
HAL Id: hal-02009519
https://hal.science/hal-02009519v1

Submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adapted linear discriminant analysis for the
classification in high-dimension, and an application to

medical data
Khuyen T Le, Caroline Chaux, Frédéric Jp Richard, Eric Guedj

To cite this version:
Khuyen T Le, Caroline Chaux, Frédéric Jp Richard, Eric Guedj. An adapted linear discriminant
analysis for the classification in high-dimension, and an application to medical data. Computational
Statistics and Data Analysis, 2020, 152, �10.1016/j.csda.2020.107031�. �hal-02009519�

https://hal.science/hal-02009519v1
https://hal.archives-ouvertes.fr


An adapted linear discriminant analysis for the classification
in high-dimension, and an application to medical data.

Khuyen T. Lea, Caroline Chauxa, Frédéric J.P. Richarda, Eric Guedjb

aAix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
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Abstract

In this paper, we deal with the issue of classifying normally distributed data in a high-
dimensional setting when variables are more numerous than observations. Under a spar-
sity assumption on terms of the inverse covariance matrix (the precision matrix), we
adapt the method of the linear discriminant analysis (LDA) by including a sparse esti-
mate of the precision matrix over all populations. Furthermore, we develop a variable
selection procedure based on the graph associated to the estimated precision matrix. For
that, we define a discriminant capacity for each connected components of the graph, and
keep variables of the most discriminant components. The adapted LDA and its selection
procedure are both evaluated on synthetic data, and applied to real data from PET brain
images for the classification of patients with Alzheimer’s disease.

Keywords: Classification, linear discriminant analysis, Graphical LASSO, precision
matrix estimation, variable selection, PET imaging, Alzheimer’s disease.

1. Introduction

In this paper, we focus on supervised classification. This issue consists of identifying
the category of an individual using a model whose parameters are learned from a pre-
classified population. We tackle this issue in a high-dimensional setting when the number
p of model parameters is larger than the number N of observations available to learn the
model.

Assume that observations X
(k)
j of a class k are sampled from a Gaussian distribution

N (µ(k),Σ(k)). Using a Bayes approach, a new individual x can be classified into the class
k∗ reaching the maximum of the posterior density function

k∗ = argmax
k

(fk(x)πk) = argmax
k

(log(fk(x)πk)), (1)
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where fk(x) = 1

(2π)
p
2 |Σ(k)|

1
2

exp
{
− 1

2 (x− µ(k))(Σ(k))−1(x− µ(k))T
}

is the density func-

tion of a Gaussian vector and πk is the probability to belong to the class k. This method
is known as Quadratic Discriminant Analysis (QDA), or Linear Discriminant Analysis
(LDA) when the covariance matrices Σ(k) are assumed to be the same for all classes. The
estimation of inverse covariance matrices Θ(k) = (Σ(k))−1 (also called precision matrices)
are required for these methods. When p < N , the estimation can be done by solving a
maximum-likelihood problem

Θ̂(k) = argmax
Θ�0

(− log det(Θ) + trace(S(k)Θ)), (2)

where Θ � 0 stands for a set of positive definite matrices and

S(k) =
1

Nk

Nk∑
j=1

(X
(k)
j − µk)(X

(k)
j − µk)T

is the empirical covariance matrix of the class k. However, in a high-dimensional set-
ting, this optimization problem is no longer well-posed and can not be used anymore
to estimate the precision matrix. To fix this issue, Friedman proposed a regularized
discriminant analysis [4] which uses a sparsity assumption for the covariance matrix es-
timation. This method was further improved in [7, 16]. In [2], Cai and Liu proposed
another method which directly gives an estimate of the product between the precision
matrix and the difference of mean vectors. This product is directly used to apply the
decision rule of the LDA method.

In this paper, we propose to extend the use of the LDA in high dimension using an
estimate of a common precision matrix obtained as a solution of the Graphical LASSO
[19]:

Θ̂(λ) = argmin
Θ�0

(− log det(Θ) + trace(SΘ) + λ‖Θ‖1) , (3)

where S is the empirical covariance matrix within groups

S =
1

N

K∑
k=1

Nk∑
j=1

(X
(k)
j − µ(k))(X

(k)
j − µ(k))T , (4)

||Θ||1 =
∑p
m,n=1 |Θmn| is a l1−norm on Θ, and λ > 0. By adding this norm to the

log-likelihood term, the precision matrix estimate Θ̂(λ) becomes sparse. The sparsity
level of Θ̂(λ) depends on the value of λ: the larger λ is, the sparser is the solution.

