Bt
dt (97)

this equation being well-defined up to the stopping time

τ B inftt ě 0 : rRt “ ´
?

2Bt or rRt “ 0u

The condition rRt ą 0 comes from the fact that the normal flow ΨpC, rq is not defined when C is
reduced to a singleton, and the condition rRt ą ´

?
2Bt comes from the fact that the normal flow

ΨpBBpx0, rRtq, rq is well-defined only for r ą ´ rRt.
We get the following equation:

@ t P r0, τq, dp rRt `
?

2Btq “
n` 1

rRt `
?

2Bt
dt`

?
2dBt

so p rRt `
?

2Btqtě0 “ pBes
pn`2q
2t pr0qqtě0, where Bespn`2qpr0q B pBes

pn`2q
t pr0qqtě0 is a Bessel process

of dimension n` 2 ě 2 starting from r0 ą 0. For all t ě 0, rRt `
?

2Bt ą 0, so pd rRtq{pdtq ą 0 and
rRt ě r0 ą 0, hence Equation (97) is well-defined for all times, i.e. τ “ 8, and

@ t ě 0, Dt “ Ψp rGt,
?

2Btq “ Bpx0, rRt `
?

2Btq

Since 0 is a entrance boundary for the Bessel process of dimension n` 2, it is possible to solve
the martingale problem associated to the generator pD,Lq and to the initial singleton condition
D0 “ tx0u as follow: let Bespn`2qp0q be a Bessel process of dimension n ` 2 starting at 0, and
pBtqtě0 be the associated Brownian motion, namely such that

@ t ě 0, Bes
pn`2q
2t “

?
2Bt `

ż 2t

0

n` 1

2Bes
pn`2q
s p0q

ds

“
?

2Bt `

ż t

0

n` 1

Bes
pn`2q
2s p0q

ds

Consider for any t ě 0,

Dt B Bpx0,Bes
pn`2q
2t q

rGt B Ψ´1pDt,
?

2Btq
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where the latter is well-defined since Bes
pn`2q
2t ą ´

?
2Bt for all t ą 0. It appears that

@ t ě 0, Bes
pn`2q
2t “

?
2Bt `

ż t

0
hpDsq ´ ρBDs ds

hence

@ x P B rGt, Btx “ phpDtq ´ ρΨpBGt,
?

2Btq
qνBGtpxq

“ rα
BGt,

?
2Bt
pxqνBGtpxq

According to Lemma 10 and (56), we have for any f P C8pRnq,

dFf pDtq “ dFf pΨpGt,
?

2Btqq

“

ˆ
ż

BDt

fphpDtq ´ ρBDtq dµ

˙

dt`

ˆ
ż

BDt

f dµ

˙

p
?

2dBtq

`

ˆ
ż

BDt

x∇f, νBDty dµ`
ż

BDt

fρBDt dµ

˙

dt

“

ˆ
ż

BDt

x∇f, νBDty ` fhpDtqq dµ

˙

dt

`
?

2

ˆ
ż

BDt

f dµ

˙

dBt

“ LrFf spDtq dt` dMt

where

pMtqtě0 B

ˆ

?
2

ż t

0

ˆ
ż

BDs

f dµ

˙

dBs

˙

tě0

is a martingale. We get for all t ě s ą 0,

Ff pDtq ´ Ff pDsq “

ż t

s
LrFf spDuq du`Mt ´Ms (98)

Since a.s.

lim
sÑ0`

Ff pDsq “ 0

and

lim
sÑ0

LrFf spDsq “

"

0 , if n ě 3
8πfpx0q , if n “ 2

we can pass to the limit in (98) to get that pDtqtě0 solves the martingale problem associated to
the generator pD,Lq and to the singleton initial condition D0 “ tx0u.

Let us now consider the Doss-Sussman method relative to the decomposition (23), for simplicity
only in the illustrative Euclidean plane V “ R2. For x0 P R2 and r0 ą 0, we are interested in the
initial condition D0 B Bpx0, r0q. Starting with pθ0, G0q “ p0, D0q, we solve the evolution equation
system (51) with respect to pθt, GtqtPr0,τr0 q. The solution pGtqtPr0,τr0 q remains radial, so let us write

it as Gt “ Bpx, R̂tq for all t P r0, τr0q. Equation (51) becomes:

@ t P r0, τr0q,

#

dR̂t “ ´ 1
R̂t`

?
2Bt`θt

dt, R̂0 “ r0

dθt “ 4
R̂t`

?
2Bt`θt

dt, θ0 “ 0
(99)
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where

τr0 “ inftt ě 0, R̂t “ 0 or
?

2Bt ` θt “ ´R̂tu

It follows that pR̂t `
?

2Bt ` θtqtPr0,τr0 q “ pBes
p4q
2t pr0qqtPr0,τr0 q

where Besp4qpr0q is a Bessel process

of dimension 4 starting from r0 We deduce that τr0 “ inftt ě 0, R̂t “ 0u and for any t P r0, τr0q,

R̂t ´ r0 “ ´

ż t

0

1

R̂s `
?

2Bs ` θs
ds

“ ´
1

2

ż 2t

0

1

Bes
p4q
s pr0q

ds

Using the iterated logarithm law for the Bessel process for large times, we get that

ż `8

0

1

Bes
p4q
s pr0q

ds “ `8

It follows that necessarily, a.s. τr0 ă 8 and more precisely that

2r0 “

ż 2τr0

0

1

Bes
p4q
s pr0q

ds (100)

Taking into account that for any t ą 0, we have (a.s.)

ż t

0

1

Bes
p4q
s p0q

ds P p0,`8q

we can let r0 go to 0` in (100) to see that

lim
r0Ñ0`

τr0 “ 0

Thus, the Doss-Sussman method relative to the decomposition (23) does not enable to define
the dual process for all times nor permits approximations of singleton initial condition, contrary
to the Doss-Sussman method associated to the decomposition (57).

5.2.2 Hyperbolic spaces

Let V “ Hn be the hyperbolic space of dimension n. Fix some x0 P Hn and r0 ą 0 and consider
the initial condition rG0 “ D0 B Bpx0, r0q, and C0 “ B rG0. We have for any r ą ´r0,

ρΨpC0,rqpψC0,rpxqq “ pn´ 1q cothpr ` r0q

hpΨpD0, rqq “ 2
sinhn´1pr ` r0q

Jpr ` r0q

hence

@ x P C0, rαC0,rpxq “ 2
sinhn´1pr ` r0q

Jpr ` r0q
´ pn´ 1q cothpr ` r0q

where

@ r ě 0, Jprq “

ż r

0
sinhn´1puq du
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The solution of (95) is radial, say rGt “ Bpx, rRtq, and we have, starting with rR0 “ r0:

@ t P r0, τq, d rRt “

˜

2
sinhn´1p rRt `

?
2Btq

Jp rRt `
?

2Btq
´ pn´ 1q cothp rRt `

?
2Btq

¸

dt (101)

where,

τ “ inftt ě 0 : rRt “ ´
?

2Bt or rRt “ 0u

We get for all t P r0, τq,

dp rRt `
?

2Btq “

˜

2
sinhn´1p rRt `

?
2Btq

Jp rRt `
?

2Btq
´ pn´ 1q cothp rRt `

?
2Btq

¸

dt`
?

2dBt

Note that as r ą 0 goes to zero,

2
sinhn´1prq

Jprq
´ pn´ 1q cothprq „

n` 1

r

This behavior is sufficient to insure that 0 is an entrance boundary for the diffusion p rRt`
?

2Btqtě0

(see for instance the classical computations of Chapter 15 of Karlin and Taylor [13]). In particular,
since p rRt`

?
2Btqtě0 starts from r0 ą 0, it will never reach 0 (a.s.). Furthermore, let us check that

the radius process p rRtqtě0 of p rGtqtě0 is non-decreasing. Indeed, after an integration by parts, we
obtain for all r ě 0:

ż r

0
sinhn´1puq du “

ż sinhprq

0

vn´1

?
1` v2

dv

“
sinhnprq

n coshprq
`

ż sinhprq

0

vn`1

n
?

1` v2p1` v2q
dv

ď
sinhnprq

n coshprq
`

1

n

ż sinhprq

0

vn´1

?
1` v2

dv.

