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ABSTRACT

In this work we construct a low-order nonconforming approximation method for linear elasticity
problems supporting general meshes and valid in two and three space dimensions. The method
is obtained by hacking the Hybrid High-Order method of Di Pietro and Ern (2015), that requires
the use of polynomials of degree k ≥ 1 for stability. Specifically, we show that coercivity can
be recovered for k = 0 by introducing a novel term that penalises the jumps of the displacement
reconstruction across mesh faces. This term plays a key role in the fulfillment of a discrete Korn
inequality on broken polynomial spaces, for which a novel proof valid for general polyhedral
meshes is provided. Locking-free error estimates are derived for both the energy- and the L2-
norms of the error, that are shown to convergence, for smooth solutions, as ℎ and ℎ2, respectively
(here, ℎ denotes the meshsize). A thorough numerical validation on a complete panel of two-
and three-dimensional test cases is provided.

1. Introduction
Discretisation methods supporting meshes with general, possibly non standard, element shapes have experienced a

vigorous growth over the last few years. In the context of solid-mechanics, this feature can be useful for several reasons
including, e.g., improved robustness to mesh distortion and fracture, local mesh refinement, or the use of hanging
nodes for contact and interface problems. A non-exahustive list of contributions in the context of elasticity problems
includes Hughes, Cottrell and Bazilevs (2005); Tabarraei and Sukumar (2006); Beirão Da Veiga (2010); Beirão da
Veiga, Brezzi and Marini (2013); Droniou and Lamichhane (2015); Gain, Talischi and Paulino (2014); Di Pietro and
Lemaire (2015); Di Pietro and Ern (2015); Wriggers, Rust and Reddy (2016); Botti, Di Pietro and Sochala (2017);
Artioli, Beirão da Veiga, Lovadina and Sacco (2017); Koyama and Kikuchi (2017); Cockburn and Fu (2018); Sevilla,
Giacomini, Karkoulias and Huerta (2018); Cáceres, Gatica and Sequeira (2019); see also references therein.

For large three-dimensional simulations, or whenever one cannot expect the exact solution to be smooth, low-order
methods are often privileged in order to reduce the number of unknowns. It is well-known, however, that low-order
Finite Element (FE) approximations are in some cases unsatisfactory: affine conforming FE methods are not robust
in the quasi-incompressible limit owing to their inability to represent non-trivial divergence-free displacement fields;
nonconforming (Crouzeix–Raviart) FE methods, on the other hand, yield unstable discretisations unless appropriate
measures are taken; see, e.g., the discussions in Brenner and Sung (1992); Hansbo and Larson (2003). The underlying
reason for this lack of stability is the non-fulfillment of a discrete counterpart of Korn’s inequality owing to a poor
control of rigid-body motions at mesh faces. For similar reasons, the stability of Hybrid High-Order (HHO) methods
for linear elasticity requires the use of polynomials of degree k ≥ 1 as unknowns; see (Di Pietro and Ern, 2015, Lemma
4). As a matter of fact, as we show in Section 4.4 below, the stability and consistency requirements on the local HHO
stabilisation term are incompatible when k = 0, that is, when piecewise constant polynomials on the mesh and its
skeleton are used as discrete unknowns.

In this paper we highlight a modification of the HHO method which recovers stability for k = 0. The proposed
fix consists in adding a novel term which penalises in a least square sense the jumps of the local affine displacement
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reconstruction. This modification is inspired by the Korn inequality on broken polynomial spaces proved in Lemma 1
below, which appears to be a novel extension of similar results to general polyhedral meshes. The proof combines the
techniques of (Brenner, 2003, Lemma 2.2) with the recent results of Di Pietro and Ern (2012) and Di Pietro andDroniou
(2017a) concerning, respectively, the node-averaging operator and local inverse inequalities on polyhedral meshes. In
the context of Crouzeix–Raviart FE approximations of linear elasticity problems on standard meshes, similar jump
penalisation terms have been considered in Hansbo and Larson (2003).

The resulting method has several appealing features: it is valid in two and three space dimensions, paving the way
to unified implementations; it hinges on a reduced number of unknowns (15 for a tetrahedron, 21 for a hexahedron and,
for more general polyhedral shapes, 3 unknowns per face plus 3 unknowns inside the element); it is robust in the quasi-
incompressible limit; it admits a formulation in terms of conservative numerical tractions, which enables its integration
in existing Finite Volume simulators (a particularly relevant feature in the context of industrial applications).

We carry out a complete convergence analysis based on the abstract framework of Di Pietro and Droniou (2018)
for methods in fully discrete formulation. Specifically, we show that the energy and L2-norms of the error converge,
respectively, as ℎ and ℎ2 (with ℎ denoting, as usual, the meshsize). As for the original HHO method of Di Pietro and
Ern (2015), the error estimates are additionally shown to be robust in the quasi-incompressible limit. Key to this result
is the fact that the gradient of the local displacement reconstruction satisfies a suitable commutation property with the
L2-orthogonal projector. The theoretical results are supported by a thorough numerical investigation, including two-
and three-dimensional test cases, as well as a comparison with the original HHO method of Di Pietro and Ern (2015)
on a test case mimicking a mode 1 fracture.

The rest of the paper is organised as follows. In Section 2 we formulate the continuous problem along with the
assumptions on the problem data. In Section 3 we establish the discrete setting: after briefly recalling the notion of
regular polyhedral mesh, we introduce local and broken polynomial spaces and projectors thereon, and we prove a
discrete counterpart of Korn’s first inequality on broken polynomial spaces. In Section 4 we introduce the space of
discrete unknowns, define a local affine displacement reconstruction, formulate the discrete bilinear form, discuss the
differences with respect to the original HHO bilinear form of Di Pietro and Ern (2015), and state the discrete problem.
Section 5 addresses the convergence analysis of the method in the energy- and L2-norms, while Section 6 contains an
exhaustive panel of two- and three-dimensional numerical tests. Finally, in Section 7 we show that the method satisfies
local balances with equilibrated tractions, for which an explicit expression is provided.

2. Continuous setting
Consider a body which, in its reference configuration, occupies a given region of space Ω ⊂ ℝd , d ∈ {2, 3}. In

what follows, it is assumed that Ω is a bounded connected open polygonal (if d = 2) or polyhedral (if d = 3) set that
does not have cracks, i.e., it lies on one side of its boundary )Ω. We are interested in finding the displacement field
u ∶ Ω→ ℝd of the body when it is subjected to a given force per unit volume f ∶ Ω→ ℝd . We work in what follows
under the small deformation assumption which implies, in particular, that the strain tensor " is given by the symmetric
part of the gradient of the displacement field, i.e., " = (suwhere, for any vector-valued function z = (zi)1≤i≤d smooth
enough, we have set (z = ()jzi)1≤i,j≤d and (sz ≔ 1

2

(

(z + (z⊤
)

. We further assume, for the sake of simplicity,
that the body is clamped along its boundary )Ω. Other standard boundary conditions can be considered up to minor
modifications. The displacement field is obtained by solving the following linear elasticity problem, which expresses
the equilibrium between internal stresses and external loads: Find u ∶ Ω→ ℝd such that

−(⋅(�((su)) = f in Ω, (1a)
u = 0 on )Ω, (1b)

where, denoting by ℝd×d
sym the set of symmetric real-valued d × d matrices, the mapping � ∶ ℝd×d

sym → ℝd×d
sym represents

the strain-stress law. For isotropic homogeneous materials, the strain-stress law is such that, for any � ∈ ℝd×d
sym ,

�(�) = 2�� + � tr(�)Id , (2)

where tr(�) ≔
∑d
i=1 �ii is the trace operator and Id the d × d identity matrix. The real numbers � and �, which

correspond to the Lamé coefficients when d = 3, are assumed such that, for a real number � > 0,

2� − d�− ≥ �, (3)
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where �− ≔ 1
2 (|�| − �) denotes the negative part of �. In what follows, �, �, the related bound (3), and f will be

collectively referred to as the problem data.
For any open bounded setX ⊂ Ω, we denote by (⋅, ⋅)X the usual inner product of the space of scalar-valued, square-

integrable functions L2(X;ℝ), by ‖⋅‖X the corresponding norm, and we adopt the convention that the subscript is
omitted whenever X = Ω. The same notation is used for the spaces of vector- and tensor-valued square-integrable
functions L2(X;ℝd) and L2(X;ℝd×d), respectively. With this notation, a classical weak formulation of problem (1)
reads: Find u ∈ H1

0 (Ω;ℝ
d) such that

(�((su),(sv) = (f , v) ∀v ∈ H1
0 (Ω;ℝ

d), (4)

where H1
0 (Ω;ℝ

d) classically denotes the space of vector-valued functions that are square-integrable along with all
their partial derivatives, and whose traces on )Ω vanish.

