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Introduction

Heterogeneous materials possess more complex behavior compared to their associated constituents. Therefore, composites have been the subject of an increasing interest in many engineering applications in the past decades. The F o r P e e r R e v i e w mechanical behavior of heterogeneous materials is highly dependent on their micro-structural characteristics. Conducting experiments on numerous materials with various phases is not practical. Also, performing a numerical simulation on the whole macro-structure would include a huge number of variables which is extremely complicated, if not impossible. As a result, micro-mechanically based determination of the overall response of composites is of great significance.

Multi-scale methods have been developed to determine the overall response of heterogeneous media in terms of the constitutive behavior of their underlying microstructures. Multi-scale methods are categorized into concurrent methods and homogenization methods. In the concurrent methods [START_REF] Broughton | Concurrent coupling of length scales: Methodology and application[END_REF][START_REF] Oden | Hierarchical modeling of heterogeneous solids[END_REF][START_REF] Ghosh | Concurrent multi-level model for damage evolution in microstructurally debonding composites[END_REF][START_REF] Khoei | A concurrent multi-scale technique in modeling heterogeneous FCC nano-crystalline structures[END_REF], the problems at the microscopic and macroscopic scales are solved simultaneously, which requires a strong coupling between the two scales . In the homogenization method [START_REF] Suquet | Elements of Homogenization Theory for Inelastic Solid Mechanics[END_REF][START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF][START_REF] Castañeda | Nonlinear Composites[END_REF][8][START_REF] Zohdi | Computational micro-macro material testing[END_REF][START_REF] Kouznetsova | Multi-scale constitutive modelling of heterogeneous materials with a gradientenhanced computational homogenization scheme[END_REF][START_REF] Lloberas-Valls | On micro-to-macro connections in domain decomposition multiscale methods[END_REF][START_REF] Li | A micro-macro homogenization approach for discrete particle assembly -Cosserat continuum modeling of granular materials[END_REF][START_REF] Willoughby | Homogenization methods to approximate the effective response of random fibre-reinforced Composites[END_REF][START_REF] Jiang | Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces[END_REF][START_REF] Raina | A homogenization approach for nonwoven materials based on fiber undulations and reorientation[END_REF], the micro-problem and macro-problem are solved separately. Homogenization pioneered by Hill [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF][START_REF] Hill | On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain[END_REF] and Ogden [START_REF] Ogden | On the overall moduli of non-linear elastic composite materials[END_REF] relies on (i) the assumption of the separation of the length scale between the micro-and macro-problem and (ii) the energy equivalence between the two scales known as the Hill-Mandel condition [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF][START_REF] Mandel | Contribution théorique à l'étude de l'écrouissage et des lois de l'écoulement plastique[END_REF].

Furthermore, the homogenization methods fall into analytical homogenization and computational homogenization.

Pioneering contributions in analytical homogenization include [START_REF] Voigt | Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[END_REF][START_REF] Reuss | Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle[END_REF][START_REF] Eshelby | The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems[END_REF][START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF][START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF][START_REF] Hill | Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour[END_REF][START_REF] Hill | A self-consistent mechanics of composite materials[END_REF][START_REF] Walpole | On the overall elastic moduli of composite materials[END_REF][START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF] and later extended in [START_REF] Nemat-Nasser | Elastic-plastic composites at finite strains[END_REF][START_REF] Willis | On methods for bounding the overall properties of nonlinear composites[END_REF][START_REF] Castañeda | The effective mechanical properties of nonlinear isotropic composites[END_REF][START_REF] Torquato | Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties[END_REF][START_REF] Castañeda | Effective properties of nonlinear inhomogeneous dielectrics[END_REF][START_REF] Nemat-Nasser | Bounds and estimates of overall moduli of composites with periodic microstructure[END_REF][START_REF] Balendran | Bounds on elastic moduli of composites[END_REF][START_REF] Kochmann | Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases[END_REF][START_REF] Nemat-Nasser | Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids[END_REF]. See [START_REF] Klusemann | Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: Comparisons and benchmarks[END_REF] for some comparisons of analytical and computational approaches of micro-mechanics. Despite providing useful information, the analytical homogenization approach requires certain simplifications on the microstructure such as its geometry and distribution pattern. On the contrary, the computational homogenization method is capable of dealing with such complexities, thus it has been widely adopted in the past decades, see [START_REF] Brinson | Finite Element Analysis of Multiphase Viscoelastic Solids[END_REF][START_REF] Brinson | Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites[END_REF][START_REF] Terada | A class of general algorithms for multi-scale analyses of heterogeneous media[END_REF][START_REF] Miehe | Computational micro-to-macro transitions of discretized microstructures undergoing small strains[END_REF][START_REF] Feyel | A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua[END_REF][START_REF] Moës | A computational approach to handle complex microstructure geometries[END_REF][START_REF] Özdemir | Computational homogenization for heat conduction in heterogeneous solids[END_REF][START_REF] Fritzen | Reduced basis hybrid computational homogenization based on a mixed incremental formulation[END_REF][START_REF] Javili | Computational homogenization in magneto-mechanics[END_REF][START_REF] Kochmann | Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity[END_REF][START_REF] Biswas | A micromorphic computational homogenization framework for heterogeneous materials[END_REF][START_REF] Larsson | Variationally consistent computational homogenization of transient heat flow[END_REF][START_REF] Feyel | FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials[END_REF][START_REF] Fritzen | Nonlinear reduced order homogenization of materials including cohesive interfaces[END_REF][START_REF] Tikarrouchine | Three-dimensional FE 2 method for the simulation 29[END_REF][START_REF] Chatzigeorgiou | Thermomechanical Behavior of Dissipative Composite Materials[END_REF] among others. For detailed reviews on computational homogenization, see [START_REF] Saeb | Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's Bound[END_REF][START_REF] Geers | Multi-scale computational homogenization: Trends and challenges[END_REF][START_REF] Charalambakis | Mathematical homogenization of inelastic dissipative materials: A survey and recent progress[END_REF] . Computational homogenization is essentially based on calculating the macroscopic quantities from the solution of a boundary value problem at the micro-scale. Recently, a number of methods have been developed to reduce the computational cost and increase the accuracy of multi-scale analysis [START_REF] Yadegari | Generalized grain cluster method for multiscale response of multiphase materials[END_REF][START_REF] Matsui | Two-scale finite element analysis of heterogeneous solids with periodic microstructures[END_REF][START_REF] Michel | Effective properties of composite materials with periodic microstructure: a computational approach[END_REF][START_REF] Yvonnet | Computational homogenization method and reduced database model for hyperelastic heterogeneous structures[END_REF][START_REF] Le | Computational homogenization of nonlinear elastic materials using neural networks[END_REF].

