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Abstract

In gyrokinetic model and simulations, when the double-gyroaverage term incor-
porates the combining effect contributed by the finite Larmor radius, short-scales
of the perturbation and steep gradient of the equilibrium profile, the low-order
approximation of this term could generate unignorable error. This paper imple-
ments an interpolation algorithm to compute the double-gyroaverage term without
low-order approximation to avoid this error. For a steep equilibrium density, the
obvious difference between the density on the gyrocenter coordinate frame and the
one on the particle coordinate frame should be accounted for in the quasi-neutrality
equation. An Euler-Maclaurin-based quadrature integrating algorithm is developed
to compute the quadrature integral for the distribution of the magnetic moment.
The application of the interpolation algorithm to computing the double-gyroaverage
term and to solving the quasi-neutrality equation is benchmarked by comparing the
numerical results with the known analytical solutions. At last, to make the ad-
vantage of the interpolation solver clearer, the numerical comparison between the
interpolation solver and a classical second order solver is carried out in a constant
theta-pinch magnetic field configuration using SELALIB code. When the equilib-
rium profile is not steep and the perturbation only has the nonzero mode number
along the parallel spatial dimension, the results computed by the two solvers match
each other well. When the gradient of the equilibrium profile is steep, the interpola-
tion solver provides a bigger driving effect for the ion-temperature-gradient modes
which possess large polar mode numbers.
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1 Introduction
The micro-scale turbulence plays a significant role on the confinement capability of the
magnetized fusion plasma through its interaction with the low-frequency zonal flow[9, 26,
1, 26, 37, 12, 19, 38], the equilibrium profile at the pedestal region and the edge localized
modes [39, 18, 3, 20, 28], etc. The importance of the pedestal region is reflected by the
fact that the pressure of the plasma core is proportional to the pressure at the pedestal
top [30, 35, 10]. The gradient of the equilibrium temperature and density at the pedestal
region could be very sharp, alternatively, the truncation of exp(ρ · ∇) acting over n0 or
T0 at the first order, which is utilized by the standard gyrokinetic model[13, 25, 24], is
not a good approximation, where ρ is the Larmor-radius vector defined as

ρ(x, µ, θ) =
1

qs

√
2µms

B
(e1 cos θ + e2 sin θ) .

Here, qs,ms, µ are the particles’ charge, mass and the magnetic moment on the guiding-
center coordinate frame; e1, e2 are the unit vectors perpendicular to unit vector b of the
equilibrium magnetic field, and e1, e2,b obey the right hand rule; B is the magnitude of
the magnetic field; θ is the gyrophase angle; n0, T0 are the equilibrium density and tem-
perature profile. In the gyrokinetic theory, the first gyroaverage term could incorporate
the effect contributed by the finite Larmor radius and short scales of the perturbation
at the core and edge tokamak plasma, while the double-gyroaverage term (DGT) in-
corporates the combining effect contributed by the finite Larmor radius, the short-scale
perturbation and the steep-gradient equilibrium profile within the edge transport barrier
of tokamak plasma[11, 24, 27, 36]. However, in the standard electrostatic gyrokinetic
model and simulations, the approximation of DGT consists of up to the first order trun-
cation of the Taylor expansion of the equilibrium profile and the second order truncation
of the expansion of the perturbative potential[25, 13, 22, 29, 4, 5, 21, 6, 14]. The details of
this method can be found in section (4). These kinds of low order approximation are not
enough concerning the short-scale perturbations and the equilibrium profile possessing
the steep gradient.

To overcome the mentioned drawbacks of the low-order approximation of DGT, this
paper develops an interpolation algorithm to compute DGT for the purpose of the res-
olution of the short-scale perturbation and the steep equilibrium profile together. The
interpolation algorithm can approach DGT with any accuracy by choosing enough in-
terpolation points on the Larmor circle, with only the constraint from the length scale
of the mesh. Meanwhile, contrary to the traditional way, the steep equilibrium density
shouldn’t keep the same before and after the gyroaverage operation, which is denoted
by the symbol J in this paper. And the obvious difference between the density on gy-
rocenter coordinate and the one on the particle coordinates should be accounted for in
the quasi-neutrality equation(QNE). The obvious difference is revealed by Fig.(1), for
which the normalisation scheme can be found in subsection (3.3) and the parameters to
obtain this figure are provided in subsection (8.3.3). In Fig.(1), the purple line denotes
the equilibrium density profile on the gyrocenter coordinates, which is given as the initial
condition, while the density profiles on the particle coordinate derived by the gyroaverage
operation computed with different number of µ are shown by other curves. The numerical
integration of µ is done by the Euler-Maclaurin-based quadrature integration algorithm.

As a comparison to the interpolation solver, a classical 2nd order truncation of DGT
is carried out in this paper to obtain QNE with the 2nd-order accuracy. It consists
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of the truncation of the exponential operator exp(ρ · ∇) over the potential up to the
second order and the truncation of the operator exp(ρ · ∇) acting on the density up to
the first order. The numerical simulations are carried out to compare the two solvers.
Since this paper is to compare the two solvers in general purpose, the deduction of flux
surface average of the potential from the total potential is not carried out to obtain the
electrons’ adiabatic distribution. For the equilibrium profile without steep gradient, both
algorithms have almost the same performance in terms of the perturbation only possessing
the mode number along the parallel spatial dimension. For the steep equilibrium profile,
the interpolation algorithm could provide a stronger driving effect for the perturbation
of high polar mode numbers, and the saturation time of these modes computed by the
interpolation algorithm is earlier.

The remaining parts of this paper are arranged as follows. Section (2) introduces the
orders used in deriving the gyrokinetic model. The DGT and QNE incorporating the
short-scale perturbation and steep equilibrium profile on the gyrocenter coordinate frame
are derived in Section (3). Section (4) derives the QNE with the 2nd-order truncation.
In Section (5), the interpolation solver is introduced. The benchmark of the interpolation
algorithm is done in Sections (6) and (7) for the case of the single µ and µ obeying the
distribution, respectively. The Euler-Maclaurin-based quadrature integrating algorithm
is developed in Section (7) to compute the numerical quadrature integral of µ. The
application of the interpolation algorithm and the Euler-Maclaurin-based quadrature in-
tegrating algorithm to the gyrokinetic simulations is provided by Section (8), where the
parallel scheme of the whole simulations are presented.
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Figure 1: The equilibrium density profile on the gyrocenter coordinate before the gy-
roaverage operation is shown by the purple line, while the ones on the particle coordinate
derived by the gyroaverage operation and with the quadrature integral of µ computed
by the Euler-Maclaurin-based algorithm with the forward finite difference scheme for µ
meshes of 8 and 64 nodes are presented by the other two curves. The radial distance is
normalised by ρ0.

2 The basic orders
There are several basic orders or scales contained by the perturbation. The first one is
the length scale O(ε) of the nondimensionalized Larmor Radius being ε. The second
one is the amplitude of the normalized electrostatic potential, whose ε-based order is
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denoted as O (εσ) with the power σ a positive real number. In the magnetically confinied
fusion plasmas, due to the fact that the charged particle can nearly migrate freely in the
environment with collective interactions, the magnitude of the potential the particles feel
must be much smaller than that of its kinetic energy.

The third one is the length scale of the gradient of the electrostatic potential. De-
fine K⊥ ≡ |∇⊥φφ | and K‖ ≡ |

∇‖φ
φ
|, where the subscript ⊥ and ‖ denotes the directions

perpendicular and parallel the direction of equilibrium magnetic field, respectively. The
gyrokinetic model of this paper adopts the scales for the perturbation

O

(
εK⊥

)
= O(1), O(εK‖) = O(ε), (1)

where the short scales of the perturbation are accounted for. For any equilibrium quantity
E ∈ {n0, T0}, this paper considers the scale

O

(
ε

∥∥∥∥∇⊥EE

∥∥∥∥) = O(1), (2)

due to the steep gradient of the equilibrium profiles, as well as the following scales

O

(
ε

∥∥∥∥∇‖EE

∥∥∥∥) = O(ε), O

(
ε

∥∥∥∥∂UE

E

∥∥∥∥) = O(ε),

where U is the parallel velocity and will be given later.

3 QNE incorporating the short-scale perturbation and
steep equilibrium profile

3.1 The particle-coordinate density associated with the short-
scale perturbation and steep equilibrium profile

The procedure to derive the gyrokinetic model is composited by two parts. The first
one is to derive the coordinate transform by decoupling the gyroangle from the dynamics
of other coordinates, while the second one is to obtain the gyrokinetic quasi-neutrality
equation by inducing the transformation of the distribution through the derived coordi-
nate transforms[11, 13, 2]. The first step is accomplished by implementing Lie transform
perturbation method on the fundamental Lagrangian one-form. Generally, four kinds
of coordinate frameworks are involved in the procedure. The first one is the full-orbit
coordinate with the velocity part in Cartesian coordinates. It’s denoted as z̄ ≡ (x,v)
here. The second one is obtained by transforming v into the cylindrical coordinates, and
it’s written as z ≡ (x, µ1, u1, θ1) where µ1 ≡

mv2
⊥

2B(x)
, µ1 is the velocity along the parallel

direction, and θ1 is the angle between ρ and e1. The x component in z is still in full-orbit
frame. The third one is the guiding-center coordinates Z̄ = (X̄, µ̄, Ū , θ̄), which is derived
by decoupling θ̄ from the dynamics of the other coordinate components without the pres-
ence of the perturbation. The fourth one is the gyrocenter coordinate Z = (X, µ, U, θ)
which is derived by decoupling θ̄ from the dynamics of the other coordinate components
with the presence of the perturbation. The coordinate transforms between z̄, z,Z̄ and
Z are denoted as ψf : z̄ → z, ψgc : z → Z̄ and ψgy : Z̄ → Z, respectively, while the

4



distributions on the four kinds of coordinates are respectively written as f̄(z̄), f(z), F̄ (Z̄)
and F (Z).

