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The Role of the Rhizosphere and Microbes
Associated with Hyperaccumulator Plants
in Metal Accumulation

Emile Benizri and Petra S. Kidd

Abstract

Phytomining can be limited by low biomass productivity by plants or

limited availability of soil metals. Ongoing research attempts to overcome

these potential constraints and to make phytomining a successful com-

mercial technique in the recovery of metals from polluted or naturally

metal-rich soil by (hyper)accumulating plants. Recently, the benefits of

combining phytoremediation with bioremediation, which consists in the

use of beneficial microorganisms such as endophytes or rhizosphere

bacteria and fungi, for metal removal from soils have been demonstrated.

Metal-resistant microorganisms play an important role in enhancing plant

survival and growth in these soils by alleviating metal toxicity and

supplying nutrients. Furthermore, these beneficial microorganisms are

able to enhance the metal bioavailability in the rhizosphere of plants.

An increase in plant growth and metal uptake increases the effectiveness

of phytoremediation processes coupled with bioremediation. Herein, we

highlight the specificity of the rhizosphere and the critical roles in soil

nutrient cycling and provision of ecosystem services that can be brought

by rhizosphere microorganisms. We discuss how abiotic factors, such as

the presence of metals in polluted sites or in naturally rich (ultramafic)

soils modulate activities of soil microbial communities. Then we intro-

duce the concept of microbe-assisted phytomining, and underline the role

of plant-associated microorganisms in metal bioavailability and uptake by

host plants that has attracted a growing interest over the last decade.

Finally, we present various techniques, including phenotypic, genotypic,

and metagenomic approaches, which allow for characterising soil micro-

bial community structure and diversity in polluted or naturally metal-rich

soils.
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Durand et al. 2016; Álvarez-López et al.

2016a). Schlegel et al. (1991) found that

bacterial strains isolated from serpentine soils

tolerated up to 10–20 mM Ni (in the culture

medium), whereas strains from other soil

types tolerated only 1 mM Ni. Turgay et al.

(2012) reported that bacterial strains, isolated

from Turkish serpentine soils, could tolerate

up to 34 mM Ni in the growth medium.

Furthermore, as described above, the rhizo-

sphere bacterial communities associated with

Ni-hyperaccumulating plants have been shown

to differ from those of non-accumulating plants

growing at the same site or of non-vegetated

soil, but are also known to host a higher number

of Ni-tolerant bacteria (Schlegel et al. 1991;

Mengoni et al. 2001; Abou-Shanab et al.

2003b; Becerra-Castro et al. 2009; Álvarez-

López et al. 2016a). Schlegel et al. (1991)

reported a higher occurrence of Ni-resistant

bacteria in soil samples collected with increasing

proximity to the Ni-hyperaccumulating tree

Sebertia (¼ Pycnandra) acuminata. Mengoni

et al. (2001) also found a higher proportion of

Ni-resistant cfu in proximity to the

Ni-hyperaccumulator A. bertolonii than in

non-vegetated soil. These authors observed

simultaneous resistance to a set of metals and

highest resistance from isolates of the rhizo-

sphere. Becerra-Castro et al. (2009) found higher

proportions of Ni-tolerant bacteria in the rhizo-

sphere of A. serpyllifolium ssp. lusitanicum. This

selective enrichment of Ni-tolerant bacteria in the

rhizosphere was correlated with an increase in

soil Ni availability (Becerra-Castro et al. 2009).

Álvarez-López et al. (2016a) confirmed higher

densities of Ni-tolerant bacteria associated with

the Ni-hyperaccumulators A. serpyllifolium ssp.

lusitanicum and A. serpyllifolium ssp.

malacitanum, but observed significant differences

in this selective enrichment amongst different

plant populations across the Iberian Peninsula.