The average-field theory [START_REF] Squet | Local and global aspects in the mathematical theory of plasticity[END_REF][START_REF] Pierard | Mean-field homogenization of multi-phase thermo-elastic composites: A general framework and its validation[END_REF] is employed in order to bridge the microscopic quantities to their macroscopic counterparts. This theory relates the properties of continua at the macro-scale to the volume averages of their counterparts at the micro-scale. In doing so, the boundary conditions at the micro-scale are chosen such that the Hill-Mandel condition is satisfied. A broader group of admissible boundary conditions to fill the gap between the homogeneous boundary conditions was drived in [START_REF] Mercer | Novel formulations of microscopic boundary-value problems in continuous multiscale finite element methods[END_REF]. The computational implementation algorithms of DBC and PBC are discussed in [START_REF] Yuan | Toward realizastion of computational homogenization in practice[END_REF][START_REF] Nguyen | Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation[END_REF]. The effects of various boundary conditions on the overall behavior of periodic unidirectional linear composites has been investigated in [START_REF] Pecullan | Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites[END_REF]. Furthermore, [START_REF] Hazanov | Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[END_REF][START_REF] Hazanov | On overall properties of elastic heterogeneous bodies smaller than the representative volume[END_REF][START_REF] Pahr | Influence of boundary conditions on computed apparent elastic properties of cancellous bone[END_REF] proposed a mixed-type boundary condition composed of linear displacement boundary conditions and constant traction boundary conditions to obtain an elasticity tensor that lies between the elasticity tensors obtained from homogeneous boundary conditions. For further details on the To establish a computational homogenization framework, it is essential to identify a representative volume element (RVE). A proper RVE must be selected such that it contains enough details to sufficiently represent the microstructure of the material and it has to be small enough to be considered as a microstructure surrounded by copies similar to itself, so as to fulfill the assumption of scale separation. In most cases, a proper RVE for a random microstructure is regarded as the smallest possible structure which could sufficiently capture the macroscopic response of the macro-structure.

For more details on the definition of the RVE, see [START_REF] Gitman | The representative volume size in static and dynamic micro-macro transitions[END_REF][START_REF] Khisaeva | On the size of RVE in finite elasticity of random composites[END_REF][START_REF] Temizer | A numerical method for homogenization in non-linear elasticity[END_REF][START_REF] Thomas | Representative volume element of anisotropic unidirectional carbon-epoxy composite with high-fibre volume fraction[END_REF][START_REF] Temizer | On the optimality of the window method in computational homogenization[END_REF][START_REF] Dirrenberger | Towards gigantic RVE sizes for 3D stochastic fibrous networks[END_REF] among others. Although small, the RVE could still be too complex for computational homogenization. Thus, instead of studying a complex RVE, one could construct a simpler, however statistically similar RVE also referred to as SSRVE, see [START_REF] Schröder | Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions[END_REF][START_REF] Balzani | Construction of two-and three-dimensional statistically similar RVEs for coupled micro-macro simulations[END_REF]. Here, the term RVE indicates a simplified micro-structure in the sense of SSRVE [START_REF] Schröder | Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions[END_REF][START_REF] Balzani | Construction of two-and three-dimensional statistically similar RVEs for coupled micro-macro simulations[END_REF] or SRVE [START_REF] Glüge | Comparison of spherical and cubical statistical volume elements with respect to convergence, anisotropy, and localization behavior[END_REF]. In this contribution, we present a systematic study on the computational and analytical homogenization by considering three types of RVEs; tetragonal, hexagonal and circular RVE, shown in Fig. 1. Note that the cutout of a real micro-structure with random distribution of particles can eventually result in isotropic effective behavior. While tetragonal and hexagonal packings are space-filling, only the circular RVE can furnish isotropic effective behavior suitable for comparing with analytical solutions here and it is the only RVE that could reach the maximum volume fraction of a real cutout of a material. methods to predict the effective response of heterogeneous materials. Section 4 extends the computational homogenization framework to finite deformations and the effects of RVE type and boundary condition are examined. Section 5 summarizes this work and provides further outlook.