The coordinate transform ψgc : z→ Z̄ is given by

X̄ = x− ρ0(x, µ1, θ1), (3a)
µ̄ = µ1, (3b)
Ū = u1, (3c)
θ̄ = θ1. (3d)

while the coordinate transform ψgy : Z̄→ Z is provided by the following equations

X = X̄, (4a)
µ = µ̄+ gµ2

(
X̄, µ̄, θ̄

)
, (4b)

U = Ū , (4c)
θ = θ̄ + gθ2

(
X̄, µ̄, θ̄

)
. (4d)

where

gµ2
(
X̄, µ̄, θ̄

)
=

qsΨ
(
X̄, µ̄, θ̄

)
B
(
X̄
) , (5a)

gθ2
(
X̄, µ̄, θ̄

)
=

qs∂µ̄
∫ θ̄

0
Ψ
(
X̄, µ̄, θ̄

)
dθ̄

B
(
X̄
) , (5b)

and

Ψ
(
X̄, µ̄

)
≡ φ

(
X̄ + ρ0

)
− Φ(X̄, µ̄), (6a)

Φ(X̄, µ̄) ≡ 1

2π

∫ 2π

0

φ
(
X̄ + ρ0

)
dθ, (6b)

ρ0(X̄, µ̄, θ̄) =
1

qs

√
2µ̄ms

B

(
e1 cos θ̄ + e2 sin θ̄

)
. (6c)

And through the Lie transform perturbative method, we could derive the following
Lagrangian on the gyrocenter coordinate frame

L = (qsA (X) +msUb) · Ẋ +
ms

qs
µθ̇ −

(
µB (X) +

msU
2

2
+ Φ(X, µ)

)
, (7)

where µ is a constant. The Euler-Lagrangian equations based on L in Eq.(7) provides
the equations of motion as follows:

.

X =
qsUB∗ − b×∇ (µB + qsΦ(X, µ))

qsB∗‖
, (8a)

U̇ =
B∗ · ∇ (µB + qsΦ(X, µ))

msB∗‖
, (8b)

where B∗ = B+ ms
qs
U∇×b. If the denominate in Eq.(8a) is expanded by the order of the

small factor ms
qs
U∇× b, we could obtain the curvature drift part mU2κ

eB
where κ = ∇B

B
.
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For the Vlasov gyrokinetic simulation, we need to transform the distribution function
from the gyrocenter coordinate to the full-orbit coordinate[13]. After obtaining the co-
ordinate transform composited by Eqs.(3a-3d) and (4a-4d), given a distribution function
on the gyrocenter coordinate Fs (X, µ, U, t), the distribution function on the full orbit
can be derived following the transform chain

Fs (X, µ, U)
ψgy−→ F̄s

(
Z̄
) ψgc−→ fs (z) . (9)

First, the total distribution function is separated into the sum of an equilibrium one plus
a perturbative one as

Fs (X, µ, U) = Fs0 (X, µ, U) + Fs1 (X, µ, U) . (10)

Then, the approximation of the distribution on the guiding-center coordinate can be
derived based on the coordinate transform given by Eqs.(4a-4d)

F̄s
(
Z
)

= Fs
(
X̄, µ̄+ gµ2

(
X̄, µ̄, θ̄

)
, Ū
)

≈ Fs
(
X̄, µ̄, Ū

)
+
qsΨ(Z)

B(Z)
∂µ̄Fs0

(
X̄, µ̄, Ū

)
= Fs

(
X̄, µ̄, Ū

)
− qsΨ(Z)

Ts(Z̄)
Fs0
(
X̄, µ̄, Ū

)
,

(11)

where the equilibrium distribution involving µ is assumed as

Fs0⊥ =
ms

2πTs
exp(−µB

Ts
). (12)

The approximation of fs (z) is derived with Eq.(11) as the base

fs (z) = Fs (x− ρ0 (x, µ1, θ1) , µ1, u1)− qs
φ (x)Fs0(x− ρ0 (x, µ1, θ1) , µ1, u1)

Ts(x)

+ qs

(
ΦFs0
Ts

)
(x− ρ0 (x, µ1, θ1) , µ1, u1) .

(13)

where
(

ΦFs0
Ts

)
(x− ρ0 (x, µ1, θ1) , µ1, u1) is the origin of DGT and comprises the effect

combining together the finite Larmor radius, short-scale perturbation and steep equilib-
rium profile.

We assume that the equilibrium distribution Fs0 can be decomposed as the product
between the parallel part and the perpendicular part

Fs0(x, µ1, u1) = n0(x)Fs0‖ (x, u1)Fs0⊥ (x, µ1) , (14)

with probability conservation satisfied by∫
Fs0‖du1 = 1, (15a)∫

Fs0⊥
B(x)

ms

dµ1dθ1 = 1, (15b)

where under the equilibrium condition, the metric B(x)/ms is used.
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Then, through the integral ns (x, t) =
∫
fs (z) B(x)

ms
dµ1du1dθ1, the density can be as-

sembled as
ns (x) = nsg0(x)− qs

nsg0φ

Ts
+ qsφ̃

′ (x) + nsg1 (x, t) , (16)

with

nsg0 (x) =

∫
Fs0 (x− ρ0 (z) , µ1, u1)

B (x)

ms

dµ1du1dθ1, (17a)

nsg1 (x, t) =

∫
Fs1 (x− ρ0 (z) , µ1, u1)

B (x)

ms

dµ1du1dθ1, (17b)

φ̃′ (x) =

∫ (
ΦFs0
Ts

)
(x− ρ0, µ1, u1)

B (x)

ms

dµ1du1dθ1. (17c)

Here, the metric B(x)/ms of the phase space is used.

In this paper, we sometimes use the symbols J1(µ) and J2(µ) to denote the first and
the second gyroaverage associated with the magnetic moment µ, specifically,

J1(µ)φ(x) =
1

2π

∫
φ(x + ρ(µ))dθ,

J2(µ)φ(x) =
1

2π

∫
φ(x− ρ(µ))dθ.

3.2 QNE with respect to the adiabatic distribution of electron
and the steep equilibrium profile on gyrocenter-coordinate
frame

As shown in Fig.(1), the equilibrium density profile possessing the steep gradient on the
gyrocenter coordinate frame is obviously different from the one on the particle-coordinate
frame after the gyroaverage operation. Therefore, contrary to the traditional way, the
implementation of the equilibrium density on the particle-coordinate frame should be
different from the one on the gyrocenter-coordinate frame if its profile is steep in the
radial dimension.

We consider a plasma only including protons and electrons. The electrons obey the
adiabatic distribution on the particle-coordinate space

ne(x) = ng0(x) +
eng0(x)

Te
φ(x), (18)

where the flux-surface average of the potential is not deducted from the total potential,
because our purpose is to compare the two solvers. ng0(x) is the equilibrium density in
the particle-coordinate space and needs to be solved. The initial equilibrium distribution
of ion is given on the guiding-center coordinate system by

Fi0(x, µ, U) =
n0(x)

(2πTi(x))3/2
exp(− U2

2Ti(x)
− µB(x)

Ti(x)
),

from which the equilibrium density on the guiding-enter coordinate is easily derived as
n0(x). For the scales given by Eq.(2), the equilibrium density on the particle-coordinate
space should be derive as

n′0 =

∫
Fi0(x− ρ, µ, U)

B

mi

dµ1dUdθ (19)
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Taking into account of the quasi-neutrality equilibrium, it’s derived that

ng0(x) = n′0(x). (20)

Then, QNE of this plasma is

eφ

Ti
− eφ̃′

ng0
+
eφ

Te
=
ni1
ng0

. (21)

3.3 Normalization

In this paper, the quantities t, v, B, l, µ, T, φ are normalized by t0 ≡ m
B0qi

, v0 ≡
√

Te0
mi

, B0,

l0 ≡ mv0

eB0
, µ0 ≡ Te0

B0
, Te0 and φ0 ≡ Te0

qi
, respectively, where Te0 ≡ Te(rp) and rp ∈ [rmin, rmax]

is the radial position of the peak of the initial distribution function. Then, by choosing
the equilibrium perpendicular distribution given by Eq.(12), the normalized QNE is

φ(x)

Ti(x)
− Φ̃(x)

ng0(x)
+
φ(x)

Te(x)
=
ni1 (x)

ng0(x)
, (22)

with the normalized DGT

Φ̃ (x) =

∫ (
ΦFi0
Ti

)
(x− ρ0, µ1, u1)B (x) dµ1du1dθ1, (23)

and F0 =
n0(r) exp

(
− U2

2Ti(r)
− µB
Ti(r)

)
(2πTi(r))3/2 .

4 2nd-order approximation of QNE
We first need to take Taylor expansion of DGT. According to Appendix A, the expansion
rule of a general function A (x + ρ0) is

A (x + ρ0) =
∑
n≥0

(ρ0 · ∇)n

n!
A (x) .

The gyroaverage of the following terms are needed

〈(ρ0 · ∇)A (x)〉 = 0,〈
(ρ0 · ∇)2A (x)

〉
=

1

2
ρ2

0∇2
⊥A (x) ,

where
〈A (x + ρ0)〉 ≡ 1

2π

∫
A (x + ρ0) dθ.

