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S U M M A R Y
A method for combining the asymptotic operator designed by Beylkin (Born migration opera-
tor) for the solution of linearized inverse problems with full waveform inversion is presented.
This operator is used to modify the standard L2 norm that measures the distance between
synthetic and observed data. The modified misfit function measures the discrepancy of the
synthetic and observed data after they have been migrated using the Beylkin operator. The
gradient of this new misfit function is equal to the cross-correlation of the single scattering
data with migrated/demigrated residuals. The modified misfit function possesses a Hessian op-
erator that tends asymptotically towards the identity operator. The trade-offs between discrete
parameters are thus reduced in this inversion scheme. Results on 2-D synthetic case studies
demonstrate the fast convergence of this inversion method in a migration regime. From an
accurate estimation of the initial velocity, three and five iterations only are required to generate
high-resolution P-wave velocity estimation models on the Marmousi 2 and synthetic Valhall
case studies.

Key words: Numerical solutions; Inverse theory; Numerical approximations and analysis;
Computational seismology; Wave scattering and diffraction; Wave propagation.

1 I N T RO D U C T I O N

Full Waveform Inversion (FWI) has reached today sufficient matu-
rity for being routinely included in the industrial seismic imaging
workflow. The method is based on the iterative minimization of the
misfit between recorded and synthetic seismograms. The synthetic
seismograms are computed through the solution of partial differen-
tial equations describing the seismic wave propagation. The mini-
mization of the misfit function is performed over a set of parameters
of these equations, which control the wave propagation. This simple
formalism allows one to quantitatively estimate physical parameters
such as P- and S-wave velocities, density, attenuation and anisotropy
coefficients, with a resolution of the order of the wavelength.

Appearing in the early work of Lailly (1983) and Tarantola
(1984), FWI was initially thought of as intractable for realistic ap-
plications. At that time, the lack of long offsets and low frequencies
in the recorded seismic data were responsible for a large gap be-
tween the low and high part of the spatial spectrum (wavenumber)
which could be reconstructed (Jannane et al. 1989). Besides, the
computational cost of the method was seen as a major limitation
(Gauthier et al. 1986).

The simultaneous development of wide-aperture broadband ac-
quisition systems and high-performance computing facilities dur-
ing the last three decades allowed for the successful application
of FWI to real data in the 2-D acoustic and elastic approxima-
tions (Operto et al. 2004, 2006; Ravaut et al. 2004; Gao et al.
2006; Brossier et al. 2009; Prieux et al. 2011; Plessix et al. 2012;

Prieux et al. 2013a,b) as well as in the 3-D acoustic approximation
(Sirgue et al. 2008; Plessix & Perkins 2010; Vigh et al. 2010; Warner
et al. 2013). An overview of the FWI method and its application to
synthetic and real case study data has been proposed by Virieux &
Operto (2009).

The two key ingredients involved in the FWI process are first-
and second-order derivatives of the misfit function, namely the gra-
dient and the Hessian operators. These ingredients are used at each
iteration to construct the update that corrects the current subsurface
model estimation. The gradient is built as the cross-correlation of
the data residuals with the signals that would be scattered by local-
ized perturbations missing in the initial subsurface model. In this
sense, the model update provided by the gradient is an interpretation
of the unexplained part of the seismograms (the residuals) in terms
of single scattering effects. However, the gradient does not contain
any information about the true amplitude of the missing pertur-
bations, and the single scattering assumption is violated as soon as
multiscattered arrivals have been recorded. In addition, when multi-
ple classes of parameters are involved in the reconstruction process,
trade-offs are expected as the signal scattered by a local perturbation
of one parameter class may resemble the signal scattered by a per-
turbation of another parameter class. A review of these difficulties,
especially in the multiparameter inversion framework, is given in
Operto et al. (2013) and Alkhalifah & Plessix (2014).

Better accounting for the influence of the Hessian operator in the
inversion process should help to mitigate these difficulties. Since the
pioneering work of Pratt et al. (1998), numerous studies have been
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proposed on effects of the inverse Hessian operator. Applying this
operator to the gradient restores the amplitude of the perturbations
and corrects for artefacts generated by second-order reflections. In
addition, it helps refocus the model update and mitigates the trade-
offs between parameter classes, as the Hessian operator accounts
for spatial and parameter trade-offs.

These well-identified properties have led the FWI community
to improve the Hessian operator approximation in the inversion
schemes, progressively going from pre-conditioned steepest de-
scent using diagonal approximations of the Gauss–Newton operator
(Operto et al. 2004) or of the pseudo-Hessian operator (Shin et al.
2001), to non-linear conjugate gradient methods (Fichtner et al.
2008), l-BFGS approximations (Brossier et al. 2009) and truncated
Newton methods (Métivier et al. 2013, 2014; Castellanos et al.
2015). The latter method is based on an approximate solution of
the linear system associated with the Newton equations. This ap-
proximate solution is computed through few iterations of a linear
conjugate gradient solver. This only requires the ability to com-
pute efficiently the action of the Hessian operator on a given vector
(matrix-free paradigm). This operation requires two additional so-
lutions of the forward problem using second-order adjoint methods
(Métivier et al. 2012).

Despite the importance of the inverse Hessian operator in FWI,
the aforementioned techniques still rely on a quite crude approxima-
tion of this operator. Diagonal Gauss–Newton and pseudo-Hessian
approaches only account for the diagonal elements. Few gradients
(from 3 to 20 in practice) are used to construct the l-BFGS approx-
imation. The number of internal iterations involved in the solution
of the Newton equations should not exceed 10–20 for the truncated
Newton method to remain computationally feasible. These numbers
have to be compared to the actual size of the Hessian operator in
realistic applications: after discretization, the Hessian operator is a
square matrix of size N = O(106) in 2-D and N = O(109) in 3-D.
The imperfect illumination of the subsurface causes this matrix to
be poorly conditioned, making difficult to approximate the solution
of the Newton equations in such a small number of iterations.

In this study, an alternative approach is investigated. The under-
lying idea is to consider a modification of the standard FWI misfit
function that yields a misfit function with a Hessian operator tend-
ing asymptotically towards the identity. The minimization of this
modified misfit function is a better conditioned problem compared
to the original one. In particular, in the domain of validity of this
modified misfit function, the trade-offs between parameters should
be reduced.

The modification of the misfit function consists in projecting
the observed and synthetic data on the model space, through a
migration operator. The misfit function is thus computed as the L2

norm of residuals in the model space, instead of being defined in the
data space. The migration operator that is used is the one proposed
by Beylkin & Burridge (1990), developed in the framework of
inversion as an approximate inverse of the Born modelling operator
(Beylkin 1985, 1987; Bleistein et al. 1985; Bleistein 1987; Beylkin
& Burridge 1990; ten Kroode 2012).

The dominant part of the Hessian operator of the modified misfit
function (the Gauss–Newton part) is a normal operator associated
with a modified Born modelling operator. As a result of the introduc-
tion of the migration operator in the misfit function, this modified
Born modelling operator matrix is equal to the Born modelling op-
erator left-multiplied by the Beylkin operator. This operator tends
asymptotically towards the identity. As a consequence, the normal
operator associated with this modified Born operator tends asymp-
totically towards the identity.

A first attempt to use the Beylkin operator in the framework of
least-squares inversion has been proposed by Jin (1992), merging
two apparent disconnected methods. The underlying idea was to
introduce the asymptotic inverse in the misfit function as a data
weighting operator to produce a modified misfit function with a
nearly diagonal Hessian operator. Unfortunately, as the weighting
operator is a mapping from the data space to the model space,
the resulting misfit function depends on the space location, which
prevents the use of standard non-linear optimization techniques.
A similar idea has also been exploited by Sevink & Herman
(1996) for accelerating the solution of a least-squares migration
problem.

The strategy proposed here may be interpreted as applying a mi-
gration algorithm to the data residuals, meaning that the modelled
and the recorded data are compared in the migrated (spatial) do-
main. This shares some similarities with the Differential Semblance
Optimization (DSO) methods introduced by Symes & Carazzone
(1991) as a particular Migration Velocity Analysis (MVA) method
(Symes 2008). In these methods, however, the philosophy is differ-
ent. The data are migrated using a particular background velocity
model in an extended model space. The quality of the background
velocity model is assessed using a semblance criterion defined in this
extended image domain (invariance along the offset for instance).
This semblance criterion is used to define a new misfit function in
the extended image domain, and the background velocity model is
updated to reduce this misfit.

In the method presented in this study, the velocity model used to
perform the migration is kept constant, equal to the initial guess,
throughout the iteration process. The migration of the data residu-
als could be interpreted as a change of metric for comparing syn-
thetic and observed data. The residuals are projected in the model
space along the geodesics defined by selected ray paths. The min-
imization is performed to fit the converted data in this new space,
and the migration is not used to assess the quality of the back-
ground model. The quality of this model may be poor: in this case
the asymptotic approximation of the Hessian operator will be far
from the identity operator. However, throughout the iterative pro-
cess, FWI may still allow to correct the subsurface model that is
inverted.