Besides, it is well-known that the estimated precision matrix accounts for the condi-
tional dependence of variables [15]: two variables Xi and Xj are dependent conditionally

to the other variables if and only if Θ̂ij(λ) 6= 0. From this information, it is possible
to build a dependency graph known as the Graphical LASSO model: in this graph, two
nodes i and j are connected if Θ̂ij 6= 0. We can further extract the connected compo-
nents of this graph and re-order variable indices so that the estimated precision matrix
becomes block-diagonal.

The shrunk estimate of the precision matrix allows us to apply the LDA in a high-
dimensional setting. By canceling some terms of the matrix, this method also reduces
the complexity of the classification model. This can help improving the generalization
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performances of the classification in high dimension. However, it might not be sufficient
to deal with the generalization issue when the complexity is very large. So we propose
an original selection method to further reduce the model complexity and improve the
classification performance. We define a discriminant capacity for each block of variables
in the estimated precision matrix. Then we rank blocks according to their discriminant
capacity and remove variables of the least discriminant blocks.

We apply our method to data extracted from images acquired using positron emission
tomography with [18F]-fluorodeoxyglucose (FDG-PET) [14]. Measuring the local glucose
consumption, this imaging modality enables to observe the neural activity. It is used to
study the so-called metabolic connectivity, which is defined as the coherence of the neural
activity within the brain [8]. For instance, it was used to investigate cognitive functions
[18, 20] and disease impairments [9]. In this paper, we focus on the classification of healthy
control people and patients with Alzheimer’s disease. The interest of our classification
approach is to take into account an information about the metabolic connectivity through
partial correlations encoded within precision matrix terms.

The rest of the paper is organized as follows. In Section 2, we present an algorithm
for solving the GLASSO and estimating the precision matrix. In Section 3, we define
the discriminant capacity of precision matrix blocks and describe our variable selection
procedure. In Section 4, we evaluate our classification method on synthetic data. In
Section 5, we present the application.

2. Estimation of a sparse precision matrix

2.1. Estimation of the precision matrix structure

In this section, we present an algorithm for choosing a value of the parameter λ∗ for
which the block-structure of the estimated precision matrix Θ̂(λ∗) corresponds to the
one of the target matrix Θ of the model. The algorithm relies upon a necessary and
sufficient condition characterizing the structure of the estimated precision matrix [17]:

Theorem 1. The solution Θ̂(λ) of Eq.(3) is block diagonal with L blocks B1, . . . , BL if
and only if |Sij | ≤ λ, for all i ∈ Bl, j ∈ Bl′ , l 6= l′.

This theorem enable the extraction from {|Sij |, i 6= j} of a finite ordered subset of
critical parameter values Λ = {(λi)i=1,M : λ1 > λ2 > · · · > λM}, called the GLASSO
path, where the block structure of the precision matrix changes. Then, following [6], we
can apply statistical tests to check at successive critical values λk the hypothesis Hk:
“Each connected component of the graphical model Ĝ(λ) derived from Θ̂(λ) contains a
connected component of the graphical model G associated to Θ, for all λ < λk”. The set
of hypotheses Hk has a nested structure: if Hk holds then Hk′ is also true for any k′ > k.
According to [6], the hypothesis Hk can be tested using a statistic

Tk = Nλk(λk − λk+1). (5)

Assuming that k∗ is the lowest index (i.e λk∗ is the largest value) for which Hk∗ is true,
the probability distributions of these statistics tend to some exponential distributions Tk∗

d→ Exp(1),

Tk′
d→ Exp

(
1

k′ − k∗ + 1

)
for k′ > k∗

(6)
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as N, p → ∞ and
log p

N
→ 0. In the test procedure, the hypothesis Hk is rejected when

the statistic Tk is above a threshold τ . Using Eq. (5), the threshold is set to ensure that
the risk of the first type error is below some α ∈ (0, 1). Starting from k = 1, we apply
successively the test until the hypothesis Hk is not rejected.

Due to the asymptotic approximation of the distribution of Tk, the test may be
inaccurate when the number of observations is not large enough. In this case, the risk
of the second type error might be large. To compensate this, we can stop the iterative
test procedure when the number of connected components in the graph of the estimated
precision matrix is lower than a predefined bound cmin.

The whole procedure is summarized in Algorithm 1.

2.2. Estimation of the precision matrix by GLASSO

Here, we assume that the precision matrix has a block diagonal form

Θ =


Θ(1) 0 . . . 0

0 Θ(2) . . . 0
...

...
. . .