The screening of bacterial isolates associated

with metal (hyper)accumulating plants has led to

the identification of candidate inoculants for

application in phytomining. Bacterial strains are

commonly characterized for the presence of PGP

traits such as the capacity to produce

phytohormones (IAA), to solubilize inorganic P

or K, to fix atmospheric N2, to release

siderophores, or for their ACC activity. Most

bioaugmentation studies have evaluated the

effects of re-inoculating host plants with their

associated isolates (Abou-Shanab et al. 2003a;

Abou-Shanab et al. 2006; Li et al. 2007;

Cabello-Conejo et al. 2014). However, the speci-

ficity of these plant-bacterial combinations is not

always clear, and some inoculants have been

shown to have beneficial effects on a wide

range of plant hosts (Grandlic et al. 2008; Ma

et al. 2011; Becerra-Castro et al. 2012). The main

objective of these studies has been to improve

metal yields during phytoextraction. In this tech-

nique, a simple improvement in biomass can

result in an increase in overall trace element

removal (Sessitsch et al. 2013). In a meta-

analysis carried out by Sessitsch et al. (2013),

including results from more than 70 publications

and 738 individual cases, the authors found that

bacterial inoculation was generally more suc-

cessful in promoting plant growth and biomass

production (60% of total cases analyzed) than in

influencing shoot trace elements accumulation

(only 30% of cases showed a significant increase

in shoot trace elements concentration, and 16% a

decrease in trace elements concentration).

Ma et al. (2009a, b) found that inoculation

with PGP rhizobacteria (Psychrobacter
sp. SRA1, Bacillus cereus SRA10 and

Achromobacter xylosoxidans strain Ax10)

improved the growth of Brassica juncea and

B. oxyrrhina, enhanced soil Ni availability, and

increased Ni accumulation in both species. Simi-

larly, Rajkumar and Freitas (2008b) observed

that inoculation with the PGP rhizobacterial

strains Pseudomonas sp. PsM6 and P. jessenii

PjM15 isolated from a serpentine soil in

R. communis caused an increase in above-ground

biomass, mainly due to IAA production and

phosphate solubilization, and consequently

enhanced phytoextraction efficiency. Zaidi et al.

(2006) demonstrated that inoculation with Bacil-

lus subtilis strain SJ-101 not only stimulated the

growth of, and Ni accumulation in, Brassica

juncea, but also protected the plant from Ni tox-

icity. Various authors also reported increases in
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Ni uptake by B. juncea and other

non-hyperaccumulating plant species (B. napus,

Ricinus communis, Poa pratensis, etc.) after

bacterial inoculation (Rajkumar and Freitas

2008a, b; Kumar et al. 2009; Gullap et al.

2014). With regard to Ni-hyperaccumulating

species, Abou-Shanab et al. (2003b) showed

that the strain Microbacterium arabinogalacta-

nolyticum isolated from the rhizosphere of

A. murale significantly increased availability of

Ni in the soil and enhanced Ni accumulation by

A. murale. In agreement with these results, a

posterior study with A. murale grown in artifi-

cially Ni-polluted soils demonstrated that inocu-

lation with selected rhizobacteria strains

increased Ni extraction from the soil and Ni

uptake by A. murale (Abou-Shanab et al. 2006).

These authors considered the presence of such

rhizobacteria to be an important factor that

influenced metal hyperaccumulation. Becerra-

Castro et al. (2013) used two strains of

Arthrobacter (SBA82 and LA44) harbouring

several plant growth-promoting characteristics

are able to mobilize Ni from serpentine rock,

as an inoculum for A. serpyllifolium ssp.

malacitanum grown in ultramafic soil, and

observed an increase in plant biomass and shoot

Ni concentrations. Durand et al. (2016) isolated

plant growth-promoting rhizobacteria from

the rhizosphere soil of two hyperaccumulator

plant associations: B. tymphaea–N. tymphaea

(NB) and B. tymphaea–A. murale (AB), both

being characteristic of a serpentine outcrop in

Greece. The screening of the isolates revealed

two PGPR strains (AB30 and NB24) that were

affiliated to Variovorax paradoxus and that were

used to inoculate the same plant associations

growing in mesocosms. Biomass (root and

shoot), shoot Ni uptake, and Ni removal by the

B. tymphaea–N. tymphaea plant association

inoculated with strain NB24 was significantly

higher than that of the respective

non-inoculated association.

Benefits to plants of mycorrhizal inoculation

in highly stressed and nutrient-poor environments

are well documented. Inoculation with

arbuscular mycorrhizae in trace elements-

polluted mine tailings has proven particularly

effective in enhancing plant survival and perfor-

mance during restoration (Orłowska et al. 2011;

Kohler et al. 2015; Maltz and Treseder 2015).