Computational homogenization

This section elaborates on the theoretical aspects of computational homogenization and bridging the scales. The content of this section is fairly standard, however, in order to set the stage, the important aspects of computational homogenization are briefly reviewed. A detailed expositions on the formulation of computational homogenization and the associated numerical implementation can be found in [START_REF] Zohdi | Computational micro-macro material testing[END_REF][START_REF] Saeb | Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's Bound[END_REF][START_REF] Miehe | Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy[END_REF][START_REF] Kanouté | Multiscale methods for composites: A review[END_REF][START_REF] Matous | A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials[END_REF] among others. Central to computational homogenization is the separation of the length scales between the micro-and the macro-scale. The key idea of computational homogenization is to identify the effective properties at the macro-scale through averaging of the micro-problem, see [START_REF] Kouznetsova | An approach to micro-macro modeling of heterogeneous materials[END_REF][START_REF] Ladevèze | A micro-macro and parallel computational strategy for highly heterogeneous structures[END_REF][START_REF] Miehe | A framework for micro-macro transitions in periodic particle aggregates of granular materials[END_REF][START_REF] Stolz | On micro-macro transition in non-linear mechanics[END_REF][START_REF] Liu | Micro-macro homogenization of granular materials based on the average-field theory of Cosserat continuum[END_REF][START_REF] Chatzigeorgiou | Computational micro to macro transitions for shape memory alloy composites using periodic 31 homogenization[END_REF][START_REF] Chatzigeorgiou | Generalized interfacial energy and size effects in composites[END_REF]. At the micro scale, it is assumed that the constitutive response of each phase is known.

Solving the associated boundary value problem at the micro-scale and proper averaging over the RVE renders the overall response at the macro-scale. The micro-problem could be either strain-driven or stress-driven. In strain-driven homogenization, the macroscopic deformation gradient is prescribed and the macroscopic stress is calculated. On the contrary, the macroscopic stress is prescribed in stress-driven homogenization for an unknown macroscopic deformation gradient. This contribution is based on first-order strain-driven computational homogenization based on the deformation gradient and the Piola stress. In this section, the macro-problem is formulated first. This is then followed by the micro-problem definition. Finally, the micro-to-macro-transition and the Hill-Mandel condition are addressed afterwards. The non-linear map M ϕ maps points M X from the material configuration to M x in the spatial configuration. Line elements are mapped from the material configuration to the spatial configuration via M F. The domain B 0 at the micro-scale corresponds to the RVE. In a strain-driven homogenization framework, the macroscopic deformation gradient is the input of the micro-problem and the macroscopic Piola stress is obtained by solving the boundary value problem at the micro-scale.

Macro-problem definition

Let a macroscopic continuum body take the material configuration M B 0 at time t = 0 and the spatial configuration M B t at time t > 0, as shown in Fig. 2. The boundaries of the body in the material and the spatial configuration are denoted as ∂ M B 0 and ∂ M B t , respectively. Moreover, M N and M n define the material and spatial outward unit normal vectors to the boundaries. The material point M X is mapped to its spatial counterpart M x via the nonlinear deformation map M ϕ as M x = M ϕ( M X). The infinitesimal line element d M X from the material configuration is mapped to d M x in the spatial configuration via the linear map M F as d M x = M F • d M X where M F = M Grad M ϕ is the macroscopic deformation gradient. In addition, the Jacobian determinant M J = det M F maps the infinitesimal material volume element d M V

to its spatial counterpart d M v via d M v = M J d M V.
Finally, the normal map M J M F -t transforms the directional surface element from the material configuration d M S = d M S M N to the directional surface element in the spatial configuration

d M s = d M s M n as d M s = M J M F -t • d M S.
The governing equations for the macro-problem are the balances of linear and angular momentum. For a quasi-static case, the balance of linear momentum reads 

M Div M P + M b p 0 = 0 in M B 0 , M P • M N = M t 0 on ∂ M B 0 , with M t 0 = M t p 0 on ∂ M B 0 ,N , M ϕ 0 = M ϕ p 0 on ∂ M B 0 ,D , (1) 5 
P • M F t = M F • M P t , (2) 
which is equivalent to the symmetry of the Cauchy stress.

Micro-problem definition

As illustrated in Fig. 2, the notations for the micro-problem mimic the macro-problem without the left superscript "M". The kinematics of the micro-problem such as points, line elements, surface elements and volume elements from the material to spatial configuration read

x = ϕ(X) , dx = F • dX , ds = J F -t • dS , dv = J dV . (3) 
Due to the scale separation assumption, the body forces vanish at the micro-scale. The balance of linear momentum for the micro-problem holds as

DivP = 0 in B 0 , P • N = t 0 on ∂B 0 , with t 0 = t p 0 on ∂B 0 ,N , ϕ 0 = ϕ p 0 on ∂B 0 ,D . (4) 
Finally, the balance of angular momentum reads

P • F t = F • P t . (5) 

Micro-to-macro transition

The micro-to-macro transition is essentially a proper averaging of the quantities at the macro-scale to link them with their counterparts at the micro-scale. The advantage of the micro-to-macro transition is that no assumptions are required regarding the constitutive behavior of the material at the macro-scale. This method is capable of incorporating geometrical and physical nonlinearities without additional effort. As it is depicted in Fig. 2, the macroscopic deformation gradient is applied to the microstructure and the micro-problem is solved as a classical boundary value problem The macroscopic deformation gradient and Piola stress are related to their microscopic counterparts via averages over the volume or the boundary of the RVE as

M F = F = 1 V 0 B 0 F dV = 1 V 0 ∂B 0 ϕ ⊗ N dA and M P = P = 1 V 0 B 0 P dV = 1 V 0 ∂B 0 t 0 ⊗ X dA . (6)
Moreover, the Hill-Mandel condition necessitates the incremental energy equivalence between the two scales which

reads M P : δ M F ! = 1 V 0 B 0 P : δF dV , (7) 
as the volume average over the RVE. Hill's lemma, transforms Eq. ( 7) into a surface integral according to

1 V 0 B 0 P : δF dV -M P : δ M F = ∂B 0 [δϕ -δ M F • X] • [t 0 -M P • N] dA . (8) 
Inserting Hill's lemma (8) into the Hill-Mandel condition (7) yields

∂B 0 [δϕ -δ M F • X] • [t 0 -M P • N] dA ! = 0 , (9) 
which shall be understood as the Hill-Mandel condition in terms of a surface integral over the boundary of the RVE.