...
0 0 . . . Θ(L)

 , (7)

This block structure may be estimated using the algorithm described in the previous
section. We now present an algorithm to estimate terms of the matrix blocks knowing
the block structure. Since the matrix is block diagonal, solving the GLASSO problem
on the whole matrix reduces to solving separate GLASSO problems on each block

Θ̂(l) = argmin
Θ(l)�0

[
− log det(Θ(l)) + trace(S(l)Θ(l)) + λ‖Θ(l)‖1

]
, (8)

where Θ(l) and S(l) are the sub-matrices extracted from the lth block of Θ and S, re-
spectively [17]. This problem separation is convenient in high dimension as it reduces

the number of parameters to be estimated to
∑L
l=1 p

2
l , where pl is the variable number

on the lth block.
There are many algorithms for solving the GLASSO among which the block-coordinate

descent method [19, 5, 11] and the Alternating Direction Method of Multipliers (ADMM)
[1]. In this paper, we use the ADMM algorithm which is both simple and efficient.

Introducing a matrix Z, problem (3) is equivalent to the minimization problem

(Θ̂, Ẑ) = argmin
Θ=Z; Θ,Z�0

[F (Θ) + λ||Z||1] , (9)

where F (Θ) = − log det(Θ) + trace(SΘ) + λ‖Θ‖1. This problem can be solved by mini-
mizing over (Θ, Z, U) the scaled augmented Lagrangian

Lρ(Θ, Z, U) = F (Θ) + λ||Z||1 +
ρ

2
||Θ− Z + U ||2F −

ρ

2
||U ||2F , (10)

where U is a dual variable and ρ serves as a penalty parameter. The ADMM is an
iterative algorithm which alternates the minimization over variables Θ, Z and U [1]. It
is described in Algorithm 2.
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Algorithm 1 Estimation of the precision matrix structure.

1: Input: the sample covariance matrix S, the observation number N , the significance
level α and the minimal number cmin of precision matrix blocks.

2: Output: an optimal value λ∗ and the corresponding block structure of Θ̂(λ∗).
The block structure of the estimated precision matrix Θ̂(λ∗) associated to the optimal
knot λ∗.

3: Γ =
{

(γl)l=1,Q : γ1 ≥ · · · ≥ γQ
}

is obtained by sorting all the absolute values of

off-diagonal elements of S in descending order.
4: c0 = p is the initial number of connected components (each node is a connected

component).
5: Compute the threshold τ = F−1(1 − α) where F is the cumulative distribution

function of an exponential distribution of parameter 1.
6: k = 1, λk = γ1.
7: for l = 2, . . . , Q do
8: Find an adjacency matrix A representing all connected nodes where Aij = 1 if

|Sij | > γl, and Aij = 0 otherwise.
9: Find the connected component number c of graph G associated to A.

10: if c ≥ cmin then
11: if c < c0 then
12: Compute the statistic test T : Tk = Nλk(λk − γl).
13: if Tk > τ , (the hypothesis Hk is rejected) then
14: k := k + 1;
15: λk = γl;
16: c0 = c;
17: else
18: λ∗ = γl;
19: Stop iterations;
20: end if
21: end if
22: else
23: Stop iterations;
24: end if
25: end for
26: From G, infer the dependency structure of Θ̂(λ∗). Reorder indices of the matrix

Θ̂(λ∗) so that it becomes block diagonal.
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Algorithm 2 The ADMM algorithm to solve Problem (3).

1: Input: Sample covariance matrix S, parameters λ and ρ.
2: Output: Estimated precision matrix Θ̂.
3: Initialize: Θ(1) = I, Z(1) = I, U (1) = 0,
4: Select a scalar ρ > 0
5: for n = 1, 2, 3, . . . do
6: Θ(n+1) = argmin

Θ�0
Lρ(Θ, Z

(n), U (n))

7: Z(n+1) = argmin
Z�0

Lρ(Θ
(n+1), Z, U (n))

8: U (n+1) = U (n) + (Θ(n+1) − Z(n+1))
9: end for

10: Convergence condition: ||Θ(n+1) −Θ(n)|| ≤ ε

3. A method to select connected components

In this section, we design a method to select connected components that are the most
discriminant. For that, we first define a criterion to assess the discriminant capacity of
a component. This definition is inspired from the principles of the factorial discriminant
analysis (FDA) which we recall next.