In Section 2, the main ideas from the work of Beylkin (1985),
leading to the definition of an approximate inverse of the Born
operator, are exposed. The Section 3 presents how the asymptotic
migration operator is used within this context to modify the FWI
misfit function yielding a better conditioned minimization problem.
Numerical experiments on synthetic case studies are presented in
Section 4 in a 2-D acoustic frequency-domain context for the re-
construction of the pressure wave velocity only (mono-parameter
inversion). The advantages and the limits of the approach are pre-
sented. The introduction of the Beylkin operator within the misfit
function acts as a scattering-angle-based filtering on the seismic
data. A stronger weight is given to reflection data, detrimental to
data associated with diving waves. This hampers the reconstruc-
tion of the long wavelength of the models. On the other hand,
starting from an accurate initial velocity model, the gain in con-
vergence speed is substantial. This study thus suggests that the
method presented here may be well suited in a quantitative migra-
tion context, for the reconstruction of high-resolution estimates
of the subsurface parameters, as it is the case for instance in
Métivier (2011) and Métivier et al. (2011). In addition, it shows
that far from the high-frequency regime, the asymptotic approx-
imation has still a significant effect on the conditioning of the
FWI problem.
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2 L I N E A R I Z E D S E I S M I C I N V E R S E
P RO B L E M

2.1 Definitions and notations

The domain of investigation is defined as

� ⊂ R
n, (1)

where the dimension is denoted by n ∈ N (in practice n = 2 or
n = 3). In the acoustic approximation, the frequency-domain pres-
sure wavefield p(x, ω) is the solution of

− ω2

κ
p − div

(
1

ρ
∇ p

)
= s(x, ω), (2)

where the angular frequency is denoted by ω, the space variable
by x ∈ R

n , the density by ρ(x), the source by s(x, ω) and the bulk
modulus by κ(x). In the following, the source will be considered as
a Dirac impulse such that

s(x, ω) = δ(x − xs). (3)

Therefore, the source is parameterized only by its position xs. The
receivers are assumed to be located on a part of the border of the
domain denoted by ∂�r. Similarly, the sources are assumed to be
located on ∂�s. The generic subsurface parameter notation m(x) is
used, such that

m(x) =
[

1

κ

1

ρ

]T

. (4)

The data are defined as a function of the angular frequency ω,
the receivers and source positions xr and xs respectively, taking its
values in the complex plane C. This functional space is defined as
D . The synthetic data operator is a mapping from the model space
M to the data space D such that

dcal : m −→ dcal(m)
M −→ D .

(5)

The operator dcal is referred to as the forward problem operator in
the sequel. This operator depends non-linearly on m, as

dcal(m)(xr, xs, ω) = p(xr, ω; xs, m), (6)

where the solution of eq. (2) for a source located in xs and a subsur-
face model m(x) is denoted by p(xr, ω; xs, m).

2.2 Linearized inversion

The first step of linearized inversion consists in a linearization of
the forward problem operator. The subsurface model m(x) is decom-
posed as the sum of a background model m0(x) and a perturbation
of this background δm(x) such that

m(x) = m0(x) + δm(x), (7)

where δm(x) is such that

δm(x) =
[
δ

(
1

κ(x)

)
δ

(
1

ρ(x)

)]T

. (8)

The first-order Taylor development of the forward problem operator
is written as

dcal(m) = dcal(m0) + ∂dcal

∂m
(m0)δm + o

(‖δm‖2
M

)
, (9)

where ‖.‖M denotes the L2 norm in the model space M . The
operator ∂dcal/∂m(m) is known as the Born modelling operator

or Jacobian operator. It is denoted by J(m) throughout this study.
Considering that a data set dobs has been recorded, and a background
model m0 is known, the linearized inverse problem can be written
as the reconstruction of δm such that

J (m0)δm = dobs − dcal(m0). (10)

The strategy proposed by Beylkin for solving this problem includes
three steps.

(i) Use the first-order Born approximation to derive an analytic
expression for J(m0) depending on the Green functions G0(x, ω, xs)
and G0(x, ω, xr) associated with eq. (2).

(ii) Compute an asymptotic approximation of J(m0), denoted by
J (m0), through the asymptotic approximation of the Green func-
tions G0(x, ω, xs) and G0(x, ω, xr).

(iii) Compute an approximate left inverse of J (m0), denoted by
B(m0). The latter operator is roughly equivalent to a preserved-
amplitude migration operator.

The approximate solution m∗ of the linearized inverse problem
computed by Beylkin is thus

m∗ = m0 + B(m0) (dobs − dcal(m0)) . (11)

These three steps are reviewed in the following subsections.

2.3 First-order Born approximation

The first-order Born approximation is commonly used in seismic
inverse problems for the linearization of the forward problem [see
for instance Symes (1995)]. In this context, the pressure wavefield
p(x, ω; xs, m) is decomposed into a reference pressure wavefield
p0(x, ω; xs, m) solution of eq. (2) in the reference model m0 and a
perturbation δp(x, ω; xs, m), such that

p(x, ω; xs, m) = p0(x, ω; xs, m) + δp(x, ω; xs, m). (12)

The perturbed wavefield δp(x, ω; xs, m) is solution of eq. (2) with
a new source term depending on model perturbation δm and the
reference wavefield p0(x, ω; xs, m):

− ω2

κ
δp − div

(
1

ρ
δp

)
= ω2δ

(
1

κ

)
p0 + div

(
δ

(
1

ρ
p0

))
. (13)

From eq. (13), we deduce that

δp(x, ω; xs, m) =
∫

�

ω2δ

(
1

κ(y)

)
G0(x, ω, y)G0(y, ω, xs)

− δ

(
1

ρ(y)

)
∇G0(x, ω, y)∇ G0(y, ω, xs)dy.

(14)

Eq. (14) is an integral representation of the Born modelling operator
J(m0), acting as a mapping from the model space M to the data
space D , such that

J (m0) : δm −→ J (m0)δm =∫
�

ω2δ

(
1

κ(y)

)
G0(xr, ω, y)G0(y, ω, xs)

− δ

(
1

ρ(y)

)
∇G0(xr, ω, y)∇ G0(y, ω, xs)dy.

M −→ D . (15)
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2.4 Asymptotic approximation: computation of J (m0)

The high-frequency approximation is introduced by considering the
simple asymptotic approximation of the Green function G0(x, ω, y):

G0(x, ω, y) = A(x ; y)eiωT (x ;y), (16)

where only one phase is considered. In complex media, more than
one phase may be considered. In this introductory study, only the
first arrival (from the source point y to the scattering point x in
the above expression) is taken into account, although multi-arrival
extensions are possible. In the expression (16), the phase term T(x;
y) is the solution of the eikonal equation. It can be computed using
a fast marching method (Vidale 1988; Podvin & Lecomte 1991)
or a fast sweeping method (Zhao 2005) as only the first arrival is
considered in this work. As no intrinsic attenuation is accounted for,
the amplitude term A(x; y) is related to the geometrical spreading.
The geometrical spreading at a point x for a source located in xs can
be evaluated using the true ray connecting x and xs and the paraxial
quantities around this ray. Details on how to compute in practice
these quantities are given in Appendix A.

From the expression (16), the gradient of the Green function
∇G0(x, ω; y) satisfies

∇G0(x, ω, y) = [∇ A(x ; y) + iωA(x ; y)∇T (x ; y)] eiωT (x ;y). (17)

Following the high-frequency approximation, the first term is ne-
glected and the gradient of the Green function is approximated as

∇G0(x, ω, y) 	 iωA(x ; y)∇T (x ; y)eiωT (x ;y). (18)

Plugging expressions (16) and (18) into eq. (14) yields the relation

J (m0)δm = ω2

∫
�

1

κ0(y)
A(xr, y, xs)e

iωT (xr,y,xs)

× W T (xr, y, xs)M0(y)δm(y) dy, (19)

where the following compact notations for ray quantities are used:

A(xr, y, xs) = A(xr; y)A(y; xs),

T (xr, y, xs) = T (xr; y) + T (y; xs). (20)

The scattering matrix W(xr, y, xs) is defined as

W (xr, y, xs) = [1 cos θ (xr, y, xs)]
T , (21)

and the diagonal matrix M0(y) is

M0(y) =
(

κ0(y) 0

0 ρ0(y)

)
. (22)

In the expression of the scattering matrix, the angle θ (xr, y, xs) is
the illumination angle at the scattering point y, formed by the pair
of rays connecting the scattering point y to receiver position xr and
source position xs as illustrated in Fig. 1. This angle is related to
phases T(xr; y) and T(y; xs) through the equation

∇T (xr; y).∇T (y; xs) = 1

v2
P (y)

cos θ (xr, y, xs)

= κ0(y)

ρ0(y)
cos θ (xr, y, xs). (23)

2.5 Computation of B(m0)

The asymptotic approximation of the linearized forward operator
J (m0) is

Figure 1. Angles φr(xr, x), φs(xs, x) and θ (xr, x, xs) for a given source–
receiver pair.