Various boundary conditions can fulfill the Hill-Mandel condition a priori, see [START_REF] Larsson | Computational homogenization based on a weak format of micro-periodicity for RVE-problems[END_REF][START_REF] Javili | Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions[END_REF]. Among all the boundary conditions that satisfy the Hill-Mandel condition, of practical significance are the canonical boundary conditions (i) linear displacement boundary condition (DBC), (ii) uniform traction boundary condition (TBC) and (iii) periodic displacement and anti-periodic traction (PBC) imposing

DBC : ϕ = M F • X , TBC : t 0 = M P • N and PBC : [ϕ -M F • X] and [t 0 -M P • N] , (10) 
on the boundary of the RVE. For strain-driven computational homogenization here the condition M F= F is a priori satisfied for both DBC and PBC. However, this is not the case for TBC and the condition M F= F shall be regarded as a constraint. It is noteworthy that all the above boundary conditions satisfy the balance of angular momentum at the macro-scale. It is commonly accepted that DBC and TBC overestimate and underestimate PBC, respectively. 

Numerical versus analytical homogenization

In this section, first the material modeling of the problem is presented. This is then followed by a brief review of the analytical methods developed to determine the overall response of composites for small strain linear elasticity.

Finally, a thorough comparison of numerical and analytical results for various RVE types is provided.

Material modeling

The constituents of heterogeneous materials at the micro-scale are assumed to be hyper-elastic with known behavior.

The bonding between the matrix and inclusion is considered perfect. Both matrix and inclusion behave according to the free energy density

ψ(F) = 1 2 µ F : F -2 -2 log J + 1 2 λ log 2 J , (11) 
associated with a neo-Hookean response with Lamé parameters λ and µ whereby the bulk modulus associated with the plane-strain condition of interest here relates to the Lamé parameters as κ = µ + λ. Using the Coleman-Noll procedure, the Piola stress is derived as

P = ∂ψ ∂F = µ F -F -t + λ log J F -t . ( 12 
)
The corresponding fourth-order Piola tangent tensor reads

A = ∂P ∂F = µ I⊗I + F -t ⊗F -1 + λ F -t ⊗ F -t -log J F -t ⊗F -1 . (13) 
The nonstandard tensor products ⊗ and ⊗ of two second-order tensors A and B are the forth order tensors D = A⊗B and C = A⊗B, respectively, with the components D i jkl = A ik B jl and C i jkl = A il B jk .

Small strain linear elasticity relates the stress σ to the strain ε according to the linear relation σ = C : ε in which the strain ε and the fourth-order constitutive tensor C can be related to their counterparts at finite deformations via

ε = 1 2 F t + F -I and C = A| F=I = µ I⊗I + I⊗I + λ I ⊗ I , (14) 
and the stress σ reads In this section the most significant and extensively used analytical estimates are briefly listed. Throughout this manuscript, the matrix and inclusion properties are identified by the subscripts 1 and 2, respectively.

σ = Lin P = P| F=I + A| F=I : F -I = 2µε + λ ε : I I . (15 
Voigt bounds correspond to a uniform strain field within the RVE resulting in the upper limit for the effective overall response of the material as

κ = [1 -f ]κ 1 + f κ 2 and µ = [1 -f ]µ 1 + f µ 2 . ( 16 
)
where f is the inclusion volume fraction. Note that the uniform-strain assumption violates the balance of linear momentum, in general. Thus, Voigt bounds shall only be understood as an upper unreachable bound. Reuss bounds correspond to a uniform stress field within the RVE leading to the lower limit for the effective response of the material as

κ = κ 1 κ 2 [1 -f ]κ 2 + f κ 1 and µ = µ 1 µ 2 [1 -f ]µ 2 + f µ 1 . (17) 
The uniform-stress assumption violates the compatibility of the strain field and thus, Reuss bounds shall only be understood as a lower unreachable bound.

Hashin and Rosen [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF] proposed a predictive model based on a Composite Cylinder Assemblage (CCA) to obtain the bulk and shear moduli of transversely isotropic composites having circular inclusions in hexagonal and random arrays. The effective coefficients in this approach are frequently used to date. In this method, the upper and lower bounds on the bulk modulus coincide and read

κ U = κ L = κ 1 µ 1 + κ 2 + f µ 1 [κ 2 -κ 1 ] µ 1 + κ 2 + f [κ 1 -κ 2 ] , (18) 
where the subscripts "U" and "L" denote the upper and the lower bounds, respectively. While the mathematical procedure of determination of bounds for the shear modulus has been addressed precisely in [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF], closed form expressions 9
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for the bounds for the shear modulus, for the first time, are given here as

µ U = µ 1                                            2 f κ 1 + µ 1 µ 2 -µ 1 µ 2 κ 1 + µ 1 κ 1 + 2µ 1 µ 2 f µ 2 -µ 1 κ 1 + 2µ 1 µ 2 κ 1 + µ 1 κ 1 + 2µ 1 µ 2                   3 1 -f 2 κ 1 κ 1 + 2µ 1 2 f 3 µ 2 κ 2 κ 1 + 2µ 1 -µ 1 κ 1 κ 2 + 2µ 2 κ 1 + 2µ 1 κ 2 µ 2 + µ 1 κ 2 + 2µ 2 -1 -1                   + 1 + 1                                            , µ L = µ 1                                            2 f κ 1 + µ 1 µ 2 -µ 1 µ 2 κ 1 + µ 1 κ 1 + 2µ 1 µ 2 f µ 2 -µ 1 κ 1 + 2µ 1 µ 2 κ 1 + µ 1 κ 1 + 2µ 1 µ 2                   3 1 -f 2 κ 1 κ 1 + 2µ 1 2 f 3 µ 2 κ 2 κ 1 + 2µ 1 -µ 1 κ 1 κ 2 + 2µ 2 κ 1 + 2µ 1 κ 2 µ 2 + µ 1 κ 2 + 2µ 2 + κ 1 κ 1 + 2µ 1 -1                   + 1 + 1                                            . ( 19 
)
Shortly afterwards, Hashin [START_REF] Hashin | On Elastic Materials Behaviour of Arbitrary of Fibre Reinforced Phase Transverse Geometry[END_REF] used the variational approach in [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF] to derive bounds on the overall response of fiber composites with transverse isotropy. The aim of this approach was to tighten the bounds proposed by Reuss and Voigt. The Hashin-Shtrikman bounds for the overall bulk and shear moduli read