The FDA is a dimensionality reduction method which consists of finding a low di-
mensional projection of variables maximizing a dispersion criterion. In dimension q ≤ p,
variable projections are given as

Z
(k)
Φ = ΦTX(k), (11)

where Φ is in a setMp,q of matrices of size p× q such that the covariance matrix of Z
(k)
Φ

is equal to the identity matrix Iq. This condition means that components of Z
(k)
Φ are

normalized and uncorrelated and is fulfilled if and only if ΦTΣΦ = Iq. Denoting

E(q) = {Φ ∈Mp,q,Φ
TΣΦ = Iq}, (12)

the FDA problem consists of finding Φ(q) which maximizes over E(q) the function

J (Φ) =

K∑
k=1

πkE

Z(k)
Φ − E(

K∑
j=1

πjZ
(j)
Φ )

2

, (13)

where πk is the probability for an observation to be in the kth class. The function J
represents a variance of the class means of projected variables. It can also be written as

J (Φ) = ΦTBΦ, (14)

where B is the inter-class covariance matrix defined by

B =

K∑
k=1

πk(µ(k) − µ)(µ(k) − µ)T , (15)
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with µ =
∑K
k=1 πkµ

(k).
Let Φ(q) = argmax

Φ∈E(q)

J (Φ). We define the discriminant capacity of a subspace of dimension

q as
∆(q) = J (Φ(q)), (16)

and the relative discriminant capacity as

∆(q)
r =

∆(q)

∆(p)
%. (17)

The FDA consists of finding Φ(q) for the lowest dimension q such that the ∆
(q)
r exceeds

a predefined percent. This can be done in practice using the following proposition.

Proposition 1. Let φ1, · · · , φp be eigenvectors of the matrix ΘB associated to its or-
dered eigenvalues ψ1 ≥ · · · ≥ ψp such that φTi Σφj = 1 if i = j and 0 otherwise. Then

Φ(q) = (φ1| · · · |φq) , (18)

∆(q) =

q∑
j=1

ψj , and ∆(q)
r =

∑q
j=1 ψj

trace(ΘB)
. (19)

Due to this proposition, the FDA algorithm reduces to the problem of finding the eigen-
values of ΘB.

We adapt the FDA to take into account the block structure of the matrix. Consider a
block l indexed in a subset I(l) of 1, p of size ql. We now focus on projections in dimension
ql which only involve variables indexed in I(l). Let

Ẽ(l) = {Φ ∈Mp,ql ,Φ
TΣΦ = Iql ,Φi,j = 0,∀i /∈ I(l)}. (20)

We define the discriminant capacity of block l as

∆̃(l) = max
Φ∈Ẽ(l)

J (Φ), (21)

and the relative one as

∆̃(l)
r =

∆̃(l)∑L
m=1 ∆̃(m)

. (22)

To compute these discriminant capacities, we can use the following proposition.

Proposition 2. Assume that Θ is block diagonal. Let Θ(l) and B(l) be sub-matrices
extracted on the lth block of Θ and B, respectively. Then

∆̃(l) = trace(Θ(l)B(l)). (23)

and

∆̃(l)
r =

trace(Θ(l)B(l))

trace(ΘB)
. (24)
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In order to select blocks, we compute the relative discriminant capacity for each block,
and rank them according to their capacity. We then select the L0 most discriminant

blocks where L0 is chosen so that
∑L0

l=1 ∆̃
(l)
r is above a predefined percent γ. For the

classification, we eventually keep the variables on the selected blocks. In practice, the
discriminant capacities are evaluated using estimates of Θ and B. The estimate of Θ and
its block structures are obtained using Algorithms 1 and 2. The estimate of B is given
by

B̂ =

K∑
j=1

π̂j(µ̂
(j) − µ̂)(µ̂(j) − µ̂)T , (25)

where µ̂(j) =
∑Nj

i=1X
(j)
i and µ̂ =

∑K
j=1 πkµ̂

(j).
The block discriminant capacity may tend to foster large blocks even though they

do not contain very discriminant variables. To attenuate this effect, we can also use a
normalized discriminant capacity defined as

C̃(l)
r =

∆̃
(l)
r

pl
(26)

The whole selection scheme is presented in Algorithm 3.

Algorithm 3 Connected component selection procedure

1: Input: the estimated precision matrix Θ̂, the estimated inter-class covariance matrix
B̂, the maximum ratio of discriminant capacity 0 < γ < 1.

2: Output: The connected components whose discriminant capacities are the largest.

3: Compute the relative discriminant capacity of lth block ∆̃
(l)
r =

trace(Θ(l)B(l))

trace(ΘB)
, for

l = 1, L.

4: Normalize these values by block size: C̃
(l)
r =

∆̃
(l)
r

pl
, for l = 1, L.