J (m0) : δm −→ J (m0)δm

M −→ D . (24)

In this section, the computation of an approximate left inverse
B(m0) to J (m0) is presented. The operator B(m0) is a mapping
from the data space to the model space

B(m0)d −→ B(m0)d

D −→ M . (25)

Beylkin (1985) defines the operator B(m0) as a weighted adjoint of
J (m0) :

(B(m0)d) (x) =
∫

∂�r

∫
∂�s

∫ ∞

0

1

ω2

κ0(x)h(xr, x, xs)

A(xr, x, xs)

× e−iωT (xr,x,xs)d(xr, xs, ω)W (xr, x, xs)dxr dxs dω,

(26)

where the weighting function h(xr, x, xs) is yet to be described. As in
Beylkin (1985), the integral operator F given by the composition
of B(m0) and J (m0) is introduced:

F : δm −→ B(m0)J (m0)δm

M −→ M . (27)

Note that the operator F maps M to itself. In what follows, the
weighting function h(xr, x, xs) is determined so that the operator
F is pseudo-differential and tends towards the identity operator.
This ensures that the operator B(m0) is an approximate left inverse
of J (m0), that is to say a preserved-amplitude migration operator
based on the Born modelling operator.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/201/3/1682/775208 by C

N
R

S - ISTO
 user on 08 N

ovem
ber 2021



1686 L. Métivier, R. Brossier and J. Virieux

The expression of F at the scattering point x is given by an
integral over scattering positions y, expressed as

(F δm)(x) =
∫

�

∫
∂�r

∫
∂�s

∫ ∞

0

κ0(x)A(xr, y, xs)

κ0(y)A(xr, x, xs)

× eiω(T (xr,y,xs)−T (xr,x,xs))h(xr, x, xs)

W (xr, x, xs)W
T (xr, y, xs)M0(y)δm(y)dy dxr dxs dω.

(28)

The most singular part of the operator should be dominant in the
asymptotic approximation. The expression of F is thus localized
around the scattering point x. This localization amounts to neglect
the smoothest terms of the operator (Beylkin 1987). To this purpose,
the first-order development of the function T(xr, x, xs) is considered,

T (xr, y, xs) − T (xr, x, xs) 	 ∇T (xr, x, xs).(y − x), (29)

as well as the zero-order development of the functions depending on
y at point x in the integral (28). This yields the following simplified
operator:

(F δm)(x) 	 M0(x)
∫

�

∫
∂�r

∫
∂�s

∫ ∞

0
eiω(∇T (xr,x,xs).(y−x))h(xr, x, xs)

W (xr, x, xs)W
T (xr, x, xs)δm(y)dy dxr dxs dω. (30)

We recognize the expression of a wavenumber in the argument of
the exponential:

k(ω, xr, xs) = −ω∇T (xr, x, xs). (31)

Following the strategy proposed in Forgues (1996), the following
change of variables is considered:

f : (|k|, 
, θ ) −→ f (|k|, 
, θ ) = (ω, xr, xs) , (32)

where

θ (xr, x, xs) = φr(xr, x) − φs(xs, x),


(xr, x, xs) = φr(xr, x) + φs(xs, x)

2
. (33)

In this expression, the angles formed with the vertical axis by the
ray connecting the receiver (respectively the source) to the point
x are denoted by φr(xr, x) (respectively φs(xs, x)), as presented in
Fig. 1. The inverse of this change of variables is denoted by

f −1 : (ω, xr, xs) −→ f −1 (ω, xr, xs) = (|k|, 
, θ ) . (34)

Applying this change of variables to eq. (30) yields

(F δm)(x) 	 M0(x)
∫

�

∫ ∞

0

∫ 
max


min

∫ θmax

θmin

eik.(x−y)

× h ( f (|k|, 
, θ )) |det(D f )(|k|, 
, θ )|
W ( f (|k|, 
, θ ))W T ( f (|k|, 
, θ ))

× δm(y)dy d|k| d
 dθ, (35)

where the determinant det(D f )(|k|, 
, θ ) is defined by

det(D f )(|k|, 
, θ ) =

∣∣∣∣∣∣∣∣
∂ω

∂|k|
∂ω

∂


∂ω

∂θ

∂xr
∂|k|

∂xr
∂


∂xr
∂θ

∂xs
∂|k|

∂xs
∂


∂xs
∂θ

∣∣∣∣∣∣∣∣ . (36)

Furthermore, the scattering matrix W(xr, x, xs) only depends on the
illumination angle θ in the new parameterization (Forgues 1996), a
justification of this parameterization selection:

W (xr, x, xs) = W (θ (xr, x, xs)) . (37)

The following choice for the function h(xr, x, xs) is introduced:

h(xr, x, xs) = |k(xr, x, xs)|n−1

| det(D f )(|k|, 
, θ )| Z−1 (θmax, θmin) M−1
0 (x) (38)

(let us recall that n ∈ N denotes the dimension of the model space
and is equal to 2 or 3 in practice). The matrix

Z (θmax, θmin) =
∫ θmax

θmin

W (θ )W T (θ ) dθ. (39)

is assumed to be invertible. This yields

(F δm)(x) 	 Z−1 (θmax, θmin) M−1
0 (x)M0(x)

∫ θmax

θmin

W (θ )W T (θ ) dθ

×
∫

�

∫ ∞

0

∫ 
max


min

|k|n−1eik.(x−y)δm(y)dy d|k| d
.

(40)

Straightforward simplifications yield

(F δm)(x) 	
∫ ∞

0

∫ 
max


min

|k|n−1eik.x

∫
�

e−ik.yδm(y)dy d|k| d


	
∫ ∞

0

∫ 
max


min

|k|n−1eik.x δ̂m(k) d|k| d
, (41)

where the symbol .̂ denotes the Fourier transform operator. Beylkin
(1985) demonstrates that the operator P such that

(Pδm) (x) =
∫ ∞

0

∫ 
max


min

|k|n−1eik.x δ̂m(k) d|k| d
 (42)

is a pseudo-differential operator which can be represented as the
following sum:

P = I +
∑

i

Ti , (43)

where the operator I is the identity, and the operators Ti belong to
increasingly smooth classes of pseudo-differential operators. This
expansion depends on the angles 
min and 
max that characterize
the illumination of the subsurface through the acquisition system.
In the limit case


min = 0, 
max = 2π, (44)

we recognize in the double integral of the right-hand side of the
expression (42) the Fourier transform in polar coordinates of the
Dirac delta function (Forgues 1996). In this case P = I . The result
from Beylkin may be interpreted as follows: the pseudo-differential
operator P tends asymptotically to the identity as the illumination
of the subsurface increases to a complete coverage. From this, it can
be deduced that

F 	 I +
∑

i

Ti . (45)

Physically, the incomplete illumination of the subsurface yields a
pseudo-differential operator associated with a filtered Dirac func-
tion instead of an exact Dirac function. The properties of this filtered
Dirac function are studied in Lambaré et al. (2003).

The build-up of the operator B is thus an approximate left inverse
to the linear operator J . The explicit computation of the operator
B is presented in Appendix B in the 2-D mono-parameter case.
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Combining asymptotic linearized inversion and FWI 1687

3 M O D I F I C AT I O N O F T H E S TA N DA R D
F W I M I S F I T F U N C T I O N

3.1 The FWI problem

The FWI problem is defined as the non-linear least-squares mini-
mization problem

min
m

f (m) = 1

2

∫ ∞

0

∫
∂�s

∫
∂�r

|dcal(xr, xs, ω)

− dobs(xr, xs, ω)|2dxrdxsdω, (46)

where the complex modulus operation is denoted by the symbol
|.|. This problem is solved through local non-linear optimization
algorithms. In the framework of these methods, a sequence mk(x) is
built from an initial guess m0(x), such that

mk+1 = mk + αkmk, (47)

where the scalar parameter αk ∈ R is computed through a line-
search or a trust-region globalization process (Bonnans et al. 2006;
Nocedal & Wright 2006). In the particular case of the Newton
method, the parameter αk is set to 1 and the model update mk is
given by

mk = −H (mk)−1∇ f (mk). (48)

In this expression, the operators H(mk) and ∇f(mk) are respectively
the Hessian and the gradient of the functional f(m). These two key
components of the FWI method can be expressed in terms of the
Born modelling operator J(m) as

∇ f (m) = J ∗(m)(dcal(m) − dobs),

H (m) = J ∗(m)J (m) + ∂ J

∂m
(dcal(m) − dobs). (49)

3.2 Link with the linearized inverse problem

The usual approximation of the Newton method consists of con-
sidering only the first term of the right-hand side in the expression
of the Hessian operator. This is referred to as the Gauss–Newton
approximation. In this context, the model update at iteration k is the
solution of the linear system

HGN(mk)mk = −∇ f (mk), with HGN(m) = J ∗(m)J (m). (50)

This equation can be rewritten in terms of the Born modelling
operator and the model update only:

J ∗(mk)J (mk)mk = −J ∗(mk)(dcal(mk) − dobs). (51)

Eq. (51) is important, as it reveals that, in the Gauss–Newton ap-
proximation, the model update at iteration k is computed as the
least-squares solution of the system:

J (mk)mk = dobs − dcal(mk). (52)

The first iteration of the Gauss–Newton method thus amounts to
compute the subsurface model as

m1 = m0 + m0, (53)

where m0 satisfies

J (m0)m0 = dobs − dcal(m0) (54)

in the least-squares sense.
The connection with the linearized inversion can be made here.