κ U = κ 1 + f 1 κ 2 -κ 1 + 1 -f κ 1 + µ 1 , κ L = κ 2 + [1 -f ] 1 κ 1 -κ 2 + f κ 2 + µ 2 , µ U = µ 1 + f 1 µ 2 -µ 1 + [1 -f ][κ 1 + 2µ 1 ] 2µ 1 [κ 1 + µ 1 ] , µ L = µ 2 + [1 -f ] 1 µ 1 -µ 2 + f [κ 2 + 2µ 2 ] 2µ 2 [κ 2 + µ 2 ] , (20) 
for stiffness ratios less than one. The upper and the lower bound switch for stiffness ratios more than one.

The Hashin and Shtrikman variational principle [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF][START_REF] Hashin | On Elastic Materials Behaviour of Arbitrary of Fibre Reinforced Phase Transverse Geometry[END_REF] is well-known to provide the best bounds independent of the phase geometry and are formulated only in terms of the phase properties and inclusion volume fraction.

Hill [START_REF] Hill | Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour[END_REF] also derived bounds on five different effective properties of composites with transversely isotropic geometry.

Walpole [START_REF] Walpole | On the overall elastic moduli of composite materials[END_REF][START_REF] Walpole | On bounds for the overall elastic moduli of inhomogeneous systems-I[END_REF] utilized piece-wise uniform polarization and rederived these bounds in a more general fashion.

His method also includes anisotropic constituents and disk-shape fiber composites. All aforementioned bounds were independent of phase geometry and they were only applicable on three types of geometries; laminated, isotropic and transversely isotropic. Later, Willis [START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF] details on the derivation of explicit forms for the Willis bounds.

Numerical examples

This section provides a comprehensive comparison between the analytical estimates and computational results through a series of numerical examples for etragonal, hexagonal and circular RVEs. Figure 3 shows the packing of these RVEs.

The area of each RVE is set to 1 so that the inclusion area corresponds to the volume fraction f . Obviously, the volume fraction f could not exceed a certain value for the tetragonal and hexagonal RVEs, see Fig. 4. All the examples are solved using our in-house finite element code and discretized using bi-quadratic Lagrange elements.

In order to provide a thorough and systematic comparison of the numerical and analytical results, the overall bulk modulus M κ, shear modulus M µ and Poisson ratio M ν of transversely isotropic composites are examined. Figure 5 clearly illustrates all the cases investigated in what follows. Five different stiffness ratios of 0.01, 0.1, 1, 10 and 100 are considered for each RVE. The stiffness ratio represents the ratio of the inclusion to matrix (incl./matr.) Lamé parameters. Stiffness ratio less than one corresponds to a more compliant inclusion within the matrix and in the limit of incl./matr. → 0, the inclusion represents a void. On the contrary, the stiffness ratio more than one corresponds to a stiffer inclusion compared to matrix and in the limit of incl./matr. → ∞, the inclusion acts as a rigid fiber. Throughout all the examples, the matrix properties are set to λ 1 = 10, µ 1 = 10 while the inclusion parameters vary to generate the predefined stiffness ratios.

Figure 6 shows the effective bulk modulus M κ with respect to the volume fraction f for all the cases depicted in Fig. observation is that for incl./matr. < 1, DBC and PBC together with CCA upper bound overestimate the upper HSB and for incl./matr. > 1, TBC together with CCA lower bound underestimate the lower HSB. This observation shall be compared with Hashin's remark in [START_REF] Hashin | Analysis of Composite Materials-A survey[END_REF] mentioning that it has never been shown that his bounds on shear modulus are the best possible bounds. Clearly, we observe that his bounds on shear modulus do not serve as "bounds" at least not for CCA in the sense of the Voigt and Reuss bounds.

So far we have studied the effects of the variation of the volume fraction on the overall macroscopic response.

Figure 8 demonstrates the variation of the effective moduli with respect to the stiffness ratio. Two different volume fractions of f = 25% and f = 75% are considered corresponding to the top row and the bottom row, respectively.

As expected, all the results coincide at incl./matr. = 1. The gap between the results widens as stiffness ratio recedes from one. The difference between the numerical and analytical results are more distinguishable for the shear modulus M µ compared to the bulk modulus M κ. We observe better agreement between the numerical results for the hexagonal RVE compared to the tetragonal RVE. For the bulk modulus, the transition of the numerical results coinciding with the upper and the lower HSB for different stiffness ratios is more obvious in this figure. Another shortcoming of the Hashin-Shtrikman bounds is that similar to Voigt and Reuss bounds, they cannot distinguish between the matrix and the fiber. Figure 9 sheds light on this issue by providing a comparison of the analytical estimates and the numerical results obtained using the circular RVE. The first column correspond to a certain properties for the matrix and fiber. In the second column, the properties are switched and the results are illustrated with respect to matrix volume fraction 1f . The third column shows the subtraction of the results associated with the first and second column. We observe that in contrast to the numerical results and CCA, the Voigt, Reuss and Hashin-Shtrikman bounds are incapable of distinguishing between the matrix and the fiber hence, the difference between the responses vanishes in the right column. Figure 10 illustrates the numerical results of various material properties with respect to volume fraction for the circular RVE. As observed previously, when the RVE is circular, DBC and PBC always render identical response.