Hence we have for any r ě 0,
ż r

0
sinhn´1puq du ď

sinhnprq

pn´ 1q coshprq

namely

sinhn´1prq

Jprq
ě pn´ 1q cothprq

and

2 sinhn´1prq

Jprq
´ pn´ 1q cothprq ě

sinhn´1prq

Jprq
ě 0

This non-negativity and (101) show that p rRtqtě0 is non-decreasing.
From these observations, we get that the solution of (101) is defined for all times, i.e. τ “ 8,

and finally

@ t ě 0, Dt “ Bpx0, rRt `
?

2Btq

provides a solution to the martingale problem associated to the generator pD,Lq and starting from
Bpx0, r0q.

As in the Euclidean case, by letting r0 go to zero, we solve the martingale problem associated
to the generator pD,Lq starting from the singleton tx0u.
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5.2.3 Spherical spaces

Let V “ Sn be the sphere of dimension n P N. Fix x0 P Sn and r0 P p0, πq, and consider the initial
condition rG0 “ Bpx0, r0q, and C0 “ B rG0. We have for any r P p´r0, π ´ r0q (note that the normal
flow in not well-defined for all positive times):

rαC0,rpxq “ 2
sinn´1pr ` r0q

Ipr ` r0q
´ pn´ 1q cotpr ` r0q

where Ipsq “
şs
0 sinn´1puq du, for any s P r0, πs.

The solution of (95) is radial, say rGt “ Bpx, rRtq. According to (95), starting from rR0 “ r0, we
have

@ t P r0, τq, d rRt “

˜

2
sinn´1p rRt `

?
2Btq

Jp rRt `
?

2Btq
´ pn´ 1q cotp rRt `

?
2Btq

¸

dt (102)

where

τ “ inftt ě 0 : rRt “ π ´
?

2Bt or rRt “ ´
?

2Bt or rRt “ 0u

We get

@ t P r0, τq, dp rRt `
?

2Btq “

˜

2
sinn´1p rRt `

?
2Btq

Ip rRt `
?

2Btq
´ pn´ 1q cotp rRt `

?
2Btq

¸

dt`
?

2dBt

Again, we have as r goes to 0`,

2
sinn´1prq

Iprq
´ pn´ 1q cotprq „

n` 1

r

and this behavior is sufficient to get that 0 is an entrance boundary for the diffusion p rRt`
?

2Btqtě0.
It follows that it never hits 0. To show that p rRtqtě0 is non-decreasing, let us check that

@ r P p0, πq, 2
sinn´1prq

Iprq
´ pn´ 1q cotprq ě 0

Observe that it is clearly satisfied for r P rπ2 , πq. For r P p0, π2 q, we have:

ż r

0
sinn´1puq du “

ż sinprq

0

vn´1

?
1´ v2

dv

“
sinnprq

n cosprq
´

ż sinprq

0

vn`1

n
?

1´ v2p1´ v2q
dv

ď
sinnprq

n cosprq
ď

sinnprq

pn´ 1q cosprq

We deduce that r P p0, π2 q,

2
sinn´1prq

Iprq
´ pn´ 1q cotprq ě

sinn´1prq

Iprq
ě 0

From these considerations, it appears that the solution to (102) is well-defined until the (a.s. finite)
stopping time

τ “ inftt ě 0 : rRt `
?

2Bt “ πu
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and we have

@ t P r0, τs, Dt “ Bpx, rRt `
?

2Btq

In fact τ is the hitting time of the whole sphere Sn by pDtqtPr0,τs. Since for all f P C8pSnq, we have
LrFf spSnq “ 0, it is natural to let the latter process be absorbed at Sn, namely to extend it by

@ t ě τ, Dt B Sn

so that pDtqtě0 provides a solution to the martingale problem associated to the generator pD,Lq
and starting from Bpx0, r0q.

As in the Euclidean and hyperbolic cases, the martingale problem associated to the generator
pD,Lq and starting from the singleton tx0u is solved by letting r0 go to zero.

6 About the martingale problems associated to L

After proving Theorem 5, we will show that the martingales naturally associated to L are directed
by a unique Brownian motion, property corresponding to the radial evolution (3). Next, we will
enrich the set of elementary observables and see in the particular example of the Brownian motion
in the Euclidean plane how the enriched martingale problem is sufficient to deduce that the dual
domain-valued process end up looking like a big disk, at least if it can be defined for all times.

6.1 Proof of Theorem 5

As explained above Theorem 5, we assume we are given a stochastic process pDtqtPr0,τq taking values
in G for positive times and solution to the martingale problem associated to pD,Lq, defined as in
the introduction, except that the elementary observables are defined on G instead of D. Despite
this generalization, the following arguments are similar to those given in the one-dimensional case
treated in [18].

Let a test function f P C8pR`q be given and consider the process pStqtPr0,τq defined by

@ t P r0, τq, St B fpµpDtqq

“ fpF1pDtqq

Since the mapping G Q D ÞÑ fpF1pDqq belongs to D, there exists a local martingale pMtqtPr0,τq such
that for all t P r0, τq,

St “ S0 `

ż t

0
Lrf ˝ F1spDsq ds`Mt (103)

By definition of L, we have

Lrf ˝ F1spDq “ f1pF1qLrF1s ` f2pF1qΓLrF1, F1s

Recall that in the proof of Theorem 3, we computed that for any D P G, with C B BD,

LrF1spDq “ 2
µpCq2

µpDq
(104)

ΓLrF1, F1spDq “ µpCq2 (105)

so that

Lrf ˝ F1spDq “ µpCq2
ˆ

f2pF1q ` 2
f1pF1q

F1

˙

pDq

“ 2µpCq2LrfspF1pDqq
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where

@ x P R˚`, L B 1
2B

2 ` 1
xB

is the generator of the Bessel process of dimension 3 on R` (see e.g. Chapter 11 of the book [24]
of Revuz and Yor). Thus we obtain, for all t P r0, τq,

St “ S0 ` 2

ż t

0
µpCsq

2LrfspµpDsqq ds`Mt

It leads us to introduce the time change described by (12) and (13) and

@ t P r0, ςq, Rt B µpDθptqq

to get that pRtqtPr0,ςq is a stopped continuous solution to the martingale problem associated to the
generator pC8pR`q,Lq. It follows that pRtqtPr0,ςq is a stopped Bessel process of dimension 3. For
completeness, let us just recall the underlying argument.

Define for t P r0, ςq,

Wt B Rt ´R0 ´

ż t

0

1

Rs
ds

According to the martingale problem, the process pWtqtPr0,ςq is a continuous local martingale whose
bracket is given by

@ t P r0, ςq, xW yt “

ż t

0
ΓLrid, idspRsq ds

where ΓL is the carré du champ operator associated to L and id : R˚` Q x ÞÑ x is the identity
mapping on R˚`. Since ΓLrid, ids “ pid

1q2 ” 1, we get that

@ t P r0, ςq, xW yt “ t

so Lévy’s theorem shows that pWtqtPr0,ςq is a stopped Brownian motion. Then pRtqtPr0,ςq is solution
to the stochastic differential solution

@ t P r0, ςq, dRt “ dWt `
1

Rt
dt

which admits a unique strong solution, once R0 is given. In particular the law of pRtqtPr0,ςq is
determined by the initial distribution of R0, it is the Bessel process of dimension 3 with initial law
LpX0q.

�

6.2 The stochastic differential equation associated with the mar-
tingale problem

With the notation of the above proof, for f “ id in (103), we get Mθt “Wt for t P r0, εq, or

@ t P r0, τq, Mt “ Wθ´1
t

where θ´1 : r0, τq Ñ r0, εq is the inverse mapping of θ given in (13). In particular, we get

@ t P r0, τq, xMyt “ θ´1
t

“ 2

ż t

0
µpCsq

2 ds
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so that we can find a Brownian motion pBtqtě0 (up to enlarging the underlying probability space)
such that

@ t P r0, τq, Mt “
?

2

ż t

0
µpCsq dBs

Namely we have

@ t P r0, τq, dµpDtq “ 2
µpCtq

2

µpDtq
dt`

?
2µpCtq dBt (106)

The same Brownian motion pBtqtě0 is driving all the pFf pDtqqtPr0,τq, for all f P C8pV q, and
even more:

Proposition 51 For all F P D, we have

@ t P r0, τq, FpDtq “ FpD0q `

ż t

0
LrFspDsq ds`

?
2

ż t

0

a

ΓLrF,FspDsq dBs (107)

where the determination of the sign of
a

ΓLrF,Fs is

@ D P D,
a

ΓLrF,FspDq B
ÿ

lPJnK

BlfpFf1 , ..., FfnqpDq

ż

C
fl dσ

when F “ fpFf1 , ..., Ffnq, with the notation of the introduction.