Eq. (54) is similar to the linearized inverse problem (10), where m0

is replaced by δm. These two model updates are two approximate
solutions of the same problem. They differ in the approximation
used to compute them. In the linearized inverse method proposed
by Beylkin, the preserved-amplitude migration operator B(m0) is
used. In the context of the Gauss–Newton method, the solution of
this equation in the least-squares sense is computed numerically .

3.3 Introducing the asymptotic inverse within the FWI
process

This statement raises the question whether the preserved amplitude
migration operator B(m0) could be used in the FWI process to
accelerate its convergence. A first attempt to treat this question was
proposed by Jin (1992) and later on pursued by Forgues (1996),
Thierry et al. (1999a,b) and Lambaré et al. (2003). In these studies,
the inverse problem is defined as the least-squares minimization of
the misfit function

f̃ (m) = 1

2
‖J (m0)δm − dobs‖2

D . (55)

This problem may be seen as an intermediate between the linearized
inversion and FWI. The forward problem is linearized through the
ray-Born approximation (Moser 2012); however, the solution is
computed in the least-squares sense.

The idea introduced by Jin (1992) is to add a proper scaling in
the definition of the associated misfit function, so that the Hes-
sian of this new misfit function should be close from the identity
in the asymptotic regime. The scaling acts on the data and corre-
sponds to a weighting function Q(x, xr, xs, ω) derived from the one
introduced by Beylkin in its definition of the asymptotic inverse
of the linearized forward operator. However, since the weighting
Q(x, xr, xs, ω) depends on the space variable x ∈ R

n , the result-
ing misfit function actually depends on the space variable x. This
raises substantial difficulties, as for numerical optimization meth-
ods to be used, the misfit function should be positive and scalar-
valued.

A new approach is proposed in this study, where we make both nu-
merical and asymptotic approximation collaborating for the model
reconstruction, while Jin (1992) and following workers were us-
ing only the asymptotic regime for least-squares migration. This
approach consists in minimizing the misfit function g(m) defined
as

g(m) = 1

2
‖B(m0) (dcal(m) − dobs)‖2

M , (56)

where the integral operator B(m0) is the Beylkin operator: an
asymptotic approximation of the left inverse of J(m0). Following
the Jin’s interpretation, the integration of the Beylkin operator may
be seen as the definition of particular weights for each triplet source,
receiver and frequency, depending on the scattering point which is
considered. The final misfit is the integration in space of all these
local misfit functions.

The expression for the gradient of g(m) is

∇g(m) = J ∗(m)B(m0)∗B(m0) (dcal(m) − dobs) . (57)

Compared to the gradient of the standard misfit function f(m)
(eq. 49), the difference induced by the integration of the pre-
conditioning operator relies on the multiplication of the residu-
als by B(m0) and its adjoint B(m0)∗. These two multiplications
can be interpreted as migration and demigration operations on
residuals. Indeed, the asymptotic operator of Beylkin is similar
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1688 L. Métivier, R. Brossier and J. Virieux

to the Born migration operator. This mapping from the data space
to the model space is performed following the geodesics defined
by rays connecting sources and receivers to the scattering point
of the investigated domain. In this work, a unique ray connects
each scattering point to each sources and receivers. This is the
consequence of the first-arrival assumption. The adjoint opera-
tion is a demigration, which is obtained by the application of the
adjoint Beylkin operator to a function of the model space. The
gradient of the misfit function is thus computed as the correlation
between the data generated by localized perturbation in the medium
in the single scattering approximation and the residuals obtained
after a migration/demigration process. As it is demonstrated in the
numerical experiments, this process acts as an illumination angle
based filter of the residuals, which emphasizes small illumination
angles detrimental to large illumination angles.

The Gauss–Newton approximation of the Hessian of g(m), de-
noted by H g

GN(m), is

H g
GN(m) = J ∗(m)B(m0)∗B(m0)J (m)

= (B(m0)J (m))∗ (B(m0)J (m)) . (58)

From eq. (58), it is clear that the operator H g
GN(m) is the normal op-

erator associated with the expression B(m0)J (m). In the asymptotic
approximation,

B(m0)J (m) 	 B(m0)J (m). (59)

In addition, at the first iteration

B(m0)J (m) = B(m0)J (m0). (60)

In the previous section, following the work of Beylkin, the latter
operator has been proved to be a pseudo-differential operator that
tends towards the identity as the illumination of the subsurface
increases. As a pseudo-differential operator, this property holds for
its adjoint. In addition, the composition of two pseudo-differential
operators that tends to the identity tends also towards the identity.
Therefore, H g

GN(m0) can be approximated as

H g
GN(m0) 	 (

B(m0)J (m0)
)∗ (

B(m0)J (m0)
) 	 I +

∑
i

Ti ,

(61)

where the operators Ti belong to classes of increasingly smooth
operators. The introduction of the integral operator B(m0) in the
misfit function thus yields a better conditioned inverse problem, as
the Hessian operator associated with the new misfit function should
be closer to the identity.

The definition of g(m) given in eq. (56) assumes implicitly that
the pre-conditioning operator B(m0) is computed once for all
in the initial model m0. In fact, one may select a suitable model
mb as the background model where the pre-conditioning operator
B(mb) is built. Of course, a more elaborate strategy could con-
sist in introducing another non-linearity in g(m) by letting the pre-
conditioning operator depend on the current subsurface model m
through an updated background model. However, this brings an
additional complexity to the problem, not only in terms of com-
putational effort but also in terms of optimization strategy, as the
computation of the gradient of g(m) should be modified accordingly.
This study is thus restricted to the case where the pre-conditioning
operator is computed in the initial model m0.

4 N U M E R I C A L S T U DY

4.1 Experimental settings and implementation

The aim of the three experiments proposed in this section is to com-
pare standard L2 norm-based FWI results with the results obtained
when the modified misfit function g(m) introduced in the previous
section is used. This comparison is performed in the framework
of 2-D acoustic frequency-domain FWI for the reconstruction of
the P-wave velocity only. The modelling engine for the solution
of the 2-D frequency-domain acoustic equations is based on the
mixed-grid finite-difference scheme of Hustedt et al. (2004). The
direct solver MUMPS (Amestoy et al. 2000) is used to solve the
associated linear system. This approach benefits from the efficiency
of direct solvers for handling multiple right-hand sides associated
with multiple seismic sources.

The optimization scheme which is used to minimize the mis-
fit functions is the l-BFGS algorithm (Nocedal 1980). The choice
of this algorithm is made as it only requires the computation of the
gradient of the misfit function and shows however improved conver-
gence properties regarding standard steepest descent or non-linear
conjugate gradient algorithms. The parameter l sets the number of
gradients stored to build the l-BFGS approximation of the inverse
Hessian, which is 20 in this study (Nocedal & Wright 2006). The
adjoint state method is used to compute the gradient of the misfit
functions (Chavent 1974; Plessix 2006). From the implementation
point of view, the l-BFGS optimization is performed with the SEIS-
COPE optimization toolbox, which is interfaced within the code
used to achieve these experiments (Métivier & Brossier 2015).

The strategy retained for implementing the asymptotic pre-
conditioning strategy consists in computing the Beylkin operator
in discrete form off-line. While the first case study is small enough
for this operator to be computed explicitly on the same grid as the
one used by the finite-difference scheme for the wave propagation
modelling, in the second and third case studies (Marmousi2 and
Valhall experiments), a compression strategy is applied to reduce
the memory requirement and the computation cost. Indeed, there is
no need for using a fine sampling to discretize the operator B(m0).
From its expression in eq. (B17), we see that it is composed of a prod-
uct of smoothly varying terms multiplied by an oscillatory function.
This oscillatory function is an imaginary exponential of the travel-
time functions. Again, the traveltime functions are smoothly varying
functions, which do not require a fine sampling for an accurate dis-
crete approximation (Thierry et al. 1999a; Alkhalifah 2011). This
allows to reduce the tremendous memory requirement that would
be associated with a discretization of B(m0) using the fine finite-
difference grid of 25 m. In practice, in the second and third case
studies, we sample the function B(m0) with a discretization step h̃
equal to 100 m both from the model side and the acquisition side,
which correspond to a coarsening ratio of 4 in the model dimension
and 2 in the acquisition dimension as the original spatial sampling
for sources and receivers is equal to 50 m.