The following identity to reduce the perpendicular distribution to the density is also
necessary ∫

ρ2
0∂µFi0⊥Bdµ =

−1

Bπ
,

The first gyroaverage expanded up to the second order is

Φ(X, µ) ≡ 〈φ (X + ρ0)〉 ≈
(

1 +
ρ2

0∇2
⊥

4

)
φ (X) . (26)
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The second gyroaverage expanded up to the second order is〈(
ΦFi0
Ti

)
(x− ρ0, µ1, u1)

〉
≈
(

1 +
ρ2

0∇2
⊥

4

)[
Fi0
Ti

(
1 +

ρ2
0∇2
⊥

4

)
φ

]
≈ Fi0φ

Ti
+
ρ2

0∇2
⊥

4
(
Fi0φ

Ti
) +

Fi0
Ti

ρ2
0∇2
⊥

4
φ

≈ Fi0φ

Ti
+
ρ2

0∇⊥φ
4

· ∇⊥
(
Fi0
Ti

)
+
Fi0
Ti

ρ2
0∇2
⊥

2
φ

(27)

The density derived from Eq.(27) is

2π

∫ 〈(
ΦFi0
Ti

)
(x− ρ0, µ, U)

〉
BdµdU ≈ n0φ

Ti
+
∇⊥φ · ∇⊥n0

2B2
+
n0

B2
∇2
⊥φ. (28)

Then, QNE derived by the 2nd-order approximation is

φ

Ti
− n0φ

ng0Ti
− ∇⊥φ · ∇⊥n0

2ng0B2
− n0

ng0B2
∇2
⊥φ+

φ

Te
=
ni1
ng0

. (29)

With the assumption of B = 1, Eq.(29) becomes

φ

Ti
− n0φ

ng0Ti
− ∇⊥φ · ∇⊥n0

2ng0
− n0

ng0
∇2
⊥φ+

φ

Te
=
ni1
ng0

. (30)

In Eq.(30), the gradient term of n0 contains a factor of 1/2, which doesn’t exist in the
standard gyrokinetic model. If we replace the last term on the right side of Eq.(13) by
a term of the form Φ(x − ρ)

(
Fs0
Ts

)
(x − ρ), the expansion of that term doesn’t provide

the 1/2 factor. However, as the derivation to obtain Eq.(13) illuminates, the last term in
Eq.(13) is the correct one.

5 QNE solver comprising the interpolation algorithm
to compute DGT

5.1 QNE solver

To obtain the QNE solver comprising of the interpolation algorithm, QNE in Eq.(22) is
rewritten as

ng0(x)φ(x)

Ti(x)
− Φ̃(x) +

ng0(x)φ(x)

Te(x)
= ni1 (x). (31)

Φ̃ (x) can be written as the discrete sum over µ and U as

Φ̃ (x) =
∑
k

∑
j

Φ̃ (x, µj, Uk)BδµjδUk,

where δµj and δUk are the step length for µ and U . Here,

Φ̃ (x, µj, Uk) ≡
1

2π

∫
(ΦjFsjk) (x− ρ0j, µj, Uk)dθ (32)
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and in cylindrical coordinate frame, Fsjk is defined

Fsjk ≡
n0 (r) exp

(
− U2

k

2Ts(r)
− µjB

Ts(r)

)
(2πTs(r))1/2T 2

s (r)
.

Φj(rh,Θp) is used to denote the value at mesh node (rh,Θp) of Φ(X, µj) as the first
gyroaverage of φ with respect to the magnetic moment µj. It is computed on the grid
discretizedly by the following right Riemann sum:

Φj(rh,Θp) =
1

Nθ

Nθ−1∑
l=0

φ

(
rh cos Θp + ρj cos

(
2πl

Nθ

)
, rh sin Θp + ρj sin

(
2πl

Nθ

))
, (33)

where ρj =
√

2µj. In the same way, Φ̃j(rh,Θp) is used to denote the value at grid point
(rh,Θp) of Φ̃(X, µj) as the second gyroaverage of φ with respect to the magnetic moment
µj. It is also approximated by the following right Riemann sum:

Φ̃jk(rh,Θp) =
1

Nθ

Nθ−1∑
l=0

Φ̄jk

(
rh cos Θp − ρj cos

(
2πl

Nθ

)
, rh sin Θp − ρj sin

(
2πl

Nθ

))
, (34)

where
Φ̄jk = ΦjFsjk.

The respective symbols + and − in Eq.(42) and Eq.(34) should be paid attention. The
cubic splines interpolation is used to calculate φ at the interpolated point on the Larmor
circle. The radial projection on the boundaries for the points outside the domain is used
and we consider 2π-periodic condition in Θ.

In order to detail the steps of the solver, we note

φh,p := φ(rh,Θp), h ∈ {0, · · · , Nr}; p ∈ {0, · · · , NΘ − 1}
Φh,p,j := Φj(rh,Θp), j ∈ {1, · · · , Nµ}
Φ̃h,p,j := Φ̃j(rh,Θp),

φ := (φ0,0, · · · , φNr,0, φ0,1, · · · , φNr,1, · · · , φ0,NΘ−1
, · · · , φNr,NΘ−1

)t,

Φj := (Φ0,0,j, · · · ,ΦNr,0,j,Φ0,1,j, · · · ,ΦNr,1,j, · · · ,Φ0,NΘ−1,j, · · · ,ΦNr,NΘ−1,j)
t,

Fsjk := (F0,0,jk, · · · ,FNr,0,jk,F0,1,jk, · · · ,FNr,1,jk, · · · ,F0,NΘ−1,jk, · · · ,FNr,NΘ−1,j)
t,

Φ̄jk := (Φ̄0,0,jk, · · · , Φ̄Nr,0,jk, Φ̄0,1,jk, · · · , Φ̄Nr,1,jk, · · · , Φ̄0,NΘ−1,jk, · · · , Φ̄Nr,NΘ−1,jk)
t,

Φ̃jk := (Φ̃0,0,jk, · · · , Φ̃Nr,0,jk, Φ̃0,1,jk, · · · , Φ̃Nr,1,jk, · · · , Φ̃0,NΘ−1,jk, · · · , Φ̃Nr,NΘ−1,jk)
t.

So, Φ̄jk can be written as the vector product between Φjk and Fsjk as Fsjk · Φj.
The specific procedure is given by:

1. Construction of the matrix Aspl ∈ M(Nr+1)×(NΘ),(Nr+1)×NΘ
such that S = Asplφ

is the vector of splines coefficients. Alternatively, φ can be written as φ = (Aspl)−1S.
The matrix Aspl is independent of the Larmor radius or the magnetic moment µj, while
depending on the equilibrium quantities.

2. For a Larmor radius ρj =
√

2µj contributed by the magnetic moment µj, con-
structing the matrix Acontrl,ρj

∈ M(Nr+1)×NΘ,(Nr+1)×NΘ
which gives the contribution of the

gyroaverage of the radius ρj as the function of the splines coefficients. Here, l = 1, 2
denoting the first and the second gyroaverage, respectively.
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3. The first gyroaverge is given by Φj = G1,ρjφ, with G1,ρj ≡ Acontrl,ρj
Aspl .

4. The second gyroaverage is written as the matrix form Φ̃jk = G2,ρj Φ̄jk, with G2,ρj ≡
Acontrl,ρj

Aspl. To realise the matrix form between Φ̃jk and φ, the vector product Fsjk ·Φj can
be written as the product between a diagonal matrix denoted as Fsjkand Φj. Eventually,
Φ̃jk can be written as the matrix form

Φ̃jk = G2,ρjFsjkG1,ρjφ. (35)

Note that the elements of matrix G2,ρjFsjkG1,ρj only depends on the equilibrium quanti-
ties. It can be computed once for all at the beginning of the simulation.

5. Then, the integral of µ contained by the double gyroaverage term can be formulated
as the discrete sum

Φ̃ =

NU∑
k=1

Nµ∑
j=1

Φ̃jkBδµjδUk

We construct the matrix of the quasi-neutrality operator in the Fourier basis. In fact,
due to the periodic structure in the Θ dimension, Aspl and Acontrl,ρj

are recognized to have
circulant block structure[17], which in Fourier basis can be transformed as block diagonal
matrixes. More precisely, the matrixes Aspl, Acontrl,ρj

and Fs0jk have the following structure

Aspl =


Aspl0 Aspl1 · · · AsplNΘ−1

AsplNΘ−1

. . . . . . ...
... . . . . . . Aspl1

Aspl1 · · · AsplNΘ−1
Aspl0

 ∈M(Nr+1)×NΘ,(Nr+1)×NΘ
(R) (36a)

Acontrl,ρj
=


Acontrl,ρj ,0

Acontrl,ρj ,1
· · · Acontrl,ρj ,NΘ−1

Acontrl,ρj ,NΘ−1

. . . . . . ...
... . . . . . . Acontrl,ρj ,1

Acontrl,ρj ,1
· · · Acontrl,ρj ,NΘ−1 Acontrl,ρj ,0


∈ M(Nr+1)×NΘ,(Nr+1)×NΘ

(R) (36b)

Fsjk =


Fs0jk 0 · · · 0

0 Fs0jk
. . . 0

... . . . . . . ...
0 · · · 0 Fs0jk

 ∈M(Nr+1)×NΘ,(Nr+1)×NΘ
(R) (36c)

And Fs0jk is

Fs0jk =


F0jk 0 · · · 0

0 F1jk
. . . 0

... . . . . . . ...
0 · · · 0 FNrjk

 ∈MNr×Nr(R) (37)

Due to that Fsjk is a diagonal matrix with only the main diagonal elements not equaling
zero, the following arrangements of the product order in Eq.(35) equal

(G2,ρjFsjk)G1,ρj = G2,ρj(FsjkG1,ρj).

11



The product order on the left is chosen in this paper. Then, the product AsplFsjk is
further denoted as Aspljk in terms of the following expression

Aspljk =


Aspl0jk Aspl1jk · · · Aspl(NΘ−1)jk

Aspl(NΘ−1)jk

. . . . . . ...
... . . . . . . Aspl1jk

Aspl1jk · · · Aspl(NΘ−1)jk Aspl0jk

 , (38)

where
Asplhjk = Asplh Fs0jk, h ∈ {0, 1, · · · , NΘ − 1}.

