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S U M M A R Y
In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic
media based on the generalized Maxwell/Zener body including arbitrary number of attenu-
ation mechanisms. We present a frequency-domain energy analysis to establish the stability
condition of a full anisotropic viscoelastic system, according to zero-valued boundary con-
dition and the elastic–viscoelastic correspondence principle: the real-valued stiffness matrix
becomes a complex-valued one in Fourier domain when seismic attenuation is taken into
account. We develop a least-squares optimization approach to linearly relate the quality factor
with the anelastic coefficients by estimating a set of constants which are independent of the
spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general
viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expres-
sion of the wave equation with implicit time integration, we build a systematic formulation
of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent
form of the state and adjoint equation with explicit time integration is available to be resolved
efficiently. In particular, this formulation lays the foundation for the inversion of the param-
eter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic
viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear
moduli parametrization can be related to the counterparts using P and S velocity. Gradients
with respect to any other parameter of interest can be found by chain rule. Pioneering numer-
ical validations as well as the real applications of this most generic framework will be carried
out to disclose the potential of viscoelastic FWI when adequate high-performance computing
resources and the field data are available.

Key words: Fourier analysis; Inverse theory; Seismic attenuation; Seismic tomography; Wave
propagation.

1 I N T RO D U C T I O N

Full waveform inversion (FWI) is an attractive tool to obtain high-resolution subsurface parameters in complex geological structures, by
iteratively minimizing the waveform misfit between the synthetic data and the observed seismograms (Tarantola 1987; Virieux & Operto 2009).
The model parameters are therefore refined with the gradient of the objective function based on the adjoint method (Lailly 1983; Tarantola
1984; Plessix 2006), by simultaneously accessing to the forward wavefield and the adjoint wavefield. Due to the expensive computational
cost, the significant advance of computer power in recent years has been made to promote FWI as a feasible and essential technology to build
a good subsurface model in seismology and applied geophysics as long as seismic data provide the information. Although originally proposed
by Tarantola (1984) in the time domain, the multiscale variants of FWI was developed in the other domains, such as frequency-domain FWI
(Pratt et al. 1998; Sirgue & Pratt 2004; Sirgue 2006; Operto et al. 2015), the Laplace domain (Shin & Cha 2009) and the Laplace–Fourier
counterpart (Shin & Cha 2008). FWI has been explored in acoustic media (Gauthier et al. 1986) and elastic media (Mora 1987; Brossier et al.
2009; Vigh et al. 2014) from 2-D to 3-D (Vigh & Starr 2008), from single parameter (Operto et al. 2015) to multiple parameters (Prieux et al.
2013a,b; Zhou et al. 2015) in the time or frequency domain, allowing for isotropic and anisotropic propagation (Operto et al. 2009; Prieux
et al. 2011; Gholami et al. 2013), based on different hardware architectures (Shin et al. 2014; Yang et al. 2015; Gokhberg & Fichtner 2016,
so on).

Seismic attenuation has already been well confirmed by a wide range of experimental tests and field observations. It plays a crucial role
to delineate the absorption of the wave energy and the dispersion distortion for the phase of the waves, which have a strong impact on the
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FWI inversion result. There exists a number of rheological models (Ursin & Toverud 2002) to achieve attenuation, such as the power-law
attenuation model (Strick 1967; Azimi et al. 1968; Kjartansson 1979), the Kolsky–Futterman model (Kolsky 1956; Futterman 1962), the
Maxwell body, the Kelvin–Voigt model (Casula & Carcione 1992), the Zener body or standard linear solid (SLS; Ben-Menahem & Singh
1981; Pipkin 1986) (well known in mechanics and polymer chemistry (Alfrey 1948; Ferry 1961) and introduced to geophysics later), as
well as their generalizations, the generalized Maxwell body (GMB-EK, abbreviated as GMB hereafter) (Emmerich & Korn 1987; Moczo &
Kristek 2005) or its equivalence—the generalized Zener body (GZB; Carcione et al. 1988b,c). The internal friction in the Earth has been well
recognized to be nearly constant over a wide range of frequency band (Caputo 1967; Liu et al. 1976; Kjartansson 1979). In order to simulate
attenuation for time-domain modeling, GMB/GZB have been widely used by researchers by the superposition of several mechanisms, which
are physically meaningful to achieve the near constant Q effect to mimic the dissipation of the waves in the real Earth.

Recently, incorporating seismic attenuation in the framework of FWI becomes an important topic in seismics. In the frequency domain,
it is very convenient to incorporate attenuation by adding the parameter Q into the imaginary part of complex-valued velocity (Hicks & Pratt
2001). Inversion strategies for viscoacoustic waveform inversion have been proposed by Kamei & Pratt (2013). Operto et al. (2015) show
that a 3-D monoparameter inversion in the frequency domain is feasible thanks to the progress of multifrontal solver for matrix inversion
and the advance of computer capability. However, in the time domain only few studies investigate FWI in the presence of attenuation. Using
a single attenuation mechanism, Bai et al. (2014) studied the viscoacoustic waveform inversion problem, while Cheng et al. (2015) did a
viscoacoustic inversion for the parameter Q. Prior to their works, Kurzmann et al. (2013) have studied the impact of attenuation in time-domain
viscoacoustic FWI using several attenuation mechanisms, showing that considering attenuation as a smooth background modeling parameter
significantly improves the velocity reconstruction, while attenuation is considered in modeling and not an inversion parameter.

A general formulation has been provided by Tromp et al. (2005) for inverting subsurface parameters using adjoint formulation in
viscoelastic media. The attenuation for shear velocity was emphasized due to its significance in the global-scale wave propagation. Since
the pioneer work of Romanowicz (1995) at global scale, estimation of the attenuation factor has focused the attention of seismologists (see
Romanowicz & Mitchell 2007, for a review). Both the theory and the practice on multiparameter inversion using an arbitrary number of SLS
mechanisms allow the inversion of the parameter Q in the time domain in full anisotropic viscoelastic medium: Fichtner & van Driel (2014)
have provided simple expressions for frequency (in)-dependent Q models with numerical demonstration from regional- and global-scale
time-domain wave propagation, complementing and simplifying nicely expressions provided by Tromp et al. (2005). In spite of this now
well-defined framework, it is not so easy to find in the literature consistent expressions to be used for multiple parameters inversion of seismic
waveforms including anisotropic parameters, density and attenuation factors. This is the purpose of this paper where expressions are presented
in an explicit and coherent framework, allowing to clarify some implicit assumptions in previous demonstrations.

In this paper, we present a systematic formulation of multiparameter anisotropic viscoelastic FWI. Within the framework of linear
viscoelasticity in Section 2, we perform an energy analysis in Section 3, based upon the elastic–viscoelastic correspondence principle, to
disclose the requirement of GMB-based viscoelastic system to attenuate the energy in wave propagation. In Section 4, by reformulating
the least-squares optimization to an approximate constant Q, we construct a linear representation of anelastic coefficients using attenuation
parameters, which allows us to explicitly inject it into the viscoelastic wave equation and to invert this parameter further. In Section 5, we
present the Lagrangian formulation of the waveform inversion problem with the matrix expression of symmetrical elastodynamic equation
in an implicit time scheme, which provides the same solution as the equivalent non-symmetrical wave equation in the usual explicit time
scheme for computation feasibility. In Section 6, we establish the relationship between different model parametrization to facilitate the
gradient computation of the misfit function between observed and synthetic fields, gradient with respect to bulk and shear moduli, as well as
P- and S-wave speeds. This new formulation builds a consistent framework with potential applications in both seismology and exploration
geophysics.

2 L I N E A R V I S C O E L A S T I C I T Y

For notation clarification, let us remind the usual framework of linear viscoelasticity by considering the partial differential equations before
the correspondence principle between elastic and viscoelastic rheologies as well as the widely used GMB/GZB rheology.

The equation of wave motion is governed by the Newton’s law

ρv̇i = σi j, j = ∂ jσi j , (1)

where the particle velocity vi is related to the stress σ ij scaled by the density ρ. In non-attenuating medium, the constitutive Hooke’s law
establishes the relationship between the stress σ ij and the strain εkl by introducing the medium properties cijkl through the linear relation

σi j = ci jklεkl , (2)

where the Einstein notation has been tacitly applied (implicit summation for repeated indices i, j, k, l ∈ [x, y, z] ≡ [1, 2, 3]) in the remainder of
this paper. The time derivatives are denoted by a dot over the involved variable for compactness. The strain ε is connected to the displacement
u via

εi j = 1

2
(u j,i + ui, j ). (3)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/207/1/129/2583538 by C

N
R

S - ISTO
 user on 13 O

ctober 2021



3-D viscoelastic FWI 131

Thus, the time derivative of deformation is linked to the particle velocity v = (v1, v2, v3)T via ε̇i j = 1
2 (v j,i + vi, j ). Let us remark that usually

the density and the stiffness are functions of space (ρ = ρ(x), ci jkl = ci jkl (x)), while the particle velocity, stress and strain are functions of
both space and time (vi = vi (x, t), σi j = σi j (x, t), εkl = εkl (x, t)) when considering seismic wave propagation.