5: Reorder these values by descending order C
(1)

r ≥ C
(2)

r ≥ · · · ≥ C
(L)

r .
6: Choose the L0 largest connected component with the largest L0 satisfying∑L0

l=1 C
(l)

r ≤ γ.

4. Numerical study

We evaluated the A-LDA and the connected component selection method on synthetic
data. We repeated 500 experiments. For each experiment, we generated a data set com-

posed of two normally distributed populations of sizeN = 300: X(k) = {X(k)
1 , X

(k)
2 , . . . , X

(k)
N }

where X
(k)
i ∼ N (µk,Σ) for i = 1, N and k = 1, 2. The observation vectors X

(k)
i had

values in Rp where p was chosen in {150, 300, 500}. The covariance matrix Σ had block
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diagonal form:

Σ =


Σ(1) 0 . . . 0

0 Σ(2) . . . 0
...

...
. . .

...
0 0 . . . Σ(L)

 . (27)

For each experiment, this matrix was randomly generated as follows. Its number of

blocks L was set to
p

10
. Setting p0 = 0, the size pl of each block l was chosen randomly

as follows.

pl ∼ U

(
[[1, p−

l−1∑
i=1

pi − (L− l)]]

)
,∀1 ≤ l ≤ L. (28)

The mean vector µ1 of the first population was sampled from a multivariate normal
distribution µ1 ∼ N (0, I). The one of the second population was set so as to have only

L0 =

⌊
25

100
L

⌋
discriminant blocks: µ2 = µ1 + δ where δ ∈ Rp is given by:

δi =

{
0.3(1 + 0.9ω) if i ∈ Vl, l = 1, L0,
0 otherwise,

(29)

where Vl is the index set of variables of the lth block and ω ∼ U([0, 1]).
In order to evaluate the different parts of the method, we applied it in three different

situations of increasing complexity:

1. The terms and the block structure of covariance matrix Σ and its inverse Θ are
completely known. They are not estimated.

2. Only the block structure of matrices Σ and Θ is known. The terms of the precision
matrix are estimated using Algorithm 2.

3. The precision matrix is completely unknown, and fully estimated using both Algo-
rithms 1 and 2.

The method was evaluated with and without connected component selection. The se-
lection algorithm 3 was applied with γ = 0.8. In each situation, the classification model
was trained on the subset containing 200 observations from each population. A classi-
fication error was computed on the 100 remaining observations of each population. We
compared our method to other state-of-the-art methods implemented in the Statistic and
Machine learning Matlab Toolbox: Support Vector Machine (SVM), Decision Tree (DT),
K-Nearest Neighbors (KNN) and Ensemble classification (ENS). We also compared it to
a Naive-Bayes classifier (NB) consisting of a LDA decision rule with a pseudo-inverse of
the sample covariance matrix S as an estimation of Σ.
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p C
A-LDA NB SVM DT ENS

A B A B A B A B A B

150

1 7.33 6.31 12.21 7.21 13.51 8.99 36.86 34.11 17.73 15.02
2 7.62 6.97 12.21 7.44 13.51 8.93 36.86 33.81 17.73 15.24
3 8.13 7.78 12.21 8.76 13.51 11.16 36.86 34.99 17.73 16.33

300

1 12.57 9.80 28.02 12.28 21.19 15.37 43.85 41.41 28.03 23.22
2 12.82 10.59 28.02 13.21 21.19 16.73 43.85 41.68 28.03 23.92
3 13.91 13.05 28.02 16.13 21.19 18.29 43.85 42.49 28.03 25.55

500

1 19.67 14.59 37.92 19.26 29.35 22.68 46.78 44.93 36.97 30.83
2 20.00 17.70 37.92 27.18 29.35 25.67 46.78 46.19 36.97 34.47
3 21.71 19.84 37.92 29.78 29.35 26.38 46.78 46.15 36.97 34.69

Table 1: Classification error (in %) of all methods applied without (A) and with (B) variable selection.
C refers to the experimental situation.

Variable number p 150 300 500
Estimation of the connected components (Algorithm 1) 6.58 70.10 519.78
Estimation of the precision matrix (Algorithm 2) 7.82 70.62 254.80
Selection of connected components (Algorithm 3) 0.002 0.009 0.02

Table 2: Computational times (in seconds) for the complete learning of the classification model A-LDA
for different variable number p.