Proof

By definition of pD,Lq and due to the usual rules of continuous stochastic calculus (see for instance
the book [24] of Revuz and Yor), it is sufficient to check the above formula on the elementary
observables, namely that for all f P C8pV q,

@ t P r0, τq, Ff pDtq “ Ff pD0q `

ż t

0
LrFf spDsq ds`

?
2

ż t

0

b

ΓLrFf , Ff spDsq dBs

with the determination of sign:
a

ΓLrFf , Ff s B
ş

f dσ. From the martingale problem, we know
that for any f P C8pV q, the process

@ t P r0, τq, Mf
t B Ff pDtq ´ Ff pD0q ´

ż t

0
LrFf spDsq ds

is a local martingale whose bracket is given by

@ t P r0, τq,
A

Mf
E

t
B 2

ż t

0
ΓLrFf , Ff spDsq ds

So our goal is to check that

@ t P r0, τq, Mf
t “

ż t

0

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
pDsq dM

1
s

Since all the considered martingales start from 0, it is equivalent to show that

@ t P r0, τq,

C

Mf
¨ ´

ż ¨

0

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
pDsq dM

1
s

G

t

“ 0
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Developing by polarization the l.h.s., we obtain

A

Mf
E

t
`

C

ż ¨

0

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
pDsq dM

1
s

G

t

´ 2

C

Mf ,

ż ¨

0

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
pDsq dM

1
s

G

t

“

A

Mf
E

t
`

ż t

0

ΓLrFf , Ff s

ΓLrF1, F1s
pDsq d

@

M1
D

s
´ 2

ż t

0

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
pDsq d

A

Mf ,M1
E

s

“ 2

ż t

0
ΓLrFf , Ff spDsq ds` 2

ż t

0

ΓLrFf , Ff s

ΓLrF1, F1s
pDsqΓLrF1, F1spDsqds

´4

ż t

0

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
pDsqΓLrFf , F1spDsqds

“ 4

ż t

0

˜

ΓLrFf , Ff s ´

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
ΓLrF1, Ff s

¸

pDsq ds

“ 0

where we used that for any D P G,
˜

ΓLrFf , Ff s ´

a

ΓLrFf , Ff s
a

ΓLrF1, F1s
ΓLrF1, F1s

¸

pDq “

ˆ
ż

C
f dµ

˙2

´

ş

C f dµ

µpCq
µpCq

ż

C
f dµ

“ 0

�

Remark 52 The stopped standard Brownian motion pBtqtPr0,τq in (107) is (a.s.) on the random
interval r0, τq, the same as the one appearing in Theorem 16, when above, one considers the
stochastic process pDtqtPr0,τq constructed in Theorem 16. This is a consequence, on one hand of
(106), which enables to recover pBtqtPr0,τq from pDtqtPr0,τq, since B0 “ 0 and µpCtq ą 0 for t P r0, τq,
and on the other hand of the fact that in the proof of Theorem 16, we have

@ t P r0, τq, Mt “
?

2

ż t

0

ˆ
ż

Cs

f dµ

˙

ds

so by taking f “ 1, we can recover pBtqtPr0,τq in the same way.
˝

In the same spirit as Theorem 5 and similarly to [18], we also have

Proposition 53 Under the setting of Theorem 5, the process p1{µpDtqqtPr0,τq is a positive local
martingale. It follows that limtÑτ´ µpDtq exists a.s. in p0,`8s.

Proof

Consider the mapping F : G Q D ÞÑ 1{µpDq, which belongs to D. To see that p1{µpDtqqtPr0,τq is a
local martingale, it is sufficient to check that LrFs “ 0. By definition,

@ D P G, LrFspDq “ ´
1

F 2
1pDq

LrF1spDq `
2

F 3
1pDq

ΓLrF1, F1spDq

“ ´
1

F 2
1pDq

µpCq2

µpDq
`

2

F 3
1pDq

µpCq2

“ 0

where (104) and (105) were taken into account.
Thus as a positive submartingale 1{µpDtq, converges a.s. as t goes to τ from below, to a limit

belonging to r0,`8q. By taking the inverse, we get the announced result.
�
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6.3 Enrichment of the elementary observables

Up to now, we only considered elementary observables of type (4), since they were sufficient for
our purposes, but other functionals are interesting to go further. To simplify the presentation, we
restrict ourselves to the situation of the Brownian motion on a Riemannian manifold, namely we
take b “ 0, so that µ “ λ, µ “ σ and ρb “ ρ. The general case can be treated similarly (see the
manipulations of the proof of Theorem 3).

The first of new elementary observables we would like to add have the following form, for any
f P C8pV q,

Gf : D Q D ÞÑ Gf pDq B

ż

C
f dσ (108)

Indeed, the action (6) of the generator L can then be rewritten, taking into account Stokes’ theorem
(22), as

@ D P D, LrFf spDq “

ż

C
x∇f, νy ` 2

σpCq

σpDq
f dσ

“ F4f pDq ` 2
G1pDqGf pDq

F1pDq

so it seems natural to study the evolution of pGf pDtqqtPr0,τq, when pDtqtPr0,τq is a solution to the
martingale problem associated to L.

Unfortunately, it seems difficult to work directly from this martingale problem, while we still
don’t know if it is well-posed. Our hope is that by enriching the domain of functionals to which it is
applied, we should be more able to obtain that it is well-posed. So we rather consider the process
pDtqtPr0,τq given by (52) and construct new martingales for it. More precisely, up to reducing
τ (replacing it by its minimum with the first time Dt is no longer included into a nice tubular
neighborhood of D0), we will assume that Dτ is defined and belong to D. Before investigating the
functionals of the form (108), we are interested in the composition of the process pDtqtPr0,τs with
the normal flow, which already played a crucial role in the construction of pDtqtPr0,τs. So define

R B tr P R : @ t P r0, τs, Dt P Dru
@ r P R, @ t P r0, τq, D

prq
t B ΨpDt, rq (109)

“ ΨpGt,
?

2Bt ` θt ` rq

where pGtqtPr0,τs and pθtqtPr0,τs are defined as in (51). For any r P R, consider

@ D P Dr, @ x P C, α
prq
C pxq B ρCpxq ´ ρΨpC,rqpψC,rpxqq

and the operator Lprq acting on D´r via

@ f P C8pV q, @ D P D´r, LprqrFf spDq “

ż

C
x∇f, νy `

ˆ

2
σpΨpC,´rqq

λpΨpD,´rqq
` α

p´rq
C

˙

f dσ

“

ż

D
4f dλ` 2

σpΨpC,´rqq
ş

C f dσ

λpΨpD,´rqq
`

ż

C
α
p´rq
C f dσ(110)

Its interest comes from:

Lemma 54 For any f P C8pV q, t P r0, τs and r P R, we have

Ff pD
prq
t q “ Ff pD

prq
0 q `

ż t

0
LprqrFf spD

prq
s q ds`

?
2

ż t

0
Gf pD

prq
s q dBs
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Proof

The arguments are similar to those of the proof of Theorem 16, which lead to

dFf pΨpGt,
?

2Bt ` θt ` rqq

“ ´

˜

ż

BΨpGt,
?

2Bt`θt`rq
ρ
BΨpGt,

?
2Bt`θtq

˝ ψ
BGt,

?
2Bt`θt

˝ ψ´1
BGt,

?
2Bt`θt`r

f dσ

¸

dt

`

˜

ż

BΨpGt,
?

2Bt`θt`rq
f dσ

¸

p
?

2dBt ` Btθtdtq

`

˜

ż

BΨpGt,
?

2Bt`θt`rq
xν,∇fy dσ `

ż

BΨpGt,
?

2Bt`θt`rq
ρf dσ

¸

dt

“ ´

˜

ż

BΨpGt,
?

2Bt`θt`rq
ρ
BΨpGt,

?
2Bt`θtq

˝ ψ
BΨpGt,

?
2Bt`θt`rq,´r

f dσ

¸

dt

`

˜

ż

BΨpGt,
?

2Bt`θt`rq
xν,∇fy ` ρf ` Btθtf dσ

¸

dt

`
?

2

˜

ż

BΨpGt,
?