In the linear viscoelastic medium, the stress tensor σ ij is generally related to the strain tensor εij and the fourth-order tensorial relaxation
function ψ ijkl via

σi j (x, t) = ψi jkl (x, t) ∗t ε̇kl (x, t) =
∫ t

−∞
ψi jkl (x, t − τ )ε̇kl (x, τ ) dτ (4)

= ψ̇i jkl (x, t) ∗t εkl (x, t) =
∫ t

−∞
ψ̇i jkl (x, t − τ )εkl (x, τ ) dτ. (5)

The symbol ∗t stands for convolution in time satisfying the property ∂ t(f ∗t g) = (∂ tf) ∗t g = f ∗t (∂ tg). Let us denote the relaxation rate
Mi jkl (x, t) : = ψ̇i jkl (x, t). This constitutive relation can be written as

σi j (x, t) = Mi jkl (x, t) ∗t εkl (x, t) (6)

This yields, in the frequency domain (Emmerich & Korn 1987, eq. 1),

σ̃i j (x, ω) = M̃i jkl (x, ω)ε̃kl (x, ω), (7)

where the tilde over variables indicates the Fourier transform. Recall that the constitutive relation for pure elastic medium shown in (2), the
pure elastic wave equation can be seen as a particular case of viscoelastic wave equation with specific relaxation rate

Mi jkl (x, t) = ci jkl (x)δ(t) or M̃i jkl (x, ω) = ci jkl (x), (8)

where δ(t) is the Dirac delta function. Hence, M̃i jkl (x, ω) is complex and frequency dependent for viscoelastic media, while it becomes real
and frequency independent for elastic media. Eq. (7) is the so-called elastic–viscoelastic correspondence principle, also referred to as the
elastic–viscoelastic analogy, showing the similarity between the elastic and viscoelastic formulations in the frequency domain: the stiffness
tensor becomes complex in viscous elastic media while keeping the same form (convolution in time becomes product in frequency). For more
extensive explanations, see the contributions by Sips (1951), Read (1950), Brull (1953), Lee (1960), Christensen (1982, p. 46) and Carcione
(2001, p. 55). This very important fundamental principle is described in the frequency domain and, therefore, we shall consider the energy
analysis in this domain in the following paragraph.

3 E N E RG Y A NA LY S I S

Understanding what is the energy evolution in an attenuating medium is crucial for tracking reverse propagation of incident field for FWI
aside better physical insight (Yang et al. 2016). In this section, we show how to retrieve the decreasing rate of dissipation of the energy of
the viscoelastodynamic equation based on GMB model. Previous equivalent analysis for GZB model has been performed in the time domain
with a physically based energy definition (Bécache et al. 2005). Through the frequency approach, we shall identify the term related to the
energy definition as the explicit time-varying term, thanks to the correspondence principle. Finally, let us remark that the energy definition
for general viscoelastodynamic models (not for very specific GMB or equivalent GZB models) is not unique as discussed by Scott (1997),
Carcione (2001) and Červený & Pšenčı́k (2006).

We first define the inner product between two functions h and g over the spatial domain 
 as

〈h, g〉
 =
∫




dxh(x, t)g(x, t). (9)

Assuming zero-valued boundary condition for functions h and g (in our case, it will be velocities and stresses for wave propagation), the
following fundamental relation can be deduced by integration by parts

〈h, ∂i g〉 + 〈∂i h, g〉
 =
∫




dxh∂i g +
∫




dx∂i hg = 0, h ∈ {vi }, g ∈ {σi j }, i, j ∈ {1, 2, 3}. (10)

The Fourier transform states that time-domain multiplication corresponds to frequency-domain convolution, leading to∫



dxh̃† ∗ω ∂i g̃ +
∫




dx(∂i h̃)† ∗ω g̃ = 0, h̃ ∈ {ṽi }, g̃ ∈ {σ̃i j }, i, j ∈ {1, 2, 3}, (11)

where the symbol ∗ω indicates frequency-domain convolution, while the symbol † denotes conjugate transposition (equivalent to transpose T

for real variables and complex conjugate for scalars). When applied to operators, it will provide associated adjoint operator.
Let us define

D1 =

⎡
⎢⎢⎣

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤
⎥⎥⎦, D2 =

⎡
⎢⎢⎣

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

⎤
⎥⎥⎦, D3 =

⎡
⎢⎢⎣

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

⎤
⎥⎥⎦, (12)
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such that a differential operator D with Auld’s notation (Auld 1990) can be specified in the following

D =

⎡
⎢⎢⎣

∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0

⎤
⎥⎥⎦ = Di∂i , (13)

The time derivative of the strain tensor is

ε̇i j = 1

2
(u̇i, j + u̇ j,i ) = 1

2
(vi, j + v j,i ), (14)

or in frequency domain

iωε̃i j (x, ω) = 1

2
(∂ j ṽi (x, ω) + ∂i ṽ j (x, ω)). (15)

The Newton law (1) in frequency domain reads

iωρ(x)ṽi (x, ω) = ∂ j σ̃i j (x, ω), (16)

which may be recast in matrix as

iωρ

⎡
⎢⎣ ṽ1

ṽ2

ṽ3

⎤
⎥⎦

︸ ︷︷ ︸
ṽ

=

⎡
⎢⎢⎣

∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̃11

σ̃22

σ̃33

σ̃23

σ̃13

σ̃12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
σ̃

. (17)

For the sake of simplicity we shall only keep the tilde over the variables and drop the index (x, ω) hereafter.
Instead of using complex-valued stiffness M̃i jkl , we may also express the constitutive relation (7) by its inverse, the complex-valued

compliance tensor S̃ through s̃kli j σ̃i j = ε̃kl , leading to

iωs̃kli j σ̃i j = iωε̃kl = 1

2
(∂k ṽl + ∂l ṽk). (18)

Thanks to the symmetry assumption s̃i jkl = s̃ j ikl = s̃i jlk = s̃kli j , we then have

iω

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃1111 s̃1122 s̃1133 2s̃1123 2s̃1113 2s̃1112

s̃2211 s̃2222 s̃2233 2s̃2223 2s̃2213 2s̃2212

s̃3311 s̃3322 s̃3333 2s̃3323 2s̃3313 2s̃3312

2s̃2311 2s̃2322 2s̃2333 4s̃2323 4s̃2313 4s̃2312

2s̃1311 2s̃1322 2s̃1333 4s̃1323 4s̃1313 4s̃1312

2s̃1211 2s̃1222 2s̃1233 4s̃1223 4s̃1213 4s̃1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S̃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̃11

σ̃22

σ̃33

σ̃23

σ̃13

σ̃12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
σ̃

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂1 0 0

0 ∂2 0

0 0 ∂3

0 ∂1 ∂2

∂3 0 ∂1

∂2 ∂1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
DT

⎡
⎢⎢⎣

ṽ1

ṽ2

ṽ3

⎤
⎥⎥⎦

︸ ︷︷ ︸
v

. (19)

Combining eqs (17) and (19) gives

iω

[
ρ I 0

0 S̃

]
︸ ︷︷ ︸

S

[
ṽ

σ̃

]
︸ ︷︷ ︸

w̃

=
[

0 D

DT 0

]
︸ ︷︷ ︸

B(∇)

[
ṽ

σ̃

]
︸ ︷︷ ︸

w̃

, B(∇) = ∂i Bi , Bi =
[

0 Di

DT
i 0

]
, (20)

or, in compact form,

iωSw̃ = B(∇)w̃. (21)

Convolving with the vector 1
2 w̃† on both sides of eq. (21) gives

1

2
w̃† ∗ω iωSw̃ = 1

2
w̃† ∗ω B(∇)w̃ = 1

2
∂i (w̃

† ∗ω Bi w̃)

= 1

2
∂i

([
ṽ†, σ̃ †

]
∗ω

[
0 Di

DT
i 0

][
ṽ

σ̃

])
= 1

2
∂i [ṽ

† ∗ω Di σ̃ + σ̃ † ∗ DT
i ṽ]

= 

[
∂i

(
σ̃
†
i j ∗ω ṽ j

)]
= 


[
σ̃
†
i j,i ∗ω ṽ j + σ̃

†
i j ∗ω ṽ j,i

]
(22)
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where we have used the following identities

ρṽ† ∗ω ṽ = ρṽ
†
i ∗ω ṽi , σ̃ † ∗ω iωSσ̃ = (M̃i jkl ε̃i j )

† ∗ω iωε̃kl = (M̃ ε̃)† ∗ω iωε̃. (23)

Also note that

1

2
w̃† ∗ω iωSw̃ = 1

2
(ṽ† ∗ω iωρṽ + σ̃ † ∗ω iωSσ̃ ). (24)

Combining eq. (24) with (22) yields

1

2
(ṽ† ∗ω iωρṽ + σ̃ † ∗ω iωSσ̃ ) = 
[σ̃ †

i j,i ∗ω ṽ j + σ̃
†
i j ∗ω ṽ j,i ]. (25)

By integration over the whole domain 
, we obtain

1

2

∫



dx(ρṽ† ∗ω iωṽ + (M̃ ε̃)† ∗ω iωε̃) = 

∫




dx
[
σ̃
†
i j,i ∗ω ṽ j + σ̃

†
i j ∗ω ṽ j,i

]
= 0, (26)

thanks to the identity (11).
Let us consider GMB/GZB using L SLSs mechanisms associated with complex stiffness tensor M̃i jkl = ci jkl (1 −∑L

�=1 Y i jkl
� ω�/(ω� +

iω)) (we shall give further detail on it in the next sections and in Appendix A). We have

(M̃i jkl ε̃i j )
† ∗ω iωε̃kl = ci jkl

(
(1 −

L∑
�=1

Y i jkl
�

ω�

ω� + iω
)ε̃i j

)†

∗ω iωε̃kl

= ci jkl

(
1 −

L∑
�=1

Y i jkl
�

)
ε̃
†
i j ∗ω iωε̃kl +

L∑
�=1

Y i jkl
� ci jkl

(
1

ω�

ξ̃
i j
�

)†
∗ω

(
1

ω�

ξ̃ kl
�

)
(iω + ω�)