The three matrixes are diagonalisable in the Fourier basis as

Aspl = UnD
splU∗n,

Acontrl,ρj
= UnD

contr
l,ρj

U∗n,

Aspljk = UnDspljk U
∗
n,

where ∗ means the complex conjugate and the other matrixes are defined as follows

Dspl =

 Dspl
0

. . .
Dspl
NΘ−1

 ,

Dcontr
l,ρj

=

 Dcontr
l,ρj0

. . .
Dcontr
l,ρj ,NΘ−1

 ,

Dspljk =

 D
spl
jk,0

. . .
Dspljk,NΘ−1

 .

Dspl
m =

NΘ−1∑
h=0

Asplh e
−2iπhm
NΘ ,

Dcontr
l,ρj ,m

=

NΘ−1∑
h=0

Acontrl,ρj ,h
e
−2iπhm
NΘ ,

Dspljk,m =

NΘ−1∑
h=0

Asplhjke
−2iπhm
NΘ ,

Un =

 Un,0,0 · · · Un,0,NΘ−1

... . . . ...
Un,NΘ−1,0 . . . Un,NΘ−1,NΘ−1

 , Un,h,l =
1√
NΘ

e
2iπhl
NΘ In, (39)

where In is the identity matrix of size n× n.
As explained before, the value of φ(x) and n1(x) on the grid points can be assembled

to be the vectors φ and n1. Then, the first term and third term of Eq.(31) can be written
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in a matrix form with only the main diagonal elements of the coefficient matrix unequal
to zero.

Due to the circulant block structure of the matrix Asplhjk, Aspl, Acontrl,ρj
and the coefficient

matrixes of the first term and third term on the left of Eq.(31), the computation of the
QNE solver comprising gyroaverage matrix G2,ρjFsjkG1,ρj can be performed using a fast
algorithm:
1. Change to Fourier basis by FFT(φ).
2. Compute the product G2,ρjFsjkG1,ρjφ to obtain the total coefficient matrix of the left
side of QNE.
3. Use the subroutine of Lapack and Blas to compute the inverse matrix of the coefficient
matrix.
4. Change the results to the real space by FFT−1 .
The use of polar mesh and FFT allows to make more quickly computations and provides
a base for a future work in more complex geometry.

5.2 The algorithm to compute Aspl and Acontr
l,ρj

In our interpolation scheme, the following cubic spline function is used as the basis func-
tion

Bα(x) =
1

6h3



(x− xα−2)3 if xα−2 ≤ x ≤ xα−1

h3 + 3h2(x− xα−1) + 3h(x− xα−1)2 − 3(x− xα−1)3 if xα−1 ≤ x ≤ xα

h3 + 3h2(xα+1 − x) + 3h(xα+1 − x)2 − 3(xα+1 − x)3 if xα ≤ x ≤ xα+1

(xα+2 − x)3 if xα+1 ≤ x ≤ xα+2

0 otherwise

The potential on the grid point (h, p)is

φh,p =
2∑

a,b=−1

Ch+a,p+bBh+a(x1h)Bp+b(x2p), (40)

where x1 and x2 can be the coordinates in the Cartesian frame and in the polar frame.
Ch+a,p+b is the weight of the two dimensional basis Bh+aBp+b. Bh+a(x1h)/Bp+b(x2p) is the
value of the one dimensional basis Bh+a/Bp+b at the node x1h/x2p. By assembling φh,p
into the vector φ as explained before, Eq.(40) can be rewritten as the tensor product of
two matrixes multiplying the vector C comprising the weight coefficients of all the basises

φ = BP (x2)⊗ Bb(x1)C, (41)

where
C ≡ (C0,0, · · · , CNr,0, C0,1, · · · , CNr,1, · · · , C0,NΘ−1

, · · · , CNr,NΘ−1
)t,

and the subscript P denotes the periodic boundary condition used in the x2 dimension,
while b denotes the periodic or natural boundary condition used in x1 dimension. Bb(x1)
and BP (x2) are the matrixes representing the value of Bh(x1), h ∈ {0, 1, 2, · · · , Nr} and
Bp(x2), p ∈ {0, 1, · · · , NΘ−1} on the nodes of the x1 and x2 domains, respectively. Here,
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BP (x2) is of the structure proportional to
4 1 0 · · · 1

1 4 1
. . . 0

... . . . . . . . . . ...

0
. . . . . . . . . 0

1 · · · 0 1 4

 .

Because the rows of BP (x2) have the circulant property, the matrix BP (x2)⊗Bb(x1) is of
the circulant block structure. Its inverse can be written as

Aspl ≡ (BP (x2)⊗ Bb(x1))−1 = B−1
P (x2)⊗ B−1

b (x1).

which is still a circulant block matrix. Then, we derive

Asplp = B−1
P (1, p)B−1

b ,

where Asplp is defined in Eq.(36a) and B−1
P (1, p) is the (1, p)th element of B−1

P .
For the gyroaverage operation, Eqs.(42) and (34) can be rewritten in the following

form

Jljφ(x1h, x2p) =
1

Nθ

Nθ−1∑
m=0

φ (Clj,hpm,1, Clj,hpm,2)

=
1

Nθ

Nθ−1∑
m=0

2∑
a,b=−1

Clj,Dhpma,Dhpmbval(a, b).

(42)

The global coordinates of the mth interpolated points on the Larmor circle of the grid
point (h, p) are computed as

Clj,hpm,1 = Cmin,1 + (dhpm,1 − 1)δ1 + c1, (43a)
Clj,hpm,2 = Cmin,2 + (dhpm,2 − 1)δ2 + c2. (43b)

In Eqs.(43a) and (43b), Cmin,1 and Cmin,2 are the respective minimal value of the x1 and
x2 domain; δ1 and δ2 are the uniform step length in the respective dimension; 0 ≤ c1 < δ1

and 0 ≤ c2 < δ2 hold. dhpm,1 and dhpm,2 are the global nodes numbers of the interpolated
point on the Larmor circle denoted by the indexes h, p,m. Clj,hpm,1 and Clj,hpm,2 can be
the global coordinates in the Cartesian or polar coordinate frames. In the 2nd equality
of Eq.(42), the potential at the interpolated point (Clj,hpm,1, Clj,hpm,2) is written by the
sum of the contribution of the cubic spline basis. We use Dhpma and Dhpmb to denote
the global node number of the grid point associated with the indexes (a, b). This grid
point is where the basis function locates. Then, val(a, b) as the spline function value at
(Clj,hpm,1, Clj,hpm,2) is given by

val(a, b) ≡ BDhpma(c1)BDhpmb(c2).

Clj,Dhpma,Dhpmb in Eq.(42) is the weight coefficient of the cubic spline function locating at
(Dhpma, Dhpmb). Eventually, by summing the repeated contribution nodes together, the
gyroaverage of φ could be written into a matrix form

Jljφ = Acontrl,ρj
Clj.
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Here, we want to mention that due to the finite value of µj, some interpolated points
on the Larmor circle of the grid point close to the boundary could locate out of the chosen
domain. At the out boundary, for a realistic plasma, the amplitude of the fluctuation of
the potential is close to zero. So we approximate the contribution of such points by the
contribution of their projection points on the boundary.

The elements of Acontrl,ρj
can be denoted as Acontrl,ρj

((p1 − 1) ∗ (Nr + 1) + h1, (p2 − 1) ∗
(Nr + 1) + h2) with p1, p2 ∈ {0, · · · , Nr − 1} and h1, h2 ∈ {0, · · · , NΘ − 1}. To compute
Acontrl,ρj

, due to its circulant block structure, we only need to compute the block matrixes
associated with p1 = 1. The other rows of block matrixes associated with p1 6= 1 can
be obtained by permuting the indexes p2s for p1 − 1 times, as shown in Eq.(36b). The
algorithm to compute Acontrl,ρj

(h1, (p2 − 1) ∗ (Nr + 1) + h2) is given by Algorithm 1.

Algorithm 1 Compute Acontrl,ρj
(h1, (p2 − 1) ∗Nr + h2)

Input: µj, l, δ1, δ2, Nr, NΘ, Nθ, boundary condition
1: for h1 = 0, Nr do
2: for m = 1, Nθ do
3: get dhpm,1, dhpm,2
4: get c1, c2

5: get val(4, 4)
6: for a = −1, 2 do
7: for b = −1, 2 do
8: get Dhpma, Dhpmb

9: Acontrl,ρj
(h1, Dhpma, Dhpmb) = Acontrl,ρj

(h1, Dhpma, Dhpmb) + val(a, b)

6 Benchmark of the interpolation algorithm for the sin-
gle µ case

To benchmark the interpolation algorithm, we integrate the absolute value of the error of
the interpolation solver deviating from the analytical solution over the simulated domain,
specifically,

abs error =
∑
h,p

| (interp)hp − (anal)hp | δx1δx2, (44)

where (interp)hp and (anal)hp denote the value computed by the interpolation solver and
by the analytical solution at the mesh node (h, p), respectively. δx1 and δx2 are the
uniform steps in x1 and x2 dimensions. For some cases, we also implement the same
scheme to the 2nd-order solver.

6.1 1st example: double periodic boundary condition in Carte-
sian coordinate

In this example, the periodic boundary condition is used in both x1 and x2 dimensions.
According to Eqs.(67) and (68), for the function f(x) = cos(nx1+mx2), the exact solution
of J1(µ)f(x) and J2(µ)J1(µ)f(x) are

J1(µ) cos(nx1 +mx2) = J0(ρ(µ)
√
n2 +m2) cos(nx1 +mx2),
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J2(µ)J1(µ) cos(nx1 +mx2) = J2
0 (ρ(µ)

√
n2 +m2) cos(nx1 +mx2).

Two cases are computed. For the first one, n = 0,m = 2 are used, and µ = 0.02, Nθ =
100, while for the second one, n = 5,m = 5 are chosen. For both cases, we compute the
domain (0, 2π)× (0, 2π) which are divided into three meshes of (16, 16), (32, 32), (64, 64)
cells, respectively. The results are shown in Tables 1 and 2. It’s found that compared
with the 2nd-order solver, the interpolation algorithm has better accuracy and its results
present the converging rate of the fourth-order accuracy, which is provided by the cubic
spline interpolation.