2Bt`θt`rq
f dσ

¸

dBt

“

˜

ż

BΨpGt,
?

2Bt`θt`rq
xν,∇fy `

ˆ

hpΨpGt,
?

2Bt ` θtqq ` α
p´rq

BD
prq
t

˙

f dσ

¸

dt

`
?

2

˜

ż

BΨpGt,
?

2Bt`θt`rq
f dσ

¸

dBt

“ LprqrFf spD
prq
t q dt`

?
2

˜

ż

BD
prq
t

f dσ

¸

dBt

�

For any D P D, define

@ x P C, ρ
p1q
C pxq B BrρΨpC,rqpψC,rpxqq|r“0 (111)

“ ´Brα
prq
C pxq|r“0

“ Brα
p´rq
C pxq|r“0

By differentiation with respect to r at 0 in Lemma 54, we get:

Proposition 55 For any f P C8pV q, we have

@ t P r0, τs, Gf pDtq “ Gf pD0q `

ż t

0
LrGf spDsq ds`

?
2

ż t

0

ˆ
ż

Cs

x∇f, νy ` ρf dσ
˙

dBs

where

@ D P D, LrGf spDq B

ż

C
4f ` 2

σpCq

λpDq
xν,∇fy `

ˆ

2
σpCq

λpDq
ρ` ρp1q

˙

f dσ

Proof

Consider the evolution described in Lemma 54. Certain terms are very easy to differentiate with
respect to r: according to the first part of Lemma 10

@ t P r0, τ s, BrFf rD
prq
t s|r“0 “ Gf rDts
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For the Brownian part, use the second part of Lemma 10:

@ t P r0, τ s, Br

ż

BD
prq
t

f dσ “

ż

Ct

x∇f, νy ` ρf dσ

For the remaining term, we decompose the derivative in

BrL
prqrFf spD

prq
t q|r“0 “ pBrL

prq|r“0qrFf spDtq ` BrLrFf spD
prq
t q|r“0

Use (110) for both terms of the r.h.s. For the first one, we get for any D P D,

pBrL
prq|r“0qrFf spDq “ ´2

ş

ρ dσ
ş

C f dσ

λpDq
` 2

σpCq2
ş

C f dσ

λpDq2
`

ż

C
ρp1qf dσ

For the second one, again for any D P D, taking into account that α
p0q
C ” 0, we have

BrLrFf spΨpD, rqq|r“0 “ Br

ż

ΨpD,rq
4f dλ` 2

σpΨpC, rqq
ş

ΨpC,rq f dσ

λpΨpD, rqq

ˇ

ˇ

ˇ

ˇ

ˇ

r“0

“

ż

C
4f dσ ` 2

ş

ρ dσ
ş

C f dσ

λpDq
´ 2

σpCq2
ş

C f dσ

λpDq2
` 2

σpCq
ş

C xν,∇fy ` ρf dσ
λpDq

Putting together these computations, we obtain

BrL
prqrFf spD

prq
t q|r“0 “

ż

C
4f ` ρp1qf dσ ` 2

σpCq

λpDq

ż

C
xν,∇fy ` ρf dσ

which leads to the definition of LrGf s.
�

Note that for any f P C8pV q and D P D, we have

LrGf spDq “ G4f pDq ` 2
G1pDq

F1pDq
F4f pDq ` 2

G1pDq

F1pDq

ż

C
ρf dσ `

ż

C
ρp1qf dσ

but neither
ş

C ρf dσ nor
ş

C ρ
p1qf dσ are of the form Fg of Gg for some g P C8pV q. We are thus

lead to introduce two new types of elementary observables:

Hf : D Q D ÞÑ Hf pDq B

ż

C
ρf dσ

H
p1q
f : D Q D ÞÑ Hf pDq B

ż

C
ρp1qf dσ

Investigating the evolution of these observables, one will have to consider more generally for any
l P Z`

H
plq
f : D Q D ÞÑ Hf pDq B

ż

C
ρplqf dσ (112)

where by iteration, for any n P Z`,

@ x P C, ρ
pn`1q
C pxq B Brρ

pnq
ΨpC,rqpψC,rpxqq|r“0

Probably other functionals will also appear (such as D Q D ÞÑ
ş

C ρ xν,∇fy dσ or D Q D ÞÑ
ş

C ρ
2f dσ, see the next lemma), but the study of these iterations, as well as their impact on the

well-posedness of the corresponding martingale problems, is left for a future work.
In the same spirit, we remark that the introduction of ρp1q and Hp1q are already needed to

consider a third derivative in Lemma 10:
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Lemma 56 For any f P C8pV q and D P D, we have

BrHf pΨpD, rqq|r“0 “

ż

C
ρ xν,∇fy ` ρp1qf ` ρ2f dσ

It follows that

B3
rFf pDq|r“0 “

ż

C
4f ` ρ xν,∇fy ` ρp1qf ` ρ2f dσ

Proof

The domain D P D being fixed, consider a tubular neighborhood T of D such that for any y P T ,
there exist a unique r P R and x P C such that y “ ψC,rpxq. Consider then the mapping rρ : T Ñ R
given by rρpyq “ ρΨpC,rqpyq. With this definition, we have for r sufficiently small, Hf pΨpD, rqq “
G

rρf pΨpD, rqq. It follows that

BrHf pΨpD, rqq|r“0 “ BrG
rρf pΨpD, rqq

“

ż

C
xν,∇prρfqy ` ρrρf dσ

It remains to note that on C, we have

xν,∇prρfqy “ rρ xν,∇fy ` f xν,∇rρy
“ ρ xν,∇fy ` fρp1q

to get the first identity.
The second one comes from the rewriting, in our present context, of the second equality in

Lemma 10 as

B2
rFf pΨpD, rqq “

ż

ΨpD,rq
4f dλ`

ż

ΨpC,rq
ρf dσ

“ F4f pΨpD, rqq `Hf pΨpD, rqq

and by differentiating with respect to r at 0.
�

The case f “ 1 is particularly interesting, since G1pDq “ σpCq for any D P D. The quantity
ş

C ρ dσ is called the total mean curvature of C and according to the previous lemma,
ş

C ρ
p1q`ρ2 dσ is

the derivative of the total mean curvature along the normal radial flow. In the situation of constant
curvature in dimension 2, the terms ρp1q and ρ2 are in fact comparable:

Lemma 57 Assume that V is a surface of constant curvature K P R. Then we have

@ D P D, ρp1q “ ´ρ2 ´K

Proof

When V is the Euclidean plane, the result follows by differentiating at r “ 0 the first formula
given in Lemma 47. The other null curvature situations (cylinders and flat torus) can be treated
similarly, since they can be up-lifted to their locally isometric covering R2.

For the other constant curvature cases, use instead Lemma 49 of Subsection 5.1.
�

Remark 58 (a) When V is the Euclidean plane, it follows from Lemma 57 that

Br

ż

ΨpC,rq
ρ dσ “ 0
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namely locally the normal radial flow leaves the total curvature of a smooth curve invariant. This
is in fact a consequence of Hopf’s Umlaufsatz Theorem, stating that for any piecewise differentiable
curve C in R2

ż

C
ρ dσ “ 2π (113)

(with an appropriate convention for the jumps of the tangent vectors, where ρ dσ has to be seen
as the difference of angles times a Dirac mass at the considered singular point). When C is the
smooth boundary of a convex domain, this can be obtained by letting r go to `8 in

ż

C
ρ dσ “

ż

ΨpC,rq
ρ dσ

and by remarking that for large r ą 0, ΨpC, rq is quite close to a circle of radius r.
It would be interesting to see if this argument could be adapted to treat the general case.