(
1

ω�

ξ̃
i j
� : = iω

iω + ω�

ε̃i j

)

= ci jkl

(
1 −

L∑
�=1

Y i jkl
�

)
ε̃
†
i j ∗ω iωε̃kl +

L∑
�=1

Y i jkl
�

ω2
�

ci jkl ξ̃
i j†
� ∗ω iωξ̃ kl

� +
L∑

�=1

Y i jkl
�

ω�

ci jkl ξ̃
i j†
� ∗ω ξ̃ kl

� (27)

where we remind that the memory variables ξ
i j
� satisfies the equation ∂tξ

i j
� + ω�ξ

i j
� = ω�ε̇i j . In terms of (26), we obtain the important

viscoelastic/elastic identity:

0 = 1

2

∫



dx(ρṽ† ∗ω iωṽ + (M̃ ε̃)† ∗ω iωε̃)

= 1

2

∫



dx

(
ρṽ

†
i ∗ω iωṽi + ci jkl (1 −

L∑
�=1

Y i jkl
� )ε̃†i j ∗ω iωε̃kl +

L∑
�=1

Y i jkl
�

ω2
�

ci jkl ξ̃
i j†
� ∗ω iωξ̃ kl

�

)

+ 1

2

L∑
�=1

1

ω�

∫



dxY i jkl
� ci jkl ξ̃

i j†
� ∗ω ξ̃ kl

� . (28)

Translating the identity (28) into time domain collecting all terms with iω as time derivatives yields

0 = 1

2

∫



dx

(
ρv

†
i ∂tvi + ci jkl (1 −

L∑
�=1

Y i jkl
� )ε†i j∂tεkl +

L∑
�=1

Y i jkl
�

ω2
�

ci jklξ
i j†
� ∂tξ

kl
�

)

+ 1

2

L∑
�=1

1

ω�

∫



dxY i jkl
� ci jklξ

i j†
� ξ kl

�

= 1

2
∂t

(
1

2

∫



dx

(
ρv

†
i vi + ci jkl (1 −

L∑
�=1

Y i jkl
� )ε†i jεkl +

L∑
�=1

Y i jkl
�

ω2
�

ci jklξ
i j†
� ξ kl

�

))
︸ ︷︷ ︸

E

+ 1

2

L∑
�=1

1

ω�

∫



dxY i jkl
� ci jklξ

i j†
� ξ kl

� . (29)

Eq. (29) is very important as it reveals a balance of the total energy for the above GZB/GMB-based viscoelastic system defined as

E = 1

2

∫



dx

(
ρv

†
i vi + ci jkl (1 −

L∑
�=1

Y i jkl
� )ε†i jεkl +

L∑
�=1

Y i jkl
�

ω2
�

ci jklξ
i j†
� ξ kl

�

)
. (30)
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A sufficient condition for having a negative time derivative of time of the energy will require that all the fourth-order tensors C : : Y� could
be associated to positive definite bilinear functions as shown in the following expression

∂t E = −
L∑

�=1

1

ω�

∫



dxY i jkl
� ci jklξ

i j†
� ξ kl

� < 0, (31)

essential for dissipative viscoelastic media. Let us remark that Bécache et al. (2005) have expressed it globally over the sum as a necessary
and sufficient condition.

As a conclusion, we have been able to show that the total energy, which is defined unambiguously for GZB/GMB models, is dissipated
inside the media during propagation: it will be a key criterion for reverse propagation of the incident field when computing the gradient of
the FWI (Yang et al. 2016). Note that the derivation of this energy balance can be done directly in the time domain for elastic and viscoelastic
isotropic medium, see Appendix B for more details.

4 C O N S TA N T Q A P P ROX I M AT I O N

The number of independent components in Mijkl can be reduced to 21 due to the symmetry of the stress and strain tensors, and also to the
unique strain energy definition for elastic materials (Carcione 2001, p. 55). For GMB/GZB rheology, this number of parameters still holds,
thanks to the linearity. This reduction allows the introduction of the Voigt indexing, (11) → 1, (22) → 2, (33) → 3, (23) = (32) → 4,
(13) = (31) → 5, (12) = (21) → 6, which permits us to consider stresses and strains as vectors and 4 × 4 stiffness tensors as 2 × 2 tensors
(equivalent to a matrices) through relations in the time domain

σI (x, t) = MI J (x, t) ∗t εJ (x, t), I, J = 1, . . . , 6, (32)

which is expressed in the frequency domain

σ̃I (x, ω) = M̃I J (x, ω)ε̃J (x, ω), I, J = 1, . . . , 6. (33)

Let us remind that for J = 4, 5, 6, the symmetric quantities collapse in ε̃J (x, ω). That is, ε̃4 = 2ε̃23, ε̃5 = 2ε̃13 and ε̃6 = 2ε̃12 (Carcione &
Cavallini 1993).

The seismic attenuation is usually expressed as the inverse of the quality factor Q (also called internal friction or dissipation factor)
defined as the ratio of real and imaginary parts of the complex-valued modulus M̃I J (x, ω)

Q̃−1
I J (x, ω) = �[M̃I J (x, ω)]


[M̃I J (x, ω)]
. (34)

Numerous observations assess that nearly constant Q assumption over a wide range of frequencies is valid in seismic wave propagation in
the Earth (Caputo 1967; Kjartansson 1979). Fitting a constant Q parameter over this frequency range ω ∈ [ωmin , ωmax ] requires considering
a number of attenuation mechanisms. Based upon GMB/GZB using L attenuation mechanisms (Emmerich & Korn 1987; Carcione et al.
1988a; Moczo & Kristek 2005; Moczo et al. 2007b), one may introduce a number of dimensionless anelastic coefficients Y I J

� in the definition
of MI J (x, ω) with a number of specific reference frequencies ω� ∈ [ωmin , ωmax ], � = 1, . . . , L:

M̃I J (x, ω) = cI J (x)

(
1 −

L∑
�=1

Y I J
� (x)

ω�

ω� + iω

)
. (35)

Inserting (35) into (33) leads to

σ̃I (x, ω) = cI J (x)

(
ε̃J (x, ω) −

L∑
�=1

Y I J
� (x)ζ̃ J

� (x, ω)

)
, ζ̃ J

� (x, ω) : = ω�

ω� + iω
ε̃J (x, ω) (36)

or in time domain

σI (x, t) = cI J (x)

(
εJ (x, t) −

L∑
�=1

Y I J
� (x)ζ J

� (x, t)

)
, ∂tζ

J
� (x, t) + ω�ζ

J
� (x, t) = ω�εJ (x, t). (37)

According to (34) and (35), the resulting quality factor for GMB/GZB is given by (Moczo et al. 2007a, eq. 117)

Q̃−1
I J (x, ω) =

∑L
�=1 Y I J

� (x) ω�ω

ω2
�
+ω2

1 −∑L
�=1 Y I J

� (x)
ω2

�

ω2
�
+ω2

≈
L∑

�=1

Y I J
� (x)

ω�ω

ω2 + ω2
�

, (38)

where we apply the approximation 1 −∑L
�=1 Y I J

� (x)ω2
�/(ω2 + ω2

�) ≈ 1 under the assumption Q̃ I J (x, ω) � 1 in realistic attenuative media
(Blanch et al. 1995). Eq. (38) provides us an important linear relationship between Q−1

I J (x, ω) and the anelastic coefficients Y I J
� (x).
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For an approximation of a constant QI J (x) over the used frequency band [ωmin , ωmax ], the Y I J
� (x) are usually determined by minimizing

the least-squares problems (Blanch et al. 1995; Bohlen 2002)

min
Y I J

�
(x)

χ
QI J (x)
0 , χ

QI J (x)
0 =

∫ ωmax

ωmin

(Q̃−1
I J (x, ω) − Q−1

I J (x))2dω. (39)

It is important to emphasize that Q̃(x, ω) is a frequency-dependent quality factor coming from GMB/GZB model associated with eq. (38),
while Q(x) is a frequency-independent target value for attenuation (and also a parameter to be inverted through FWI iterations). Generally,
these least-squares minimizations have to be performed for each spatial location x ∈ 
 and each IJ component. Each minimization is providing
the � corresponding coefficients.

Thanks to the assumption of frequency independent QI J (x), the objective functions χ
QI J (x)
0 can be recast as

χ
QI J (x)
0 = Q−2

I J (x)γ 2

∫ ωmax

ωmin

(
L∑

�=1

γ I J
� (x)

ω�ω

ω2 + ω2
�

− γ −1

)2

dω (40)

where a user-defined constant γ (usually chosen such that γ ∈ [Qmin
I J , Qmax

I J ]) and the new variables γ I J
� (x) := γ −1 QI J (x)Y I J

� (x) have been
introduced. Let us now define a new set of minimization problems to obtain γ I J

� (x)

min
γ I J
�

(x)
χ

QI J (x)
1 , χ

QI J (x)
1 =

∫ ωmax

ωmin

(
L∑

�=1

γ I J
� (x)

ω�ω

ω2 + ω2
�

− γ −1

)2

dω. (41)

equivalent to eq. (40) thanks to the relation χ
QI J (x)
0 = γ 2 Q−2

I J (x)χ QI J (x)
1 and Y I J

� (x) = γ γ I J
� (x)Q−1

I J (x).
A careful analysis of eq. (41) shows that all these minimization problems are actually the same, resulting in the same space independent

and component independent solutions γ� : = γ I J
� (x). That means we only need to perform one least-squares optimization to obtain the

anelastic coefficients specified by

Y I J
� (x) = y� Q−1

I J (x) with y� = γ γ�. (42)

In other words, the previous reformulation of the least-squares minimizations, based on the frequency-independent attenuation, helps us to
establish an important separability relation between L constants y� and QI J (x) shown in (42). This has a significant impact for numerical
implementation: instead of storing the L × 21 anelastic coefficients Y I J

� (x) at each spatial location x, we only need to store L scalars y� and the
space-dependent model parameter QI J (x). (The benefit of the use of single parameter γ to determine the magnitude of several mechanisms
has also been emphasized by Blanch et al. (1995), although the details were omitted.) In addition, the attenuation/quality factor QI J (x) can
be explicitly incorporated in the wave equation, and therefore naturally considered to be reconstructed in the FWI framework.