Table 1: double per, Cartesian
m = 2, n = 0, µ = 0.02, Nθ = 100

mesh (16,16) (32,32) (64,64)
interpo,first 1.7084E-2 6.4524E-4 4.1522E-5
2nd,first 0.8738 0.9635 0.9872

interpo,double 3.2803E-2 1.2393E-3 7.9757E-5
2nd,double 1.7102 1.8882 1.9352

Table 2: double per, Cartesian
m = 5, n = 5, µ = 0.02, Nθ = 100

mesh (16,16) (32,32) (64,64)
interpo,first 1.3114 4.0744E-2 2.0800E-3
2nd,first 10.2513 10.8218 11.0119

interpo,double 1.3972 4.5496E-2 2.3258E-3
2nd,double 115.6807 16.7745 17.1429

6.2 2nd example: Natural + Periodic boundary condition in
Cartesian coordinate

For this case, the periodic boundary condition is used in x2 dimension, while the natural
boundary condition is used in x1 dimension. The function under gyroaverage is f(x) = x2.
Its first gyroaverage and double gyroaverage are

J1(f(x)) = x2,J2J1(f(x)) = x2.

For this case, µ = 0.05. The simulated domain (0, 4)×(0, 2π) are divided into two meshes
including 32 × 32 and 64 × 64 cells, respectively. The integrals of the absolute value of
the error over the simulated domain for the first and double gyroaverage are presented
in Table 3. To obtain this, we ignored the boundary rows in the x1 dimension, for which
the natural boundary condition is used. The fact that the abs error of the 2nd-order
solver is zero is due to that the first gyroaverage and the double one of f(x) depends
on the gradient of f(x) only through ∇2

⊥f(x), as Eq.(26) shows. ∇2
⊥f(x) in Cartesian

coordinates is written as (∂2
x1

+∂2
x2

)f(x). The second order derivative is approximated by
the centered finite difference as ∂2

x1
f(x) =

fj+1,k−2fj,k+fj−1,k

δx2
1

with the 2nd-order precision,
where fj+1,k ≡ f(x1,j+1, x2,k). It’s obvious that the finite difference of ∂2

x1
over f(x)

being x2 equals zero, so does ∂2
x2

over f(x) except at the boundary. The abs error of the
2nd-order solver equaling zero is obtained when the boundary row are ignored.
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Table 3: nat+per, Cartesian
f(x) = x2, µ = 0.05, Nθ = 100

mesh (32,32) (64,64)
interpo,first 1.0297E-3 1.7507E-2
2nd,first 0.0 0.0

interpo,double 2.3478E-2 8.3417E-2
2nd,double 0.0 0.0

6.3 3rd example: Natural + Periodic boundary condition in the
polar coordinate frame

For this case, the periodic boundary condition is used in Θ dimension, while the natural
boundary condition used in r dimension. We also use the test function f(x) = x2, and
the domain is also chosen as (0, 4) × (0, 2π). The integral of the absolute value of the
error is presented in Table 4. The boundary rows in r dimension are ignored to get these
results. The exact profile of the first and double gyroaverage of the test function at the
radial position 7/4 along the polar dimension and the corresponding numerical solutions
computed in the two meshes are plotted in the left figure of Fig.(2). The exact profile
of the first and double gyroaverage of the test function profile at the polar angle 7π/8
along the radial dimension and the corresponding numerical solutions computed in the
two meshes are plotted in the right figure of Fig.(2). Both figures show that the results
computed by the interpolation algorithm fit the exact value very well. But we can still
notice a small error at the out boundary of x1 dimension, where the natural boundary
condition is used.

Table 4: nat+per, polar
f(x) = x2, µ = 0.02, Nθ = 100

mesh (32,32) (64,64)
interpo,first 8.0966E-4 1.0698E-5

interpo,double 1.9712E-2 2.9669E-3
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Figure 2: The left figure shows the exact value of the 1st and double gyroaverage of
the test function and the value computed in the two meshes of the polar profile at radial
position 7/4. The right figure shows the radial profile at the polar angle 7π/8.
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6.4 Benchmark the QNE solver in the Cartesian coordinate frame
and in the polar coordinate frame

The previous examples benchmark the interpolation algorithm to compute the gyroaver-
age operation. This subsection is dedicated to benchmark the QNE solver, which com-
prises of solving the inverse matrix of Aspl and Acontril,ρj

by FFT based on the algorithm
given in Subsec.(5.1), and the interpolation algorithm to obtain the gyroaverage.

For the convenience to find the exact solution of QNE, we simplify QNE in Eq.(22)
by choosing Ti = Te = 0.5, n0 = ng0 = 1.0. We also solve the single µ case first, so that
QNE is simplified as

4φ(x)− J2(µ)J1(µ)φ(x) = n1(x). (45)

We first benchmark the QNE solver in Cartesian coordinate frame with double-
periodic boundary condition. By choosing

n1(x) = cos(nx1 +mx2),

the exact solution of Eq.(45) is

φ(x) =
cos(nx1 +mx2)

4− J2
0 (ρ(µ)

√
n2 +m2)

.

We choose n = 3,m = 3, µ = 1.0 and µ = 0. The simulated domain (0, 4) × (0, 2π)
are divided into three meshes including 32× 32, 64× 64 and 128× 128 cells, respectively.
The integrals of the absolute value of the error for the three kinds of mesh are presented
in Table 5, which indicates that the QNE solver could provide a good solution. For the
µ = 0.5 case, we also plot in Fig.(3) the exact solution and the results computed by the
QNE solver with node number in x2 dimension equaling 20. The two solutions in Fig.(3)
fit each other well.

Table 5: double per, Cartesian
n = 3,m = 3, Nθ = 100

mesh (32,32) (64,64) (128,128)
µ = 1.0 1.5204E-4 6.5066E-6 2.9072E-7
µ = 0.0 1.2393E-13 1.4944E-13 1.3548E-13

To benchmark the QNE solver in the polar coordinate frame, the function n1 in
Eq.(45) is chosen as

n1(x) = x2,

which leads to the exact solution of φ(x) through Eq.(45)

φ(x) = x2.

The simulated domain (0, 4)× (0, 2π) is also divided into meshes of 32× 32 and 64× 64
cells, respectively. We computed two cases of µ = 0.02 and µ = 0. The integral of the
absolute error over the simulated domain for the two µ cases are given in Table 6. The
fourth-order converging rate doesn’t appear anymore, due to the error at the boundary
area where the natural boundary condition is used. The error has two sources. One is
that the natural boundary condition is used. The other is that around boundary, due
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Figure 3: The exact solution and the numerical solution solved by the QNE solver at
node 20 in the x2 dimension.

to the finite value of the Larmor radius, there are interpolation points locating out of
the simulated domain and we project these points to the corresponding points at the
boundary.

We still plot the exact solution and the numerical solutions of the polar profile at
the radial position 7/4 and the radial profile at the polar angle 7π/8 in Fig.(4), which
presents good match between the two solutions.

Table 6: nat+per, polar
f(x) = x2, Nθ = 100

mesh (32,32) (64,64)
µ = 0.02 0.1186 0.1339
µ = 0.0 2.6356E-13 1.4944E-13
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Figure 4: The left figure shows the exact solution and the numerical solutions of the
polar profile at the radial position 7/4. The right figure shows the radial profile at polar
angle 7π/8.

19



7 Benchmark of the interpolation algorithm for the
multiple µ case

This benchmark is done in the polar-coordinate frame. The test function is chosen as

f(x) = cos(nx1 +mx2).

We consider the gyroaverage associated with µ obeying the distribution e−µ/a where
a ∈ (0.5, 2.2) is chosen.

The integral of the distribution over µ is written as

I0(µmax, n,m) =

∫ µmax

0

e−µ/adµ

and the exact solution of the gyroaverage of the test function f(x) are related to the
following two functions

I1(µmax, n,m) =

∫ µmax

0

J0(ρ(µ)
√
n2 +m2)e−µ/adµ

and
I2(µmax, n,m) =

∫ µmax

0

J2
0 (ρ(µ)

√
n2 +m2)e−µ/adµ.

The exact solution of the first gyroaverage is∫ µmax

0

J1(µ)f(x)e−µ/adµ = I1(µmax, n,m)f(x),

and the exact solution of the double gyroaverage is∫ µmax

0

J2(µ)J1(µ)f(x)e−µ/adµ = I2(µmax, n,m)f(x),

which can be written into a discretized formula

Nµ∑
i=1

J2(µi)J1(µi)f(x)e−µi/aδµi.

7.1 The Euler-Maclaurin-based quadrature integration algorithm

Φ̃ is given in Eq.(23) and F is proportional to exp(− µB
Ti(r)

). To obtain the integral over µ,
the conventional way is to redefine a new magnetic moment by µnew = µ/Ti(r). Then, the
exponential factor exp(− µB

Ti(r)
) becomes exp(−µnew) and the Gauss-Laguerre quadrature

is implemented to obtain the discretized sum to approximate the continuous integral.
However, in the new term Φ̃, the denominate of Ti(r) in exp(− µB

Ti(r)
) together with n0(r)

determines the radial density profile of the ions which possess the magnetic moment
µ. Since Ti(r) could possess the steep gradient in the radial dimension, its gyroaverge
J (µ)Ti(x) can’t be ignored that it can not be eliminated from the denominate in the
conventional way. Moreover, we can not use Gauss-Laguerre quadrature method to pro-
vide the same group of µ nodes and the associated weights along the radial dimension for
different Ti(r) along the radial dimension. Because the value of Ti(r) is within a domain,
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which is chosen as (0.5, 2.2) in this paper, and the gradient of Ti(r) after the gyroaverage
could also change, resulting in that the roots and weights provided by Gauss-Laguerre
quadrature for the integral

∫ µmax

0
e−µdµ can not fit the integral

∫ µmax

0
e−µ/adµ for all as

belonging to the domain (0.5, 2.2) which is chosen in this paper.
We therefore develop a quadrature integrating scheme based on the following Euler-

Maclaurin quadrature formula∫ c

b

f(x)dx =
h

2
(f(b) + f(c)) +

n−1∑
k=1

hf(b+ kh)−
M∑
r=1

h2rB2r

(2r)!