3. Discrete setting
3.1. Mesh

Throughout the rest of the paper, we will use for the sake of simplicity the three-dimensional nomenclature also
when d = 2, i.e., we will speak of polyhedra and faces rather than polygons and edges. We consider here meshes
corresponding to couples ℎ ≔ (ℎ,ℎ), where ℎ is a finite collection of polyhedral elements T such that ℎ ≔
maxT∈ℎ ℎT > 0 with ℎT denoting the diameter of T , while ℎ is a finite collection of planar faces F . It is assumed
henceforth that the meshℎ matches the geometrical requirements detailed in (Droniou, Eymard, Gallouët, Guichard
and Herbin, 2018, Definition 7.2); see also (Di Pietro and Tittarelli, 2018, Section 2). This covers, essentially, any
reasonable partition of Ω into polyhedral sets, not necessarily convex or even star-shaped. For every mesh element
T ∈ ℎ, we denote by T the subset of ℎ containing the faces that lie on the boundary )T of T . Symmetrically,
for every face F ∈ ℎ, we denote by F the subset of ℎ containing the (one or two) mesh elements that share F .
For any mesh element T ∈ ℎ and each face F ∈ T , nTF is the constant unit normal vector to F pointing out of T .
Boundary faces lying on )Ω and internal faces contained inΩ are collected in the sets bℎ and 

i
ℎ, respectively. For any

F ∈  iℎ, we denote by T1 and T2 the elements of ℎ such that F ⊂ )T1 ∩ )T2. The numbering of T1 and T2 is assumed
arbitrary but fixed, and we set nF ≔ nT1F . Our focus is on the ℎ-convergence analysis, so we consider a sequence
of refined meshes that is regular in the sense of (Di Pietro and Tittarelli, 2018, Definition 4.3), that is, we assume the
existence of a shape-regular matching simplicial submesh Tℎ such that, for any T ∈ ℎ and any � ∈ Tℎ with � ⊂ T ,
the diameters of T and � are comparable uniformly in ℎ. This implies, in particular, that the diameter ℎT of a mesh
element T ∈ ℎ is comparable to the diameter ℎF of each face F ∈ T uniformly in ℎ, and that the number of faces
in T is bounded above by an integerN) independent of ℎ. Alternative assumptions covering degenerate faces can be
found in Cangiani, Dong, Georgoulis and Houston (2017); see also references therein.

3.2. Local and broken spaces and projectors
In order to alleviate the exposition, throughout the rest of the paper we use the abridged notation a ≲ b for the

inequality a ≤ Cb with real number C > 0 independent of the meshsize, possibly on the problem data, and, for local
inequalities, on the mesh element or face. We also write a ≃ b for a ≲ b and b ≲ a. The dependencies of the hidden
constant are further specified whenever needed.

Let X denote a mesh element or face. For a given integer l ≥ 0, we denote by ℙl(X;ℝ) the space spanned by
the restriction to X of d-variate, real-valued polynomials of total degree ≤ l. The corresponding spaces of vector-
and tensor-valued functions are respectively denoted by ℙl(X;ℝd) and ℙl(X;ℝd×d). A similar notation is used also
for the vector and tensor versions of the broken spaces introduced in what follows. At the global level, we denote by
ℙl(ℎ;ℝ) the space of broken polynomials on ℎ whose restriction to every mesh element T ∈ ℎ lies in ℙl(T ;ℝ),
i.e.,

ℙl(ℎ;ℝ) ≔
{

vℎ ∈ L2(Ω;ℝ) ∶ vℎ|T ∈ ℙl(T ;ℝ) ∀T ∈ ℎ
}

.

We also introduce the broken Sobolev spaces

Hs(ℎ;ℝ) ≔
{

v ∈ L2(Ω;ℝ) ∶ v
|T ∈ Hs(T ;ℝ) ∀T ∈ ℎ

}

,
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which will be used in the error estimates to express the regularity requirements on the exact solution. On Hs(ℎ;ℝ),
we define the broken seminorm

|v|Hs(ℎ;ℝ) ≔
⎛

⎜

⎜

⎝

∑

T∈ℎ

|v|2Hs(T ;ℝ)

⎞

⎟

⎟

⎠

1
2

.

Again denoting byX a mesh element or face, the local L2-orthogonal projector �0X ∶ L
2(X;ℝ)→ ℙ0(X;ℝ)maps

every v ∈ L2(X;ℝ) onto the constant function equal to its mean value inside T , that is,

�0Xv ≔
1
|X|

∫X
v, (5)

with |X| denoting the Hausdorff measure of X. The vector and tensor versions of the L2-projector, both denoted by
�0X , are obtained applying �

0
X component-wise. From (Di Pietro and Droniou, 2017a, Lemmas 3.4 and 3.6), it can be

deduced that, for any mesh element T ∈ ℎ and any function v ∈ H1(T ;ℝ), the following approximation properties
hold:

‖v − �0T v‖L2(T ;ℝ) + ℎ
1
2
T ‖v − �

0
T v‖L2()T ;ℝ) ≲ ℎT |v|H1(T ;ℝ), (6)

where )T denotes the boundary of T and the hidden constant is independent of ℎ, T , and v. The global L2-orthogonal
projector �0ℎ ∶ L

2(Ω;ℝ)→ ℙ0(ℎ;ℝ) is such that, for any v ∈ L2(Ω;ℝd),

(�0ℎv)|T ≔ �0T v|T ∀T ∈ ℎ. (7)

The vector and tensor versions, both denoted by �0ℎ, are obtained applying �0ℎ component-wise.
We will also need the elliptic projector$1

T ∶ H
1(T ;ℝ)→ ℙ1(T ;ℝ) such that, for all v ∈ H1(T ;ℝ),

($1
T v = �

0
T ((v) and

1
|T | ∫T

$1
T v =

1
|T | ∫T

v. (8)

The first relation makes sense since (ℙ1(T ;ℝ) = ℙ0(T ;ℝd), and it defines$1
T v up to a constant, which is then fixed

by the second relation. Also in this case, the vector version$1
T of the projector is obtained applying the scalar version

component-wise. The following approximation properties for the elliptic projector are a special case of (Di Pietro and
Droniou, 2017b, Theorems 1.1 and 1.2): For all T ∈ ℎ and all v ∈ H2(T ;ℝ),

‖v −$1
T v‖L2(T ;ℝ) + ℎ

1
2
T ‖v −$

1
T v‖L2()T ;ℝ) ≲ ℎ

2
T |v|H2(T ;ℝ), (9)

where the hidden constant is independent of ℎ, T , and v. For further use, we also define the global elliptic projector
$1
ℎ ∶ H

1(ℎ;ℝ)→ ℙ1(ℎ;ℝ) such that, for any v ∈ H1(ℎ;ℝ),

($1
ℎv)|T ≔ $1

T v|T ∀T ∈ ℎ.

The vector version$1
ℎ of the global elliptic projector is obtained applying$1

ℎ component-wise.

3.3. Discrete Korn inequality on broken polynomial spaces
The stability of our method hinges on a discrete counterpart of Korn’s inequality in discrete polynomial spaces

stating that theH1-seminorm of a vector-valued broken polynomial function is controlled by a suitably defined strain
norm. The goal of this section is to prove this inequality.

Let us start with some preliminary results. Recalling that, for any F ∈  iℎ, we have denoted by T1 and T2 the
elements sharing F and assumed that the ordering is arbitrary but fixed, we introduce the jump operator such that, for
any function v smooth enough to admit a (possibly two-valued) trace on F ,

[v]F ≔ (v
|T1 )|F − (v|T2 )|F . (10a)
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This operator is extended to boundary faces F ∈ bℎ by setting

[v]F ≔ v
|F . (10b)

When applied to vector-valued functions, the jump operator acts componentwise.
Let nowTℎ denote a matching simplicial submesh ofℎ in the sense of (Di Pietro and Tittarelli, 2018, Definition

4.2), and let Fℎ be the corresponding set of simplicial faces. Given an integer l ≥ 1, we define the node-averaging
operator I lav,ℎ ∶ ℙl(ℎ;ℝ) → ℙl(Tℎ;ℝ) ∩H1

0 (Ω) such that, for any function vℎ ∈ ℙl(ℎ;ℝ) and any Lagrange node
V of Tℎ, denoting by TV the set of simplices sharing V ,

(I lav,ℎvℎ)(V ) ≔
⎧

⎪

⎨

⎪

⎩

1
card(TV )

∑

�∈TV

(vℎ)|� (V ) if V ∈ Ω,

0 if V ∈ )Ω.

The vector-version, denoted by I lav,ℎ, acts component-wise. Adapting the reasoning of (Di Pietro and Ern, 2012,
Section 5.5.2) (based in turn on Karakashian and Pascal (2003)), we infer that it holds, for all T ∈ ℎ,

‖vℎ − I lav,ℎvℎ‖
2
T ≲

∑

F∈ ,T

ℎF ‖[vℎ]F ‖2F , (11)

where  ,T denotes the set of faces whose closure has nonempty intersection with the closure of T and the hidden
constant is independent of ℎ, T , and vℎ. Combining this result with the inverse inequality of (Di Pietro and Droniou,
2017a, Remark A.2) (which remains valid for functions that are piecewise polynomial on the submesh) we obtain, with
hidden constants as before,

|vℎ − I lav,ℎvℎ|
2
H1(ℎ;ℝ)

≲
∑

T∈ℎ

ℎ−2T ‖vℎ − I lav,ℎvℎ‖
2
T

≲
∑

T∈ℎ

ℎ−2T
∑

F∈ ,T

ℎF ‖[vℎ]F ‖2F

≲
∑

F∈ℎ

∑

T∈ ,F

ℎ−1F ‖[vℎ]F ‖2F ,

where we have used (11) to pass to the second line while, to pass to the third line, we have invoked the mesh regularity
to write ℎFℎ−2T ≲ ℎ−1F and we have exchanged the order of the sums after introducing the notation  ,F for the set of
mesh elements whose closure has nonzero intersection with the closure of F . Using again mesh regularity to infer that
card( ,F ) is bounded uniformly in ℎ, we arrive at

|vℎ − I lav,ℎvℎ|
2
H1(ℎ;ℝ)

≲
∑

F∈ℎ

ℎ−1F ‖[vℎ]F ‖2F . (12)

We are now ready to prove the discrete Korn inequality.