4.2 A canonical test case: reconstruction of two inclusions
in a smooth background model

A simple synthetic example is first presented, based on the smooth
P-wave background model presented in Fig. 2(a). The domain is
775 m deep and 2275 m wide. Two Gaussian perturbations are added
to this model [Fig. 2(b)], centred at the depth z = 500 m. The largest
is horizontally centred at x = 1100 m (perturbation 1). The smallest
is located on the right at x = 1750 m (perturbation 2). The maximum

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/201/3/1682/775208 by C

N
R

S - ISTO
 user on 08 N

ovem
ber 2021



Combining asymptotic linearized inversion and FWI 1689

Figure 2. Smooth P-wave model used as background model (a). Smooth
P-wave model with two Gaussian perturbations added in depth (b).

amplitude of both perturbations is equal to 800 m s−1. A fixed-spread
surface acquisition system with 84 sources and receivers, located
at the depth z = 50 m, and equally spaced each 25 m, is used.
Synthetic data are computed in the perturbed model. A group of 10
frequencies from 3 to 12 Hz with a 1 Hz sampling is used. These
synthetic data are inverted using the smooth background model as
the initial model m0. The horizontal and vertical discretization steps
for the finite-difference scheme are set to 25 m, which yields a 31 ×
91 point discrete model.

The experiment starts with the explicit computation of the oper-
ators:⎧⎪⎪⎨⎪⎪⎩

HGN(m0) = J (m0)∗ J (m0),

B(m0)J (m0),

H g
GN(m0) = (B(m0)J (m0))∗B(m0)J (m0).

(62)

The following normalization is applied to compare the diagonal
dominance pattern of the operators. For a given matrix A, the nor-
malized matrix Ã is defined entry wise as

∀(i, j), 1 ≤ (i, j) ≤ n, Ãi j = |Ai j |
||A||∞ , where

||A||∞ = max
kl

|Akl | . (63)

The results are presented in Fig. 3. The refocusing of large-
amplitude elements near the diagonal operated by the action of
the operator B(m0) can be clearly observed. While the standard
Gauss–Newton operator presents a hardly visible band matrix pat-
tern [Fig. 3(a)], the operator B(m0)J (m0) presents a strongly di-
agonal dominance pattern and appears as a narrow-band matrix
[Fig. 3(b)]. The normal matrix associated with this matrix preserves
this pattern and is also narrow-band [Fig. 3(c)].

To complement the analysis of these operators, the distribution of
their eigenvalues is presented in Fig. 4. The spectrum of the standard
Gauss–Newton operator presents a rapid decrease after the 200th
eigenvalue. In contrast, the spectrum of the operator B(m0)J (m0)
and its associated normal operator H g

G N (m0) presents a slower de-
crease. This indicates the better conditioning of these operators
compared to the standard Gauss–Newton operator.

The right most perturbation introduced in the background model
is smaller in size than the other and is not centred with respect to
the acquisition system. Therefore, its imprint in the data should be
significantly smaller than the imprint of the largest perturbation. It is

Figure 3. Rescaled operators. Gauss–Newton operator HGN(m0) associ-
ated with the standard FWI misfit function (a), product of the Beylkin and
the Born modelling operators B(m0)J (m0) (b), Gauss–Newton operator
H g

GN(m0) (c).

thus expected that, in the first iterations, the L2 norm-based gradient
focusses mainly on the first perturbation and neglects the second
perturbation. The modification of the misfit function through the
Beylkin operator should balance this focusing. The projection of the
residuals in the model space should allow to give more emphasis to
the data associated with the smaller perturbation. It is thus expected
that the gradient of the modified misfit function g(m) provides an
update accounting for the two perturbations. As discussed in the
previous section, the modification of the misfit function amounts to
only modifying the computation of the data residuals. In Fig. 5, the
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1690 L. Métivier, R. Brossier and J. Virieux

Figure 4. Eigenvalue distribution of the Gauss–Newton operator associated
with the standard FWI misfit function HGN(m0), the product of the Beylkin
and the Born modelling operators B(m0)J (m0), the Gauss–Newton opera-
tor H g

GN(m0) = (B(m0)J (m0))∗ B(m0)J (m0) associated with the modified
misfit function g(m).

standard L2 norm residuals,

dobs(xr, xs, ω) − dcal(xr, xs, ω), (64)

are compared with the migrated/demigrated residuals,

B(m0)∗B(m0) (dobs(xr, xs, ω) − dcal(xr, xs, ω)) . (65)

Fig. 5 is organized by frequencies: the 10 panels correspond to the
10 different frequencies from 3 to 12 Hz. Each panel is a presenta-
tion of the real part of the residuals in the frequency domain in the
receiver/source plane. The top panels [Fig. 5(a)] present the resid-
uals associated with the standard L2 norm, while the bottom panels
[Fig. 5(b)] present the residuals after migration/demigration. For
the L2 norm, at low frequency, the residuals seem to be associated
only with the first inclusion. The imprint of the second inclusion is
present only at higher frequencies, from 9 to 12 Hz. Along all the
bandwidth, signals associated with receivers and sources at a larger
distance from the targets are also visible. These signals correspond
to larger offset data recorded by the acquisition system.

In contrast, the imprint of the two inclusions is clearly visible in
the residuals associated with the modified misfit function g(m) from
lower frequencies. Already at 4 Hz, the effect of the second inclusion
is visible in the residuals. Another difference is that the long-offset
residuals are filtered. The migration/demigration operation results
in an emphasis on the information associated with near-offset data.
The illumination angle filtering resulting from the application of
the operator B(m0)∗B(m0) to the data residuals can be related to
the mathematical definition of the Beylkin operator and its adjoint,

Figure 6. Gradients computed for the two inclusions case study. Standard
L2 norm-based gradient (a). Modified misfit function gradient ∇g(m) (b).

given in Appendix B. From the formulas (B17) and (B18), it can
be seen that a multiplication by a factor (cos (θ ) + 1)2 is applied to
each residual components, which implies the observed emphasis of
small illumination angles.

The gradients associated with the standard L2 norm-based misfit
function and the modified misfit function are presented in Fig. 6.
For a fair comparison, the same scaling is applied to both of the gra-
dients. As expected, the L2 norm-based gradient [Fig. 6(a)] mainly
focusses on the first inclusion, which is centred with respect to the
acquisition system, and is larger in size. In contrast, the gradient
of the modified misfit function provides a more balanced update
for the large and small inclusions [Fig. 6(b)]. On the other hand,
positive/negative oscillations around the inclusions are introduced,
which resembles limited bandwidth effects observed in the recon-
struction provided by asymptotic linearized inverse methods [see for
instance Thierry et al. (1999a)]. The balance in the inclusion recon-
struction and these oscillations are the imprint of the introduction
of the Beylkin operator in the misfit function.

4.3 Application to the Marmousi model

The properties of the modified misfit function are analysed on the
acoustic Marmousi2 model (Martin et al. 2006). The exact and
initial models are presented in Fig. 7. The domain size is 3 km
deep and 17 km wide. The initial model is obtained by a Gaussian
smoothing of the exact model with a correlation length equal to
375 m. This yields an accurate initial model. A fixed-spread surface

Figure 5. Residuals in the source/receiver plane, for the 10 different frequencies from 3 to 12 Hz. L2 norm-based standard residuals (a). Migrated/Demigrated
residuals (b).
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Combining asymptotic linearized inversion and FWI 1691

Figure 7. Marmousi 2 P-wave exact (a) and initial (b) models.

acquisition system with 336 sources and receivers located at 50 m
depth and spread along the upper water layer from x = 0.15 km to
x = 16.9 km each 50 m is used. The frequency bandwidth for the
data goes from 3 to 7.5 Hz. The P-wave velocity in the water layer
is supposed to be known. It is kept constant, equal to 1500 m s−1,
throughout the inversion process. The spatial discretization h for the
finite-difference scheme is set to 25 m both in vertical and horizontal
directions, which yields a 141 × 681 point discrete model. As
mentioned preliminary, the operator B(m0) is discretized over a
coarse grid with a discretization step h̃ = 100 m. A fine frequency
discretization is used, with a sampling of 0.25 Hz, which yields a
data set with 19 discrete frequencies from 3 to 7.5 Hz. Numerical
experiments presented in the sequel show that this fine discretization
is required for the asymptotic pre-conditioning to be accurate.

The standard L2 norm residuals are compared with the mi-
grated/demigrated residuals for five frequencies (3, 4, 5, 6 and
7 Hz) in Fig. 8. As in the previous experiment, for each frequency,
a panel presents the real part of the residuals in the source/receiver
plane. The migration/demigration process operates a strong filter-
ing of the residuals associated with long-offset data and focusses on
near-offset data. This is again the impact of the angle illumination

filtering associated with the Beylkin operator. This may result in
emphasizing reflection data at the expense of diving-wave data.