(
f 2r−1(c)− f 2r−1(b)

)
+Rp.

(46)

where h = (c−b)/n, n−1 is the number of the cells of the mesh, B2r is the 2r-th Bernoulli
number and Rp is the residual quantity. The order of the precision of the right side is
beyond O(h2M). For the distribution function proportional to exp(−µ/a), Rp and the
term depending on f 2r−1(b) can be ignored for large enough b. B2r can be solved by the
recurrence relation

Bp = − 1

p+ 1

p−1∑
k=0

(
p+ 1
k

)
Bk.

The derivative f 2r−1(b) is replaced by the finite difference scheme. For a function
F (x), the finite difference scheme of the dth order derivative with the pth order precision
can be formally written as the following summation of the function value on the grid
points

hd

d!
F (d)(x) =

imax∑
i=imin

GdpiF (x+ ih) +O(hd+p), (47)

where Gdpi is the coefficient of the finite difference with the pth order precision for the
dth order derivative, and the step length of the finite difference is the same with that
used in Eq.(46). For the forward finite difference scheme of the dth order derivative with
pth order precision, imin = 0 and imax = d + p − 1 are derived, while for the centered
finite difference scheme, we have −imin = imax = (d+ p− 1)/2. By truncating the Taylor
expanding of F (x+ ih) at the order O((ih)d+p−1), Eq.(47) can be rewritten as

F d(x) =
d!

hd

d+p−1∑
n=0

(
imax∑
i=imin

inGdpi

)
hn

n!
F n(x) +O(hp)

≈ d!

hd

d+p−1∑
n=0

(
imax∑
i=imin

inGdpi

)
hn

n!
F n(x).

(48)

The equaling of both sides of Eq.(48) results in the following identities

imax∑
i=imin

inGdpi =

{
0, 0 ≤ n ≤ d+ p− 1 and n 6= d

1, n = d

}
,

through which the coefficient Gdpis can be solved. By substituting Eq.(48) into the Euler-
Maclaurin formula, we obtain its discretized version∫ c

b

f(x)dx =
h

2
(f(b) + f(c)) +

n−1∑
k=1

hf(b+ kh) + h
M∑
r=1

B2r

2r

imax∑
i=imin

G(2r−1)pif(b+ ih). (49)
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For the forward finite difference scheme, Eq.(49) can be rearranged into

∫ c

b

f(x)dx =

2M+p−2∑
i=1

h+ h
∑

1≤r≤M,
i≤2r+p−2

B2r

2r
G(2r−1)pi

 f(b+ ih)

+

[
h

2
+ h

M∑
r=1

B2r

2r
G(2r−1)p0

]
f(b) +

n−1∑
i=2M+p−1

hf(b+ ih) +
h

2
f(c),

(50)

where we select the condition satisfying 2M + p − 1 ≤ n − 1. The weight coefficients
of f(b + ih) in Eq.(50) for all i ∈ {0, 1, 2, · · · , n − 1} are computed and stored at the
beginning of the simulation for the following quadrature integration.

For the central difference scheme, Eq.(49) can be rearranged in the same way into

∫ c

b

f(x)dx =

(2M+p−2)/2∑
i=1

hf(b+ ih) + h
∑

1≤r≤M,
i≤(2r+p−2)/2

B2r

2r

(
G(2r−1)pif(b+ ih) +G(2r−1)p(−i)f(b− ih)

)
+

[
h

2
+ h

M∑
r=1

B2r

2r
G(2r−1)p0

]
f(b) +

n−1∑
i=(2M+p)/2

hf(b+ ih) +
h

2
f(c),

(51)

The value of f(b − ih) is obtained by considering the even or odd property of f(x − b)
relative to the point x = b. The value of b equals 0 for the situation we consider, while
the integrand is an even function relative to the point b = 0.

One more point to mention is that instead of µ, we implement v⊥, which equals
√

2µ,
as the integration argument for the achievement of the high precision. So dµ = v⊥dv⊥ and
the minimal value of v⊥ equals 0. Based on this implementation, we developed the third
one named derivative-reduction scheme. By replacing µ with v⊥, the integral

∫
f(2µ)dµ

becomes
∫
f(v2

⊥)v⊥dv⊥, with the new integrand being g(v⊥) ≡ f(v2
⊥)v⊥. At the point

v⊥ = 0, we use the following formula to reduce the order of the derivative

g2k−1(0) = (2k − 1)f 2k−2(0).
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Then, the third discretized expression of Euler-Maclaurin formula is derived as∫ c

0

g(v⊥)dv⊥ ≈
h

2
(g(0) + g(c)) +

n−1∑
k=1

hg(kh) +
M∑
r=1

h2rB2r

(2r)!
g2r−1(0)

=
h

2
(g(0) + g(c)) +

n−1∑
k=1

hg(kh) +
M∑
r=1

h2rB2r

(2r)!
(2r − 1)f 2r−2(0)

=
h

2
(g(0) + g(c)) +

n−1∑
k=1

hg(kh) +
h2B2

2
f(0) + h2

M∑
r=2

B2r

2r

imax∑
i=imin

G(2r−2)pif(0)

=
h

2
cf(c)) +

n−1∑
k=1

h(kh)f(kh) +
h2B2

2
f(0) + h2

M∑
r=1

B2r+2

2r + 2

imax∑
i=imin

G(2r)pif(0)

=

(2M+p−1)/2∑
i=1

h(ih)f(ih) + h2
∑

1≤r≤M,
i≤(2r+p−1)/2

B2r+2

2r + 2
(G(2r)pi +G(2r)p(−i))f(ih)


+
h2B2

2
f(0) + h2

M∑
r=1

B2r+2

2r + 2
G(2r)p0f(0) +

n−1∑
i=(2M+p−1)/2+1

h(ih)f(ih) +
h

2
cf(c),

(52)

where we have used the even property of the function f(v2
⊥) at v⊥ = 0, so that f(−ih) =

f(ih).
To test the accuracy and the convergent rate of the three schemes based on the

Euler-Maclaurin formula, we apply them to the computation of the exponential integral∫ 30

0
e−µ/adµ and the associated double gyroaverage integral

∫ 30

0
J2

0 (
√

2µ)e−µ/adµ. And we
chooseM = 4, p = 6 for the test purpose and for the following other numerical simulation
examples. We also compare its results to those computed by the trapezoidal quadrature
algorithm with uniform mesh. Through dividing the domain (0, 30) into 1E + 7 equal
cells, the two integrals are approximated by the Riemann sum. By treating the Riemann
sums as the exact value, the absolute value of the numerical error computed by the
two algorithms are plotted in Fig.(5) for the three cases a = 0.5, 1.0, 2.2. Fig.(5) shows
that compared with the trapezoidal quadrature algorithm, the three schemes of the Euler-
Maclaurin-based algorithm provide a much higher precision order when the nodes number
goes from 17 to 129.

7.2 Benchmark of DGT computed by the interpolation algorithm
in the polar coordinate frame assisted by the forward scheme
of the Euler-Maclaurin-based algorithm

This benchmark is done in the polar-coordinate frame and the forward scheme of the
Euler-Maclaurin-based algorithm is implemented. In this benchmark, n = 0,m = 1 is
chosen. The simulated domain of (r,Θ) is (0, 16)× (0, 2π), which is divided into 40× 40
meshes. µ is in (0, 20) which is divided into one mesh including 64 nodes. Only the case
of a = 1 is computed here. The polar profile at r = 6 and the radial profile at Θ = 7π

8

are shown in Fig.(6).
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Figure 5: The three figures show the magnitude of the numerical error of the quadrature
integral of

∫ 30

0
e−µ/adµ and

∫ 30

0
J2

0 (
√

2µ)e−µ/adµ computed by the three schemes of Euler-
Maclaurin-based quadrature integrating algorithm and the trapezoidal algorithm with
uniform mesh. We choose M = 4 in the Euler-Maclaurin formula and p = 6 as the
precision order of the finite difference. Here, "deri-red" denotes the derivative-reduction
scheme, while "trap" denotes the trapezoidal algorithm.
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Figure 6: The left figure shows the exact and numerical polar profile at the radial position
r = 6, while the right figure shows the exact and numerical radial profile at Θ = 7π

8
.

7.3 Benchmark of the QNE solver in the polar-coordinate frame
assisted by the forward scheme of the Euler-Maclaurin-based
algorithm

We also benchmark the QNE solver in the polar coordinate frame with µ obeying the
distribution e−µ/a, with which the quasi-neutrality equation in this case is

4φ(x)−
∫ µmax

0

J2(µ)J1(µ)φ(x)e−µ/adµ = n1(x), (53)

where the same parameters Ti0, Te0, n0, ng0 are used. We choose the test function of
n1(x) = cos(nx1 +mx2). The exact solution of Eq.(53) is

φ(x) =
cos(nx1 +mx2)

4− I2(µmax, n,m)
.

In this benchmark, the radial domain is chosen as (0, 20). The domain of r×Θ is divided
into a mesh of 64×64 cells. The weights of of the µ mesh for a = 1, 0.5, 2.2 are computed
by the Euler-Maclaurin-based quadrature algorithm. The magnitude of the numerical
error of I0, I2 and the abs error of the integration of the solution over the domain for the
three a cases are given in Table 7. The computing formula of the abs error is presented
by Eq.(44). In Fig.(7), the radial profile at Θ = 7π

8
and the polar profile at r = 35

4
for

a = 0.5,a = 1,a = 2.2 cases are plotted. The absolute value of the numerical error of the
polar profile and the radial profile are plotted in the left and right figure of Fig.(8).