Lemma 1 (Discrete Korn inequality). Let an integer l ≥ 1 be fixed and set, for all vℎ ∈ ℙl(ℎ;ℝd),

‖vℎ‖",ℎ ≔
(

‖(s,ℎvℎ‖2 + |vℎ|2j,ℎ
)
1
2 and |vℎ|j,ℎ ≔

(

∑

F∈ℎ

ℎ−1F ‖[vℎ]F ‖2F

)
1
2

, (13)

where (s,ℎ ∶ H1(ℎ;ℝd) → L2(Ω;ℝd×d
sym ) is the broken symmetric gradient such that ((s,ℎv)|T = (sv|T for any

T ∈ ℎ. Then, for all vℎ ∈ ℙl(ℎ;ℝd), it holds with hidden constant depending only on Ω, d, l, and the mesh
regularity parameter:

|vℎ|H1(ℎ;ℝd ) ≲ ‖vℎ‖",ℎ. (14)
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Proof. The proof adapts the arguments of (Brenner, 2003, Lemma 2.2). We can write

|vℎ|2H1(ℎ;ℝd )
≲ |I lav,ℎvℎ|

2
H1(Ω;ℝd ) + |vℎ − I lav,ℎvℎ|

2
H1(ℎ;ℝd )

≲ ‖(sI lav,ℎvℎ‖
2 + |vℎ|2j,ℎ

≲ ‖(s,ℎvℎ‖2 + ‖(s,ℎ(I lav,ℎvℎ − vℎ)‖
2 + |vℎ|2j,ℎ

≲ ‖(s,ℎvℎ‖2 + |vℎ|2j,ℎ = ‖vℎ‖2",ℎ,

where we have inserted ±I lav,ℎvℎ into the seminorm and used a triangle inequality in the first line, we have applied the
first Korn inequality inH1

0 (Ω;ℝ
d) to the first term and invoked (12) for the second term after recalling the definition

(13) of the jump seminorm in the second line, we have inserted ±(s,ℎvℎ and used a triangle inequality to pass to the
third line, we have invoked again (12) to estimate the second term in the right-hand side to pass to the fourth line, and
we have used the definition (13) of the strain norm to conclude.

Remark 2 (Korn–Poincaré inequality). Combining the discrete Poincaré inequality resulting from (Di Pietro and Ern,
2010, Theorem 6.1) (see also (Di Pietro and Ern, 2012, Theorem 5.3 and Corollary 5.4)) with (14), we infer that it
holds, for all vℎ ∈ ℙl(ℎ;ℝd),

‖vℎ‖ ≲ ‖vℎ‖",ℎ, (15)

with hidden constant independent of ℎ and vℎ.

4. Discretisation
4.1. Discrete space

Given a mesh ℎ = (ℎ,ℎ), we define the following space of discrete unknowns:

Uℎ ≔
{

vℎ = ((vT )T∈ℎ , (vF )F∈ℎ ) ∶ vT ∈ ℙ0(T ;ℝd) ∀T ∈ ℎ and vF ∈ ℙ0(F ;ℝd) ∀F ∈ ℎ
}

.

For all vℎ ∈ Uℎ, we denote by vℎ ∈ ℙ0(ℎ;ℝd) the piecewise constant function obtained by patching element-based
unknowns, that is,

(vℎ)|T ≔ vT ∀T ∈ ℎ. (16)

The restrictions of Uℎ and vℎ ∈ Uℎ to a generic mesh element T ∈ ℎ are respectively denoted by UT and vT =
(vT , (vF )F∈T ). The vector of discrete variables corresponding to a smooth function on Ω is obtained via the global
interpolation operator Iℎ ∶ H

1(Ω;ℝd)→ Uℎ such that, for all v ∈ H
1(Ω;ℝd),

Iℎv ≔ ((�0T v|T )T∈ℎ , (�
0
Fv|F )F∈ℎ ).

Its restriction to a generic mesh element T ∈ ℎ is the local interpolator IT ∶ H
1(T ;ℝd) → UT such that, for all

v ∈ H1(T ;ℝd),

IT v = (�
0
T v, (�

0
Fv|F )F∈T ). (17)

The displacement is sought in the following subspace of Uℎ that strongly incorporates the homogeneous Dirichlet
boundary condition:

Uℎ,0 ≔
{

vℎ ∈ Uℎ ∶ vF = 0 ∀F ∈ bℎ
}

.
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4.2. Displacement reconstruction
Let a mesh element T ∈ ℎ be fixed. We define the local displacement reconstruction operator p1T ∶ UT →

ℙ1(T ;ℝd) such that, for all vT ∈ UT ,

(p1T vT =
∑

F∈T

|F |
|T |

(vF − vT )⊗ nTF and 1
|T | ∫T

p1T vT = vT . (18)

Remark 3 (Explicit expression for the displacement reconstruction operator). From (18), one can infer the following
explicit expression for the displacement reconstruction operator: For all x ∈ T ,

p1T (x) = vT +
∑

F∈T

|F |
|T |

(x − xT )⋅nTF (vF − vT ), (19)

where xT ≔ 1
|T | ∫T x denotes the centroid of T .

Proposition 4 (Commutation properties for the displacement reconstruction). It holds, for all v ∈ H1(T ;ℝd),

((p1T IT v) = �
0
T ((v) and p

1
T (IT v) = $

1
T v. (20)

Proof. Let v ∈ H1(T ;ℝd). Recalling the definition (17) of the local interpolator, we have that

(p1T IT v =
∑

F∈T

|F |
|T |

(�0Fv − �
0
T v)⊗ nTF

= 1
|T |

∑

F∈T
∫F
v⊗ nTF −

1
|T |

∑

F∈T
∫F
�0T v⊗ nTF

= 1
|T | ∫T

(v −
���

���1
|T | ∫T

(�0T v,

where we have used the definition (18) of the local displacement reconstruction with vT = IT v in the first line, the
definition (5) of the L2-orthogonal projector �0F along with the fact that �0T v⊗ nTF is constant over F to pass to the
second line, the Stokes theorem to pass to the third line and the fact that �0T v is constant inside T to cancel the second
term therein. This proves the first relation in (20). The second relation in (20) immediately follows accounting for the
first and recalling the definition (8) of the elliptic projector after observing that the second relation in (18) gives

1
|T | ∫T

p1T IT v = �
0
T v =

1
|T | ∫T

v.

To close this section, we define the global displacement reconstruction operator p1ℎ ∶ Uℎ → ℙ1(ℎ;ℝd) obtained
by patching the local reconstructions: For all vℎ ∈ Uℎ,

(p1ℎvℎ)|T ≔ p1T vT ∀T ∈ ℎ. (21)

4.3. Discrete bilinear form
We define the bilinear form aℎ ∶ Uℎ × Uℎ → ℝ such that, for all wℎ, vℎ ∈ Uℎ,

aℎ(wℎ, vℎ) ≔ (�((s,ℎp1ℎwℎ),(s,ℎp
1
ℎvℎ) + (2�) jℎ(p

1
ℎwℎ,p

1
ℎvℎ) + (2�) sℎ(wℎ, vℎ). (22)

In the above expression, jℎ ∶ H1(ℎ;ℝd) ×H1(ℎ;ℝd) → ℝ is the jump penalisation bilinear form such that, for all
w, v ∈ H1(ℎ;ℝd),

jℎ(w, v) ≔
∑

F∈ℎ

ℎ−1F ([w]F , [v]F )F ,
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while sℎ ∶ Uℎ × Uℎ → ℝ is a stabilisation bilinear form defined from local contributions as follows:

sℎ(wℎ, vℎ) ≔
∑

T∈ℎ

sT (wT , vT ) with sT (wT , vT ) ≔
∑

F∈T

|F |
ℎF

�TFwT ⋅�TFvT for all T ∈ ℎ. (23)

In the above expression, for all T ∈ ℎ and all F ∈ T , we have introduced the boundary difference operator �TF ∶
UT → ℝd is such that, for any vT ∈ UT ,

�TFvT ≔ �0Fp
1
T vT − vF . (24)

It can be proved that the stabilisation bilinear form enjoys the following consistency property: For allw ∈ H1(Ω;ℝd)∩
H2(ℎ;ℝd),

sℎ(Iℎw, Iℎw)
1
2 ≲ ℎ|w|H2(ℎ;ℝd ), (25)

with hidden constant independent of both ℎ and w.

4.4. Comparison with the original HHO method and role of the jump penalisation term
Compared with the original HHO bilinear form defined by (Di Pietro and Ern, 2015, Eqs. (24)–(26) and (38))

and written for k = 0, the bilinear form (22) includes a novel jump penalisation contribution inspired by the discrete
Korn inequality of Lemma 1. This term is needed for stability which, for HHO discretisations of the linear elasticity
problem, cannot be achieved through local stabilisation terms for k = 0. As a matter of fact, following the ideas of
(Di Pietro and Tittarelli, 2018, Section 4.3.1.4), stability would require the use in (23) of a family of local symmetric,
positive semidefinite stabilisation bilinear forms

{

sT ∶ T ∈ ℎ
}

satisfying the following properties:
(i) Local stability and boundedness. For all T ∈ ℎ and all vT ∈ UT , with hidden constants independent of ℎ, T ,

and vT ,

‖(sp1T vT ‖
2
T + sT (vT , vT ) ≃

∑

F∈T

ℎ−1F ‖vF − vT ‖2F . (26)

(ii) Polynomial consistency. For all w ∈ ℙk+1(T ;ℝd),

sT (ITw, vT ) = 0 ∀vT ∈ UT . (27)

Actually, as noticed in (Di Pietro and Droniou, 2019, Chapter 7), properties (26) and (27) are incompatible. To see it,
assume (27), consider a rigid-body motion vrbm, that is, a function over T for which there exist a vector tv ∈ ℝd and
a skew-symmetric matrix Rv ∈ ℝd×d such that, for any x ∈ T , vrbm(x) = tv +Rvx. Take now vT = IT vrbm. Since
vrbm ∈ ℙ1(T ;ℝd), the first relation in (20) shows that (p1T vT = �0T ((vrbm) = (vrbm = Rv so that, in particular,
(p1T vT is skew-symmetric. Hence,(sp1T vT = 0. Moreover, by (27), sT (vT , vT ) = sT (I

0
T vrbm, vT ) = 0, again because

vrbm ∈ ℙ1(T ;ℝd). Hence, the left-hand side of (26) vanishes for all vT = IT vrbm with vrbm rigid-body motion. It is,
however, easy to construct a rigid-body motion vrbm such that the right-hand side does not vanish, which shows that
(26) cannot hold. For this reason, the assumption that the discrete unknowns are at least piecewise affine is required
in the original HHO method; see (Di Pietro and Ern, 2015, Section 4). Notice that the choice of sT in (23) retains the
polynomial consistency property (27), which is crucial to prove (25).