For the bulk modulus, DBC coincides with TBC while for the shear modulus, TBC underestimates DBC, as expected.

Somewhat strikingly, for the Poisson ratio TBC overestimates DBC though. Another counterintuitive observation is that although the Poisson ratio of the fiber and matrix are identical, the overall Poisson ratio is dependent to the fiber volume fraction and is not constant.

Heterogeneous materials generally possess non-periodic or random composition to some extents. Clearly, the distribution pattern of the inclusions influences the overall material response, see [START_REF] Savvas | Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM[END_REF][START_REF] Ghosh | Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method[END_REF]. The next set of numerical study aims to highlight the effects of different morphologies of the micro-structures on the effective properties. To do so, we consider several RVEs with identical volume fractions of f = 15% and with random and periodic distribution of inclusions undergone the three canonical boundary conditions. The periodic micro-structure is modeled such that the inclusions of the same size are uniformly distributed throughout the RVE whereas the random micro-structures contain inclusions with different sizes and no specific order. The numerical results corresponding to the circular RVE with the same volume fraction as well as CCA and Hashin-Shtrikman bounds are also included for the sake of completeness.

This study is performed for two stiffness ratios of 0.1 and 10 and the results are depicted in Figs. 11 and12. The variation of the effective bulk modulus, shear modulus and Poisson ratio with respect to increasing the number of inclusions within the microstructure are examined. The lower Hashin-Shtrikman bound in Fig. 11 and the upper Hashin-Shtrikman bound in Fig. 12 are eliminated since they do not fit within the given range. We shall highlight that for each level of the random micro-structure, almost ten samples with different distribution patterns are investigated.

That is, the effective responses shown in Figs. 11 and12 do not correspond only to the micro-structures depicted at the bottom but reflect the average of the effective responses obtained from ten samples.

In both types of the microstructures and for both stiffness ratios, the results from DBC, PBC, and TBC tend to converge to an effective response as the number of inclusions increases sufficiently. This trend is smoother for the periodic micro-structure compared to the random micro-structure where some fluctuations are present. We observe that due to the periodicity of the periodic micro-structure, PBC remains constant and TBC and DBC tend to approach to it from below and above, respectively. Somewhat interestingly, for the bulk modulus, the numerical results indicate that for random micro-structures and for both stiffness ratios, the circular RVE provides closer overall response to the overall response of the true RVE obtained by PBC. This is justified by the fact that increasing the number of inclusions within the random micro-structure resembles increasing the level of isotropy. Nonetheless, for the periodic micro-structure, increasing the number of inclusions does not alter the anisotropy of the material due to the uniform distribution of the inclusions. To be more precise, a proper case that could resemble an isotropic material suitable to be compared with analytical bounds is the random micro-structure with a large number of inclusions and randomness.

Looking at the shear modulus, for the random micro-structure with large number of inclusions, the material response lies within the Hashin-Shtrikman bounds for incl./matr. = 0.1. However, for incl./matr. = 10, the lower Hashin- Figs. 13 and 14 hence, their discussion is omitted for the sake brevity.

TETRAGONAL RVE HEXAGONAL RVE CIRCULAR RVE f =15% f =30% f =15% f =30% f =15% f =30%

Extension to finite deformations

All the previous examples were only valid at small strains. The main objective of this section is to extend the numerical studies presented in the last section to finite deformations setting. In doing so, two load cases of volumetric expansion and simple shear are prescribed and the effective material response is computed via proper averaging carefully analyze the overall material response for various boundary conditions and stiffness ratios. Unlike in smallstrain linear elasticity, for finite deformations it is not possible to define an effective material parameter such as bulk modulus or shear modulus. Therefore, in what follows the apparent macroscopic quantity of interest is the stress itself. obtained from different boundary conditions. The first row represents the volumetric expansion case while the second row corresponds to the simple shear, both at 20% deformation. First consider the first row corresponding to the expansion case. As expected, PBC is bounded with TBC from below and DBC from above. For the tetragonal RVE, the results from different boundary conditions mostly deviate form each other as the volume fraction increases.

However, as we move towards the circular RVE the results get closer to each other and coincide eventually. Next consider the second row corresponding to the shear case. For this case, more difference between the numerical results is observed in comparison to the expansion case. The results from PBC are closer to TBC for the tetragonal RVE.

For the hexagonal RVE PBC renders closer response to DBC and for the circular RVE they result in identical response.

These observation elucidates the sensitivity of PBC to the RVE type. As mentioned before, the circular RVE is able to reach to higher volume fractions compared to the other RVEs. For DBC, it is observed that the stress corresponding to the hexagonal RVE is bounded between the tetragonal RVE from above and the circular RVE from below. For PBC, the same observation is made when expansion is applied. However, when shear is applied, tetragonal RVE results in the lowest Piola stress while the hexagonal and circular RVE render different relative behavior depending on the volume fraction. For TBC, there is a remarkable coincidence between all the numerical results for both expansion and shear case. This means that TBC is indifferent to the type of the RVE.

This observation highlights the importance of frequently disregarded TBC in computational homogenization. 

Conclusion and outlook

In summary, we have presented a systematic comparison on the overall behavior of heterogeneous materials via both analytical and computational homogenization. It is clearly demonstrated that in contrast to the Voigt and Reuss bounds, for some cases the Hashin-Shtrikman bounds do not provide reliable bounds on the shear modulus. Three different material properties i.e. bulk modulus, shear modulus and Poisson ratio were comprehensively studied for various RVEs, boundary conditions and micro-structures. Our findings show that among all the simplified RVE types, the circular RVE serves as the most suitable RVE to predict overall isotropic material behavior due to its intrinsic feature to capture isotropy. The influence of the inclusion eccentricity on the effective modulus of the material is examined.