Table 7: Nµ = 64, n = 1,m = 1, µmax = 20, Nθ = 100

a = 1.0 a = 0.5 a = 2.2
I0,num error 2.4991E-5 2.4955E-5 2.662E-5
I2,num error 2.4908E-5 2.4925E-5 2.4915E-5

solution abs error 1.3817 0.653 3.6886
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Figure 7: The radial profile at Θ = 7π
8

and the polar profile at r = 35
4

for a = 0.5,a =
1,a = 2.2 cases are plotted.
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8 Application of the QNE solver in gyrokinetic simu-
lation concerning short-scale perturbation and steep
equilibrium profile assisted by the forward scheme of
the Euler-Maclaurin-based algorithm

8.1 The gyrokinetic model with constant cylindrical magnetic
field configuration

The cylindrical coordinates frame with the constant theta-pinch magnetic field configura-
tion is used in our simulations. The whole simulations are executed on the ATLAS HPC
platform of IRMA by introducing our test modules into SeLaLiB code [31], which is a clas-
sic semi-Lagrangian library using cubic splines interpolation[8, 32, 15, 16]. The predictor-
corrector method, the Verlet algorithm for computing the characteristics, and the Strang
splitting of the advection of Vlasov equation are also implemented [23, 15, 33, 34, 7].

The gyrokinetic Vlasov equation in cylindrical coordinate frame is[
∂t + (

1

r
∂ΘΦ∂r −

1

r
∂rΦ∂Θ) + U∂x‖ + ∂x‖Φ∂U

]
F = 0. (54)

The characteristics are

ṙ =
1

r
∂ΘΦ, (55a)

Θ̇ = −1

r
∂rΦ, (55b)

ẋ‖ = U, (55c)
U̇ = ∂x‖Φ (55d)

The quasi-neutrality equation is given by Eq.(22).

8.2 The parallelization

8.2.1 The algorithm to reduce the distribution to the density

In the discrete version of µ, the distribution of ions associated with each µj with j ∈
{1, · · · , Nµ} is denoted as Fj(x, µj, U). Due to the identity dµj

dt
= 0, Fj(x, µj, U) satisfies

the Vlasov equation in the cylindrical coordinate system[
∂t + (

1

r
∂ΘΦ(x, µj)∂r −

1

r
∂rΦ(x, µj)∂Θ) + U∂x‖ + ∂x‖Φ(x, µj)∂U

]
Fj(x, µj, U) = 0, (56)

where (r,Θ, x‖) denotes the cylindrical coordinate frame. Fj(x, µj, U) can be rewritten
as the sum

Fj(x, µj, U) = F0j(x, µj, U) + F1j(x, µj, U),

with
F0j(x, µj, U) = F0j‖(x, U)F0j⊥(x, µj) (57)

and F0j⊥(x, µj) = 1
2πTi

exp(−µjB(x)

Ti(x)
). In the numerical simulation, F0j(x, µj, U) doesn’t

evolve. At each time step, Fj(x, µj, U) is obtained by solving Eq.(56) and F1j(C, µj, U)
is derived by using Fj(x, µj, U) minus F0j(x, µj, U).
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The normalised version of Eqs.(17a) and (17b) to obtain nsg0 and nsg1 can be dis-
cretized in the µ dimension by obtaining a mesh of µ with Nµ nodes. The contribution
of each µj component to the density nsg and nsg0 can be written as

nsgj (x) = B(x)δµj

∫
Fs (x− ρ0(x, µj), µj, U) dU,

nsg0j (x, t) = B(x)δµj

∫
Fs0 (x− ρ0(x, µj), µj, U) dU.

Then, the nsg1j can be derived as nsgj −nsg0j. And the summation of all µjs leads to the
total density. The specific procedures to compute the density on the particle-coordinate
frame are listed below:

1. The distribution Fj(x, µj, U, t) for each µj at time moment t is computed by
Eq.(56).

2. The integration of the distribution of each Fj(x, µj, U, t) over U is first done by the
sum Sj(x, t) ≡

∑
j

Fj(x, µj, Uk, t)δU .

3. The gyroaverage of Sj(x, t) denoted as J2(µj)Sj(x, t) for each µj is done by utilising
the coefficient matrix with the result being Acontr2,ρj

AsplSjt, where Sjt is a vector formed by
Sj(x, t) on the grids and is given as

Sjt := (Sj,0,0, · · · ,Sj,Nr,0,Sj,0,1, · · · ,Sj,Nr,1, · · · ,Sj,0,NΘ−1
, · · · ,Sj,Nr,NΘ−1

)T

The total density on the particle-coordinate mesh contributed by the µj component is
written as

ngj,hp ≡ (J2(µj)Sj)hp, h ∈ {0, · · · , Nr}, p ∈ {0, · · · , NΘ − 1}.

4. The equilibrium density in the particle-coordinate frame obtained from the gy-
roaveage of the equilibrium distribution F0j(x, µj, U) for the µj component is done at the
beginning following the procedure 2, 3 and is stored for the subsequent invoking. By inher-
iting the symbol used in Eq.(29), the jth equilibrium density on particle-coordinate spa-
tial mesh is denoted as ng0j,hp. Then, the perturbative density on the particle-coordinate
spatial mesh contributed by the µj component is

ng1j,hp = ngj,hp − ng0j,hp. (58)

5. The total perturbative density on the particle-coordinate space computed by all
j ∈ {1, · · · , Nµ} is obtained by "MPI_ALLREDUCE" the ng1j,hp as

∑
j

ng1j,hpBhpδµj,

where Bhp is the magnetic field magnitude at the node denoted by (h, p).
For an initial equilibrium density profile on the gyrocenter coordinate frame shown

by the purple line of Fig.(1), assuming the equilibrium distribution of µ obeying Eq.(60),
the density on the particle coordinate space after the gyroaverage operation is obtained
and shown in Fig.(1).

8.2.2 The parallelization

MPI is used to the parallelization of the computing of µ. The processors are divided into
Nµ sub-communicators. Fj(x, µj, U) with j ∈ {1, · · · , Nµ} is exclusively computed by
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the jth sub-communicator. And the respective precomputing matrixes of Φj are stored
in the jth sub-communicator. Φ̃ and ni1(x) in Eq.(23) and Eq.(17b) are computed by
“MPI_ALLREDUCE” the respective quantity stored in the processors of the same “color”
with respect to the respective sub-communicator.

To calculate the advection of distribution function in the 4D domain (r,Θ, x‖, U), two
parallelization schemes are involved: the one for parallelizing x‖ with r,Θ, U sequential
is used to calculate the advection due to ṙ, Θ̇, U̇ ; the other one for parallelizing r,Θ, U
with x‖ sequential is used to compute the advection due to U . The 3D domain (r,Θ, x‖)
with respect to the potential function and the density implements the scheme: the paral-
lelization in x‖ with r,Θ sequential is used to compute the characteristics ṙ, Θ̇, U̇ which
are needed in computing the advection of the distribution in r,Θ, U dimensions, and to
solve QNE in the poloidal cross section.

8.3 The simulation results

In the cylindrical coordinates system, the initial distribution is of the structure in Eq.(14).
The distribution function is specifically given as

F (0, r,Θ, x‖) = Feq (r, µ, U)×

(
1 + η exp

(
−(r − rp)2

δr

)∑
n,m

cos(
2πn

L‖
x‖ +mΘ +

2πp

Lr
r)

)
,

(59)
where the equilibrium function Feq is

Feq (r, µ, U) =
n0 (r) exp

(
− U2

2Ti(r)
− µB

Ti(r)

)
(2πTi(r))

3/2
, (60)

and n,m, p are the respective mode numbers. The profile Ti(r), Te(r) and n0(r) are given
by:

P(r) = CP exp

(
−kPδrP tanh

(
r − rP
δrP

))
(61)

where P ∈ {Ti, Te, n0}, CTi = CTe = 1 and

Cn0 =
rmax − rmin∫ rmax

rmin
exp

(
−κn0δrn0 tanh

(
r−rp
δrn0

))
dr
. (62)

For all the following simulation cases, the time step ∆t = 8 is chosen and the data
are stored every two time steps.

8.3.1 1st case: n = 1,m = 0, p = 0

This case implements the perturbation not including the polar and radial modes. The
utilized equilibrium profiles of ions’ density and temperature are not steep in the radial
dimension and are given in Fig.(9). We consider the parameters: η = 10−4, kn0 = 13.0,
κTi = κTe = 20.0, δrn0 = 2.0, δrTi = δrTe = 1.0, L‖ = 1506.759067, rp = 0.45(rmin+rmax),
δr =

4δrn0

δrTi
.

The simulated domain of r × Θ × x‖ × U × µ is chosen as (0.5∆r, 14.5) × [0, 2π) ×
(0, 1506.759067)× (−7.32, 7.32)× (0, 20), where ∆r is the length step in radial direction.
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This domain is divided into a mesh of 64×64×32×32×63 cells. The simulation is carried
out by implementing 128 processes, which are executed by 4 nodes on ATLAS HPC of
IRMA using hyperthreading. Each node has 24 CPUs and carries on 32 processes.

The evolution curves of the polar modes of the potential at the radial node 30 are
shown in Fig.(10). The radial spectrum evolution is shown in Fig.(11). A good match of
the results computed by the two solvers is revealed by these figures.
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Figure 9: These figures are for the 1st case. The purple curve of the left figure is ion’s
equilibrium density profile on the gyrocenter coordinate frame, while the green curve is
the ion’s equilibrium density profile on the particle coordinate frame transformed from
the purple curve by the gyroaverage operation. Ion’s equilibrium temperature profile is
given by the right figure.