We next discuss how the stability property modifies for k = 0. To this end, recalling the definitions (13) of the
double-bar strain norm ‖⋅‖",ℎ and (23) of the stabilisation bilinear form we introduce the triple-bar strain norm such
that, for any vℎ ∈ Uℎ,

|||vℎ|||",ℎ ≔
(

‖p1ℎvℎ‖
2
",ℎ + |vℎ|

2
s,ℎ

)
1
2 with |vℎ|s,ℎ ≔ sℎ(vℎ, vℎ)

1
2 . (28)

Lemma 5 (Global stability and boundedness). For all vℎ ∈ Uℎ,0 it holds

‖(s,ℎp1ℎvℎ‖
2 + |vℎ|

2
s,ℎ ≲

∑

T∈ℎ

∑

F∈T

ℎ−1F ‖vF − vT ‖2F ≲ |||vℎ|||
2
",ℎ, (29)

with hidden constant independent of both ℎ and vℎ.
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Proof. It follows from (Di Pietro, Ern and Lemaire, 2014, Lemma 4) that

‖(ℎp1ℎvℎ‖
2 + |vℎ|

2
s,ℎ ≃

∑

T∈ℎ

∑

F∈T

ℎ−1F ‖vF − vT ‖2F , (30)

where (ℎ ∶ H1(ℎ;ℝd) → L2(Ω;ℝd×d) is the broken gradient such that ((ℎv)|T = (v|T for any T ∈ ℎ. On the
other hand, using the definition of the symmetric gradient for the first bound and Korn’s inequality (14) for the second,
we can write

‖(s,ℎp1ℎvℎ‖
2 ≲ ‖(ℎp1ℎvℎ‖

2 ≲ ‖(s,ℎp1ℎvℎ‖
2 + |p1ℎvℎ|

2
j,ℎ. (31)

Combining (31) with (30) yields the result.

4.5. Discrete problem
The low-order scheme for the approximation of problem (1) reads: Find uℎ ∈ Uℎ,0 such that

aℎ(uℎ, vℎ) = (f , vℎ) ∀vℎ ∈ Uℎ,0. (32)

Using the coercivity of the bilinear form aℎ proved in Lemma 8 below together with the discrete Korn inequality (15),
we infer that the discrete problem is well-posed and the a priori estimate |||uℎ|||",ℎ ≲ �−

1
2
‖f‖ holds for the discrete

solution, with hidden constant independent of both ℎ and of the problem data, and triple-bar strain seminorm defined
by (28).
Remark 6 (Static condensation for problem (32)). The jump stabilisation introduces a direct link among discrete un-
knowns attached to neighbouring mesh elements. As a result, static condensation of element-based unknowns no
longer appears to be an interesting option.
Remark 7 (Nonlinear strain-stress laws). Following Botti et al. (2017), the method can be extended to nonlinear strain-
stress laws � ∶ ℝd×d

sym → ℝd×d
sym satisfying the regularity, growth, coercivity, and monotonicity assumptions detailed

therein. We notice, in passing, that Lemma 1 along with (15) can be used to prove that assumption (Botti et al., 2017,
Eq. (26)) holds on general meshes.

5. Convergence analysis
In this section, after studying the properties of the discrete bilinear form aℎ, we prove a priori estimates for the

error in the energy- and L2-norms.

5.1. Properties of the discrete bilinear form
Lemma 8 (Properties of aℎ). The bilinear form aℎ enjoys the following properties:
(i) Stability and boundedness. Recalling the definition (28) of the triple-bar strain norm and the bound (3) on Lamé’s

coefficients, for all vℎ ∈ Uℎ it holds

�|||vℎ|||
2
",ℎ ≲ ‖vℎ‖

2
a,ℎ ≲ (2� + d|�|) |||vℎ|||

2
",ℎ with ‖vℎ‖a,ℎ ≔ aℎ(vℎ, vℎ)

1
2 , (33)

where the hidden constants are independent of both ℎ and the problem data.
(ii) Consistency. It holds for all w ∈ H1

0 (Ω;ℝ
d) ∩H2(ℎ;ℝd) such that (⋅�((sw) ∈ L2(Ω;ℝd),

|||ℎ(w; ⋅)|||",ℎ,∗ ≲ ℎ
(

2�|w|H2(ℎ;ℝd ) + |�(⋅w|H1(ℎ;ℝ)

)

, (34)

where the hidden constant is independent ofw, ℎ, and of the problem data, the linear form ℎ(w; ⋅) ∶ Uℎ,0 → ℝ
representing the consistency error is such that, for all vℎ ∈ Uℎ,0,

ℎ(w; vℎ) ≔ −((⋅�((sw), vℎ) − aℎ(Iℎw, vℎ), (35)

and its dual norm is given by

|||ℎ(w; ⋅)|||",ℎ,∗ ≔ sup
vℎ∈Uℎ,0,|||vℎ|||",ℎ=1

|

|

|

ℎ(w; vℎ)
|

|

|

.

M. Botti et al.: Preprint submitted to Elsevier Page 9 of 24



A low-order method for linear elasticity

Proof. (i) Stability and boundedness. Let vℎ ∈ Uℎ. We recall the Frobenius product such that, for all � , � ∈ ℝd×d ,

�∶� ≔
∑d
i=1

∑d
j=1 �ij�ij with corresponding norm ‖�‖F ≔ (�∶�)

1
2 . Writing (22) for wℎ = vℎ, using the assumption

(3) on Lamé’s parameters to infer that �(�)∶� ≥ �‖�‖2F for any � ∈ ℝd×d
sym , recalling the definitions (13) and (28) of

the double- and triple-bar strain norms, and observing that 2� ≥ �, the first inequality in (33) follows. The second
inequality can be obtained in a similar way: write (22) forwℎ = vℎ, observe that |�(�)∶�| ≤ (2� + d|�|)‖�‖

2
F for any

� ∈ ℝd×d
sym , and use again (13) and (28).

(ii) Consistency. Let vℎ ∈ Uℎ,0. We reformulate the components of the consistency error. Integrating by parts element
by element, we infer that

−((⋅�((sw), vℎ) =
∑

T∈ℎ

∑

F∈T

(�((sw)|T nTF , vF − vT )F ,

where we have used the continuity of normal tractions across interfaces together with the fact that boundary unknowns
are set to zero in Uℎ,0 to insert vF into the right-hand side. To reformulate the second term in (35), in the expression
(22) of aℎ we use the first property in (20) together with the linearity of the strain-stress law � to write, for all T ∈ ℎ,
�((sp1T ITw) = �(�

0
T ((sw)) = �

0
T (�((sw)) and obtain

aℎ(Iℎw, vℎ) =
∑

T∈ℎ

(�0T (�((sw)),(sp
1
T vT )T + (2�) jℎ(p

1
ℎIℎw,p

1
ℎvℎ) + (2�) sℎ(Iℎw, vℎ).

After expanding, for all T ∈ ℎ, (sp1T vT according to its definition (18), we deduce that

aℎ(Iℎw, vℎ) =
∑

T∈ℎ

∑

F∈T

(�0T (�((sw))nTF , vF − vT )F + (2�) jℎ(p
1
ℎIℎw,p

1
ℎvℎ) + (2�) sℎ(Iℎw, vℎ).

Plugging the above relations into the expression (35) of the consistency error, passing to absolute values, using a
generalised Hölder inequality with exponents (2,∞, 2) along with ‖nTF ‖L∞(F ;ℝd ) ≤ 1 and ℎF ≤ ℎT for the first term
in the right-hand side, and Cauchy–Schwarz inequalities for the remaining terms, we get

|

|

|

ℎ(w; vℎ)
|

|

|

=
⎛

⎜

⎜

⎝

∑

T∈ℎ

ℎT ‖�((sw)|T − �0T (�((sw))‖
2
)T

⎞

⎟

⎟

⎠

1
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
T1

⎛

⎜

⎜

⎝

∑

T∈ℎ

∑

F∈T

ℎ−1F ‖vF − vT ‖2F
⎞

⎟

⎟

⎠

1
2

+ (2�)|p1ℎIℎw|j,ℎ
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

T2

|p1ℎvℎ|j,ℎ + (2�)|Iℎw|s,ℎ
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

T3

|vℎ|s,ℎ ≲
(

T1 +T2 +T3
)

|||vℎ|||",ℎ, (36)

where we have used the second inequality in (29) together with the definition (28) of the triple-bar strain norm to
conclude. Recalling the expression (2) of the strain-stress law, we get, for any T ∈ ℎ,

ℎ
1
2
T ‖�((sw)|T−�

0
T (�((sw))‖)T ≤ (2�)ℎ

1
2
T ‖(sw−(�

0
T(sw)‖)T + ℎ

1
2
T ‖�(⋅w−�

0
T (�(⋅w)‖)T

≲ ℎ
(

(2�)|w|H2(T ;ℝd ) + |�(⋅w|H1(T ;ℝ)
)

,
(37)

where we have used the approximation properties (6) of the L2-orthogonal projector along with ℎT ≤ ℎ to conclude.
Using the above estimate, we infer for the first term