For both the tetragonal and hexagonal packings, the numerical results based on PBC are indifferent with respect to the inclusion position in the RVE. The numerical results are then extended to the finite deformation setting and it is observed that TBC shows less sensitivity with respect to the RVE type. This conclusion is particularly interesting since TBC is often disregarded in computational homogenization. Our next immediate extension of this contribution deals with a complimentary study accounting for size effects. Further extensions of this work include three-dimensional analysis as well as including more complex analytical estimates.
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Figure 2 :

 2 Figure 2: Computational homogenization graphical summary. The material configuration at the macro-scale M B 0 with the boundary of ∂ M B 0 is mapped to its spatial counterpart M B t with the boundary of ∂ M B t . The non-linear map M ϕ maps points M X from the material configuration to M x in the spatial configuration. Line elements are mapped from the material configuration to the spatial configuration via M F. The domain B 0 at the micro-scale corresponds to the RVE. In a strain-driven homogenization framework, the macroscopic deformation gradient is the input of the micro-problem and the macroscopic Piola stress is obtained by solving the boundary value problem at the micro-scale.

  body force density in the material configuration and M P defines the macroscopic Piola stress. The traction M t 0 acts on the boundary ∂ M B 0 . The prescribed traction that acts on the Neumann portion of the boundary∂ M B 0 ,N ⊂ ∂ M B 0 is denoted as M tp 0 . The displacement that is applied to the boundary ∂ M B 0 is M ϕ 0 . The prescribed displacement M ϕ p 0 acts on the Dirichlet part of the boundary ∂ M B 0 ,D ⊂ ∂ M B 0 . The balance of the angular momentum at the macro-scale reads M

  element method. The macroscopic Piola stress is then computed via proper averaging of the micro Piola stress.

3 . 2 .

 32 Analytical estimates at small strains Analytical methods in homogenization have been established to derive a relation for the overall response of heterogeneous media. Analytical methods are based on certain simplifying assumptions so as to achieve an explicit analytical solution.

Figure 3 :

 3 Figure 3: Packing network for each RVE. Tetragonal RVE packing (left). Hexagonal RVE packing (center) and the circular RVE packing (right). The boundaries of the tetragonal and hexagonal RVEs completely match.

Figure 4 :Figure 5 :

 45 Figure 4: Maximum reachable volume fraction for each RVE. For the circular RVE, the inclusion can embed the whole RVE due its geometry.11

Figure 8 :

 8 Figure8: Overall moduli versus stiffness ratio in a logarithmic scale. Two specific volume fractions are considered that are represented in each row. A good agreement of the results is observed for the volume fraction f = 25%. Increasing the volume fraction to f = 75% leads to more distinguishable results. More accordance between the results is observed for the bulk modulus M κ compared to the shear modulus M µ. The zoom boxes provide for further clarity.

Figure 9 :

 9 Figure9: Illustration of the insensitivity of the Hashin-Shtrikman bounds to micro-structure's constituents. Similarly, Voigt and Reuss bounds do not distinguish between the fiber and matrix The numerical results depicted in this figure correspond to the circular RVE. CCA solution totally agrees with the numerical results. The first column shows incl./matr = 0.1 where the inclusion and the matrix Lamé parameters are set to 1 and 10, respectively and the fiber's volume fraction is f . The second column corresponds to incl./matr = 10 where the inclusion and the matrix Lamé parameters are set to 10 and 1, respectively and the x-axis shows 1f instead of f . The third column shows the subtraction of the results in the first and the second column.
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Figure 10 :

 10 Figure 10: Illustration of different moduli versus volume fraction for two different stiffness ratios. The numerical results depicted in this figure correspond to the circular RVE. Each column corresponds to a specific material property and each row stands for specific stiffness ratio. Only numerical results are included for the Poisson ratio since analytical estimates do not provide physically meaningful results.

Figure 11 :Figure 12 :

 1112 Figure 11: Illustration of the evolution of the effective properties versus the degree of periodicity and randomness for periodic and random macrostructures. Three different boundary conditions of DBC, PBC and TBC are imposed to two different micro-structures having different distribution of inclusions for stiffness ratio of 0.1. The volume fraction is set to 15%. The size of the RVE remains constant as we increase the level of periodicity or randomness. The horizontal axis shows the degree of periodicity and randomness for the periodic and random microstructure, respectively. The micro-structures for some levels are depicted at the bottom of the figure. Analytical bounds, as well as numerical results for circular RVE are included to provide further information.

  centeric and off-centeric inclusion undergone shear for incl./matr. = 0.1 centeric and off-centeric inclusion undergone expansion for incl./matr. = 10

Figure 15 :

 15 Figure 15: Stress distribution within the RVE undergone volumetric expansion for both centric and off-centric inclusions when the inclusion is stiffer to the matrix (incl./matr. = 10). The distribution of the stress component [σ 11 + σ 22 ]/2 is shown throughout the RVE. Two volume fractions f = 15% and f = 30% are considered. CCA bounds on the overall bulk modulus are given for comparison. PBC always lies within TBC and DBC. Three main rows correspond to three boundary conditions and three main columns correspond to three different RVEs. For each boundary condition the centric and off-centric inclusion as well as two different volume fractions are examined.

  centeric and off-centeric inclusion undergone shear for incl./matr. = 10

Figure 16 :

 16 Figure 16: Stress distribution within the RVE undergone simple shear for both centric and off-centric inclusions when the inclusion is stiffer to the matrix (incl./matr. = 10). The distribution of the stress component σ 12 is shown throughout the RVE. Two volume fractions f = 15% and f = 30% are considered. CCA bounds on the overall shear modulus are given for comparison. PBC always lies within TBC and DBC. Three main rows correspond to three boundary conditions and three main columns correspond to three different RVEs. For each boundary condition the centric and off-centric inclusion as well as two different volume fractions are examined.