However, fewer studies have found inoculating

with mycorrhizal fungi species or strains to

enhance metal uptake and accumulation. In fact,

until the early 2000s, hyperaccumulating plants

were generally considered non-mycorrhizal

(Gonçalves et al. 1997; Leyval et al. 1997;

Pawlowska et al. 2000). Since then, several stud-

ies have found that hyperaccumulators can form

symbioses with arbuscular mycorrhizal fungi

(AMF). Pteris vitatta, an As-hyperaccumulating

fern, tended to show higher mycorrhizal coloni-

zation on As-polluted soil. Leung et al. (2007)

suggested that enhanced P uptake could be linked

to increased As absorption and transport. Mycor-

rhizal colonisation has been observed in Thlaspi
praecox, a Cd- and Zn-hyperaccumulator of the

Brassicaceae family (generally considered to be -

non-mycorrhizal) growing on metal-polluted soil

in Slovenia (Vogel-Mikus et al. 2005). Berkheya

coddii was the first Ni-hyperaccumulating

plant in which the presence of arbuscular

mycorrhizal (AM) symbiosis was reported

(Turnau and Mesjasz-Przybylowicz 2003).

Arbuscular mycorrhizal fungi (AMF) isolated

from serpentine soil significantly enhanced

growth and survival of the Ni-hyperaccumulator

B. coddii when growing in the same soil

(Orłowska et al. 2011). AMF inoculation reduced

shoot and root Ni concentrations, however, and

owing to the higher biomass the total Ni yield

was up to 20 times greater in mycorrhizal plants

compared to the non-mycorrhizal ones. The

authors proposed that AMF enhancement of Ni

uptake may help to improve Ni phytomining

techniques.

5 Improving Soil Metal Removal
Using Metal-Mobilizing
Microbial Strains

Metal-hyperaccumulating plant species have an

extraordinary capacity for trace metal accumula-

tion. Many authors have considered the possibil-

ity that such species actively mobilize trace
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elements from non-labile soil metal pools, as a

means of increasing the labile concentrations and

consequently plant uptake and accumulation. In

accordance, several studies have shown a higher

labile fraction of hyperaccumulated metals, such

as Ni, at the rhizosphere of these plants compared

to those of non-accumulating plant species or the

surrounding non-vegetated soil (Puschenreiter

et al. 2005). However, most authors have

concluded that this effect is not a result of spe-

cific metal-mobilizing mechanisms employed by

hyperaccumulators. It seems more likely, there-

fore, that the pronounced depletion of trace

elements in the rhizosphere, caused by the high

rate of uptake of the element from the soil solu-

tion, induces their replenishment from the less-

mobile fraction to the mobile pools, and

maintains a sustained high metal concentration

in the soil solution. Root activity of

N. goesingensis has been proposed to participate

in an enhanced dissolution of Ni-bearing

minerals, contributing to higher Ni uptake

(Puschenreiter et al. 2005). Similarly, mineralog-

ical studies have shown the presence of smectite

in the rhizosphere of A. serpyllifolium ssp.

lusitanicum, which was related to a more intense

weathering of Ni-rich ferromagnesium minerals

(chlorite, serpentine) and an increase in labile Ni

(Kidd et al. 2009). Chardot-Jacques et al. (2013)

found that growth of the Ni-hyperaccumulator

L. emarginata increased the dissolution of

chrysotile (a silicate mineral of the serpentine

group with low Ni solubility). These authors

suggested that the high Ni uptake by the

plant causes a decrease in water-soluble Ni,

which in turn induces chrysotile dissolution.

However, whether this phenomenon is plant- or

microbially-induced, or the result of complex

plant-microbial interactions, is unknown. It is

well established that microbial transformation

of soil minerals leads to the solubilization of

metals together with essential nutrients, and to

the modification of their form and distribution in

the solid phase (Quantin et al. 2002). Soil metal

availability greatly influences the success of

phytomining and its long-term sustainability,

and bioaugmentation with metal-mobilizing,

plant-associated bacteria could enhance the via-

bility of this technique (Kidd et al. 2009).

Microbes are intimately associated with the

biogeochemical cycling of metals. Microbial

activity can result in metal mobilization or

immobilization depending on the mechanism

involved and the microenvironment where the

organism(s) are located (Violante et al. 2008;

Ehrlich and Newman 2009; Gadd 2010)

(Fig. 2). Some metal-tolerant bacterial strains

associated with (hyper)accumulating plants

have been shown to mobilize metals in soils,

and consequently increase the phytoavailable

metal fraction in the soil, as well as plant uptake

and accumulation. Muehe et al. (2015) found

Arabidopsis halleri accumulated 100% more Cd

and 15% more Zn when grown on natural

Cd-polluted soil than on the same soil that had

undergone gamma-irradiation. Gamma irradia-

tion affected neither plant growth nor soil metal

availability, but strongly altered the composition

and density of the soil microbial community.