Classification errors are reported in Table 1 for all methods. Results of the A-LDA
were significantly better than the ones of the NB, showing the importance of taking into
account the precision matrix structure in the decision rule. Moreover, comparing A-LDA
results in different situations, we observe that the estimation of the precision matrix had
only a slight effect on the classification performances. In the case when p = 150, the
classification error obtained in the situation C = 2 (resp. C = 3) where the precision
matrix is partly (resp. fully) estimated was only 0.3% (resp. 0.8%) higher than the one
in the situation C = 1 where it is known. We had similar results in the high dimension
setting when p = 300 or p = 500.

Besides, the connected component selection method improved the performance of A-
LDA. It slightly reduced the classification error by 0.7% in the setting when p = 150.
The error was more importantly reduced in high dimensional settings. The selection
decreased by 0.95% (resp. 3.08%) when p = 300 (resp. p = 500).

A-LDA outperformed all the other classification methods. Among the other methods,
SVM achieved the lowest error (13.51% for p = 150), which is much higher than the one of
A-LDA. Let us outline that other methods do not use any information from the precision
matrix. Hence, their comparison to A-LDA suggests that information from the precision
matrix are critical for classification. Besides, performances of the other methods were
significantly improved using the component selection method. For instance, the error of
SVM was reduced about 2% to 3% when selecting components.

Computational time for learning the classification model A-LDA is presented in Table
2 for different variable numbers p. The estimation of connected components was the most
time-consuming part of the method. Its computation time particularly increased as p
got larger.
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5. Application to medical data

In this section, we aim at discriminating patients with the Alzheimer’s Disease (AD)
from Healthy Control (HC) people and investigate impairments of the neural coherence
due to Alzheimer’s disease.

In collaboration with La Timone Hospital (Marseille, France), a PET image was
acquired for each individual of a cohort composed of 38 patients with AD and 56 HC.
Each image was automatically segmented into 116 predefined anatomical regions. Then
the mean image intensity was computed on each region. For an individual i of the class

k (1 for HC and 2 for AD), we formed an observation vector X
(k)
i composed of the mean

intensity on the brain regions.
We estimated the connected components of the precision matrix using Algorithm

1 with α = 0.05, and different values of cmin ∈ {1, 5, 7, 10, 15, 20, 30}, the parameter
monitoring the minimal number of components. Then the precision matrix was estimated
using Algorithm 2, with a value of λ corresponding to the critical value of the GLASSO
path corresponding to the number of connected components. Eventually, we applied
Algorithm 3 for selecting connected components with different threshold values γ. We
evaluated classification errors by cross-validation. Errors are given in Table 3. When

L
γ(%)

< 70 [70, 80) [80, 90) [90, 100) 100

1 - - - -
3.52
(116)

5
13.72
(2)

-
13.25
(4)

3.52
(114)

3.52
(116)

7
13.72
(2)

13.25
(3)

4.84
(111)

3.10
(113)

4.42
(116)

10
13.72
(2)

3.52
(101)

-
4.42
(103)

4.84
(116)

15
12.83
(5)

15.04
(6)

2.21
(99)

3.52
(109)

6.63
(116)

20
12.83
(5)

11.89
(40)

4.84
(97)

7.05
(108)

9.26
(116)

30
4.84
(31)

6.63
(32)

8.79
(60)

9.68
(74)

10.57
(116)

116
9.68
(20)

11.00
(29)

11.47
(38)

11.04
(58)

12.36
(116)

Table 3: Classification errors (in %) of the A-LDA applied to the classification of AD versus HC. L is the
number of estimated connected component. The parameter γ is the threshold used for selecting these
components. The values in parentheses give the number of selected variables in each case.

applied with L = 116, A-LDA does not take into account signal correlations between
regions. The method then corresponds to a reference method used in clinical routines.
This method had 12.36% of classification error. At the opposite, when L = 1, the method
takes into account all correlations. In this case, the error was only 3.52%, which highlights
the importance of correlations for the classification. In this case, all regions belongs to a
unique connected component. Splitting regions into several connected components and
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selecting the most discriminant ones, we could further reduce the error. For L = 15
and γ ∈ [80, 90), we obtained only 2.21% of error. This improvement is due to model
simplifications which result from removing non-discriminant components and neglecting
correlations between the discriminant ones. On this data, our method outperformed
SVM whose errors were 6.38% and 4.26% when applied without and with our selection
method, respectively.

In Table 4, we detail the composition of the connected components found by our
method in the best classification case (L = 15 and γ ∈ [80, 90)). There was a large dis-
criminant connected component. Among the most discriminant brain regions identified,
the posterior cingulate cortex is known to be the first metabolically involved in AD [12].
By contrast, non-discriminant regions are indeed supposed to be only involved in the last
stages of the disease (cerebellum, thalamus, Rolandic region, putamen, pallidum). Their
presence in a discriminant connected component is explained by their interactions with
impaired regions. The non-discriminant connected components gathered regions which
are known to be little affected by the disease.