T1 ≲ ℎ
(

(2�)|w|H2(ℎ;ℝd ) + |�(⋅w|H1(ℎ;ℝ)

)

. (38)
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Moving to the second term, we start by observing that

T22 = (2�)
2
|$1

ℎw|
2
j,ℎ

= (2�)2
∑

F∈ℎ

ℎ−1F ‖[$1
ℎw]F ‖

2
F

= (2�)2
∑

F∈ℎ

ℎ−1F ‖[$1
ℎw −w]F ‖

2
F

≲ (2�)2
∑

F∈ℎ

∑

T∈F

ℎ−1F ‖$1
Tw −w|T ‖

2
F

≲ (2�)2
∑

T∈ℎ

ℎ−1T ‖$1
Tw −w|T ‖

2
)T

where we have used, in this order, the second relation in (20), the definition (13) of the jump seminorm, the fact that
the jumps ofw vanish across any F ∈ ℎ, the definition (10) of the jump operator together with the triangle inequality,
and the relation

∑

T∈ℎ

∑

F∈T

∙ =
∑

F∈ℎ

∑

T∈F

∙ (39)

to exchange the sums over elements and faces. Hence, using the approximation properties (9) of the elliptic projector,
ℎT ≤ ℎ, and taking the square root, we arrive at

T2 ≲ (2�)ℎ|w|H2(ℎ;ℝd ). (40)

For the third term, (25) readily gives

T3 ≲ (2�)ℎ|w|H2(ℎ;ℝd ). (41)

Plugging (38), (40), and (41) into (36) and passing to the supremum yields (34).

5.2. Energy error estimate
Theorem 9 (Energy error estimate). Let u ∈ H1

0 (Ω;ℝ
d) denote the unique solution to (4), for which we assume the

additional regularity u ∈ H2(ℎ;ℝd). For all ℎ ∈ , let uℎ ∈ Uℎ,0 denote the unique solution to (32). Then,

|||uℎ − Iℎu|||",ℎ ≲ �
−1ℎ

(

(2�)|u|H2(ℎ;ℝd ) + |�(⋅u|H1(ℎ;ℝ)

)

, (42)

with hidden constant independent of ℎ, u, and of the problem data.

Proof. Applying to the present setting the results of (Di Pietro and Droniou, 2018, Theorem 10) gives the abstract
estimate

|||uℎ − Iℎu|||",ℎ ≤ �−1|||ℎ(u; ⋅)|||",ℎ,∗.

Using the assumed regularity for the exact solution to invoke (34), (42) follows.

Remark 10 (Robustness in the quasi-incompressible limit). In the numerical approximation of linear elasticity prob-
lems, a key point consists in devising schemes that are robust in the quasi incompressible limit corresponding to �

2� ≫ 1
(which requires, in particular � ≥ 0). From a mathematical perspective, this property is expressed by the fact that the
error estimates are uniform in �. For d = 2 and Ω convex, it is proved, e.g., in (Brenner and Sung, 1992, Lemma 2.2)
that

(2�)‖u‖H2(Ω;ℝd ) + ‖�(⋅u‖H1(Ω;ℝ) ≲ ‖f‖, (43)

with hidden constant possibly depending on Ω and � but independent of �. This result can be extended to d = 3
reasoning as in the above reference and accounting for the regularity estimates for the Stokes problem derived in
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(Amrouche and Girault, 1991, Theorem 3). Plugging (43) into (42) and observing that, when � ≥ 0, we can take
� = 2� (cf. (3)), we can write, with hidden constant independent of both ℎ and �,

|||uℎ − Iℎu|||",ℎ ≲ ℎ‖f‖, (44)

which shows that our error estimate (42) is uniform in �. The key point to obtain robustness is the first commutation
property in (20), which is used to estimate the term 1 in the proof of Lemma 8.
Remark 11 (Quasi-optimality of the error estimate). It follows from the second inequality in (33) that the bilinear form
aℎ is bounded with boundedness constant independent of ℎ. Hence, following (Di Pietro and Droniou, 2018, Remark
11), the error estimate (42) is quasi-optimal.
Remark 12 (Energy estimate in the ‖⋅‖a,ℎ-norm for � ≥ 0). When � ≥ 0, a consistency estimate in ℎ holds for
‖ℎ(w; ⋅)‖a,ℎ,∗, the norm of the consistency error linear form dual to ‖⋅‖a,ℎ (see (33)). To see it, observe that, from

(36) together with (2�)
1
2
|||vℎ|||",ℎ ≤ ‖vℎ‖a,ℎ (a consequence of the assumption � ≥ 0), it follows ||

|

ℎ(w; vℎ)
|

|

|

≲
(

T1 +T2 +T3
)

(2�)−
1
2
‖vℎ‖a,ℎ. Hence, passing to the supremum over

{

vℎ ∈ Uℎ,0 ∶ ‖vℎ‖a,ℎ = 1
}

, we infer

‖ℎ(w; ⋅)‖a,ℎ,∗ ≲ ℎ
(

(2�)
1
2
|w|H2(ℎ;ℝd ) + (2�)

− 12
|�(⋅w|H1(ℎ;ℝ)

)

.

Invoking again (Di Pietro and Droniou, 2018, Theorem 10), this time with Uℎ,0 equipped with the ‖⋅‖a,ℎ-norm, it is
inferred

‖uℎ − Iℎu‖a,ℎ ≲ ℎ
(

(2�)
1
2
|u|H2(ℎ;ℝd ) + (2�)

− 12
|�(⋅u|H1(ℎ;ℝ)

)

,

with hidden constant having the same dependencies as in (42).

5.3. Improved L2-error estimate
It is well-known that improved L2-error estimates can be derived in the context of HHO methods when elliptic

regularity holds. In this section, we show that the same is true for the low-order method considered in this work. For
the sake of simplicity, we assume throughout this section that

� ≥ 0.

This assumption could be removed, but we keep it here to simplify the discussion and point out the robustness in the
quasi-incompressible limit. Recalling the discussion in Remark 10, elliptic regularity for our problem entails that, for
all g ∈ L2(Ω;ℝd), the unique solution of the (dual) problem: Find zg ∈ H1

0 (Ω;ℝ
d) such that

(�((szg),(sv) = (g, v) ∀v ∈ H1
0 (Ω;ℝ

d) (45)

satisfies the a priori estimate

(2�) ‖zg‖H2(Ω;ℝd ) + ‖�(⋅zg‖H1(Ω;ℝ) ≲ ‖g‖, (46)

with hidden constant only depending on Ω and �.

Theorem 13 (ImprovedL2-error estimate). Under the assumptions and notations of Theorem 9, and further assuming
� ≥ 0, elliptic regularity, and f ∈ H1(ℎ;ℝd), it holds that

‖uℎ − �0ℎu‖ ≲ ℎ
2
‖f‖H1(ℎ;ℝd ), (47)

where the hidden constant is independent of both ℎ and � (but possibly depends on �).

Proof. Inside the proof, hidden constants have the same dependencies as in (47). Applying the results of (Di Pietro
and Droniou, 2018, Theorem 13) to the present setting gives the basic estimate

‖uℎ − �0ℎu‖ ≤ |||uℎ − Iℎu|||",ℎ sup
g∈L2(Ω;ℝd ),‖g‖≤1

|||ℎ(zg; ⋅)|||",ℎ,∗ + sup
g∈L2(Ω;ℝd ),‖g‖≤1

ℎ(u; Iℎzg). (48)
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We proceed to bound the addends in the right-hand side, denoted for the sake of brevity T1 and T2.
(i)Estimate ofT1. Since zg ∈ H1

0 (Ω;ℝ
d)∩H2(Ω;ℝd), the consistency estimate (34) followed by the elliptic regularity

bound (46) yield, for any g ∈ L2(Ω;ℝd),

|||ℎ(zg; ⋅)|||",ℎ,∗ ≲ ℎ
(

(2�)|zg|H2(ℎ;ℝd ) + |�(⋅zg|H1(ℎ;ℝ)

)

≲ ℎ‖g‖.

Combined with the energy error estimate (44), this yields

T1 ≲ ℎ2‖f‖. (49)

(ii) Estimate of T2. Recalling the expression (35) of the consistency error, expanding the bilinear form aℎ according
to its definition (22) with wℎ = Iℎu and vℎ = Iℎzg, and invoking (20) to replace p1ℎIℎ with $1

ℎ and (s,ℎp1ℎIℎ with
�0ℎ(s, we can write

ℎ(u; Iℎzg) = (−(⋅�((su),�
0
ℎzg) − (�

0
ℎ(�((su)),�

0
ℎ(szg) − (2�) jℎ($

1
ℎu,$

1
ℎzg) − (2�) sℎ(Iℎu, Iℎzg). (50)

We have that
−((⋅�((su),�0ℎzg) = (f ,�

0
ℎzg) = (�

0
ℎf , zg)

= (�0ℎf − f , zg) + (�((su),(szg)
= (�0ℎf − f , zg − �

0
ℎzg) + (�((su),(szg),

where we have used the fact that (1a) holds almost everywhere in Ω to replace −(⋅�((su) with f along with the
definitions (7) and (5) of the global and local L2-orthogonal projectors in the first line, we have added the quantity
(f , zg) − (�((su),(szg) = 0 (see (4)) in the second line, while, to pass to the third line, we have used the fact that,
by definition of �0ℎ, the function (�

0
ℎf − f ) is L

2(Ω;ℝd)-orthogonal to ℙ0(ℎ;ℝd) to insert �0ℎzg into the first term.
The Cauchy–Schwarz inequality and the approximation property (6) of the L2-orthogonal projector inside each mesh
element yield for the first term in the right-hand side

|

|

|

(�0ℎf − f , zg − �
0
ℎzg)

|

|

|

≲ ℎ2|f |H1(ℎ;ℝd )|zg|H1(Ω;ℝd ) ≲ ℎ
2
|f |H1(ℎ;ℝd )‖g‖, (51)

where we have used a standard estimate on |zg|H1(Ω;ℝd ) obtained letting v = zg in (45) and using the Cauchy–Schwarz
and Korn inequalities to bound the right-hand side. On the other hand, using the definitions (7) and (5) of the global
and local L2-orthogonal projectors, we can write

|

|

|

(

�((su),(szg
)

−
(

�0ℎ(�((su)),�
0
ℎ(szg

)

|

|

|

= |

|

|

(

�((su) − �0ℎ(�((su)),(szg − �
0
ℎ((szg)

)

|

|

|

≤ ‖�((su) − �0ℎ(�((su))‖ ‖(szg − �0ℎ((szg)‖
≲ ℎ2

(

(2�)|u|H2(Ω;ℝd ) + |�(⋅u|H1(Ω;ℝd )
)

|zg|H2(Ω;ℝd )

≲ ℎ2‖f‖ ‖g‖,

(52)

where we have used a Cauchy–Schwarz inequality to pass to the third line, (37) with w = u together with the approx-
imation property (6) of the L2-orthogonal projector to pass to the fourth line, and the elliptic regularity bound (46) to
conclude. Finally, using Cauchy–Schwarz inequalities, we can write

(2�) jℎ($1
ℎu,$

1
ℎzg) + (2�) sℎ(Iℎu, Iℎzg) ≲ (2�) |$

1
ℎu|j,ℎ|$

1
ℎzg|j,ℎ + (2�) |Iℎu|s,ℎ|Iℎzg|s,ℎ

≲ (2�)ℎ2|u|H2(Ω;ℝd )|zg|H2(Ω;ℝd ) ≲ ℎ
2
‖f‖ ‖g‖,

(53)

where, to pass to the second line, we have used (25) for the terms involving sℎ and we have proceeded as in the estimate
ofT2 in the proof of point (ii) of Lemma 8 for the terms involving jℎ while, to conclude, we have invoked (46). Taking
absolute values in (50) and using the estimates (51), (52), (53) yields ||

|

ℎ(u; Iℎzg)
|

|

|

≲ ℎ2‖f‖H1(ℎ;ℝd )‖g‖. Hence,
passing to the supremum, we obtain

T2 ≲ ℎ2‖f‖H1(ℎ;ℝd ). (54)

Plugging (49) and (54) into (48) concludes the proof.
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Corollary 14 (L2-error estimate for the displacement reconstruction). Under the notations and assumptions of Theo-
rem 13, it holds

‖p1ℎuℎ − u‖ ≲ ℎ
2
‖f‖H1(ℎ;ℝd ), (55)

Proof. Inserting 0 = p1ℎIℎu −$
1
ℎu inside the norm in the left-hand side of (55) and using the triangle inequality, we

infer that

‖p1ℎuℎ − u‖ ≤ ‖u −$1
ℎu‖ + ‖p1ℎ(Iℎu − uℎ)‖ ≕ T1 +T2.

Combining the approximation properties (9) of the elliptic projector with elliptic regularity estimate (46) readily gives
for the first term

T1 ≲ ℎ2‖f‖.

For the second term, on the other hand, we observe that

T22 =
∑

T∈ℎ

‖p1T (IT u − uT )‖
2
T

≲
∑

T∈ℎ

(

ℎ2T ‖(p
1
T (IT u − uT )‖

2
T + ‖�0T u − uT ‖

2
T
)

≤ ℎ2‖(ℎp1ℎ(Iℎu − uℎ)‖
2 + ‖�0ℎu − uℎ‖

2

≲ ℎ2|||Iℎu − uℎ|||
2
",ℎ + ‖�0T u − uℎ‖

2 ≲ ℎ2‖f‖2H1(ℎ;ℝd )
,

where the second line follows from a local Poincaré–Wirtinger inequality together with the boundedness of the L2-
orthogonal projector, the fourth line is a consequence of the global Korn inequality (14) together with the definition
(28) of the triple-bar strain norm, while the conclusion follows from the estimates (44) and (47).

6. Numerical tests
In what follows we verify, through numerical examples, the results stated in the previous section. In order to assess

the performance of the method in a framework as close as possible to real-life situations, we focus on the element
shapes most frequently used in the engineering community.

6.1. Two-dimensional quasi-incompressible case
The first test case is inspired by Brenner (1993): we solve on the unit squareΩ = (0, 1)2 the homogeneous Dirichlet

problem corresponding to the exact solution such that

u(x) =

(

(cos(2�x1) − 1) sin(2�x2) +
1
1+� sin(�x1) sin(�x2)

(1 − cos(2�x2)) sin(2�x1) +
1
1+� sin(�x1) sin(�x2)

)

.

The corresponding forcing term is

f (x) =
⎛

⎜

⎜

⎝

−�
[

4 sin(2�x2)
(

1 − 2 cos(2�x1)
)

− 2
1+� sin(�x1) sin(�x2)

]

− �+�
1+� cos(�(x1 + x2))

−�
[

4 sin(2�x1)
(

2 cos(2�x2) − 1
)

− 2
1+� sin(�x1) sin(�x2)

]

− �+�
1+� cos(�(x1 + x2))

⎞

⎟

⎟

⎠

.

We take � = 1 and, in order to assess the robustness of the method in the quasi-incompressible limit, we let � vary in
{1, 103, 106}. For the numerical solution, we consider structured and unstructured triangular, Cartesian orthogonal,
and deformed quadrangular mesh families; see Figure 1. The solutions corresponding to � = 1 and � = 106 on the
finest Cartesian orthogonal mesh are represented in Figure 2, where we have plotted the components of the global
displacement reconstruction obtained from the discrete solution according to (21).

The numerical results are collected in Tables 1–4, where the following quantities are monitored: Ndofs,ℎ, the
number of degrees of freedom; Nnz,ℎ, the number of non-zero entries in the problem matrix; |||uℎ − Iℎu|||a,ℎ, the
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(a) Structured triangular mesh (b) Unstructured triangular mesh

(c) Cartesian orthogonal mesh (d) Distorted quadrangular mesh

Figure 1: Meshes for the numerical test of Section 6.1.

energy-norm of the error; ‖uℎ − �0ℎu‖, the L
2-norm of the error estimated in Theorem 13. Notice that, in view of

Remark 12, in this and in the following numerical tests the energy error is measured using the ‖⋅‖a,ℎ-norm, whose
computation can be done using the already assembled problem matrix. We additionally display the Estimated Order of
Convergence (EOC) which, denoting by ei an error measure on the ith mesh refinement with meshsize ℎi, is computed
as

EOC =
log ei − log ei+1
logℎi − logℎi+1

.

In all the cases, the asymptotic EOC match the ones predicted by the theory, that is, 1 for the energy-norm of the error
and 2 for the L2-norm. The results additionally highlight the robustness of the method in the quasi-incompressible
limit (see Remark 10) and with respect to the mesh, showing errors of comparable magnitude irrespectively of the
value of � and of the selected mesh family.

6.2. Two-dimensional singular case
We next consider the solution of (Ainsworth and Senior, 1997, Section 5.1) which, in polar coordinates (r, �), reads

u(r, �) =

(

1
2G r

L [(� −Q(L + 1)) cos(L�) − L cos((L − 2)�)]
1
2G r

L [(� +Q(L + 1)) sin(L�) + L sin((L − 2)�)]

)

,

where the various parameters take the following numerical values: � = 0.65, � = 0.98, G = 5
13 , � = 9

5 , L =
0.5444837367825,Q = 0.5430755788367. The forcing term in this case is equal to zero, while the Dirichlet boundary
condition is inferred from the exact solution. The domain Ω is illustrated in Figure 3, while the solution on the finest
computational mesh considered here is depicted in Figure 4. This test case is representative of real-life situations
corresponding to a mode 1 fracture in a plain strain problem. The solution exhibits a singularity in the origin, which
prevents the method from attaining the full orders of convergence predicted for smooth solutions.
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(a) � = 1, u1 (b) � = 1, u2

(c) � = 1 ⋅ 106, u1 (d) � = 1 ⋅ 106, u2
Figure 2: Numerical solution for the test of Section 6.1 on the 128 × 128 Cartesian orthogonal mesh.

For the numerical resolution, we consider a sequence of refined structured quadrangular meshes. The numerical
results collected in the top half of Table 5 show an asymptotic EOC in the energy-norm of about 0.54, while the
asymptotic EOC in the L2-norm is about 1.31. For the sake of completeness, we show, in the bottom half of Table
5, a comparison with the original HHO method of Di Pietro and Ern (2015) with k = 1. Also in this case, the EOC
are limited by the regularity of the solution, and coincide with those observed for the method studied in this work. As
expected, the number of unknowns on a given mesh is larger for the method of Di Pietro and Ern (2015) compared to
the method proposed here, despite the fact that static condensation is applied in the former case. It has to be noticed,
however, that the reduction in the number of unknowns is balanced by the increased number of nonzero entries in the
matrix, due to both the absence of static condensation (see Remark 6) and the presence of the jump penalisation term.
This phenomenon is specific to the two-dimensional case: in dimension d = 3, the matrix corresponding to the method
of Di Pietro and Ern (2015) with k = 1 is generally more dense; see, e.g., Table 6. The errors in the energy norm
appear to be smaller for the HHO method of Di Pietro and Ern (2015), but this is in part due to the fact that the natural
energy norm associated with the corresponding bilinear form does not contain the norm of the jumps.