In Fig. 9, the model update provided by the solution of the lin-
earized inversion problem following the Beylkin strategy

δm = B(m0) (dcal(m0) − dobs) (66)

is compared with the gradient in the initial model of the standard
FWI misfit and the modified misfit introduced in this study. Spatial
aliasing corrupts the update δm. This is due to the sampling of
B(m0) on the coarse grid. However, it is still visible that δm is a
migration result, with clearly delineated interfaces, in shallow and
deep parts of the model. The main structure of the exact model
appears. The gradient provided by standard FWI only focusses on
smooth updates of the shallow part. No modification is provided
deeper than 2 km. This gradient is driven by diving-wave data that
sample the shallow part of the model and provide long-wavelength
updates of the model. In contrast, the gradient associated with the
modified misfit function resembles strongly the model update δm.
However, the spatial aliasing is removed, and the amplitudes are
balanced between shallow and deep parts of the model. In addition,
a smooth, low-wavenumber correction is provided in the shallow
zone between z = 0.5 km, z = 1.5 km and x = 1, x = 6 km. The
gradient of the modified misfit function thus seems to be mainly
based on the model update δm but also incorporates information
resembling the one provided by standard FWI, through the fact that
the calculated data in the residuals are computed with a full two-way
wave equation rather than with the linear ray+Born approximation.

The effect of the frequency sampling on the accuracy of the
Beylkin operator B(m0) is presented in Fig. 10. Coarsening the
frequency sampling to 0.5 and 1 Hz yields important artefacts on
the gradient of the modified misfit function g(m). This effect is
consistent with the formulas (42) and (43). The asymptotic conver-
gence of B(m0) towards a left inverse of J(m0) requires the domain
of integration in frequency to go continuously from 0 towards the

Figure 8. Marmousi2 case study. Normalized residuals for the frequencies 3, 4, 5, 6 and 7 Hz. Standard L2 norm-based residuals (a) and migrated/demigrated
residuals (b).
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Figure 9. Model update B(m0)(dcal(m0) − dobs) which would be provided by the Beylkin method (a), standard FWI gradient in the initial Marmousi 2 model
(b) and modified misfit function gradient in the initial Marmousi 2 model ∇g(m0) (c).

infinity. Approximating this integral with a too coarse frequency
sampling decreases the accuracy of the approximation.

The effect of the compression used to compute the Beylkin op-
erator B(m0) is also presented in Fig. 11. Not surprisingly, if the
operator is approximated on a too coarse grid in space, spatial alias-
ing will not be totally removed in the gradient of the modified misfit
function g(m). The coarsening which is used should be actually
chosen consistently with the expected resolution. Here, as the fre-
quency content of the data does not exceed 7.5 Hz, a spatial dis-
cretization of 100 m is enough for obtaining a smooth P-wave
velocity gradient.

The inversion results obtained with the modified misfit function
after 3 and 10 l-BFGS iterations are presented in Fig. 12. These
results have to be compared with those obtained using the stan-
dard L2 norm after 3, 10 and 40 l-BFGS iterations, presented in
Fig. 13. A diagonal pre-conditioning based on the pseudo-Hessian
operator is included in the l-BFGS algorithm for the standard FWI
method (Shin et al. 2001). Details on practical implementation of
this pre-conditioning strategy can be found in Métivier & Brossier
(2015).

While in standard FWI the estimation first focusses on the shallow
part and progressively reconstructs the deeper parts of the model,
the modification introduced by the Beylkin operator allows to re-
construct deep structures in the very first iterations. This is due to
the focusing of the method on smaller illumination angles and re-
flection data. A high-resolution estimation of the subsurface model
is yielded directly in the first iterations. The progress between the
third and the tenth iterations indicates a reconstruction of ampli-
tudes rather than the building of interfaces. As a counterpart, the
shallow part of the model, sampled both by diving and reflected
waves, is less constrained when using the modified misfit function.
The estimation in this zone is less accurate than the ones obtained
with a standard FWI method. This seems a limitation of the ap-
proach, caused by the filter applied to diving waves induced by the
asymptotic operator.

To further investigate this issue, vertical P-wave velocity profiles
are presented in Fig. 14. Theses profiles are taken at x = 5 km,
x = 9 km and x = 14 km, respectively. The profiles obtained after 40
iterations of pre-conditioned l-BFGS follow almost exactly the exact
profiles, excepted in depth, where the true amplitude of the reflectors
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Figure 10. Marmousi2 case study. Effect of the frequency sampling. Gradient of the modified misfit function g(m) with 1, 0.5 and 0.25 Hz samplings.

is not recovered. The results obtained after 10 l-BFGS iterations
using the modified misfit function show that the trend is recovered
both in shallow and deep parts around the initial model profile. This
suggests that the low-frequency part of the model is not updated. The
reflectors are thus located at their proper locations, but a lack of low-
wavenumber updates is visible. This analysis is confirmed in Fig. 15
where the frequency content of the vertical profiles is presented.
The profiles obtained from 40 iterations of pre-conditioned l-BFGS
recover the low-frequency part of the exact profiles. The profiles
obtained after 10 iterations of l-BFGS using the modified misfit
function clearly present a gap in the low-wavenumber part of the
spectrum.

4.4 Application to the synthetic Valhall model

The numerical experiments are completed by an application on
the synthetic Valhall model presented in Fig. 16, together with the
initial model which is used. The model is deeper than the Marmousi
2 model; its lateral extension is smaller: it is 5 km deep and 8.7 km
wide. It presents interesting low-velocity layers associated with
the presence of gas and a strong curved reflector located above
z = 3 km. As in the Marmousi 2 experiment, a fixed-spread surface

acquisition system is used with 173 sources and receivers located
at 50 m depth and spread along the horizontal axis from x = 0 km
to x = 8.65 km each 50 m. The frequency bandwidth for the data
goes from 3 to 7 Hz. The frequency sampling is equal to 0.25 Hz,
as in the Marmousi 2 experiment, which yields a data set with 17
discrete frequencies. The spatial discretization h is set to 25 m both
in vertical and horizontal directions, which yields a 207 × 349
point discrete model. Compared to the Marmousi2 case study, the
reduction of the maximum offset of the acquisition system and the
good quality of the initial velocity model emphasize the importance
of reflected waves rather than diving waves for recovering the exact
P-wave velocity model. It is expected that in this situation, the
approach based on the modified misfit function g(m) provides good
results.

In Fig. 17, the residuals associated with the standard L2 norm-
based FWI are compared to the residuals after migration and demi-
gration using the Beylkin operator B(m0) and its adjoint. The same
presentation as for the previous case studies is used: the five panels
are associated with the frequencies 3, 4, 5, 6 and 7 Hz. Each panel
is a presentation of the residuals in the source/receiver plane. The
migration/demigration operation focusses again on near-offset data,
detrimental to far-offset data.
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Figure 11. Marmousi2 case study. Effect of the compression level used for computing the Beylkin operator B(m0). Gradient of the modified misfit function
g(m) with 400, 200 and 100 m grids.

In Fig. 18, the model update δm associated with the Beylkin mi-
gration (eq. 66) is compared to the gradient in the initial model
associated with the standard FWI misfit function and the modi-
fied misfit function. As a migration result, the model update δm
[Fig. 18(a)] yields a good reconstruction of the interfaces present
in the exact velocity model presented in Fig. 16. Because of the
coarse sampling of B(m0), the update suffers from spatial aliasing,
although this is less visible than in the Marmousi 2 experiment.
The FWI gradient [Fig. 18(b)] focusses mainly on the shallow part
of the model. A smooth, low-wavenumber update of the zone above
the first kilometre is provided, associated with transmitted energy.
Two dark wings also appear connecting both lateral extremities
of the acquisition to the zone in the centre. These artefacts are
due to the incompleteness of the acquisition. The modified misfit
gradient [Fig. 18(c)] appears as a smoother version of δm. The spa-
tial aliasing effect is removed. The amplitude of the model update
is corrected. A very shallow reflector at z = 0.5 km also appears,
which is not visible in δm.

The results obtained after 5 and 10 l-BFGS iterations using the
modified misfit function g(m) are presented in Fig. 19. After five it-
erations, the main interfaces already appear clearly in the estimated

model. The gas layers are accurately reconstructed. The main re-
flector at z = 3 km is well delineated from x = 1 km to x = 7 km.
Additional iterations (from 5 to 10) allow to restore more accurately
the amplitude and to improve slightly the resolution of the estima-
tion. The results obtained after 5, 10 and 20 l-BFGS iterations using
the standard FWI misfit function with a diagonal pre-conditioning
strategy are presented in Fig. 20. At least 20 iterations are required
for the standard FWI method to be able to reconstruct satisfactorily
the gas layers in the middle of the domain [Fig. 20(d)]. However, the
deepest part of the model, including the main reflector at z = 3 km,
is less precisely estimated in this case. In comparison, this reflec-
tor is more accurately estimated when the modified misfit function
g(m) is used. Here, the standard FWI method faces an important
difficulty as increasing the number of iteration does not seem to
improve further the solution. After 40 iterations, the main reflector
appears more clearly only between x = 1 km, x = 2 km and x = 5 km,
x = 7 km. The reconstruction of the gas layers starts to reveal some
instabilities, despite the synthetic data are not corrupted by any
noise. Note for instance the high-amplitude artefact appearing in
red at z = 2.5 km, x = 5 km [Fig. 20(e)]. This instability is not
observed when the modified misfit function g(m) is used.
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Figure 12. Marmousi2 case study. Reconstructed models after 3 (a) and 10 (b) l-BFGS iterations using the modified misfit function g(m).