12



CC NR Discriminant brain regions
1 2 Cingulum-Post (L,R)
2 1 Caudate (L)
3 2 Cingulum-Mid (L,R)
4 1 Heschl (R)
5 92 Precentral (L,R), Frontal-Sup (L,R), Frontal-Sup-Orb (L,R),

Frontal-Mid (L,R), Frontal-Mid-Orb (L,R), Frontal-Inf-Oper
(L,R), Frontal-Inf-Tri (L,R), Frontal-Inf-Orb (L), Supp-Motor-
Area (L,R), Olfactory (L,R), Frontal-Sup-Medial (L,R), Frontal-
Med-Orb (L,R), Rectus (L,R), Cingulum-Ant (L,R), Hippocam-
pus (L,R), ParaHippocampal (L,R), Amygdala (L,R), Cal-
carine (L,R), Cuneus (L,R), Lingual (L,R), Occipital-Sup (L,R),
Occipital-Mid (L,R), Occipital-Inf (L,R), Fusiform (R), Postcen-
tral (L,R), Parietal-Sup (L,R), Parietal-Inf (L,R), SupraMarginal
(L,R), Angular (L,R), Precuneus (L,R), Paracentral-Lobule (L,R),
Temporal-Sup (R), Temporal-Pole-Sup (L,R), Temporal-Mid
(L,R), Temporal-Pole-Mid (L,R), Temporal-Inf (R), Cerebelum-
Crus1 (L,R), Cerebelum-Crus2 (L,R), Cerebelum-3 (L,R),
Cerebelum-4-5 (L,R), Cerebelum-6 (L,R), Cerebelum-7b (L,R),
Cerebelum-8 (L,R), Cerebelum-9 (L,R), Vermis-1-2, Vermis-3,
Vermis-4-5, Vermis-6, Vermis-7, Vermis-8, Vermis-9, Vermis-10

6 1 Caudate (R)

CC NR Non-discriminant brain regions.
7 1 Cerebelum-10-L
8 1 Thalamus (L)
9 1 Temporal-Inf (L)
10 7 Rolandic-Oper (L), Insula (L), Putamen (L,R), Pallidum (L), Hes-

chl (L), Temporal-Sup (L)
11 3 Frontal-Inf-Orb (R) Rolandic-Oper (R) Insula (R)
12 1 Thalamus (R)
13 1 Fusiform (L)
14 1 Cerebelum-10 (R)
15 1 Pallidum (R)

Table 4: Estimated connected components of brain regions, CC and NR stand for the connected com-
ponent and the number of regions respectively.

6. Discussion

So as to classify normally distributed data in a high-dimensional setting, we proposed
to adapt the linear discriminant analysis (LDA). Under the assumption that the precision
matrix of the model was sparse, we included in the LDA decision rule a sparse estimate
of the precision matrix obtained as a solution of the GLASSO problem. We further
developed a variable selection procedure based on the graph associated to the estimated
precision matrix. This procedure relied upon the definition of a discriminant capacity
of a connected component of the graph. It consisted of keeping variables of the most
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discriminant components.
The assumption that the K groups share the same precision matrix helps to limit the

number of parameters to be estimated by GLASSO problem. That further improves the
classification performance. However, it would be interesting to have different precision
matrices for theK groups which would lead to the use of a quadratic discriminant analysis
for the classification. In a future work, we plan to adapt the quadratic discriminant
analysis to our context.

The connected component selection method helps to reduce the classification error.
Nevertheless, the number of selected variables is still large. This can be explained by the
fact that there exist some large connected components with high discriminant capacities.
However, some variables of these components may not be so important for classification
purposes. Hence, one can think about further selecting the most discriminating variables
in each connected component in order to reduce as much as possible the number of useless
variables.

The adapted LDA was applied to data extracted from PET images for discriminating
patients with Alzheimer Disease (AD) from Healthy Control (HC) people. In [9], authors
used a quadratic discriminant analysis with sparse estimates of class precision matrices
to classify a set composed of 49 AD and 67 HC. From PET data, they manually selected
42 anatomical regions within four lobes (Frontal, Parietal, Occipital and Temporal).
They reported a sensitivity of 88% and a specificity of 88%, which are both lower than
those we obtained (sensitivity of 97.37% and specificity of 98.21% when 99 brain regions
are selected). Our study further showed that brain regions in other lobes (Limbic and
Cerebellum) could play an important role for classifying these groups leading up to 10 %
improvement.