5 3 - D V I S C O E L A S T I C I N V E R S I O N

5.1 General viscoelastic wave equation

Using the Voigt notation, we can write the time derivative of the stress as

∂tσI (x, t) = cI J (x)

(
ε̇J (x, t) − Q−1

I J (x)
L∑

�=1

y�ξ
J
� (x, t)

)
. (43)

For wave modeling, one prefers using stiffness tensor cIJ than compliance tensor sIJ. Let us remark that expressions (43) are very general as
we do not enforce the isotropic assumption of attenuation as in (A15) given by Kristek & Moczo (2003) and Moczo et al. (2007a). Let us
introduce an attenuation vector ξ� such that

ξ � = (ξ 1
� , ξ 2

� , . . . , ξ 6
�

)T = (ξ 11
� , ξ 22

� , ξ 33
� , ξ 23

� , ξ 13
� , ξ 12

�

)T
. (44)

We may write the memory variable ordinary differential equation in a system

∂tξ �(x, t) + ω�ξ �(x, t) = ω� DT v(x, t). (45)

Let us remind that again the last three subequations collect the relation for the memory variables ξ 23
� , ξ 13

� , ξ 12
� with symmetric index. Putting

all things together, the viscoelastic system including the external sources reads

ρ∂t v(x, t) = Dσ (x, t) + fv(x, t) (46a)

∂tσ (x, t) = C DT v(x, t) − (C :: �)(x)
L∑

�=1

y�ξ �(x, t) + fσ (x, t) (46b)

∂tξ �(x, t) + ω�ξ �(x, t) = ω� DT v(x, t), � = 1, . . . , L , (46c)
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where we remind the following definitions:

σ = (σ1, σ2, σ3, σ4, σ5, σ6)T = (σ11, σ22, σ33, σ23, σ13, σ12)T

fv = ( fv1 , fv2 , fv3 )T , fσ = ( fσ1 , fσ2 , fσ3 , fσ4 , fσ5 , fσ6 )T (47)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q−1
11 Q−1

12 Q−1
13 Q−1

14 Q−1
15 Q−1

16

Q−1
21 Q−1

22 Q−1
23 Q−1

24 Q−1
25 Q−1

26

Q−1
31 Q−1

32 Q−1
33 Q−1

34 Q−1
35 Q−1

36

Q−1
41 Q−1

42 Q−1
43 Q−1

44 Q−1
45 Q−1

46

Q−1
51 Q−1

52 Q−1
53 Q−1

54 Q−1
55 Q−1

56

Q−1
61 Q−1

62 Q−1
63 Q−1

64 Q−1
65 Q−1

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (48)

Due to the existence of the compliance matrix S = C−1, eq. (46) can be written under an implicit time partial differential equations as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ I3 0 · · · 0 · · ·
0 C−1 · · · 0 · · ·
...

...
. . .

...
...

0
... 0 1

ω�
I6 0

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N1(m)

∂t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v

σ

...

ξ �

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
w

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 D · · · 0 · · ·
DT 0 · · · 0 · · ·
...

...
. . .

...
...

DT
... 0 0 0

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B1(∇)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v

σ

...

ξ �

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
w

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 · · ·
0 0 · · · y�C−1(C :: �) · · ·
...

...
. . .

...
...

0
... 0 I6 0

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N2(m)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v

σ

...

ξ �

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
w

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fv

C−1fσ

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
s

. (49)

Eq. (49) can be summarized as

F(m, w) = N1(m)∂t w − B1(∇)w + N2(m)w − s = 0, (50)

where the model parameters m = (ρ(x), CI J (x), Q−1
I J (x))† are explicitly written in the matrices N1, N2. Please note that we have separated

these matrices such that B1 is merely related to spatial derivatives. Let us underline again that the system (50) is implicit in time as the matrix
N1 is not diagonal (S = C−1 is not diagonal due to full anisotropy). As it is always possible to invert the matrix N1, we go back to eq. (46) in a
compact form as

∂t w − N−1
1 (m)B1(∇)w + N−1

1 (m)N2(m)w − N−1
1 (m)s = 0, (51)

which can be solved using explicit time integration.

5.2 3-D FWI in general viscoelastics

5.2.1 Preliminary

The inner product between h and g over spatial domain 
 and the time duration [0, T] is defined as

〈h, g〉
×T =
∫ T

0
dt

∫



dxh(x, t)g(x, t) (52)
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3-D viscoelastic FWI 137

Integrating by parts for temporal and spatial coordinates yields

〈h, ∂t g〉
×T =
∫ T

0
dt

∫



dxh(x, t)∂t g(x, t)

=
[∫




dxh(x, t)g(x, t)

]T

0

−
∫ T

0
dt

∫



dx∂t h(x, t)g(x, t)

= −〈∂t h, g〉
×T (53)

assuming the initial condition g(x, t) = 0 and the final condition h(x, T ) = 0, and

〈h, ∂i g〉
×T =
∫ T

0
dt

∫



dxh(x, t)∂i g(x, t)

=
[∫ T

0
dth(x, t)g(x, t)

]
∂


−
∫ T

0
dt

∫



dx∂i h(x, t)g(x, t)

= −〈∂i h, g〉
×T , i ∈ {x, y, z} (54)

assuming the zero-valued boundary condition h|∂
 = 0 or g|∂
 = 0. Recall that the adjoint of the operator L, namely L†, is defined as
〈h, Lg〉 = 〈L†h, g〉. Therefore, eqs (53) and (54) imply the following adjoint operators

(∂i )
† = −∂i , (D)† = (Di∂i )

† = −DT
i ∂i = −DT , (∂t )

† = −∂t , (55)

in the assumption of zero-valued boundary condition, as well as initial and final conditions.

5.2.2 Full waveform inversion

FWI tries to reduce the data misfit between the synthetic and the observed data at the receiver coordinates by iteratively minimizing a
least-squares objective functional:

χ (m, w) = 1

2
‖Rr w − d‖2, (56)

where d : = d(xr , t) is the observed seismogram and Rr a restriction operator mapping the full wavefield w(x, t) onto receiver locations. Note
that a summation over all excitation sources has been implied. Then, we introduce the augmented Lagrangian functional with the Lagrangian
multiplier w̄

L(m, w, w̄) = χ (m, w) + 〈w̄, F(m, w)〉
×T . (57)

(i) Differentiation with respect to Lagrangian multiplier w̄ leads to the state wave eq. (50).
(ii) Differentiation with respect to state wavefield variable w gives the adjoint state equation expressed as

∂L

∂w
= ∂χ

∂w
+
(

∂ F(m, w)

∂w

)†
w̄ = 0 (58)

⇔ (N1(m)∂t − B1(∇) + N2(m))†w̄ = −R†
r (Rr w − d), (59)

or

N †
1 (m)∂t w̄ + B†

1(∇)w̄ − N †
2 (m)w̄ = R†

r (Rr w − d), (60)

where the Lagrangian multiplier w̄ is the so-called adjoint state vector, for which a final condition w̄(x, T ) = 0 has been employed. Let us
remind again that the symbol † denotes the transpose conjugate operation which turns out to be the transpose one as we have real values in
the time formulation we consider. The adjoint eq. (60) involves a reverse time propagation with negative attenuation, which is numerically
stable as a forward time propagation with positive attenuation (Tarantola 1988).

(iii) The gradient of the misfit function with respect to model parameters m is the same as the gradient of the Lagrangian at the saddle
points considering w and m are independent variables when performing derivatives:

∂L

∂m
=
〈
w̄,

∂ F(m, w)

∂m

〉
T

⇔ ∂χ

∂m
=
〈
w̄,

∂ F(m, w)

∂m

〉
T

(61)

It is worth noting that the wave eq. (50) and the adjoint eq. (60) used in the Lagrangian formulation are implicit time integration systems.
Multiplying −N−†

1 (m) on both sides for eqs (60) yields the expression of the adjoint using explicit time integration

∂t w̄ + N−†
1 (m)B†

1(∇)w̄ − N−†
1 (m)N †

2 (m)w̄ = N−†
1 (m)R†

r (Rr w − d) (62)
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where

N−†
1 (m) = N−1

1 (m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρ

I3 0 · · · 0 · · ·
0 C · · · 0 · · ·
...

...
. . .

...
...

0
... 0 ω� I6 0

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B†
1(∇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −D · · · −D · · ·
−DT 0 · · · 0 · · ·

...
...

. . .
...

...

0
... 0 0 0

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

N−†
1 (m)B†

1(∇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
ρ

D · · · − 1
ρ

D · · ·
−C DT 0 · · · 0 · · ·

...
...

. . .
...

...

0
... 0 0 0

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N−†
1 (m)N †

2 (m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 · · ·
0 0 · · · 0 · · ·
...

...
. . .

...
...

0 ω� y�(C :: �)C−1 0 ω� I6 0

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which should be compared with the explicit forward system (51). Similar to the state wavefield vector w = (v†, σ †, ·, ξ †
� , . . .)