(b) Consider the Euclidean space (or any null curvature space) of dimension larger than 2.
From Remark (48), we deduce that

ρp1qpxq “ ´
ÿ

mPJn´1K

λ2
mpxq

More generally, when V has a constant sectional curvature K, we get

ρp1qpxq “ ´Kpn´ 1q ´
ÿ

mPJn´1K

λ2
m,Cpxq

Recall that the Gauss curvature at x P C is given by

κCpxq “
ź

mPJn´1K

λm,Cpxq

Similarly to (111), we can introduce

@ x P C, κ
p1q
C pxq B BrκΨpC,rqpψC,rpxqq|r“0

and, if one has indexed in a coherent (e.g. nondecreasing) way the eigenvalues of the second
fundamental form,

@ x P C, @ m P Jn´ 1K, λ
p1q
m,Cpxq B Brλm,ΨpC,rqpψC,rpxqq|r“0

Then we have, at least if none of the eigenvalues vanishes,

@ x P C, κ
p1q
C pxq “ κCpxq

ÿ

mPJn´1K

λ
p1q
m,C

λm,C
pxq

As in the proof of Lemma 56, we deduce that

Br

ż

ΨpC,rq
κ dσ

ˇ

ˇ

ˇ

ˇ

ˇ

r“0

“

ż

C
κp1q ` ρκ dσ (114)

The last two formulas are valid on any Riemannian manifold V of dimension n.
But when V has a constant sectional curvature K, since

@ x P C, @ m P Jn´ 1K, λ
p1q
m,Cpxq “ ´K ´ λ2

m,C
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we obtain that, at least if none of the eigenvalues vanishes,

@ x P C, κ
p1q
C pxq “ ´

¨

˝ρCpxq `K
ÿ

mPJn´1K

1

λm,Cpxq

˛

‚κCpxq

Integrating this relation with respect to σ on C, it follows from (114) that

Br

ż

ΨpC,rq
κC dσ

ˇ

ˇ

ˇ

ˇ

ˇ

r“0

“ ´K

ż

C

ÿ

mPJn´1K

1

λm,C
κC dσ

When n “ 3, we have

ˆ

1

λ1,C
`

1

λ2,C

˙

κC “ λ1,C ` λ2,C

“ ρC

thus

Br

ż

ΨpC,rq
κC dσ

ˇ

ˇ

ˇ

ˇ

ˇ

r“0

“ ´K

ż

C
ρC dσ

“ ´K BrλpΨpD, rqq|r“0

Namely the quantity

ż

C
κC dσ `KλpDq

is invariant under the normal radial flow (as long as it remains in D). This is a very special case
of the Gauss-Bonnet theorem, asserting that the above quantity is equal to 2π times the Euler
characteristic of V .

Again, one is left wondering about possible links between the normal radial flow and the gen-
eralized Gauss-Bonnet theorem.

(c) It is also natural to ask for a generalization of Lemma 57 when V is a surface whose curvature
is not constant.

˝

Let us come back to our martingale problem and to Proposition 55. The explicit description
of the martingale associated to the evolution of pGf pDtqqtPr0,τs in terms of the stopped Brownian
motion pBtqtPr0,τs, enables us to see that for any f, g P C8pV q and D P D,

ΓLrFf , GgspDq “ Gf pDq pF4gpDq `HgpDqq

ΓLrGf , GgspDq “ pF4f pDq `Hf pDqq pF4gpDq `HgpDqq

These formulas leads to an enrichment of the algebra D of the introduction. Indeed, consider
the new algebra D consisting of the functionals of the form F B fpA1, ..., Anq, where n P Z`,
A1, ..., An are elementary observables of the form (4) or (108) and f : R Ñ R is a C8 mapping,
with R an open subset of Rn containing the image of D by pA1, ..., Anq. For such a functional F,
define

LrFs “
ÿ

jPJ1,nK

BjfpA1, ..., AnqLrAjs `
ÿ

k,lPJ1,nK

Bk,lfpA1, ..., AnqΓLrAk, Als
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To two elements of D, F B fpA1, ..., Anq and G B gp rA1, ..., rAmq, we also associate

ΓLrF,Gs B
ÿ

lPJnK,kPJmK

BlfpA1, ..., AnqBkgp rA1, ..., rAmqΓLrAl, rAks

These formulas can be directly obtained as consequences of Itô’s formula applied to the expressions
given in (107) and Proposition 55, since the corresponding Brownian motions are the same (cf.
Remark 52).

6.4 Asymptotic behavior for large times on the plane

In this last subsection, we present an example of application of the above extension of the domain
of L. We consider the Laplacian L “ 4 on the Euclidean plane R2. We assume the domain of L
has been extended to contain all mappings of the forms (4) and (108), defined on G, an extension
of D as described before Theorem 5. Just make the hypothesis that the boundaries of the elements
of G are piecewise differentiable curves.

Theorem 59 Let pDtqtě0 be a solution to the martingale problem associated to L defined for all
times. Then we have a.s. in the Hausdorff metric,

lim
tÑ`8

Dt
a

λpDtq
“ Bp0, 1{

?
πq

where Bp0, 1{
?
πq is the Euclidean ball centered at 0 of radius 1{

?
π.

Proof

From Theorem 5, we know that for any t ą 0, λpDtq ą 0, namely Dt is not a singleton and belongs
to G by assumption. Up to replacing pDtqtě0 by pD1`tqtě0, we assume in this proof that Dt belongs
to G for all t ě 0.

In the Euclidean plane, the following isoperimetric inequality holds:

@ D P G, σpCq2

λpDq
ě 4π (115)

with equality if and only if D is a ball.
From Proposition 53 and τ “ `8, we deduce that

lim inf
tÑ`8

σpCtq ě 2 lim
tÑ`8

a

πλpDtq ą 0

Thus in (12) we get ς “ `8 and in (13), limtÑ`8 θt “ `8.
In these circunstances, Theorem 5 asserts that pλpDθtqqtě0 is a Bessel process of dimension 3

and in particular

lim
tÑ`8

λpDtq “ `8

We now use Proposition 55. From the relation G1pDq “ σpCq, we get in general that

dσpCtq “

ˆ
ż

Ct

ρp1q ` 2
σpCtq

λpDtq
ρ dσ

˙

dt`
?

2

ˆ
ż

Ct

ρ dσ

˙

dBt

But for the Euclidean space, we have ρp1q “ ´ρ2 and
ş

ρ dσ “ 2π, according to Lemma 57 and
Hopf’s Umlaufsatz Theorem (113) (taking into account that the considered boundaries are piece-
wise differentiable), respectively. Thus we get

dσpCtq “

ˆ

´

ż

Ct

ρ2 dσ ` 4π
σpCtq

λpDtq

˙

dt` 2
?

2π dBt
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and

dσpCtq
2 “ 2

ˆ

´

ż

Ct

ρ2 dσ ` 4π
σpCtq

λpDtq

˙

σpCtq dt` 4
?

2πσpCtq dBt ` 8π2dt

Recall from (106) that

dλpDtq “ 2
σpCtq

2

λpDtq
dt`

?
2σpCtq dBt

Consider the process Z B pZtqtě0 defined by

@ t ě 0, Zt B σpCtq
2 ´ 4πλpDtq

From the above computations, we deduce that

@ t ě 0, dZt “ 2

ˆ

4π2 ´ σpCtq

ż

Ct

ρ2 dσ

˙

dt

By Cauchy-Schwarz’ inequality, we have for any t ě 0,

4π2 “

ˆ
ż

Ct

ρ dσ

˙2

ď σpCtq

ż

Ct

ρ2 dσ

showing that Z is a.s. non-increasing. Thus we have

@ t ě 0, Zt ď Z0 (116)

For any t ě 0, denote rDt B Dt{
a

λpDtq. We have for any t ě 0,

σp rCtq
2 ´ 4πλp rDtq “

σpCtq
2 ´ 4πλpDtq

λpDtq

ď
σpC0q

2 ´ 4πλpD0q

λpDtq

and the last expression goes to zero as t goes to `8. From Bonnesen’s inequality (see e.g. the book
of Burago and Zalgaller [3]), we deduce that as t goes to infinity, rDt becomes closer and closer to
a disk of volume 1. To see the announced result, it is sufficient to see that the barycenter of rDt,
which is the barycenter of Dt divided by

a

λpDtq, i.e.

1

λpDtq
3{2

ż

Dt

xλpdxq

converges a.s. to 0 as t goes to `8. It amounts to see that Ff{F
3{2
1 pDtq converges to zero for

t large, where f is either the first or the second canonical projection of R2. So let f be the
first coordinate mapping (the second coordinate can be treated similarly, note that a symmetry
argument cannot be used here, since the well-posedness is missing). Before investigating the

evolution of R` Q t ÞÑ Ff{F
3{2
1 pDtq, we need a preliminary result.