Figure 13. Marmousi2 case study. Reconstructed models after 3 (a), 10 (b) and 40 (c) l-BFGS iterations using standard FWI with a diagonal pre-conditioner.
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Figure 14. Marmousi2 case study. Vertical logs of P-wave velocity models
extracted at x = 5 km (a), x = 9 km (b) and x = 14 km (c). Exact model (red),
initial model (black), reconstructed model after 10 iterations of modified
FWI (green) and reconstructed model after 40 iterations of standard FWI
(blue).

To complement this analysis, P-wave velocity vertical profiles
of the reconstructed models are presented in Fig. 21. The profiles
are extracted at x = 2.1 km, x = 4.4 km and x = 6.5 km. The re-
constructed models obtained after 10 l-BFGS iterations using the
modified misfit function g(m) and 20 l-BFGS iterations using stan-
dard FWI with a diagonal pre-conditioning are compared to the
exact and the initial models. For the three logs, the model recon-
structed using the modified misfit function is the closest to the exact

Figure 15. Marmousi2 case study. Wavenumber spectrum of the P-wave
velocity update along vertical logs extracted at x = 5 km (a), x = 9 km
(b) and x = 14 km (c). Exact update (blue), update obtained after 10 iterations
of modified FWI (green) and update obtained after 40 iterations of standard
FWI (red).

profile, especially in depth (z > 2 km). This is consistent with the
observations made on the 2-D reconstructions. However, as for the
Marmousi2 case study, the updates obtained using the modified
misfit function seems to lack low-wavenumber content. This obser-
vation is supported by the 1-D spectral analysis of these updates
presented in Fig. 22.
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Figure 16. Exact (a) and initial (b) models for the Valhall case study.

5 D I S C U S S I O N

The results presented in this study provide important information.
First, it should be noted that despite working with FWI far from the
high-frequency regime, with a seismic data bandwidth comprised
between 3 and 7.5 Hz, the asymptotic approximation still brings
valuable information on the propagation operators involved in the
inversion process. In particular, the left inverse devised by Beylkin
from the asymptotic approximation of the Born modelling opera-
tor is still a relatively good left pre-conditioner for the ‘true’ Born
modelling operator, computed with the full wavefield. This is em-
phasized in the first case study, where these operators are presented
(Fig. 3). This result indicates that the asymptotic approximation is
meaningful and could be used to build pre-conditioners even far
from the high-frequency regime.

Second, introducing the Beylkin operator within the FWI scheme
through the definition of the modified misfit function (56) is not
without having some consequences on the inversion process. The
filtering applied on the data residuals associated with wide scattering
angles should be underlined. The method amounts to significantly
focus on the short-offset data rather than long-offset data, as can

Figure 18. Model update B(m0)(dcal(m0) − dobs) which would be provided
by the Beylkin method (a), standard FWI gradient in the initial Valhall model
(b) and gradient of the modified misfit function g(m) in the initial Valhall
model (c).

be seen in the migrated/demigrated residuals in Figs 5, 8 and 17.
This makes the method similar to a migration process rather than
a full waveform inversion process as long-offset data maybe not
accounted for accurately.

Let us recall the expression of the modulus of the reconstructed
wavenumber model |k| in the context of diffraction tomography
(Devaney 1982),

|k(x)| = 2 f cos (θ (x)/2)

c(x)
, (67)

Figure 17. Normalized residuals for the frequencies 3, 4, 5, 6 and 7 Hz. Standard L2 norm-based residuals (a) and migrated/demigrated residuals (b).
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Figure 19. Reconstructed model after 5 (a) and 10 (b) l-BFGS iterations
using the modified misfit function g(m).

Figure 20. Reconstructed model after 5 (a), 10 (b), 20 (c) and 40 (d) l-BFGS
iterations using standard FWI with a diagonal pre-conditioner.

where θ is the illumination angle, f the dominant frequency of
the data and c(x) the local velocity. This equation shows that the
loss of sensitivity to long-offset data decreases the capability of
the method to retrieve low-wavenumber components of the P-wave
velocity model.

From the expression of the Beylkin operator, one could think,
however, that this effect is counterbalanced by the frequency weight-
ing strategy embedded in this operator. Indeed, from eq. (B17), one
can see that a scaling factor equal to the inverse of the frequency is

Figure 21. Valhall case study. Vertical logs of P-wave velocity models
extracted at x = 2.1 km (a), x = 4.4 km (b) and x = 6.2 km (c). Exact
model (blue), initial model (black), reconstructed model after 10 iterations
of modified FWI (green) and reconstructed model after 40 iterations of
standard FWI (red).

applied to the data, which gives more weight to low-frequency data
rather than higher frequency data in the inversion. This makes possi-
ble to enhance the reconstruction of low-wavenumber components
of the P-wave velocity model, according to the expression (67).
This strategy, named as spectral shaping, is presented in Lazaratos
et al. (2011) and Plessix (2013). However, the numerical results pre-
sented here tend to indicate that the compensation induced by this
frequency weighting is not sufficient: the illumination angle based
filtering has a stronger influence on the reconstruction process.

Nevertheless, if the low-wavenumber components of the so-
lution is contained in the initial model, it appears that the
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Figure 22. Valhall case study. Wavenumber spectrum of the P-wave velocity
update along vertical logs extracted at x = 2.1 km (a), x = 4.4 km (b) and
x = 6.2 km (c). Exact model (red), initial model (black), reconstructed model
after 10 iterations of modified FWI (green) and reconstructed model after
40 iterations of standard FWI (blue).

modification of the misfit function improves significantly the con-
vergence speed of the minimization process. This suggests that the
modified misfit function could be used for instance for accelerating
non-linear quantitative migration algorithms, such as in Métivier
et al. (2011) and Métivier (2011) for the reconstruction of the
acoustic impedance around a well with walkaway data, with a given
velocity model. In Zhou et al. (2014a,b), a method is proposed for
the coupled reconstruction of the low-wavenumber components of
the P-wave velocity model and the high-wavenumber components

of the P-impedance. At each iteration of the process, a non-linear
minimization has to be performed to compute the reflectivity model
with the current velocity model: the method proposed here could
also be applied to accelerate this process.

In terms of practical implementation, the computation of the
Beylkin operator amounts to the computation of a large-scale dense
matrix. This requires a significant computational effort and has a
strong impact on its memory requirement. A coarsening strategy has
to be applied in accordance with the frequency content of the data
which is inverted. Practicing an off-line computation of the operator
as a prior stage to the inversion reduces the computational cost as
the quantities from the Beylkin operator are computed only once. As
a counterpart, this requires the ability of storing the dense matrix on
the coarse grid. A trade-off could be found by recomputing some of
the matrix entries at each iteration. Another possibility also consists
in using compression strategies, such as the ACA method to devise
H-matrix approximation of the Beylkin operator (Bebendorf 2008).

Finally, the approach is presented here in the frequency do-
main for the sake of simplicity. However, the strategy can be ex-
tended to time-domain inversion. In the work of Beylkin (1985),
the derivation of the migration operator was initially performed
in the time domain. In practice, the frequency-domain inversion
requires a fine sampling of the frequency integration domain
(see Fig. 10). The computational gain associated with frequency-
domain approach for FWI relies on the possibility of exploiting
data redundancy and invert for few discrete frequencies. There-
fore, in this case, it seems that there are no advantages to keep
a frequency-domain approach. The method could thus be consid-
ered for accelerating the convergence of time-domain least-squares
migration algorithms, which are known to be intensively time
consuming.

6 C O N C LU S I O N

This study presents a strategy for combining concepts inherited from
linearized inversion with non-linear least-squares inversion scheme
such as FWI. In particular, the preserved-amplitude migration op-
erator derived by Beylkin (1985) from the adjoint of the asymptotic
approximation of the Born modelling operator is used to define a
modified misfit function. The gradient associated with this new mis-
fit function shares some similarities with the standard L2 norm-based
FWI gradient. It is the cross-correlation of the wavefield diffracted
by any single localized perturbation of the discrete medium with
residuals. The difference with standard FWI is that the residuals on
which the method applies are first migrated/demigrated using the
Beylkin operator and its adjoint. The Hessian of this modified misfit
function is shown to tend asymptotically towards the identity oper-
ator. As an inverse problem, the minimization of this misfit function
is thus a better posed problem, as the trade-off between parameters
is reduced.