8.3.2 2nd case: n = 1,m = 15, p = 0

For this case, we could obtain kΘρ ≈ 2 at r = 7 with ρ = 1. We consider the parameters:
η = 10−4, kn0 = 13.0, κTi = κTe = 66.0, δrTe = δrTe = δrn0 = 0.2, L‖ = 1506.759067, rp =

0.45(rmin + rmax), δr =
4δrn0

δrTi
. The equilibrium profile of ion’s density and temperature

are given by Fig.(12).
The simulated domain is the same with that of the 1st case and is divided into a mesh

of 64× 128× 32× 32× 63 cells. For this case, the implementation of the processes and
the partition of these processes on the nodes of ATLAS are the same with that of the 1st
case.

The potential profile on the polar cross section at time moment 16, 2096, 3680 com-
puted by the two solvers are shown in Fig.(13). The ion temperature modes are driven
by the equilibrium gradient. The evolution curves of the polar modes of the potential at
the radial node 35 are presented in Fig.(14), which shows that the growth rate computed
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Figure 10: These figures are for the 1st case. The polar Fourier modes of the perturbative
potential computed by the interpolation algorithm and the 2nd-order solver.
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Figure 11: These figures are for the 1st case. The radial Fourier modes of the perturbative
potential computed by the interpolation algorithm and the 2nd-order solver.
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Figure 12: These figures are for the 2nd case. The purple curve of the left figure is ion’s
equilibrium density profile on the gyrocenter coordinate frame, while the green curve is
on the particle coordinate frame transformed from the purple curve by the gyroaverage
operation. Ion’s equilibrium temperature profile is given by the right figure.

by the interpolation algorithm is larger and the the saturation time is earlier. The radial
spectrum evolution is shown in Fig.(15).

8.3.3 3rd case: n = 1,m = 5, p = 7

For this case, we could obtain krρ ≈ π with ρ = 1. We consider the parameters: η = 10−4,
kn0 = 13.0, κTi = κTe = 66.0, δrTe = δrTe = δrn0 = 0.1, L‖ = 1506.759067, rp =

0.45(rmin + rmax), δr =
4δrn0

δrTi
. The equilibrium profile of ion’s density and temperature

are given by Fig.(16).
The simulated domain is the same and is divided into a mesh of 128×64×32×32×63

cells. The implementation of the processes on the nodes of ATLAS doesn’t change. The
potential profile on the polar cross section at time moment 16, 3200, 5236 computed by
the two solvers are shown in Fig.(17). The evolution curves of the polar modes of the
potential at the radial node 35 are presented in Fig.(18). The radial spectrum evolution
is given in Fig.(22).

8.3.4 4th case: n = 1,m = 5, p = 0

The parameters of this case are the same with those used in the 3rd case except that p = 0
is chosen. The results are plotted in Figs.(20) and (21). Compared with the simulation
results of the 3rd case, it can be observed from both figures that the growth rate of the
polar Fourier modes without the initial radial wavelength are much larger than that with
the presence of the initial radial wavelength. Such a fact may contribute a new element
to the turbulence induced transport theory, which states that the shear flow could reduce
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Figure 13: These figures are for the 2nd case. The upper row is the evolution of the
potential profile over the polar cross section computed by the interpolation algorithm,
while the lower row is computed by the 2nd-order solver.
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Figure 14: These figures are for the 2nd case. The polar Fourier modes of the perturbative
potential computed by the interpolation algorithm and the 2nd-order solver.
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Figure 15: These figures are for the 2nd case. The radial Fourier modes of the pertur-
bative potential computed by the interpolation algorithm and the 2nd-order solver.
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Figure 16: These figures are for the 3rd case. The purple curve of the left figure is ion’s
equilibrium density profile on the gyrocenter coordinate frame, while the green curve is
on the particle coordinate frame transformed from the purple curve by the gyroaverage
operation. Ion’s equilibrium temperature profile is given by the right figure.

Figure 17: These figures are for the 3rd case. The cross-section profile of the potential
computed by the interpolation solver and the 2nd-order solver.
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Figure 18: These figures are for the 3rd case. The polar Fourier modes of the perturbative
potential computed by the interpolation algorithm and the 2nd-order solver.
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Figure 19: These figures are for the 3rd case. The radial Fourier modes of the perturbative
potential computed by the interpolation algorithm and the 2nd-order solver.

the radial coherent length of the turbulent vortex, mitigating the transport rate as a
consequence. Our simulations in 3rd and 4th cases suggest that with the presence of the
low toroidal mode number, the short radial wavelength causes much smaller growth rate
of the poloidal modes.

Figure 20: These figures are for the 4th case. The cross-section profile of the potential
computed by the interpolation solver and the 2nd-order solver.

9 Conclusion and Discussion
This paper points out that the traditional low-order approximation of DGT is not suitable
concerning the short-scale perturbation and the steep equilibrium profile. To obtain the
more precise mesh-grids value of the function which is under the first gyroaverage or
double gyroaverage in the presence of these extreme cases, the interpolation algorithm is
developed by uniformly layouting many points on the Larmor circle surrounding the grid
point, the function value at which is obtained by utilising the cubic-spline piecewise basis
function for the interpolation. Due to the periodic boundary condition of the cubic spline
interpolation on the polar dimension, the interpolation coefficient matrix has the periodic
block structure. Then, FFT can be implemented to speed up the process of obtaining the
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Figure 21: These figures are for the 4th case. The polar Fourier modes of the perturbative
potential computed by the interpolation algorithm and the 2nd-order solver.
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Figure 22: These figures are for the 4th case. The radial Fourier modes of the perturbative
potential computed by the interpolation algorithm and the 2nd-order solver.

inverse of the discretized coefficient matrix of QNE. Since the density of each µj depends
on a weight factor exp(−µB(x)

Te(x)
) and all quantities as the functions of x experience a

transform x→ x−ρ(x, µj, θ), the Gaussian-Laguerre quadrature integrating method can
not be used and we developed an Euler-Maclaurin-based quadrature integrating method
to obtain the quadrature integration for the distribution of µ.

The interpolation algorithm itself and the interpolation solver for the numerical com-
putation of QNE are benchmarked under various boundary conditions based on various
analytical solutions. It’s found that numerical solutions computed by both cases match
the analytical solutions very well. The interpolation solver is also applied to the gyroki-
netic integrated simulation which comprises of the other Vlasov solver and the charac-
teristic solver. The perturbations possessing various model numbers and the equilibrium
profiles possessing various radial gradient are implemented in the integrated simulations.
To observe the advantage of the interpolation algorithm, its numerical results are com-
pared with those computed by the 2nd-order solver. When the equilibrium profile is not
steep and the perturbation only has the nonzero mode number along the parallel spatial
dimension, the results computed by the interpolation solver and the 2nd-order solver
match each other well. When the gradient of the equilibrium profile is steep, the inter-
polation solver provides a bigger driving effect for the ion-temperature-gradient modes
which possesses large polar mode numbers.
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Appendices
A The examples of the exact solution of the gyroaver-

age and double gyroaverage operation
We first consider a function of the form f(x + εg(x)) depending on one scalar argument
and a small parameter. What we are interested in is its expansion over ε. The derivative
of f(x+ εg(x)) over ε at ε = 0 is derived as follows

dεf(z)|ε=0 = dεz∂zf(z)|ε=0 = g(x)∂xf (x) , z ≡ x+ εg(x), (63)

where dε ≡ d/dε. The second order derivative of f(z) over ε at ε = 0 is

dε(dεf(z))|ε=0 = dε(dεz∂zf(z))|ε=0 = (dε(dεz))∂zf(z)|ε=0 + dεz(dε∂zf(z))|ε=0

= dεg(x)|ε=0 + (dεz)(dεz)∂z∂zf(z)|ε=0 = g2(x)∂2
zf(z).

The second order derivative of f(z) over ε at ε = 0 is

d2
εf(x+ εg(x))

∣∣
ε=0

= g2(x)∂2
xf(x).

It’s easy to derive that the n-th derivative of f(x+ εg(x)) over ε at ε = 0 is

dnε f(x+ εg(x))|ε=0 = gn(x)∂nxf(x). (64)

Then, the Taylor expansion of f(x+ εg(x)) over ε is

f(x+ εg(x)) =
∑
n≥0

εn

n!
gn(x)∂nxf(x). (65)

Now we change g(x) to be the vector ρ. In Cartesian coordinate frame, ρ(x) · ∇ can
be written as

ρ(x) · ∇ =
∑
i

ρi(x)∂xi ,

Then, Eq.(65) is changed to be

f(x + ρ(x)) =
∑
n≥0

1

n!

(∑
i

ρi(x)∂′xi

)n

f(x) = exp(
∑
i

ρi(x)∂′xi)f(x), (66)

where ′ means ∂′xi doesn’t operate on any ρis.
In Cartesian coordinate frame, we have

ρ · ∇ = ρ cosα1∂
′
x1

+ ρ cos(α1 − π/2)∂′x2
,

where α1 is the angle between the Larmor radius vector and e1 a unit vector. For

f(x) = exp(inx1 + imx2),
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we have

J1(µ)f(x) = 〈exp(inρ cosα1 + imρ cos(α1 − π/2))〉 exp(inx1 + imx2)

=
〈

exp(i
√
n2 +m2 cos(α1 + β + π/2))

〉
exp(inx1 + imx2)

=

〈∑
q=0

iqJq(ρ
√
n2 +m2) exp(iq(α1 + β + π/2))

〉
exp(inx1 + imx2)

= J0(ρ
√
n2 +m2) exp(inx1 + imx2),

(67)

where cos β = n/
√
n2 +m2. With the same reason, we can derive

J2(µ)J1(µ)f(x) = J2
0 (ρ
√
n2 +m2) exp(inx1 + imx2) (68)

For f1(x) = x2, it’s easy to obtain the following results

J1(µ)x2 = x2, J2(µ)J1(µ)x2 = x2
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