Lemma 60 A transition phenomenon occurs:

@ a ą 1,

ż `8

0

1

λpDtq
a
ds ă `8

while

@ a ď 1,

ż `8

0

1

λpDtq
a
ds “ `8

Furthermore, we have for large t ě 0, a.s.,
ż t

0

1

λpDsq
ds „

lnpF1qpDtq

4π
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Proof

This is based on the fact that λpDtq goes to infinity as t goes to infinity. More precisely, taking
into account (104) and (105), we compute that for any a ą 0 and any D P G,

L

„

1

F a1



pDq “ ´
a

F a`1
1 pDq

LrF1spDq `
apa` 1q

F a`2
1

ΓLrF1, F1spDq

“ apa´ 1q
σpCq2

λpDqa`2

and in the sense of Proposition 51

a

ΓL

„

1

F a1



pDq “ ´
a

F a`1
1 pDq

G1pDq

“ ´
aσpCq

λpDqa`1

where
?

ΓL r1{F
a
1 s stands for

a

ΓL r1{F
a
1 , 1{F

a
1 s. Since for any a ą 0, we know that 1{F a1 pDtq

converges to zero as t goes to infinity, we deduce that

1

F a1
pDtq ´

1

F a1
pD0q “

ż t

0
L

„

1

F a1



pDsq ds`
?

2

ż t

0

a

ΓL

„

1

F a1



pDsq dBs

“ apa´ 1q

ż t

0

σpCsq
2

λpDsq
a`2

ds´
?

2a

ż t

0

σpCsq

λpDsq
a`1

dBs (117)

converges for large t ě 0. By a contradictory argument, assume that

ż `8

0

σpCsq
2

λpDsq
2a`2

ds “ `8

which implies in particular that

ż `8

0

σpCsq
2

λpDsq
a`2

ds “ `8 (118)

since limtÑ`8 λpDtq “ `8. The bracket of the local martingale p
şt
0

?
ΓLr

1
Fa1
spDsq dBsqtě0 is given

for any t ě 0 by

B
ż ¨

0

a

ΓL

„

1

F a1



pDsq dBs

F

t

“

ż t

0
ΓL

„

1

F a1



pDsq ds

“ a2

ż t

0

σpCsq
2

λpDsq
2a`2

ds

so that the iterated logarithm law for continuous local martingales implies

lim sup
tÑ`8

ż t

0

a

ΓL

„

1

F a1



pDsq dBs “ `8

lim inf
tÑ`8

ż t

0

a

ΓL

„

1

F a1



pDsq dBs “ ´8

In view of (118), it would follow that for large t ě 0, the expression in (117) admits ´8 as liminf
if a ď 1 and `8 as limsup if a ě 1, this is in contradiction with the existence of a finite limit.
Thus we get that

ż `8

0

σpCsq
2

λpDsq
2a`2

ds ă `8
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We get the first announced result, remembering that for large t ě 0, σpCtq „ 2
a

πλpDtq.
For the second result with a “ 1, rather consider the observable lnp1{F1q. We have for any

D P G,

L rlnpF1qs pDq “
1

F1pDq
LrF1spDq ´

1

F 2
1pDq

ΓLrF1spDq “
σpCq2

λpDq2

and

a

ΓL rlnpF1qs pDq “
1

F1pDq
G1pDq “

σpCq

λpDq

So via similar contradictory arguments as before with

lnpF1qpDtq ´ lnpF1qpD0q “

ż t

0

σpCsq
2

λpDsq
2
ds´

?
2

ż t

0

σpCsq

λpDsq
dBs (119)

which diverges to `8 as t goes to infinity, we end up with

ż `8

0

σpCsq
2

λpDsq
2
ds “ `8

For the last result, we need to apply more carefully the iterated logarithm law. Let pMtqtě0 be the
continuous local martingale defined by

@ t ě 0, Mt B

ż t

0

σpCsq

λpDsq
dBs

Its bracket is given by

@ t ě 0, xMyt B

ż t

0

σpCsq
2

λpDsq
2
ds

Since xMyt diverges to `8 for large t ě 0, the iterated logarithm law asserts that

lim sup
tÑ`8

|Mt|
a

xMyt lnplnpxMytqq
“ 1

It follows that for large t ě 0,

|Mt| !

ż `8

0

σpCsq
2

λpDsq
2
ds

and the last statement of the lemma is a direct consequence of (119) and of the fact that σpCtq
2 „

4πλpDtq, for large t ě 0.
�

Let us come back to our objective to show that ξt converges a.s. toward 0, where

@ t ě 0, ξt B
Ff pDtq

F
3{2
1 pDtq

with f the first coordinate mapping of R2. Instead of applying the martingale problem directly

to the composed observable D Q D ÞÑ Ff{F
3{2
1 pDq, it seems more convenient to decompose ξt into

Mt{
a

λpDtq, where pMtqtě0 is defined by

@ t ě 0, Mt B
Ff
F1
pDtq “ Λrf spDtq
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From Theorem (3), we have

LrΛrf sspDq “ Λr4rf ss “ 0

so it follows that pMtqtě0 is a local martingale. More precisely, we get from Proposition 51 that

@ t ě 0, Mt “ M0 `

ż t

0
hs dBs

where for any s ě 0,

hs B
a

ΓLrFf{F1spDsq

“
Gf
F1
pDsq ´

Ff
F 2
1

pDsqG1pDsq

“
G1

F1
pDsq

ˆ

Gf
G1

´
Ff
F1

˙

pDsq

When f is replaced by the identity mapping id : R2 Ñ R2, for anyD P G, the vector
´

Gid
G1
´

Fid
F1

¯

pDq

is the difference between the barycenter of C and the barycenter of D, so it appears easily that for
any s ě 0,

|hs| ď
σpCsq

λpDsq

›

›

›

›

Gid

G1

pDsq ´
Fid

F1
pDsq

›

›

›

›

ď
σpCsq

2

2λpDsq

More precise computations, separately presented in [16] because they rely on techniques belonging
to the field of isoperimetric stability, show that there exists a universal constant c ą 0 such that
for any D P G with σpCq2 ´ 4πλpDq ď λpDq{π, we have

›

›

›

›

Gid

G1

pDq ´
Fid

F1
pDq

›

›

›

›

ď cλ1{4pDqpσpCq2 ´ 4πλpDqq1{4

Thus taking into account the decreasing property (116) and the fact that λpDsq diverges to `8
as s goes to infinity, we get there exists (a.s.) a random time S and a constant χ (depending on
D0) such that

@ s ě S, |hs| ď
χ

λpDsq
1{4

From the iterated logarithm law, we deduce that as t goes to `8,

|Mt| “ rO

˜
d

ż t

0

1
a

λpDsq
ds

¸

(120)

where the notation φptq “ rOpϕptqq, for two functions φ, ϕ : R` Ñ R` with limtÑ`8 ϕptq “ `8,
means that

lim sup
tÑ`8

φptq

ϕptq lnplnpϕptqqq
ă `8

Applying the martingale problem to the composed functional
?
F1, we get that for any t ě 0,

a

F1pDtq “
a

F1pD0q `
3

4

ż t

0

σpCsq
2

λpDsq
3{2

ds`
1
?

2

ż t

0

σpCsq
a

λpDsq
dBs
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Using again, on one hand that σpCsq
2 and λpDsq are of the same order for large s ě 0, and on the

other hand the iterated logarithm law, we deduce that for large t ě 0,

ż t

0

1
a

λpDsq
ds “ rOp

a

λpDtq `
?
tq (121)

Another application of the iterated logarithm law to three independent Brownian motions enables
to see that if pRtqtě0 is a Bessel process of dimension 3, then a.s.,

Rt “ rOp
?
tq (122)

Recall that pRtqtě0 B λpDθtqtě0 is a Bessel process of dimension 3, according to Theorem 5, where
pθtqtě0 is defined by

@ t ě 0, 2

ż θt

0
σpCsq

2 ds “ t

The martingale problem applied to F1 shows that for any t ě 0,

λpDtq “ λpD0q ` 2

ż t

0

σpCsq
2

λpDsq
ds`

?
2

ż t

0
σpCsq dBs

Replacing t by θt, we deduce that

θt „
1

4π

ż θt

0

σpCsq
2

λpDsq
ds

“
1

8π

ˆ

λpDθtq ´ λpD0q ´
?