  For instance, for volumetric expansion, the xx-component of the Piola stress and for simple shear, the xy-component of the Piola stress are the macroscopic properties of interest.

Figure 17 Figure 17 :

 1717 Figure17shows the variation of the macro Piola stress with respect to the volume fraction for various RVEs

Figure 18 Figure 18 :

 1818 Figure 18 depicts the variation of the macro Piola stress with respect to the volume fraction for different boundary conditions. The top row correspond to the expansion case and the bottom row correspond to the simple shear case.[START_REF] Hill | Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour[END_REF] 

Table 1 :

 1 Definitions of frequently used abbreviations and notations DBC : displacement boundary condition M {•} : macroscopic {•}

	B :	body of the domain

formulation, implementation and application of appropriate boundary conditions in the context of the computational homogenization, see

[START_REF] Terada | Simulation of the multi-scale convergence in computational homogenization approaches[END_REF][START_REF] Yuan | Effective Properties of Cosserat Composite With Periodic Microstructure[END_REF][START_REF] Jiang | Scale and boundary conditions effects in elastic properties of random composites[END_REF][START_REF] Ostoja-Starzewski | Material spatial randomness: From statistical to representative volume element[END_REF][START_REF] Drago | Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures[END_REF][START_REF] Saroukhani | On statistical strain and stress energy bounds from homogenization and virtual testing[END_REF][START_REF] Nguyen | Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method[END_REF]

.

Table 1

 1 provides a list of definitions for frequently used abbreviations in this manuscript as well as symbols and notations used to describe the mathematical aspects of the problem. The rest of the manuscript is organized as follows. The theory including the governing equations at both scales, bridging between the scales and satisfying the Hill-Mandel condition via appropriate boundary conditions is presented in Section 2. Material modeling and an-Figure1: Complex RVE and its simplified counterparts. The inclusion volume fraction at the cutout could reach 100%. The cutout (left) shall be understood as the RVE. Three simplified RVEs are suggested to be sufficient to replace the cutout, namely tetragonal RVE, hexagonal RVE and circular RVE. For tetragonal RVE, the maximum reachable volume fraction is 78.53%. For hexagonal RVE this value is 90.59% and for circular RVE it could reach its maximum value, which is 100%. The cutout of the real micro-structure can eventually result in isotropic effective behavior. Both tetragonal and hexagonal packings are space-filling, hence intuitively are suitable candidates for a simplified RVE. However, only the circular RVE can furnish isotropic effective behavior resembling the real micro-structure. Furthermore, the circular RVE is the only simplified RVE that could reach the maximum volume fraction of a real cutout of the material.

	3

alytical approaches are detailed in Section 3, followed by a thorough comparison of the numerical and analytical

  [START_REF] Suquet | Elements of Homogenization Theory for Inelastic Solid Mechanics[END_REF]. For the tetragonal and hexagonal RVEs, five individual lines represent the analytical estimates of Voigt and Reuss together with the numerical results corresponding to DBC, PBC and TBC. The RVEs in tetragonal and hexagonal packings are space-filling but cannot capture the isotropic behavior of the effective material. On the contrary, the circular RVE renders isotropic behavior and thus, comparison with the Hashin-Shtrikman and CCA approaches is justifiable. Voigt and Reuss bounds always provide reliable bounds. As expected, PBC is bounded with TBC from below and DBC from above. Moving from the tetragonal RVE towards the circular RVE, we observe that the numerical results tend to converge until they totally coincide at the circular RVE. Therefore, different boundary conditions result in same responses when the RVE is circular. Less difference between the numerical results is observed for low volume fractions. As previously mentioned, the CCA upper and lower bounds coincide while the Hashin-Shtirkman bounds do not. For incl./matr. < 1, a remarkable agreement is observed between the numerical results, CCA and the upper HSB (Hashin-Shtrikman bound) and for incl./matr. > 1, the numerical results, CCA and the lower HSB coincide. For incl./matr. = 1, all the results coincide since the domain is uniform. Figure 6: Effective bulk modulus versus volume fraction f . Zoom boxes are included to provide more clarity when the results are less distinguishable. The numerical results are shown by lines with points on top of them whereas the analytical results are shown using lines solely. HSB stands for Hashin-Shtrikman bounds. Composite cylinder assemblage is denoted as CCA.Figure7shows the effective shear modulus M µ versus the volume fraction for different RVEs as well as stiffness Figure 7: Effective shear modulus versus volume fraction f . Zoom boxes are included to provide more clarity when the results are less distinguishable. The numerical results are shown by lines with points on top of them whereas the analytical results are shown using lines solely. HSB stands for Hashin-Shtrikman bounds. Composite cylinder assemblage is denoted as CCA.compared to the previous case. Nevertheless, as we move from the tetragonal RVE towards the circular RVE, PBC moves towards DBC and ultimately coincides with it. Thus, prescribing PBD and TBC to the circular RVE yield
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ratios. It is observed that different boundary conditions, in general, provide more distinguishable effective values
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The difference between the results is more distinguishable for f = 30% than f = 15%. As expected, the effective bulk modulus for f = 30% is, in all cases, less than its counterpart for f = 15%. For all the RVEs, when DBC is prescribed, the off-centric inclusion leads to a stiffer response compared to the centric one. In contrast, if TBC is imposed, the effective modulus corresponding to the RVE with off-centric inclusion underestimates the one with 21 centric inclusion. When the inclusion is at the center of the circular RVE, all the results are identical for a given volume fraction. Somewhat interestingly, when PBC is employed, the overall response becomes independent of the inclusion position for the tetragonal and hexagonal RVEs. However, for the circular RVE, the material renders stiffer response for the centric inclusion than off-centric one.