Bacteria can modify trace elements mobility

and bioavailability through several mechanisms:

the release of chelating agents (such as organic

acids, phenolic compounds, and siderophores),

and acidification or redox changes in the rhizo-

sphere (Lloyd 2003; Glick 2010). Sessitsch et al.

(2013) reviewed potential mechanisms for

microbial effects on bioavailability in the rhizo-

sphere environment. Sorbed, precipitated, and

occluded trace elements can be solubilized by

acidification, chelation, and ligand-induced dis-

solution. To date, two groups of bacterially pro-

duced natural chelators are known: organic acids

and siderophores. Low-molecular mass carbox-

ylic acids can play an important role in chemical

attack of minerals, providing protons as well as a

metal-chelating anion (Jacobs et al. 2002; Huang

et al. 2004; Lian et al. 2008).

Oxalic acid can leach metals such as Al and

Fe that form soluble oxalate complexes (Strasser

et al. 1994). Bacteria that produce trace element-

chelating organic acids, such as citric, oxalic, or

acetic acid, have been shown to mobilize various

trace elements in soil (Becerra-Castro et al.

2013). As mentioned above, siderophores form
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high-affinity complexes with Fe(III), but can also

form complexes of lower stability with other

trace elements (Al, Cd, Cu, Ga, In, Ni, Pb and

Zn), thus affecting their bioavailability (Schalk

et al. 2011; Rajkumar et al. 2012; Sessitsch et al.

2013). Plants can then take up metals from

siderophores via various mechanisms, such as

chelate degradation, the direct uptake of

siderophore–metal complexes, or by a ligand

exchange reaction (Schmidt 1999). Braud et al.

(2009) reported that inoculating soils with

siderophore-producing P. aeruginosa signifi-

cantly increased the concentrations of bioavail-

able Cr and Pb compared with non-inoculated

controls. Enhanced heavy metal uptake was

correlated with the increased production of

siderophores. Siderophore-producing bacteria

that are present in metal-polluted or metal-

enriched soil, and their interaction with

hyperaccumulators, could be used in MAP.

Several siderophore-producing bacterial strains

associated with plants, such as the

non-hyperaccumulator Brassica juncea, and

the hyperaccumulators T. goesingense,

A. bertolonii, and A. murale, have been isolated

and characterized from metal-rich soils. They

belong to different genera, such as Staphylo-

coccus sp., Microbacterium sp., Pseudomonas

sp., Curtobacterium sp., Bacillus sp.,

Arthrobacter sp., Paenibacillus sp., Leifsonia

sp. Methylobacterium mesophilicum,

Methylobacterium extorquens,Methylobacterium
sp., Burkholderia terricola, Okibacterium

fritillariae, Rhodococcus fascians, Rhodococcus

sp. (Idris et al. 2004; Barzanti et al. 2007).

Becerra-Castro et al. (2013) evaluated the

weathering capacities of, and Ni mobilization

by, two rhizobacterial strains associated with the

Fig. 2 Interactions between metals and bacteria (adapted from Ledin 2000). S corresponds to the reactive groups

present on the bacterial cell wall. Me2+ represents a cation metallic. Org corresponds to an organic compound
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Ni-hyperaccumulator A. serpyllifolium ssp.

lusitanicum and ssp. malacitanum. A minimal

culture medium containing ground ultramafic

rock was inoculated with either of two

Arthrobacter strains: LA44 (indoleacetic acid

[IAA] producer) or SBA82 (siderophore pro-

ducer, PO4 solubilizer, and IAA producer). Strain

LA44 is a more efficient Ni mobilizer, apparently

solubilizing Ni associated with Mn oxides, and

this appeared to be related to the exudation of

oxalate. On the other hand, strain SBA82 also

led to the release of Ni and Mn, albeit to a much

lower extent. In the latter case, the concurrent

mobilization of Fe and Si reflects preferential

weathering of Fe-oxides and serpentine minerals,

possibly related to siderophore production capac-

ity of the strain. However, some conflicting

results showed that the presence of siderophore

producers decreased the uptake of metals by

plants. Siderophores produced by Pseudomonas

sp., Serratia marcescens, and Streptomyces
sp. had either no effect or negatively affected Zn

and Cd uptake by Salix caprea (Kuffner et al.