2

ż θt

0
σpCsq dBs

˙

“ rO

¨

˝

?
t`

d

ż θs

0
σpCsq2 ds

˛

‚

“ rOp
?
tq

It follows that

t2 “ rOpθ´1
t q

“ rOpR2
θ´1
t
q

“ rOpλpDtq
2q

where θ´1 stands for the inverse mapping of θ : R` Ñ R`. Finally we obtain

?
t “ rOp

a

λpDtqq (123)

and this is sufficient to insure that a.s.

lim
tÑ`8

Mt
a

λpDtq
“ 0

in view of (120) and (121).
�

Remark 61 From (123), it appears that

lim sup
tÑ`8

lnptq

lnpλpDtqq
ď 1
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We believe (in accordance with the beginning of Lemma 60) that

lim
tÑ`8

lnpλpDtqq

lnptq
“ 1

but we have not been able to show it, even taking into account a lower bound on the rate of escape
for the Bessel process pRtqtě0 of dimension 3, stating that for any a ą 1,

lim inf
tÑ`8

Rt lnaptq
?
t

“ `8

according to Theorem 3.2 (ii) of Shiga and Watanabe [25], see also Motoo [21] (the part (i) of their
theorem extends (122) to any Bessel process with a positive parameter). This implies that

lim
tÑ`8

lnpRtq

lnptq
“

1

2

Furthermore, note that in the above proof we did not use the last part Lemma 60, which also
gives an equivalent of lnpλpDtqq for large t ě 0.

These shortcomings are an invitation to study further the asymptotic behavior of the renor-
malized domains pDt{

a

λpDtqqtě0, in particular their fluctuations around the convergence of The-
orem 59.

˝

7 Elliptic density theorem revisited

Here we assume that Conjecture 6 is true: not only we can construct a solution pDtqtPr0,τs to the
martingale problem associated to pD,Lq and starting from any singleton tx0u Ă V , but it can be
coupled with the primal diffusion X starting from x0 so that (14) and (15) are satisfied. Let us
show how to quickly recover the density theorem for elliptic diffusion from this property.

The proof is based on the following elementary observation:

Lemma 62 Let A Ă V be a negligible event with respect to µ and denote f its indicator function.
For any measurable D Ă V with µpDq ą 0 and s ě 0, we have

ΛrPsrf sspDq “ 0

where pPtqtě0 is the Markov semi-group associated to L, seen as a family of Markov kernels.

Proof

Taking into account that µ is invariant for pPtqtě0, we have

ΛrPsrf sspDq “
µr1DPsrf ss

µpDq

ď
µrPsrf ss

µpDq

“
µrf s

µpDq

“ 0

�
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We can now come to the

Proof of Corollary 7

With the notations of the above lemma and Corollary 7, we want to check that for any x0 P V
and any r ą 0, Prrf spx0q B Ex0rfpXrqs “ 0.

For any t ě 0, let Ft be the σ-field generated by Xr0,ts and Dr0,t^τs. From (14), we get that the
diffusion X B pXtqtě0 is also strongly Markovian with respect to the filtration pFtqtě0. Remark
that τ ą 0, the stopping time entering into the definition of pDtqtPr0,τs, is also a stopping time with
respect to pFtqtě0. It follows that

Ex0rfpXrqs “ Ex0rEx0rfpXrq|Fr^τss
“ Ex0rPr´r^τrf spXr^τqs

For any t ě 0, let Dt be the σ-field generated by Dr0,t^τs. It follows from (14) with T “ r ^ τ,
that

Erhpr ^ τ, Xr^τq|Dr^τs “ ΛpDr^τ, hpr ^ τ, ¨qq

for any non-negative measurable mapping h : R` ˆ V Ñ R`. We deduce that

Ex0rfpXrqs “ Ex0rEx0rPr´r^τrf spXr^τq|Dr^τss
“ Ex0rΛrPr´r^τrf sspDr^τqs

“ 0

according to Lemma 62. Indeed, we took into account Theorem 5, insuring that for any t P p0, τs,
we have µpDtq ą 0.

�

With Marc Arnaudon, we are currently working on the existence of a coupling as in Conjecture 6
and some results in this direction will be presented in a future paper.

When the solutions to the martingale problems associated to pD,Lq and to initial singleton sets
can be defined for all times, there is no need to have such a coupling at our disposal to recover
the density theorem for elliptic diffusions. Indeed, assume that for any x0 P V , we can construct
a solution pDtqtě0 to the martingale problem associated to pD,Lq and starting from the singleton
tx0u Ă V . First, we remark that we can enrich the martingale problem by adding a temporal
component. Let us just sketch the argument: when F P D and f P C1pr0, tsq with t ą 0 are given,
define

@ ps,Dq P r0, ts ˆD, Lrf b Fsps,Dq B BsfpsqFpDq ` fpsqLrFspDq (124)

A simple computation shows that the process pMfbF
s qsPr0,ts given by

@ s P r0, ts, MfbF
s B fpsqFpDsq ´ fp0qFpD0q ´

ż s

0
Lrf b Fspu,Duq du

is a martingale, whose bracket process is given by

@ s P r0, ts,
A

MfbF
¨

E

s
“

ż s

0
f2puqΓLrF,FspDuq du

By traditional approximations, these considerations can be generalized to more general mappings
F : r0, tsˆD Ñ R, in particular they must be C1 with respect to the time component so that (124)
can be extended to

@ ps,Dq P r0, ts ˆD, LrFsps,Dq B BsFps,Dq ` LrFps, ¨qspDq
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The fact that the corresponding process defined by

@ s P r0, ts, MF
s B Fps,Dsq ´ Fp0, D0q ´

ż s

0
LrFspu,Duq du

is a martingale is called the Dynkin’s formula.
Fix g P C8pV q, the above considerations can be applied to the mapping

F : r0, ts ˆD Q ps,Dq ÞÑ ΛrPt´srgsspDq

for which we compute that LrFs “ 0, due to the intertwining relation of Theorem 3. Taking
expectations, it follows that

Etx0urΛrgspDtqs “ ΛrPtrgssptx0uq

which amounts to intertwining relations at the level of semi-groups:

@ g P C8pV q, PtrΛrgssptx0uq “ ΛrPtrgssptx0uq

“ Ptrgspx0q

where pPtqtě0 is the Markov semi-group associated to L. Since both the l.h.s. and the r.h.s. can
be seen as integration of the mapping g, this relation is extended to any non-negative measurable
function g. When we take for g the indicator function of a measurable set negligible with respect
to µ, we get that

@ t ą 0, Etx0urΛrgspDtqs “ 0

according to Lemma 62 and due to the fact that µpDtq ą 0, from Theorem 5. We deduce that
Ptrgspx0q “ 0, for any t ą 0 and x0 P V , as wanted.

An immediate extension is:

Proposition 63 Assume that there exists ε ą 0 such that for any x0 P V , we can construct a
solution pDtqtPr0,εs to the martingale problem associated to pD,Lq and starting from the singleton
tx0u Ă V . Then for any t ą 0 and whatever the initial law LpX0q, the law of Xt is absolutely
continuous with respect to µ.

Proof

The arguments presented above the statement of this proposition show that for any s P p0, εs and
any function f : V Ñ R` negligible with respect to µ, we have that Psrf s “ 0. By invariance of
µ, we also have that for any u ě 0, Purf s is negligible with respect to µ: µrPurf ss “ µrf s “ 0. We
deduce that Ps`urf s “ PsrPurf ss “ 0 and the announced result follows.

�

Of course Corollary 7 and Proposition 63 are well-known in the present elliptic diffusion frame-
work. Nevertheless, we think this new approach can be adapted to more complicated context, as
Theorem 5 is quite universal (it was shown to hold also for hypoelliptic diffusions, for the moment
in dimension 1, in [17]). We believe it should always be possible to associate to a diffusion some
evolving sets (as mentioned in the introduction) whose weights for an invariant measure behave
like a continuous martingale. By conditioning the primal diffusion X to remain inside these sets,
we would be led to a Bessel-3 process, up to a time-change and at least if the randomness of X is
sufficient, as the Brownian motion conditioned to stay positive ends up being a Bessel-3 process.

Another noticeable downside of Corollary 7 is that it requires the a priori knowledge that µ is
absolutely continuous with respect to the Riemannian measure. A more general statement would
only conclude, at positive times, to the absolute continuity of the time-marginal laws with respect
to the invariante measure. In this paper we only considered kernels Λ which are directly related to
the invariant measure µ, but it would be instructive to condition with respect to other measures,
even time-dependent ones.
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A About product situations

As already mentioned in the introduction, there are in general several dual generators intertwined
through Λ with a given generator L. We consider in this appendix the product situation, where
this multiplicity is particularly obvious.