Besides, some studies have been conducted on other functional image data. They all
reported classification errors higher than ours. In [13], authors classified 114 AD and
114 HC using EEG data of size 132. Applying a regularized linear discriminant analysis,
they obtained 26% of mis-classification. In [3], a pattern classification approach was
used to classify 200 AD and 200 HC based on MRI data. This method obtained 5.7% of
mis-classifications. In [10], authors made four different trials on MRI dataset. Results
varied between 5% and 19% of errors.
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Appendix A. Proof of Proposition 1

Proof. The FDA aims to find (K − 1) axes where the projection of data on these axes
maximizes the variance between classes and minimize the variance within classes. These
axes satisfy the following problem:

φ∗ = argmax
φ∈Rp

φTBφ, subject to φTΣφ = 1. (A.1)

It is equivalent to:

φ∗ = argmax
φ∈Rp

[
φTBφ− ψ

(
φTΣφ− 1

)]
. (A.2)

We obtain:
ΘBφ∗ = ψ∗φ∗ (A.3)

where Θ = Σ−1. Hence, φ∗ is an eigenvector of ΘB corresponding to the eigenvalue λ∗.
The most important axis is the eigenvector φ1 corresponding to the largest eigenvalue
ψ1 of ΘB. The second important axis (follows φ1) for discriminating the data is the
eigenvector corresponding to the second largest eigenvalue ψ2 of ΘB (ψ2 < ψ1). There-
fore, we can evaluate the discriminant capacity of all eigenvectors of ΘB through their
corresponding eigenvalues. Hence, the matrix Φ(q) contains q eigenvectors corresponding
to the q biggest eigenvalues of ΘB, Φ(q) = (φ1| . . . |φq). Following Equation (16), the
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discriminant capacity of the subspace generated by these q vectors is given by:

∆(q) = trace((Φ(q))TBΦ(q)) = trace((Φ(q))TΣΘBΦ(q)) = trace((Φ(q))TΣΦ(q))

= trace((Φ(q))TΣΦ(q)(Φ(q))TΘBΦ(q)) = trace((Φ(q))TΘBΦ(q))

=

q∑
i=1

ψi

If q = p then Φ(p) = (φ1| · · · |φp) contains all eigenvectors of ΘB corresponding to
eigenvalues ψ1 ≥ · · · ≥ ψp. Therefore, the discriminant capacity of Φ(p) is given by:

∆(p) = trace((Φ(p))TΘBΦ(p)) =

p∑
i=1

ψi = trace(ΘB).

Hence, the relative discriminant capacity of Φ(q) is rewritten as:

∆(q)
r =

∑q
i=1 ψi

trace(ΘB)
=

∑q
i=1 ψi∑p
i=1 ψi

. (A.4)

Appendix B. Proof of Proposition 2

Proof. Following Equation (21), the discriminant capacity of lth-block is computed by:

∆̃(l) = max
Φ∈Ẽ(l)

J (Φ) = max
Φ∈Ẽ(l)

trace(ΦTBΦ)

= max
Φ∈Ẽ(l)

∑
k=1,ql,i,m=1,p

ΦikBkmΦmi

= max
Φ∈Ẽ(l)

∑
i,k,m=∈I(l)

ΦikBkmΦmi

= max
Φ̃(l)

trace((Φ̃(l))TB(l)Φ̃(l)) where Φ̃(l) = (Φij)i,j∈I(l)

= max
Φ̃(l)

trace((Φ̃(l))TΣ(l)Φ̃(l)(Φ̃(l))TΘ(l)B(l)Φ̃(l))

= max
Φ̃(l)

trace((Φ̃(l))TΘ(l)B(l)Φ̃(l))

Let denote Φ̂(l) = (φ
(l)
1 | . . . , |φ

(l)
pl ) ∈Mql,ql contains ql eigenvectors Θ(l)B(l) corresponding

to ql eigenvalues ψ
(l)
1 ≥ · · · ≥ ψ

(l)
pl . Then

∆̃(l) = trace((Φ̂(l))TΘ(l)B(l)Φ̂(l)) = trace(Θ(l)B(l)) (B.1)

The relative discriminant capacity of the lth-block is given by

∆̃(l)
r =

∆̃(l)∑L
l=1 ∆̃(l)

=
trace(Θ(l)B(l))∑L
l=1 trace(Θ(l)B(l))

=
trace(Θ(l)B(l))

trace(ΘB)
(B.2)
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