†, the adjoint

wavefield vector can also be denoted as w̄ = (v̄†, σ̄ †, ·, ξ̄ †
�, . . .)

† (the overbar indicates the adjoint). Let us denote the data residual

Rr w(x, t) − d(xr , t) = [�d†
v, �d†

σ , . . . , 0, . . .]†. (63)

As a consequence, the adjoint system (62) is expanded as

ρ∂t v̄ = Dσ̄ +
L∑

�=1

Dξ̄ � + �dv (64a)

∂t σ̄ = C DT v̄ + C�dσ (64b)

∂t ξ̄ � − ω�ξ̄ � = ω� y�(C :: �)C−1σ̄ , � = 1, . . . , L , (64c)

which enables efficient adjoint simulations through explicit time integration. This leads to the same solution as in implicit time integration
system (60) which is more difficult to solve. As the final output, the gradient of the misfit functional should be the same, independent of the
selected strategy as long as the consistent source terms are supplied. Adjoint sources defined in the adjoint eq. (64) are related to the definition
of the misfit function. Let us underline that the adjoint sources for stresses σ̄ are linear combinations of different stress residuals weighted
by matrix C rather than the data residual from a single component, as shown in eq. (64b). When minimizing the misfit function subjected
to the condition of verifying the wave equation, one must note that the adjoint eq. (64) is not the same as the forward eq. (46) due to the
asymmetry induced by the coefficients of the memory variables. Also let us note that the memory variables are applied to the stresses in the
forward simulation (46b), while the adjoint memory variables in the adjoint simulation are applied to the adjoint particle velocities in (64a).
According to (64c), the memory variables for seismic attenuation is only related to the diagonal terms in the matrix � including all Q inverse.

This adjoint system of equations we have built based on standard minimization under partial differential equation (PDE) constraints is not
the one promoted by Tarantola (1988) and Charara et al. (2000) through integral expressions based on Green’s functions for which Fichtner
& van Driel (2014) have provided explicitly the system of differential equations (labeled as eqs (24), (27) and (28) in their paper). This ad-hoc
adjoint system turns out to be identical to the forward system of equations but the adjoint solutions are different from the definition of adjoint
fields we obtain through the Lagrangian we have defined. In Appendix C, we shall exhibit the Lagrangian they have implicitly assumed and
we shall show that this leads to equivalent gradient of the misfit function with respect to model parameters.

For a specific model perturbation δm, the variation of the objective function is expressed as

δχ =
〈
∂χ

∂m
, δm

〉



=
∑
m∈m

〈
∂χ

∂m
, δm

〉



=
〈
∂χ

∂ρ
, δρ

〉



+
6∑

I=1

6∑
J=I

〈
∂χ

∂CI J
, δCI J

〉



+
6∑

I=1

6∑
J=I

〈
∂χ

∂ Q−1
I J

, δQ−1
I J

〉



. (65)
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That is,〈
∂χ

∂m
, δm

〉



=
∫




dxδρ

(∫ T

0
dt v̄†∂t v

)

+
6∑

I=1

6∑
J=I

∫



dxδCI J

(∫ T

0
dt σ̄ † ∂C−1

∂CI J

(
∂tσ − fσ + (C :: �)

L∑
�=1

y�ξ �

))
+

6∑
I=1

6∑
J=I

∫



dxδCI J

(∫ T

0
dt σ̄ †C−1 ∂(C :: �)

∂CI J

L∑
�=1

y�ξ �

)

+
L∑

�=1

6∑
I=1

6∑
J=I

y�

∫



dxδQ−1
I J

(∫ T

0
dt σ̄ †C−1

(
C ::

∂�

∂ Q−1
I J

)
ξ �

)
, (66)

where we have simple quantities(
∂C

∂CI J

)
i j

=
(

∂�

∂ Q−1
I J

)
i j

=
{

1, if i j = I J, J I
0, otherwise.

(67)

Invoking (46b) and the fact that

C−1C = I ⇒ ∂C−1

∂CI J
C + C−1 ∂C

∂CI J
= 0 ⇒ ∂C−1

∂CI J
= −C−1 ∂C

∂CI J
C−1, (68)

we deduce the gradient of the misfit functional with respect to the density ρ, the stiffness constants CIJ and the quality factor QIJ given by the
different components

∂χ

∂ρ
=
∫ T

0
dt v̄†∂t v,

∂χ

∂CI J
=
∫ T

0
dt σ̄ † ∂C−1

∂CI J

(
∂tσ − fσ + (C :: �)

L∑
�=1

y�ξ �

)
+
∫ T

0
dt σ̄ †C−1 ∂(C :: �)

∂CI J

L∑
�=1

y�ξ �,

∂χ

∂ Q−1
I J

=
∫ T

0
dt σ̄ †C−1

(
C ::

∂�

∂ Q−1
I J

)( L∑
�=1

y�ξ �

)
, with

(
∂C :: �

∂CI J

)
i j

=
⎧⎨
⎩
(
Q−1

I J

)
i j

, if i j = I J, J I

0, otherwise.
(69)

It is important to note that gradient components are simply zero-lag cross-correlations of quantities, independent of the number of relaxation
mechanisms we consider. We end up with equivalent expressions as those proposed by Liu & Tromp (2006) and Vigh et al. (2014) in the
non-dissipative case and the one for attenuation parameters by Fichtner & van Driel (2014). See Appendix C for extended discussion. Away
from sources and receivers, we can express these gradients without stress through

∂χ

∂ρ
=
∫ T

0
dt v̄†∂t v,

∂χ

∂CI J
= −

∫ T

0
dt σ̄ †C−1 ∂C

∂CI J
C−1 DT v +

∫ T

0
dt σ̄ †C−1 ∂(C :: �)

∂CI J

L∑
�=1

y�ξ �,

∂χ

∂ Q−1
I J

=
∫ T

0
dt
(
DT ū

)† (
C ::

∂�

∂ Q−1
I J

)( L∑
�=1

y�ξ �

)
, (70)

where we have considered adjoint displacement ū: a useful expression when stress is not directly available, as when considering the second-
order hyperbolic system involving only particle velocities or displacements.

The computation of the gradient requires simultaneously accessing the forward wavefield w and the adjoint wavefield w̄, which has
opposite time direction in the time-domain simulation. Some high-level techniques might be useful such as optimal checkpointing strategy
(Griewank & Walther 2000; Symes 2007; Anderson et al. 2012) and checkpointing-assisted reverse-forward simulation (CARFS) method
(Yang et al. 2016) to access efficiently the incident wavefield when backpropagating the adjoint wavefield. For the latter technique, the energy
tracking during the reverse propagation of the incident field will help controlling the potential instability of this reverse propagation.

6 M O D E L PA R A M E T R I Z AT I O N

In general, one may consider different families of parameters either for forward modeling or for parameter inversion. By following chain
rules, we may deduce partial derivatives of the misfit function with respect to any set of parameters. The optimal choice of this set for FWI
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is still an open question (Korta et al. 2013; Innanen 2014) and may be case-dependent (Operto et al. 2013). In the following, we consider
different sets of parameters and show how to relate each other through the chain rule.

6.1 Relating different attenuation parameters

For the modeling description, let us consider the stiffness matrix cijkl (or cIJ using Voigt indexing) are parametrized by bulk modulus κ and
shear moduli μ. Lamé parameters λ and μ, as well as the bulk modulus κ = λ + 2

3 μ, are connected with compressional wave speed α and
shear wave speed β through the following expression

cI I =
{

κ + 4
3 μ = λ + 2μ = ρα2, I ∈ {1, 2, 3},

μ = ρβ2, I ∈ {4, 5, 6}, (71)

which are the diagonal terms of the stiffness matrix in isotropic case based on the Voigt indexing. In the presence of seismic attenuation, we
may consider the quantities Y I I

� cI I , I = 1, . . . , 6, using the parametrization with κ and μ

Y I I
� cI I =

{
κY κ

� + 4
3 μY μ

� , I ∈ {1, 2, 3};
μY μ

� , I ∈ {4, 5, 6} (72)

or the parametrization with α and β:

Y I I
� cI I =

{
ρα2Y α

� , I ∈ {1, 2, 3};
ρβ2Y β

� , I ∈ {4, 5, 6} (73)

Combining (71)–(73) gives

Y κ
� = α2Y α

� − 4
3 β2Y β

�

α2 − 4
3 β2

, Y μ

� = Y β

� , (74)

which relate the anelastic coefficients using different parametrization. The relation in (74) can be found in Kristek & Moczo (2003, eq. 4).
Similarly, according to the definition of Q, �[MI J (ω)] = Q−1

I J 
[MI J (ω)], with bulk and shear modulus parametrization we have

�[MI I (ω)] =
{

κ Q−1
κ + 4

3 μQ−1
μ I ∈ {1, 2, 3}

μQ−1
μ , I ∈ {4, 5, 6} , (75)

or with P- and S-velocity parametrization

�[MI I (ω)] =
{

ρα2 Q−1
α , I ∈ {1, 2, 3}

ρβ2 Q−1
β , I ∈ {4, 5, 6} . (76)

Combining (71), (75) and (76) gives

Q−1
κ = α2 Q−1

α − 4
3 β2 Q−1

β

α2 − 4
3 β2

, Q−1
μ = Q−1

β , (77)

which can also be found in Stein & Wysession (2003, p. 192, eqs 29 and 30) and Savage et al. (2010, eqs 12 and 13). These expressions could
be useful when changing the way to describe the attenuation.