Let rL and pL be two smooth generators on the manifolds rV and pV of dimension larger or equal
to 1. Consider V B rV ˆ pV endowed with L B rL b pI ` rI b pL (rI and pI are the identity operators
acting on C8prV q and C8ppV q respectively). All the notions relative to rL (respectively pL) will receive
a tilde (resp. a hat). Assume that rL admits an invariant Radon measure rµ and consider on rG, an
appropriate set of compact subsets of rV with positive measures, the kernel rΛ naturally associated
with rµ. Let rD be an algebra of observables on rG on which we are given an operator rL, intertwined
with rL through rΛ: rLrΛ “ rΛrL. Make similar hypotheses for pL. Next define

Gindep B t rD ˆ pD : rD P rG and pD P pGu
Dindep B rDb pD

Lindep B rLb I
pD
` I

rD
b pL

where I
rD

and I
pD

are the identity operators on rD and pD respectively. It is immediate to check

that LindepΛ “ ΛL, where Λ B rΛ b pΛ is the natural Markov kernel associated with the measure

µ B rµ b pµ, invariant for L. When p rDtqtPr0,rτq and p pDtqtPr0,pτq are independent processes satisfying

the martingale problems associated with prD, rLq and ppD, pLq respectively, then pDtqtPr0,τq, defined
by

τ B rτ ^ pτ

@ t P r0, τq, Dt B p rDt, pDtq P Gindep

is a solution to the martingale problem associated with pDindep,Lindepq.
It should be clear that such a solution is very different from the one obtained from Theorem 4,

due to the fact that the evolutions on rG and pG are independent. In fact, the state spaces Gindep

and D are even disjoint. Consider the example where rL “ pL is the Laplacian on R and add the
singletons to G and D. Starting from a singleton, the solution associated with Lindep evolves as
rectangles (centered at the initial point) with independent side-lengths behaving as Bessel processes
of dimension 3, while the solution associated with Theorem 4 evolves as disks (centered at the initial
point) whose radius are Bessel process of dimension 4 (according to Subsection 2.1). It could be
objected that this argument is not really valid, since we did not show uniqueness of the solution
to the martingale problem associated with pD,Lq, or with formal extensions of pD,Lq, in the sense
that exactly the same definitions are applied to more general subsets than those from D. But in
Proposition 59, it is proven that a solution to such a martingale problem, which is furthermore
defined for all times, ends up looking like a big disk and this is not true for the processes associated
with pDindep,Lindepq, since starting from a rectangle, it remains in the set of rectangles.

The fact that under L the evolutions of different parts of the boundary of a domain are strongly
correlated could suggest to try to couple the evolutions under rL and pL. More precisely, assume
that rG “ rD and that rD and rL are constructed as in the introduction, similarly for ppG, pD, pLq. Let
p rDtqtPr0,rτq and p pDtqtPr0,pτq be solutions to the corresponding martingale problems. According to

Proposition 51, there exist Brownian motions p rBtqtě0 and p rBtqtě0 such that

@ rf P C8prV q, @ t P r0, rτq, dF
rf
p rDtq “ rLrF

rf
sp rDtq dt`

?
2
b

Γ
rL
rF

rf
sp rDtq d rBt

“ rLrF
rf
sp rDtq dt`

?
2G

rf
p rDtq d rBt
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and

@ pf P C8ppV q, @ t P r0, pτq, dF
pf
p pDtq “ pLrF

pf
sp rDtq dt`

?
2
b

Γ
pL
rF

pf
sp pDtq d pBt

“ pLrF
pf
sp rDtq dt`

?
2G

pf
p pDtq d pBt

In the previous independent framework, p rBtqtě0 and p rBtqtě0 are independent and we end up
with the generator Lindep. Now we would like to couple p rDtqtPr0,rτq with p pDtqtPr0,pτq by taking

p rBtqtě0 “ p rBtqtě0, since this is suggested by a naive extension of the radial evolution (3) to the
domains belonging to Gindep. But again we end up with a process different from the one obtained

from Theorem 4, for the same reason as above: in the case rL “ pL “ B2, it will evolve as squares if
it is started from a square. It can also be seen on the action of the generators on observables of
the form F

rfb pf
, where rf P C8prV q and pf P C8ppV q. In the general setting, Itô’s formula leads for

the above coupling to the generator Lequal acting on Gindep as

LequalrF rfb pf
s “ F

pf
b rLrF

rf
s ` F

rf
b pLrF

pf
s ` 2G

rf
bG

pf

with the notation of Subsection 6.3. But simple computations show that the formal extension of
L to Gindep should be given by

LrF
rfb pf
s “ rLrF

rf
s b F

pf
` F

rf
b pLrF

pf
s ` 2

G
r1

F
r1

F
rf
bG

pf
` 2G

rf
b
G

p1

F
p1

F
pf

where r1 P C8prV q and p1 P C8ppV q are the functions always taking the value 1.
But in both cases, we have the same carré du champs: for any rf P C8prV q and pf P C8ppV q,

ΓLrF
rfb pf
s “ ΓLequal

rF
rfb pf
s

“

´

F
rf
bG

pf
`G

rf
b F

pf

¯2

which is different from

ΓLindep
rF

rfb pf
s “ F 2

rf
bG2

pf
`G2

rf
b F 2

pf

Nevertheless, the generator Lequal is not intertwined with L through Λ. Indeed, for any rf P

C8prV q and pf P C8ppV q, denote

R
rfb pf

B G
rf
bG

pf
´
G

r1

F
r1

F
rf
bG

pf
´G

rf
b
G

p1

F
p1

F
pf

so that

LequalrF rfb pf
s “ LrF

rfb pf
s ` 2R

rfb pf

From the proof of Theorem 3, we have, with f B rf b pf and 1 B r1b p1,

F1LequalrΛrf ss “ LequalrFf s ´
2

F1
ΓLequal

rFf , F1s ` Ff

ˆ

2

F 2
1

ΓLequal
rF1, F1s ´

1

F1
LequalrF1s

˙

“ LequalrFf s ´
2

F1
ΓLrFf , F1s ` Ff

ˆ

2

F 2
1

ΓLrF1, F1s ´
1

F1
LequalrF1s

˙

“ F1LrΛrf ss ` 2Rf ´ 2
Ff
F1

R1

“ F1ΛrLrf ss ` 2Rf ´ 2
Ff
F1

R1
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Thus if the generator Lequal was to be intertwined with L through Λ, we would have for any
rf P C8prV q and pf P C8ppV q,

R
rfb pf

“
F

rfb pf

F1
R1

“ ´
F

rfb pf

F1
G

r1
bG

p1

This equality holds on Gindep, namely for any rD P rD and pD P pD, we have

F
rfb pf
p rD ˆ pDq “ ´

rµp rDqpµp pDq

rµpB rDqpµpB pDq
R

rfb pf
p rD ˆ pDq

The sets rD and pD being fixed, the mapping rf b pf ÞÑ R
rfb pf
p rD ˆ pDq corresponds to an integration

of rf b pf on the boundary of rD b pD, while rf b pf ÞÑ F
rfb pf
p rD ˆ pDq correspond to an integration of

rf b pf on the interior of rDb pD. Thus for any function rf (respectively pf) whose support is included
in the interior of rD (resp. pD), we get that F

rfb pf
p rD ˆ pDq “ 0, i.e. rµb pµ vanishes on the interior of

rD b pD. Since this is true for any rD P rD and pD P pD, we would conclude that rµ “ 0 and pµ “ 0, a
contradiction.
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Poincaré Probab. Stat., 53(2):957–996, 2017.

[19] Laurent Miclo. On the construction of set-valued dual processes. Preprint available at
https://hal.archives-ouvertes.fr/hal-01911989, November 2018.

[20] Ben Morris and Yuval Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory
Related Fields, 133(2):245–266, 2005.

[21] Minoru Motoo. Proof of the law of iterated logarithm through diffusion equation. Ann. Inst.
Statist. Math., 10:21–28, 1958.

[22] Jouni Parkkonen. Hyperbolic geometry. Unpublished review available at
users.jyu.fi/„parkkone/RG2012/HypGeom.pdf.

[23] J. W. Pitman. One-dimensional Brownian motion and the three-dimensional Bessel process.
Advances in Appl. Probability, 7(3):511–526, 1975.

[24] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[25] Tokuzo Shiga and Shinzo Watanabe. Bessel diffusions as a one-parameter family of diffusion
processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27:37–46, 1973.
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