2010). These contrasting effects suggest that the

mechanisms underlying metal uptake are largely

plant dependent, but that the efficiency of

siderophore producers to either mobilize or

immobilize heavymetals from soils is also depen-

dent on several factors such as the binding form

of the heavy metals present, the charge of the

siderophores, and the pH of the soil and its min-

eral composition and organic content.

The influence of organic matter content in soil

on metal availability and uptake by plants has

been extensively studied. It was reported that

metal adsorption onto soil constituents declined

with decreasing organic matter content in soils

(Zeng et al. 2011). Moreover, dissolved organic

matter (DOC) in soils may increase the mobility

and uptake of heavy metals by plant roots

(Du Laing et al. 2008). In fact, organic matter

decomposition appears to be one of the most

important microbial activities in the rhizosphere,

and it is well known that microbes, mainly bac-

teria and fungi, utilize a wide spectrum of

organic compounds such as sugars, organic

acids, and amino acids to more complex

molecules such as cellulose, pectin, lignin,

lignocellulose, chitin, and starch. Consequently,

organic matter decomposition by soil

microorganisms releases metals such as Fe, Mn,

Zn, Cu, Mo, Ni, Co and Se, which are typically

found in the tissues of organisms.

6 Final Remarks and Future
Directions

It seems clear that the rhizosphere microbiome

plays an important role in plant trace elements

bioaccumulation, given experimental evidence

suggesting that by reshaping this microbiome

we can further enhance the efficiency of

phytoextraction and phytomining. However, the

efficacy of plant-associated bioinoculants is

dependent on a complex array of interacting

factors: plant-microbe specificity, soil type and

properties, trace elements concentration and type

(mono- or poly-metallic), proliferation and sur-

vival of the inoculant, etc. Moreover, from the

literature it can be seen that inoculation methods

differ greatly among studies (inoculation of seed/

plant/soil, frequency/timing of inoculation

events, bacterial cellular densities, etc.), and

these aspects are likely to influence whether or

not a beneficial microbially induced effect is

observed.

Bioaugmentation can be challenged by the

strong competition encountered in the soil when

a selected microbe is introduced. Also, the

selected host plant species may not necessarily

be compatible with the inoculated bacterial or

fungal strain, since these are not naturally

selected for by the host (Thijs et al. 2016). The

importance of rhizosphere competence or effec-

tive root colonization in beneficial plant-microbe

interactions is underlined by several studies as

contributing to the success of bioaugmentation

(Lugtenberg and Dekkers 1999). Moreover, inoc-

ulation methods should be optimised in

orderoptimized to enhance the success of the

introduced microorganisms (Álvarez-López

et al. 2016b). Pereira et al. (2015) and Álvarez-

López et al. (2016b) recently showed that the size

of the inoculum applied in the soil rhizosphere,

and the mode of application (seed or soil
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inoculation), are important factors that should be

taken into account when planning MAP

strategies. Endophytes do not have to compete

with the large abundance and diversity of soil

microorganisms, which may enhance their

chances of establishing a stable and active popu-

lation. To date, the field of MAP has focused

on the use of individual bioinoculants. However,

promising results have been found when using

mixtures or consortia of different PGP-strains

with complementary actions. Visioli et al.

(2015) reported that co-inoculating the

Ni-hyperaccumulator Noccaea caerulescens,

when growing in serpentine soil with two root

endophytes belonging to the Arthrobacter and

Microbacterium genera, had a more positive

effect on plant growth, soil Ni removal, and Ni

translocation, than when inoculated individually.

Both strains were strong IAA producers and

presented ACC deaminase activity. Moreira

et al. (2016) showed the benefits of combined

inoculation of AMF and PGPR for the growth

of maize as an ‘energy-crop’ in metal-polluted

soils and their potential application in

phytomanagement strategies.

Ultramafic rocks occupy <1% of Earth’s land

surface and these outcrops have the potential to

provide multiple ecosystem services and contrib-

ute to producing renewable raw materials and

energy (i.e. agromining). In the same way, pol-

luted soils are an ever-increasing environmental

concern due to increased industrialization.

Phytoremediation coupled with bioaugmentation

could be a solution towards the recovering soil

quality, underlining the role of the rhizosphere

and microbes associated with hyperaccumulator

plants in metal accumulation.
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