6.3. Three-dimensional compressible case
To test the performance of the method in three space dimensions, we solve on the unit cube domain Ω = (0, 1)3

the homogeneous Dirichlet problem corresponding to the exact solution u = (ui)1≤i≤d such that

ui(x) = sin(�x1) sin(�x2) sin(�x3) ∀1 ≤ i ≤ 3.
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Table 1
Numerical results for the test of Section 6.1, structured triangular mesh family.

Ndofs,ℎ Nnz,ℎ ‖uℎ − Iℎu‖a,ℎ EOC ‖uℎ − �0ℎu‖ EOC

(�, �) = (1, 1)

144 3680 3.82e+00 – 2.08e-01 –
608 17856 1.96e+00 0.97 6.97e-02 1.58
2496 78080 9.64e-01 1.02 1.87e-02 1.90
10112 326016 4.84e-01 1.00 4.74e-03 1.98
40704 1331840 2.43e-01 1.00 1.19e-03 1.99

(�, �) = (1, 1,000)

144 3680 5.09e+00 – 2.05e-01 –
608 17856 1.95e+00 1.38 7.15e-02 1.52
2496 78080 9.15e-01 1.09 2.00e-02 1.84
10112 326016 4.52e-01 1.02 5.18e-03 1.95
40704 1331840 2.25e-01 1.00 1.31e-03 1.98

(�, �) = (1, 1 ⋅ 106)

144 3680 1.10e+02 – 2.05e-01 –
608 17856 1.48e+01 2.90 7.15e-02 1.52
2496 78080 2.07e+00 2.83 2.00e-02 1.84
10112 326016 5.08e-01 2.03 5.19e-03 1.95
40704 1331840 2.27e-01 1.16 1.31e-03 1.98

The corresponding forcing term is

f (x) = �
⎛

⎜

⎜

⎜

⎝

2 sin(�x1) sin(�x2) sin(�x3) − sin(�x2) cos(�(x3 + x1)) − sin(�x3) cos(�(x1 + x2))
2 sin(�x1) sin(�x2) sin(�x3) − sin(�x3) cos(�(x1 + x2)) − sin(�x1) cos(�(x2 + x3))
2 sin(�x1) sin(�x2) sin(�x3) − sin(�x1) cos(�(x2 + x3)) − sin(�x2) cos(�(x3 + x1))

⎞

⎟

⎟

⎟

⎠

+ �

⎛

⎜

⎜

⎜

⎝

sin(�x1) sin(�x2) sin(�x3) − cos(�x1) sin(�(x2 + x3))
sin(�x1) sin(�x2) sin(�x3) − cos(�x2) sin(�(x3 + x1))
sin(�x1) sin(�x2) sin(�x3) − cos(�x3) sin(�(x1 + x2))

⎞

⎟

⎟

⎟

⎠

.

For the numerical solution, we take � = � = 1. Tables 6 and 7 collect the numerical results on, respectively Cartesian
orthogonal and unstructured simplicial mesh families and pyramidal and prismatic mesh families. The monitored
quantities are the same as for the other test cases. For the Cartesian orthogonal and simplicial meshes we add, for
the sake of comparison, the number of unknowns and of nonzero matrix entries for the method of Di Pietro and Ern
(2015) with k = 1. For all the mesh families, the asymptotic EOC for both the energy- and the L2-norms of the
error agree with the ones predicted. On the simplicial mesh family, an EOC close to 1 is attained starting from the
third mesh refinement in the energy norm, whereas an EOC close to 2 is already observed starting from the second
mesh refinement; on the other mesh families, the orders of convergence take a bit longer to settle to the corresponding
asymptotic values, likely because the first computational meshes are coarser than in the simplicial case.

7. Local balances and continuity of numerical tractions
In this section we show that our method satisfies local force balances with equilibrated face tractions. This property

can be exploited, e.g., to derive a posteriori error estimates by flux equilibration, and it makes the proposed method
suitable for integration into existing Finite Volume codes.

Lemma 15 (Traction formulation of the discrete bilinear form). We have the following reformulation of the discrete
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Table 2
Numerical results for the test of Section 6.1, unstructured triangular mesh family.

Ndofs,ℎ Nnz,ℎ ‖uℎ − Iℎu‖a,ℎ EOC ‖uℎ − �0ℎu‖ EOC

(�, �) = (1, 1)

234 6572 3.00e+00 – 1.38e-01 –
978 30012 1.60e+00 0.90 4.11e-02 1.75
3986 127372 8.15e-01 0.98 9.37e-03 2.13
15542 505828 4.27e-01 0.93 2.61e-03 1.85
63584 2089920 2.12e-01 1.01 6.65e-04 1.97
249238 8228988 1.08e-01 0.97 1.71e-04 1.96

(�, �) = (1, 1,000)

234 6572 3.57e+00 – 1.45e-01 –
978 30012 1.60e+00 1.15 4.52e-02 1.68
3986 127372 8.00e-01 1.00 1.07e-02 2.07
15542 505828 4.18e-01 0.94 2.99e-03 1.85
63584 2089920 2.08e-01 1.01 7.63e-04 1.97
249238 8228988 1.06e-01 0.97 1.97e-04 1.96

(�, �) = (1, 1 ⋅ 106)

234 6572 6.17e+01 – 1.45e-01 –
978 30012 7.55e+00 3.03 4.52e-02 1.68
3986 127372 1.14e+00 2.72 1.07e-02 2.07
15542 505828 4.33e-01 1.40 2.99e-03 1.85
63584 2089920 2.08e-01 1.06 7.63e-04 1.97
249238 8228988 1.06e-01 0.98 1.97e-04 1.96

bilinear form aℎ defined by (22): For all wℎ, vℎ ∈ Uℎ,0,

aℎ(wℎ, vℎ) =
∑

T∈ℎ

∑

F∈T

|F |�TF (wℎ)⋅(vT − vF ), (56)

where, for all T ∈ ℎ and all F ∈ T , we have introduced the numerical traction�TF ∶ UT → ℙ0(F ;ℝd) such that

�TF (wℎ) ≔ −�((sp1TwT )nTF + (2�)�j,T F (wℎ) + (2�)�s,T F (wT ),

with jump penalisation and stabilisation contributions respectively defined as

�j,T F (wℎ) ≔
�TF
ℎF |F | ∫F

[p1ℎwℎ]F +
∑

G∈T

�TG
ℎG|T |

(xG − xT )⋅nTG ∫G
[p1ℎwℎ]G,

�s,T F (wT ) ≔
1
ℎF
�TFwT +

∑

G∈T

|G|
ℎG|T |

(xT − xG)⋅nTF �TGwT ,

where, for any X mesh element or face, we have denoted by xX ≔ 1
|X|

∫X x its centroid and, for any T ∈ ℎ and any
F ∈ T , �TF ≔ nTF ⋅nF defines the orientation of F relative to T .

Proof. We proceed to reformulate the three terms in the right-hand side of (22) in order to highlight the corresponding
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Table 3
Numerical results for the test of Section 6.1, Cartesian orthogonal mesh family.

Ndofs,ℎ Nnz,ℎ ‖uℎ − Iℎu‖a,ℎ EOC ‖uℎ − �0ℎu‖ EOC

(�, �) = (1, 1)

80 2768 3.13e+00 – 1.55e-01 –
352 15856 1.84e+00 0.77 4.08e-02 1.93
1472 73904 1.09e+00 0.75 1.04e-02 1.98
6016 317488 5.89e-01 0.89 2.89e-03 1.84
24320 1314608 3.02e-01 0.97 7.73e-04 1.90

(�, �) = (1, 1,000)

80 2768 3.08e+00 – 1.64e-01 –
352 15856 1.81e+00 0.77 4.72e-02 1.80
1472 73904 1.08e+00 0.75 1.37e-02 1.78
6016 317488 5.81e-01 0.89 3.96e-03 1.79
24320 1314608 2.97e-01 0.97 1.06e-03 1.90

(�, �) = (1, 1 ⋅ 106)

80 2768 3.08e+00 – 1.64e-01 –
352 15856 1.81e+00 0.77 4.72e-02 1.80
1472 73904 1.08e+00 0.75 1.37e-02 1.78
6016 317488 5.81e-01 0.89 3.96e-03 1.79
24320 1314608 2.97e-01 0.97 1.06e-03 1.90

contribution to the numerical traction. For the consistency term, we can write

(�((s,ℎp1ℎwℎ),(s,ℎp
1
ℎvℎ) =

∑

T∈ℎ

|T |�((sp1TwT )∶(sp
1
T vT =

∑

T∈ℎ

|T |�((sp1TwT )∶(p
1
T vT

=
∑

T∈ℎ

|T |�((sp1TwT )∶

(

∑

F∈T

|F |
|T |

(vF − vT )⊗ nTF

)

= −
∑

T∈ℎ

∑

F∈T

|F |�((sp1TwT )nTF ⋅(vT − vF ),

where we have used the fact that, for any T ∈ ℎ, both �((sp1TwT ) and (sp
1
T vT are constant inside T along with the

fact that �((sp1TwT ) is symmetric to replace (s with ( in the first line, the first relation in (18) to pass to the second
line, and we have rearranged the products and sums to conclude.

For the jump penalisation term, we can start by observing that

jℎ(wℎ, vℎ) =
∑

F∈ℎ

1
ℎF

(

[p1ℎwℎ]F , [p
1
ℎvℎ]F

)

F

=
∑

F∈ℎ

∑

T∈F

�TF
ℎF

(

[p1ℎwℎ]F ,p
1
T vT

)

F =
∑

T∈ℎ

∑

F∈T

�TF
ℎF

(

[p1ℎwℎ]F ,p
1
T vT

)

F ,

where we have used the definition of the jump operator to pass to the second line and exchanged the sums over elements
and faces according to (39) to conclude.
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Table 4
Numerical results for the test of Section 6.1, distorted quadrangular mesh family.