It is observed numerically that despite working far from the high-
frequency regime, the modified misfit function has indeed a diagonal
dominant Hessian operator. However, the modification of the misfit
function through the Beylkin operator implies a focussing of the
method on small illumination angle data, detrimental to large-offset
data. As a consequence, the sensitivity of the misfit function to
diving waves is reduced, and the method is efficient only in a mi-
gration regime. This indicates that this strategy could be employed
for accelerating non-linear quantitative migration algorithms.

The results which have been obtained suggests that the asymptotic
approximation should be an appropriate tool to better condition the
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FWI problem. Future studies will be led to investigate the use of
the Beylkin operator for building directly an approximate inverse
of the Hessian operator. This pre-conditioner could be used in the
framework of a truncated Newton method. This strategy is expected
to be efficient especially for the multiparameter case for which
trade-offs between different classes of parameters (for instance P-
wave velocity and density in the acoustic approximation) make the
computation of a decoupled estimation a strongly difficult task.

It is important to emphasize that the asymptotic approximation
can be extended to account for anisotropy, attenuation and the prop-
agation of elastic waves. Extension to multi-arrival can also be
performed to improve the accuracy and the impact of an asymp-
totic pre-conditioning. Therefore, the approach which is developed
here is not limited to the acoustic case and is hopefully a prelim-
inary step towards the definition of more general pre-conditioners
for FWI.
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A P P E N D I X A : A M P L I T U D E A N D T R AV E LT I M E C O M P U TAT I O N F O L L OW I N G T H E
R AY T H E O RY

The following quantities have to be computed for the asymptotic approximation

(i) the traveltime maps T(x; r), T(x; y);
(ii) the amplitude maps A(x; r), A(x; y).

The traveltime maps are computed through the eikonal solver of Podvin & Lecomte (1991), based on a fast-marching method. The
computation of the amplitude maps depends on the geometrical spreading j(x; r), j(x; y). In 2D, considering a homogeneous medium around
the source, and a proper source calibration, the amplitude satisfies

A(x ; r ) = 1√−iω

√
ρ(r )ρ(x)

8π j(x ; r )
(A1)

[see for instance Forgues (1996)]. The computation of the geometrical spreading can be performed following the paraxial ray theory. The ray
coordinates q(τ ), p(τ ) satisfy the Ordinary Differential Equations (ODE)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq

dτ
= p,

dp

dτ
= 1

2
∇

(
1

v2
P (x)

)
,

‖p(τ )‖2 = 1

v2
P (x)

.

(A2)
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Considering a perturbation of the ray

q ′(τ ) = q(τ ) + q̃(τ ), p′(τ ) = p(τ ) + p̃(τ ), (A3)

the paraxial ODE satisfied by q̃(τ ), p̃(τ ) is⎧⎪⎪⎪⎨⎪⎪⎪⎩
dq̃

dτ
= p̃,

d p̃

dτ
= Mq̃,

(A4)

where

M =

⎛⎜⎜⎝
∂2 u
∂

x2
1

∂2 u
∂x1 x2

∂2 u
∂x1 x2

∂2 u
∂

x2
2

⎞⎟⎟⎠, (A5)

and the quantity u(x) is the squared slowness

u(x) = s2(x) = 1

v2
P (x)

. (A6)

For the computation of the amplitude map A(x; r), point source initial conditions are chosen{
q̃1 = 0, q̃2 = 0,

p̃1 = p2(x ; r ), p̃2 = −p1(x ; r ).
(A7)

The geometrical spreading j(x; r) is given by

j(x ; r ) = vP (x) (p1q̃2 − p2q̃1) . (A8)

The workflow for computing j(x; r) is thus as follows:

(i) Compute the traveltimes from the receiver r using the eikonal solver.
(ii) Perform a back ray tracing from the point x to the receiver r using the gradient of the traveltime ∇T(x; r).
(iii) Store the components p1 and p2 at x and at the receiver r.
(iv) Get the initial condition for the paraxial ray tracing and solve the paraxial equations (A4).
(v) Compute j(x; r) following formula (A8).

A P P E N D I X B : C O M P U TAT I O N O F T H E B E Y L K I N I N T E G R A L O P E R AT O R B A N D I T S
A D J O I N T B∗

The integral operator B is defined through its kernel, which depends on the function h(xr, xs, ω) defined in eq. (38). For the sake of simplicity,
the explicit formulation of B is given for the 2D mono-parameter case (constant density is assumed).

The computation of h(xr, xs, ω) requires to develop the expression of the Jacobian associated with the change of variable f defined in
eq. (32). This Jacobian has been denoted by (Df)(|k|, 
, θ ). The definition of k in eq. (31) implies

|k| = ω

√
‖∇T (x, xr) + ∇T (x, xs)‖2 = ω

√
‖∇T (x, xr)‖2 + ‖∇T (x, xr)‖2 + 2∇T (x, xr) · ∇T (x, xs). (B1)

The definition of the phase vectors T(x, xr) and T(x, xs) yields

‖∇T (x, xr)‖2 = ‖∇T (x, xs)‖2 = 1

v2
P (x)

. (B2)

In addition,

∇T (x, xr).∇T (x, xs) = cos θ (xr, x, xs)

v2
P (x)

. (B3)

The trigonometric identity

cos x = 2 cos2 (x/2) − 1 (B4)

yields

|k| = ω
2| cos

(
θ

2

) |
vP (x)

. (B5)

This implies that

∂ω

∂|k| = vP (x)

2| cos
(

θ

2

) | . (B6)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/201/3/1682/775208 by C

N
R

S - ISTO
 user on 08 N

ovem
ber 2021



Combining asymptotic linearized inversion and FWI 1703

Therefore, (Df)(|k|, 
, θ ) can be simplified into

(D f )(|k|, 
, θ ) =

⎛⎜⎝
vP (x)

2| cos( θ
2 )| 0 0

0 ∂xr
∂


xr
∂θ

0 ∂xs
∂


xs
∂θ

⎞⎟⎠ (B7)

and

det(D f )(|k|, 
, θ ) = vP (x)

2| cos
(

θ

2

) |
(

∂xr

∂


xs

∂θ
− ∂xs

∂


xr

∂θ

)
. (B8)

The definition of the angles 
 and θ (eq. 33) implies that

∂xr

∂

= 2∂xr

∂φr
,

∂xs

∂

= 2∂xs

∂φs
,

xr

∂θ
= ∂xr

∂φr
,

xs

∂θ
= − ∂xs

∂φs
. (B9)

Therefore

det(D f )(|k|, 
, θ ) = −4vP (x)

| cos
(

θ

2

) |
∂xr

∂φr

∂xs

∂φs
. (B10)

The quantities ∂xs
∂φs

and ∂xr
∂φr

can be expressed using the geometrical spreading function j(y, x),

∂xs

∂φs
= j(xs, x)

cos ϕs
,

∂xr

∂φr
= j(xr, x)

cos ϕr
, (B11)

where the angles ϕr and ϕs are the angles made with the vertical by the tangent to the ray connecting x to xr and xs, respectively (see Fig. 1).
The geometrical spreading function is useful for computing the amplitude terms A(y, x). They can be efficiently estimated using the paraxial
ray theory (Appendix A). The determinant det(D f )(|k|, 
, θ ) can thus be expressed as

det(D f )(|k|, 
, θ ) = −4vP (x)

| cos
(

θ

2

) |
j(xs, x)

cos ϕs

j(xr, x)

cos ϕr
. (B12)

In the mono-parameter context (constant density), the matrices W(θ ) and M0(x) are scalar quantities such that

W (θ ) = 1, M0(x)−1 = 1

ρ(x)v2
P (x)

(B13)

Equations (B12), (B5) and (38) thus yield

h(x, xr, xs, ω) = ω cos2
(

θ

2

) | cos ϕs|| cos ϕr|
2ρ(x)v4

P (x) j(xs, x) j(xr, x) (θmax(x) − θmin(x))
. (B14)

Using again the trigonometric identity (B4) and geometrical spreading function reciprocity equation

j(x, y) = j(y, x)
vP (x)

vP (y)
, (B15)

the weighting function h(x, xr, xs, ω) can be written as

h(x, xr, xs, ω) = ω (cos θ + 1) | cos ϕs|| cos ϕr|
4ρ(x)v2

P (x)vP (xs)vP (xr) j(x, xs) j(x, xr) (θmax(x) − θmin(x))
. (B16)

Therefore, for all d ∈ D ,

(Bd) (x) =
∫

∂�r

∫
∂�s

∫ ∞

0

(cos θ + 1) | cos ϕs|| cos ϕr|
4ωA(xr, x, xs)vP (xs)vP (xr) j(x, xs) j(x, xr) (θmax − θmin)

e−iωT (xr,x,xs)

d(xr, xs, ω)dxr dxs dω.

(B17)

From (B17), the computation of the adjoint B∗ is straightforward. For all m ∈ M , we have

(B∗m) (xr, xs, ω) =
∫

�

(cos θ + 1) | cos ϕs|| cos ϕr|
4ωA(xr, x, xs)vP (xs)vP (xr) j(x, xs) j(x, xr) (θmax − θmin)

eiωT (xr,x,xs)m(x)dx . (B18)
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