6.2 3-D isotropic viscoelastic inversion

As already underlined, the inversion may be carried out for different physical parameters. Some of the parameters have strong impacts on the
data, while some of them might have small imprint. In 3-D isotropic viscoelastic regime, we may be interested in inverting the bulk and shear
moduli (or Lamé constants), or searching the solution for the P- and S-wave speeds, based on an objective function of the form

χ ′(m′) : = χ (m), (78)

where m = (ρ, CI J , QI J )† and m′ = (ρ, α, β, Qα, Qβ )†. A sound mathematical tool to shifting from one parameter group m to another m′

is through the chain rule. Therefore, we end up with the gradient of the misfit function with respect to density, P and S wave as well as the
corresponding Q in the following

∂χ ′

∂ρ
= ∂χ

∂ρ
+

6∑
I=1

6∑
J=I

∂χ

∂CI J

∂CI J

∂ρ
, (79)

∂χ ′

∂α
=

6∑
I=1

6∑
J=I

∂χ

∂CI J

∂CI J

∂α
,
∂χ ′

∂β
=

6∑
I=1

6∑
J=I

∂χ

∂CI J

∂CI J

∂β
, (80)
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∂χ ′

∂ Qα

= −Q−2
α

∂χ ′

∂ Q−1
α

,
∂χ ′

∂ Q−1
α

=
6∑

I=1

6∑
J=I

∂χ

∂ Q−1
I J

∂ Q−1
I J

∂ Q−1
α

, (81)

∂χ ′

∂ Qβ

= −Q−2
β

∂χ ′

∂ Q−1
β

,
∂χ ′

∂ Q−1
β

=
6∑

I=1

6∑
J=I

∂χ

∂ Q−1
I J

∂ Q−1
I J

∂ Q−1
β

. (82)

One may rewrite the stiffness matrix C as

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0

λ λ + 2μ λ 0 0 0

λ λ λ + 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρα2 ρ(α2 − 2β2) ρ(α2 − 2β2) 0 0 0

ρ(α2 − 2β2) ρα2 ρ(α2 − 2β2) 0 0 0

ρ(α2 − 2β2) ρ(α2 − 2β2) ρα2 0 0 0

0 0 0 ρβ2 0 0

0 0 0 0 ρβ2 0

0 0 0 0 0 ρβ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (83)

As a consequence, we have

∂C

∂ρ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2 α2 − 2β2 α2 − 2β2 0 0 0

α2 − 2β2 α2 α2 − 2β2 0 0 0

α2 − 2β2 α2 − 2β2 α2 0 0 0

0 0 0 β2 0 0

0 0 0 0 β2 0

0 0 0 0 0 β2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (84)

∂C

∂α
= 2ρα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
∂C

∂β
= 2ρβ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2 −2 0 0 0

−2 0 −2 0 0 0

−2 −2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (85)

The matrix including all Q inverse becomes

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρα2 Q−1
α

ρα2

ρα2 Q−1
α −2ρβ2 Q−1

β

ρα2−2ρβ2

ρα2 Q−1
α −2ρβ2 Q−1

β

ρα2−2ρβ2 0 0 0

ρα2 Q−1
α −2ρβ2 Q−1

β

ρα2−2ρβ2
ρα2 Q−1

α

ρα2

ρα2 Q−1
α −2ρβ2 Q−1

β

ρα2−2ρβ2 0 0 0

ρα2 Q−1
α −2ρβ2 Q−1

β

ρα2−2ρβ2

ρα2 Q−1
α −2ρβ2 Q−1

β

ρα2−2ρβ2
ρα2 Q−1

α

ρα2 0 0 0

0 0 0
ρβ2 Q−1

β

ρβ2 0 0

0 0 0 0
ρβ2 Q−1

β

ρβ2 0

0 0 0 0 0
ρβ2 Q−1

β

ρβ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(86)

yielding

∂�

∂ Q−1
α

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α2

α2−2β2
α2

α2−2β2 0 0 0

α2

α2−2β2 1 α2

α2−2β2 0 0 0

α2

α2−2β2
α2

α2−2β2 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
∂�

∂ Q−1
β

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2β2

α2−2β2
−2β2

α2−2β2 0 0 0

−2β2

α2−2β2 0 −2β2

α2−2β2 0 0 0

−2β2

α2−2β2
−2β2

α2−2β2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(87)

Thus, all partial derivatives in (79), that is, ∂CIJ/∂ρ, ∂CIJ/∂α, ∂CIJ/∂β, ∂ Q−1
I J /∂ Q−1

α and ∂ Q−1
I J /∂ Q−1

β , are now available explicitly in
eqs (84) and (87).
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7 C O N C LU S I O N S

In this paper, we formulate in a consistent way the 3-D multiparameter FWI in viscoelastic media based on GMB using arbitrary number of
attenuation mechanisms. According to the elastic–viscoelastic correspondence principle in the Fourier domain, we have developed an energy
analysis to determine the stable energy attenuating conditions of viscoelastic system. We have reformulated the least-squares optimization
problem for estimating the anelastic coefficients by introducing a new set of constants, which linearly relates the Q parameter and the anelastic
coefficients. Equipped with these constants, the Q parameter can be explicitly displaced into the viscoelastic system to be further inverted in
FWI framework. By introducing the standard Lagrangian multipliers into the matrix expression of the first-order wave equation with implicit
time integration, we have built a systematic formulation of multiparameter FWI for the most general anisotropic viscoelastic wave equation,
while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. The adjoint
and forward systems are different but one can manipulate the Lagrangian expression to propose an adjoint system similar to the forward
system, thanks to the linearity of the wave equation and the properties of the Green’s functions. In the 3-D isotropic viscoelastic settings,
the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P- and
S-velocity parametrization. The final gradient with a specific parametrization of model parameters can be found from the gradient of the
misfit function with another parametrization through the chain rule. These mathematical development should facilitate the application of FWI
including a frequency-independent Q inversion in seismology and exploration geophysics in a consistent framework. Numerical examples
should be performed to disclose its potential, and will be strongly dependent on the geometry of the target and the acquisition aside the
medium properties.
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A P P E N D I X A : G Z B / G M B - B A S E D V I S C O E L A S T I C WAV E E Q UAT I O N I N 1 - D

The rheology for a 1-D attenuating medium can be described through the linear relation (Christensen 1982)

σ = ψ ∗t ε̇ = ψ̇ ∗t ε, (A1)

where the stress is denoted by the symbol σ and the deformation by ε. The dot over a variable stands for the time derivative. Following Casula
& Carcione (1992), the relaxation function ψ for the generalized Zener model or SLS is defined by the expression

ψ(t) = Mr

(
1 − 1

L

L∑
�=1

(
1 − τε�

τσ�

)
e− t

τσ�

)
H (t), (A2)

where the relaxed modulus is denoted by Mr, two characteristic relaxation times by τ σ� and τ ε�, with a number L of SLSs. We must consider
that the relaxation time τ σ� is always higher than the relaxation time τ ε� because of the energy dissipation. The Heaviside function is denoted
by H(t). Let us define

Ỹ� = 1

L

(
τε�

τσ�

− 1

)
, � = 1, . . . , L , (A3)

and the circular frequency ω� = 1/τσ�. Eq. (A2) can be rewritten as

ψ(t) = Mr

(
1 +

L∑
�=1

Ỹ�e
−ω� t

)
H (t). (A4)

Let us note that Ỹ� in (A3) is exactly the τ of the well-known τ method defined by Blanch et al. (1995, eq. 13) with only L = 1 mechanism.
The unrelaxed modulus Mu is defined at the origin time through the expression

Mu = lim
t→0+

ψ(t) = Mr

(
1 +

L∑
�=1

Ỹ�

)
. (A5)

We introduce the non-dimensional anelastic parameter

Y� = Mr

Mu
Ỹ�, � = 1, . . . , L . (A6)

The relation in (A4) and (A5) becomes

Mu = Mr

(
1 +

L∑
�=1

Ỹ�

)
= Mr + Mu

L∑
�=1

Y� ⇒ Mr = Mu

(
1 −

L∑
�=1

Y�

)
. (A7)

and

ψ(t) = Mr

(
1 +

L∑
�=1

Ỹ�e
−ω� t

)
H (t) = Mu

(
1 −

L∑
�=1

Y�

(
1 − e−ω� t

))
H (t). (A8)

We may consider as well that dissipation effects are always more important for compressive waves than for shear waves inducing higher
values of the coefficient Y� for compression mode than for shear mode. The first time derivative of eq. (A8) gives

ψ̇(t) = Mu

(
1 −

L∑
�=1

Y�

(
1 − e−ω� t

))
δ(t) + Mu∂t

[
1 −

L∑
�=1

Y�

(
1 − e−ω�t

)]
H (t)

= Muδ(t) − Mu

L∑
�=1

Y�ω�e
−ω�t H (t). (A9)
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Thus, the rheological relation becomes

σ = ψ̇ ∗t ε

=
(

Muδ(t) − Mu

L∑
�=1

Y�ω�e
−ω�t H (t)

)
∗t ε(t)

= Muε(t) − Mu

L∑
�=1

Y�ω�e
−ω� t H (t) ∗t ε(t)

= Muε(t) − Mu

L∑
�=1

Y�ζ (t), (A10)

where we have introduced new variables ζ�(t) := ω�e−ω� t H (t) ∗t ε(t). The time derivative of these intermediate variables is

ζ̇�(t) = ∂t [ω�e
−ω�t H (t)] ∗t ε(t)

= [−ω2
�e−ω�t H (t) + ω�e

−ω� tδ(t)
] ∗t ε(t)

= −ω2
�e−ω� t H (t) ∗ ε(t) + ω�δ(t) ∗t ε(t)

= ω�[−ζ�(t) + ε(t)], � = 1, . . . , L . (A11)

Let us introduce the so-called auxiliary variables ξ�(t) as the time derivatives of ζ � for recovering the deformation derivative and, therefore,
particle velocities. Combining eqs (A10) and (A11) gives{

σ̇ = Mu ε̇ − Mu
∑L

�=1 Y�ξ�

ξ̇� = ω�[−ξ� + ε̇], � = 1, . . . , L .
(A12)

The above construction was established by Emmerich & Korn (1987, their eqs 12 and 13) for GMB which is shown to be equivalent to GZB
(Moczo & Kristek 2005; Moczo et al. 2007a,b).