Ndofs,ℎ Nnz,ℎ ‖uℎ − Iℎu‖a,ℎ EOC ‖uℎ − �0ℎu‖ EOC

(�, �) = (1, 1)

80 2768 3.51e+00 – 1.89e-01 –
352 15856 1.91e+00 0.88 5.45e-02 1.79
1472 73904 1.08e+00 0.82 1.34e-02 2.03
6016 317488 5.83e-01 0.89 3.52e-03 1.93
24320 1314608 2.97e-01 0.97 9.18e-04 1.94
97792 5348656 1.49e-01 0.99 2.33e-04 1.98

(�, �) = (1, 1,000)

80 2768 3.44e+00 – 1.96e-01 –
352 15856 1.87e+00 0.88 5.89e-02 1.73
1472 73904 1.07e+00 0.81 1.63e-02 1.85
6016 317488 5.74e-01 0.89 4.48e-03 1.86
24320 1314608 2.92e-01 0.97 1.18e-03 1.93
97792 5348656 1.47e-01 0.99 3.00e-04 1.97

(�, �) = (1, 1 ⋅ 106)

80 2768 9.12e+00 – 1.96e-01 –
352 15856 2.27e+00 2.00 5.89e-02 1.73
1472 73904 1.08e+00 1.07 1.63e-02 1.85
6016 317488 5.74e-01 0.91 4.48e-03 1.86
24320 1314608 2.92e-01 0.97 1.18e-03 1.93
97792 5348656 1.47e-01 0.99 3.00e-04 1.97

Table 5
Numerical results for the test of Section 6.2 and comparison with the high-order method of Di Pietro and Ern (2015) with
k = 1. For the latter, the energy norm is the one associated to the corresponding bilinear form without jump stabilisation.

Ndofs,ℎ Nnz,ℎ ‖uℎ − Iℎu‖a,ℎ EOC ‖uℎ − �0ℎu‖ EOC

Present work

256 10616 7.65e-01 – 7.51e-02 –
1088 52728 5.63e-01 0.44 3.34e-02 1.17
4480 232568 3.97e-01 0.50 1.40e-02 1.25
18176 974712 2.76e-01 0.53 5.72e-03 1.29
73216 3988856 1.90e-01 0.54 2.31e-03 1.31
293888 16136568 1.31e-01 0.54 9.29e-04 1.31

HHO method of Di Pietro and Ern (2015), k = 1

320 7584 1.07e-01 – 9.40e-03 –
1408 36512 7.32e-02 0.55 3.64e-03 1.37
5888 158880 5.01e-02 0.55 1.41e-03 1.36
24064 661664 3.43e-02 0.55 5.52e-04 1.36
97280 2699424 2.35e-02 0.54 2.17e-04 1.35
391168 10903712 1.61e-02 0.54 8.57e-05 1.34
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Figure 3: Domain for the test case of Section 6.2.

(a) u1 (b) u2
Figure 4: Numerical solution for the test of Section 6.2.

Using the explicit expression (19) of the local displacement reconstruction, we can go on writing

jℎ(wℎ, vℎ) =
∑

T∈ℎ

∑

F∈T

�TF
ℎF

(

[p1ℎwℎ]F , vT +
∑

G∈T

|G|
|T |

(x − xT )⋅nTF (vG − vT )

)

F

=
∑

T∈ℎ

∑

F∈T

�TF
ℎF

(

[p1ℎwℎ]F , vT − vF
)

F

+
∑

T∈ℎ

∑

F∈T

∑

G∈T

�TF |G|
ℎF |T |

(

[p1ℎwℎ]F (x − xT )⋅nTF , vG − vT
)

F

=
∑

T∈ℎ

∑

F∈T

|F |
(

�TF
ℎF |F | ∫F

[p1ℎwℎ]F

)

⋅(vT − vF )

−
∑

T∈ℎ

∑

G∈T

|G|

(

∑

F∈T

�TF
ℎF |T | ∫F

[p1ℎwℎ]F (x − xT )⋅nTF

)

⋅(vT − vG)

=
∑

T∈ℎ

∑

F∈T

|F |�j,T F (wℎ)⋅(vT − vF ),
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Table 6
Numerical results for the test of Section 6.3 on Carthesian orthogonal and simplicial meshes. The number of degrees of
freedom and of nonzero matrix entries for the method of Di Pietro and Ern (2015) are also included for comparison (except
for the last mesh refinement).

Ndofs,ℎ Nnz,ℎ
‖uℎ − Iℎu‖a,ℎ EOC ‖uℎ − �0ℎu‖ EOCk = 0 (k = 1) k = 0 (k = 1)

Cartesian orthogonal mesh sequence

624 (1296) 70128 (97200) 2.07e+00 – 1.01e-01 –
5568 (12096) 831024 (1057536) 1.31e+00 0.65 4.09e-02 1.30
46848 (103680) 7879824 (9673344) 7.19e-01 0.87 1.27e-02 1.68
384000 (857088) 68277456 (82425600) 3.71e-01 0.95 3.46e-03 1.88
3108864 – 567808848 – 1.87e-01 0.98 8.95e-04 1.95

Unstructured simplicial mesh sequence

1584 (3024) 107136 (167184) 1.38e+00 – 4.70e-02 –
13248 (25920) 1008288 (1539648) 7.61e-01 0.85 1.64e-02 1.52
108288 (214272) 8676288 (13125888) 3.96e-01 0.94 4.39e-03 1.91
875520 (1741824) 71860608 (108241920) 2.02e-01 0.97 1.14e-03 1.95
7041024 – 584706816 – 1.02e-01 0.99 2.89e-04 1.98

Table 7
Numerical results for the test of Section 6.3 on pyramidal and prismatic mesh sequences.

Ndofs,ℎ Nnz,ℎ ‖uℎ − Iℎu‖a,ℎ EOC ‖uℎ − �0ℎu‖ EOC

Pyramidal mesh sequence

468 36180 1.91e+00 – 7.87e-02 –
3888 345168 1.18e+00 0.70 3.34e-02 1.23
31680 2989440 6.32e-01 0.90 1.01e-02 1.73
255744 24838272 3.23e-01 0.97 2.69e-03 1.90
2055168 202417920 1.63e-01 0.99 6.91e-04 1.96

Prismatic mesh sequence

120 6192 2.29e+00 – 1.20e-01 –
1152 103464 1.74e+00 0.39 6.52e-02 0.89
9984 1098792 1.01e+00 0.79 2.35e-02 1.47
82944 9980712 5.28e-01 0.93 6.83e-03 1.78
675840 84823848 2.68e-01 0.98 1.81e-03 1.92

where, to insert vF into the first term in the second line, we have used the fact that [p1ℎwℎ]F is single-valued at interfaces
together with vF = 0 on boundary faces, to pass to the third line we have used the fact that the discrete unknowns in
vℎ are constant over mesh elements to take them out of the integrals over faces while, to conclude, we have observed
that (x − xT )⋅nTF = (xF − xT )⋅nTF for all x ∈ F and we have used the definition of �j,T F (wℎ) after switching the
names of the mute variables F and G in the second term of the third line.
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Moving to the stabilisation term, we can write

sℎ(wℎ, vℎ) =
∑

T∈ℎ

∑

F∈T

|F |
ℎF

�TFwT ⋅�TFvT

=
∑

T∈ℎ

∑

F∈T

|F |
ℎF

�TFwT ⋅

(

vT − vF +
∑

G∈T

|G|
|T |

(vG − vT )(xF − xT )⋅nTG

)

=
∑

T∈ℎ

∑

F∈T

|F |
ℎF

�TFwT ⋅(vT − vF )

+
∑

T∈ℎ

∑

G∈T

|G|

(

∑

F∈T

|F |
ℎF |T |

(xT − xF )⋅nTG �TFwT

)

⋅(vT − vG)

=
∑

T∈ℎ

∑

F∈T

|F |�s,T F (wT )⋅(vT − vF ),

where we have used the definition (24) of the boundary difference operator together with the explicit expression (19)
of the local displacement reconstruction to pass to the second line, we have rearranged the terms to pass to the third
line, and we have used the definition of �s,T F (wT ) after switching the names of the mute variables F and G in the
second term of the third line to conclude.

Corollary 16 (Local balances and equilibrated tractions). Under the assumptions and notations of Lemma 15, we have
that uℎ ∈ Uℎ,0 solves the discrete problem (32) if and only if: For all T ∈ ℎ the following balance holds

∑

F∈T

|F |�TF (uℎ) = ∫T
f , (57)

and, for any interface F ∈  iℎ shared by the mesh elements T1 and T2, it holds that

�T1F (uℎ) +�T2F (uℎ) = 0. (58)

Proof. Plugging the flux reformulation (56) of the bilinear form aℎ into the discrete problem (32), and recalling (16),
we infer that it is equivalent to: Find uℎ ∈ Uℎ,0 such that

∑

T∈ℎ

∑

F∈T

|F |�TF (uℎ)⋅(vT − vF ) =
∑

T∈ℎ
∫T
f ⋅vT ∀vℎ ∈ Uℎ,0. (59)

Taking, for a given mesh element T ∈ ℎ, vℎ such that vT ′ = 0 for all T ′ ∈ ℎ ⧵ {T }, vF = 0 for all F ∈ ℎ, and
letting vT span ℙ0(T ;ℝd), (59) reduces to (57). Similarly, given an interface F ∈  iℎ shared by the mesh elements
T1 and T2, taking in (59) vℎ such that vT = 0 for all T ∈ ℎ, vF ′ = 0 for all F ′ ∈ ℎ ⧵ {F }, and letting vF span
ℙ0(F ;ℝd), (59) reduces to (58) after recalling that the numerical tractions are constant over F .
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