Due to the symmetry of the stress tensor, in the isotropic assumption the Hooke’s law reads

σi j = λεkkδi j + 2μεi j = κεkkδi j + 2μ

(
εi j − 1

3
εkkδi j

)
, (A13)

where λ and μ are Lamé parameters related to the bulk modulus κ = λ + 2
3 μ. In order to incorporate seismic attenuation based on the

physically meaningful mechanism, Kristek & Moczo (2003) and Moczo & Kristek (2005) generalized the elastic Hooke’s law through the
relation

σi j = κεkkδi j + 2μ

(
εi j − 1

3
εkkδi j

)
−

L∑
�=1

[
κY κ

� ζ kk
� δi j + 2μY μ

�

(
ζ

i j
� − 1

3
ζ kk
� δi j

)]
. (A14)

Note that the corresponding anelastic coefficients Y κ
� and Y μ

� for unrelaxed bulk and shear moduli have been introduced in the isotropic
generalization (A14). The new quantities, called memory variables ζ

i j
� , satisfy ζ̇

i j
� + ω�ζ

i j
� = ω�εi j , � = 1, . . . , L , where a series of L

mechanisms are used to characterize the attenuation rheology. Applying the first time derivative to eqs (A14), leading to isotropic viscoelastic
wave equation⎧⎪⎪⎨
⎪⎪⎩

ρv̇i = ∂ jσi j

σ̇i j = κε̇kkδi j + 2μ
(
ε̇i j − 1

3 ε̇kkδi j

)−∑L
�=1

[
κY κ

� ξ kk
� δi j + 2μY μ

�

(
ξ

i j
� − 1

3 ξ kk
� δi j

)]
,

ξ̇
i j
� + ω�ξ

i j
� = ω�ε̇i j , � = 1, . . . , L ,

(A15)

where we introduce another set of memory variables ξ
i j
� to denote the time derivatives of ζ

i j
� expressed as ξ

i j
� = ζ̇

i j
� for the numerical

implementation of eq. (A15).

A P P E N D I X B : E N E RG Y A NA LY S I S I N T I M E D O M A I N

We have performed the energy analysis in the main core of this paper for the general anisotropic case. Here, we would like to illustrate that it
can be obtained directly for the isotropic case without considering the convolution procedure we have used.
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B1 Elastic case

For the energy definition, let us first start with the elastic case where the following total energy E = Ek + Ep is decomposed into a kinematic
energy denoted by Ek and a strain energy denoted by Ep through{

Ek = 1
2 〈ρv, v〉
,

E p = 1
2

∑
i

∑
j 〈σi j , εi j 〉
 = 1

2

∑
i

∑
j

∑
k

∑
l〈ci jklεkl , εi j 〉
.

(B1)

The energy Ep is also called potential energy, implying that the work does not depends on the path. As can be seen above, the kinetic energy is
related to the particle velocity v—the time derivative of the displacement, while the potential energy is related to the spatial derivatives of the
displacement εij. Both Ek and Ep are non-negative quantities assuming a positive definite fourth-order tensor cijkl. For the energy preservation
in elastodynamics, we need to show the following identity

∂t E = 〈ρv̇, v〉
 +
∑

i

∑
j

∑
k

∑
l

〈ci jklεkl , ε̇i j 〉
 = 0, (B2)

thanks to the linear property of the Hooke’s law.
The first time derivative of the potential energy is

∂t E p =
∑

i

∑
j

∑
k

∑
l

〈ci jklεkl , ε̇i j 〉


=
∑

i

∑
j

〈σi j , ε̇i j 〉
 = 1

2

∑
i

∑
j

〈σi j , vi, j + v j,i 〉


= 1

2

∑
i

∑
j

〈σi j , vi, j 〉
 + 1

2

∑
i

∑
j

〈σi j , v j,i 〉


= 1

2

∑
i

∑
j

〈σi j , vi, j 〉
 + 1

2

∑
i

∑
j

〈σ j i , v j,i 〉


=
∑

i

∑
j

〈σi j , vi, j 〉
, (B3)

using the symmetry of the stress tensor. The Newton’s law

ρv̇i = ∂ jσi j =
∑

j

σi j, j (B4)

can be used in the inner product

〈ρv̇i , vi 〉
 =
∑

j

〈vi , σi j, j 〉
 = −
∑

j

〈vi, j , σi j 〉
. (B5)

From (B2), we may deduce the following time evolution of the kinetic energy

∂t Ek =
∑

i

〈ρv̇i , vi 〉
 = −
∑

i

∑
j

〈vi, j , σi j 〉
. (B6)

Summing over (B3) and (B6) concludes the validity of eq. (B2). Therefore, the elastic system is energy preserving with varying time.

B2 Isotropic viscoelastic case

The isotropic case could be deduced from the anisotropic one: we detail here a direct analysis of the energy balance for this particular case.
The non-negative total energy is defined as

E = Ek + Es,

Ek = 1

2
〈ρv, v〉
,

Es = 1

2

〈(
Mκ

r − 2

3
Mμ

r

)
εkk, εkk

〉



+ 1

2

∑
i

∑
j

〈
2Mμ

r εi j , εi j

〉



+1

2

L∑
�=1

∑
i

∑
j

〈
2μY μ

�

ω2
�

ξ
i j
� , ξ

i j
�

〉



+ 1

2

L∑
�=1

〈
κY κ

� − 2
3 μY μ

�

ω2
�

ξ kk
� , ξ kk

�

〉



, (B7)

where the quantity κY κ
� − 2

3 μY μ

� is assumed to be non-negative; Mκ
r = κ(1 −∑L

�=1 Y κ
� ) and Mμ

r = μ(1 −∑L
�=1 Y μ

� ) are the relaxed bulk
modulus and the relaxed shear modulus, respectively. Note that the strain energy Es does not amount to potential energy in viscoelastics
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because the work performed from one point to the other one now depends on the path between them (this is the reason why the system has
memory about the past history).

For the memory variables, we have following ordinary differential equations

∂tξ
i j
� + ω�ξ

i j
� = ω�ε̇i j ⇒ ξ

i j
� = − 1

ω�

∂tξ
i j
� + ε̇i j , (B8)

which can be written as

1

ω�

∂tξ
kk
� = −ξ kk

� + ε̇kk . (B9)

Taking the inner product over 
 with
2μY μ

�

ω�
ξ

i j
� and

κY κ
�

− 2
3 μY μ

�

ω�
ξ kk
� gives〈

2μY μ

�

ω2
�

∂tξ
i j
� , ξ

i j
�

〉



= −
〈

2μY μ

�

ω�

ξ
i j
� , ξ

i j
�

〉



+
〈
ε̇i j ,

2μY μ

�

ω�

ξ
i j
�

〉



(B10)

and〈
κY κ

� − 2
3 μY μ

�

ω2
�

∂tξ
kk
� , ξ kk

�

〉



= −
〈

κY κ
� − 2

3 μY μ

�

ω�

ξ kk
� , ξ kk

�

〉



+
〈
ε̇kk,

κY κ
� − 2

3 μY μ

�

ω�

ξ kk
�

〉



. (B11)

Therefore, we have the following equalities

L∑
�=1

∑
i

∑
j

〈
2μY μ

�

ω2
�

∂tξ
i j
� , ξ

i j
�

〉



= −
L∑

�=1

∑
i

∑
j

〈
2μY μ

�

ω�

ξ
i j
� , ξ

i j
�

〉



+
L∑

�=1

∑
i

∑
j

〈
ε̇i j ,

2μY μ

�

ω�

ξ
i j
�

〉



, (B12)

L∑
�=1

〈
κY κ

� − 2
3 μY μ

�

ω2
�

∂tξ
kk
� , ξ kk

�

〉



= −
L∑

�=1

〈
κY κ

� − 2
3 μY μ

�

ω�

ξ kk
� , ξ kk

�

〉



+
L∑

�=1

〈
ε̇kk,

κY κ
� − 2

3 μY μ

�

ω�

ξ kk
�

〉



. (B13)

According to eqs (A13) and (B8), setting i = j gives

σi i =
(

κ − 2

3
μ

)
εkk + 2μεi i −

L∑
�=1

[(
κY κ

� − 2

3
μY μ

�

)
ζ kk
� + 2μY μ

� ζ i i
�

]

=
(

κ − 2

3
μ

)
εkk + 2μεi i −

L∑
�=1

[(
κY κ

� − 2

3
μY μ

�

)(
− 1

ω�

ζ̇ kk
� + εkk

)
+ 2μY μ

�

(
− 1

ω�

ζ̇ kk
� + εi i

)]

=
(

κ

(
1 −

L∑
�=1

Y κ
�

)
− 2

3
μ

(
1 −

L∑
�=1

Y μ

�

))
εkk + 2μ

(
1 −

L∑
�=1

Y μ

�

)
εi i + 1

ω�

L∑
�=1

[(
κY κ

� − 2

3
μY μ

�

)
ζ̇ kk
� + 2μY μ

� ζ̇ i i
�

]

=
(

Mκ
r − 2

3
Mμ

r

)
εkk + 2Mμ

r εi i + 1

ω�

L∑
�=1

[(
κY κ

� − 2

3
μY μ

�

)
ξ kk
� + 2μY μ

� ξ i i
�

]
. (B14)

Thus, we can write

σi i −
(

Mκ
r − 2

3
Mμ

r

)
εkk − 1

ω�

L∑
�=1

[(
κY κ

� − 2

3
μY μ

�

)
ξ kk
� + 2μY μ

� ξ i i
�

]
= 2Mμ

r εi i (B15)

∑
i

〈
2Mμ

r ε̇i i , εi i

〉



=
∑

i

〈
ε̇i i , σi i −

(
Mκ

r − 2

3
Mμ

r

)
εkk − 1

ω�

L∑
�=1

[(
κY κ

� − 2

3
μY μ

�

)
ξ kk
� + 2μY μ

� ξ i i
�

]〉



=
∑

i

〈ε̇i i , σi i 〉
 −
〈(

Mκ
r − 2

3
Mμ

r

)
εkk, ε̇kk

〉



−
L∑

�=1

〈(
κY κ

� − 2
3 μY μ

�

)
ω�

ξ kk
� , ε̇kk

〉



−
L∑

�=1

∑
i

〈
2μY μ

�

ω�

ξ i i
� , ε̇i i

〉



(B16)

〈(
Mκ

r − 2

3
Mμ

r

)
εkk, ε̇kk

〉



+
∑

i

〈
2Mμ

r ε̇i i , εi i

〉



=
∑

i

〈ε̇i i , σi i 〉
 −
L∑

�=1

〈(
κY κ

� − 2
3 μY μ

�

)
ω�

ξ kk
� , ε̇kk

〉



−
L∑

�=1

∑
i

〈
2μY μ

�

ω�

ξ i i
� , ε̇i i

〉



. (B17)

According to eqs (A13) and (B8), setting i �= j gives

σi j = 2μεi j − 2μ

L∑
�=1

Y μ

� ζ
i j
� = 2μεi j − 2μ

L∑
�=1

Y μ

�

(
− 1

ω�

∂tζ
i j
� + εi j

)
= 2Mμ

r εi j −
L∑

�=1

2μY μ

�

ω�

ξ
i j
� ,

⇒ σi j +
L∑

�=1

2μY μ

�

ω�

ξ
i j
� = 2Mμ

r εi j . (B18)
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Taking the inner product over 
 with 1
2Mμ

r
(σi j −∑L

�=1
2μY μ

�

ω�
ξ

i j
� ) gives

〈
2Mμ

r εi j , ε̇i j

〉



= 〈(ε̇i j , σi j 〉
 −
L∑

�=1

〈
ε̇i j ,

2μY μ

�

ω�

ξ
i j
�

〉



(B19)

⇒
∑
i �= j

〈
2Mμ

r εi j , ε̇i j

〉



=
∑
i �= j

〈(ε̇i j , σi j 〉
 −
L∑

�=1

∑
i �= j

〈
ε̇i j ,

2μY μ

�

ω�

ξ
i j
�

〉



. (B20)

Summing over eqs (B17) and (B20) gives〈(
Mκ

r − 2

3
Mμ

r

)
εkk, ε̇kk

〉



+
∑

i

∑
j

〈
2Mμ

r εi j , ε̇i j

〉



=
〈(

Mκ
r − 2

3
Mμ

r

)
εkk, ε̇kk

〉



+
∑

i

〈
2Mμ

r ε̇i i , εi i

〉



+
∑
i �= j

〈
2Mμ

r εi j , ε̇i j

〉



=
∑

i

〈ε̇i i , σi i 〉
 −
L∑

�=1

〈(
κY κ

� − 2
3 μY μ

�

)
ω�

ξ kk
� , ε̇kk

〉



−
L∑

�=1

∑
i

〈
2μY μ

�

ω�

ξ i i
� , ε̇i i

〉



+
∑
i �= j

〈(ε̇i j , σi j 〉
 −
L∑

�=1

∑
i �= j

〈
ε̇i j ,

2μY μ

�

ω�

ξ
i j
�

〉



=
∑

i

∑
j

〈ε̇i j , σi j 〉
 −
L∑

�=1

〈(
κY κ

� − 2
3 μY μ

�

)
ω�

ξ kk
� , ε̇kk

〉



−
L∑

�=1

∑
i

∑
j

〈
2μY μ

�

ω�

ξ
i j
� , ε̇i j

〉



. (B21)

Combining eq. (B21) with the relationship of memory variables in (B12) and (B13), we end up with

∂t Es =
〈(

Mκ
r − 2

3
Mμ

r

)
εkk, ε̇kk

〉



+
∑

i

∑
j

〈
2Mμ

r εi j , ε̇i j

〉



+
L∑

�=1

∑
i

∑
j

〈
2μY μ

�

ω2
�

∂tξ
i j
� , ξ

i j
�

〉



+
L∑

�=1

〈
κY κ

� − 2
3 μY μ

�

ω2
�

∂tξ
kk
� , ξ kk

�

〉



=
∑

i

∑
j

〈ε̇i j , σi j 〉
 −
L∑

�=1

∑
i

∑
j

〈
2μY μ

�

ω�

ξ
i j
� , ξ

i j
�

〉



−
L∑

�=1

〈
κY κ

� − 2
3 μY μ

�

ω�

ξ kk
� , ξ kk

�

〉



. (B22)

We may expand the first term above to reveal its relation to the kinetic energy in (B6) through∑
i

∑
j

〈ε̇i j , σi j 〉
 =
∑

i

〈ε̇i i , σi i 〉
 +
∑
i �= j

〈ε̇i j , σi j 〉


=
∑

i

〈vi,i , σi i 〉
 + 1

2

∑
i �= j

〈vi, j + v j,i , σi j 〉
 =
∑

i

〈vi,i , σi i 〉
 + 1

2

∑
i �= j

〈vi, j , σi j 〉
 + 1

2

∑
i �= j

〈v j,i , σi j 〉


=
∑

i

〈vi,i , σi i 〉
 + 1

2

∑
i �= j

〈vi, j , σi j 〉
 + 1

2

∑
i �= j

〈v j,i , σ j i 〉
(σi j = σ j i )

=
∑

i

〈vi,i , σi i 〉
 +
∑
i �= j

〈vi, j , σi j 〉
 =
∑

i

∑
j

〈vi, j , σi j 〉
 = −
∑

i

∑
j

〈vi , σi j, j 〉


= −
∑

i

〈ρ∂tvi , vi 〉
 = −〈ρ∂t v, v〉
 = −∂t Ek . (B23)

As a result, we conclude that

∂t E = ∂t Ek + ∂t Es = −
L∑

�=1

∑
i

∑
j

〈
2μY μ

�

ω�

ξ
i j
� , ξ

i j
�

〉



−
L∑

�=1

〈
κY κ

� − 2
3 μY μ

�

ω�

ξ kk
� , ξ kk

�

〉



≤ 0. (B24)

Therefore, the viscoelastic system is also stable because the total energy is a monotonic decreasing function of time.
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A P P E N D I X C : E Q U I VA L E N C E A M O N G D I F F E R E N T A D J O I N T F O R M U L AT I O N S

It is interesting to note that the adjoint eq. (64) looks slightly different from the forward eq. (46). Omitting the sources, we may take another
time derivative for the first-order forward system, which yields

ρ∂t t v = DC DT v − D(C :: �)
L∑

�=1

y�ξ � = DC DT v − D
L∑

�=1

∂tη�, (C1)

where we introduce the new variables ∂tη� = (C :: �)y�ξ �, which are linear combinations of different components of the vector ξ� weighted
by C : : �. The second-order time derivative for η� is

∂t tη� = (C :: �)y�∂tξ � = (C :: �)y�ω�(−ξ � + DT v)

= −ω�∂tη� + y�ω�(C :: �)DT v, (C2)

which is equivalent to{
ρ∂t t v = DC DT v − D

∑L
�=1 ∂tη�

∂t tη� = −ω�∂tη� + y�ω�(C :: �)DT v.
(C3)

Similarly, we may take the second-order time derivative and eliminate the stress in the adjoint system, yielding{
ρ∂t t v̄ = DC DT v̄ + D

∑L
�=1 ∂t ξ̄ �

∂t t ξ̄ � = ω�∂t ξ̄ � + y�ω�(C :: �)DT v̄.
(C4)

Keeping in mind that the adjoint equation has to be integrated from the final time (t = T) to the starting time (t = 0), we define the quantities
ξ̄

′
�(T − t) = ξ̄ �(t), v̄′(T − t) = v̄(t) such that

∂t ξ̄ � = −∂t ξ̄
′
�, ∂t t ξ̄ � = ∂t t ξ̄

′
�, ∂t t v̄

′ = ∂t t v̄. (C5)

Then, the adjoint system can be expressed as{
ρ∂t t v̄′ = DC DT v̄′ − D

∑L
�=1 ∂t ξ̄

′
�

∂t t ξ̄
′
� = −ω�∂t ξ̄

′
� + y�ω�(C :: �)DT v̄′,

(C6)

which implies that the adjoint wave equation ends up with the same solution as the forward wave equation according to its second-order
expression; the Green’s functions are the same except the time directions are opposite. This verifies the equivalence of the different adjoint
systems, including the one presented in this paper, the one from Fichtner & van Driel (2014), and the Green’s function manipulation in
Tarantola (1988) and Charara et al. (2000), as well as the second-order formulation by Tromp et al. (2005).
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