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ON THE MEAN FIELD LIMIT FOR CUCKER-SMALE MODELS
R. NATALINI AND THIERRY PAUL

Asstract. In this short note, we consider the Cucker-Smale dynamical system and we derive
rigorously the Vlasov-type equation introduced in [8] in the mean-field limit without using
empirical measures. The vector field we consider is sublinear Lipschitz continuous and the
initial data are compactly supported.
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1. INTRODUCTION

The Cucker-Smale model [2, 3] is a particles system which exhibit the so-called
flocking phenomenon, namely the dynamical property of alignment of all the velocities
and gathering of all the positions asymptotically when the time of evolution diverges.
Its study has developed an intense activity these last years, see for example the intensive
bibliography in the recent paper [6].

It consists in the following vector field on R?#V
in = U;
N o e RY =
. Ui = :%le(xi—xj)(w—vj). rpvi € RY, i=1,...,N
]:

where 7 : R? — R is a bounded Lipschitz continuous function.
Associated to (1), the following Vlasov type kinetic equation on R?? was introduced
in [8]:

@ — )0 — ) f (. w>dydw> 0.

(2) Of'(z,v) +v-Vufi(x,v)+V, (ft(x, V)
RQd



2 R. NATALINI AND T. PAUL

So far the kinetic non-linear equation (2) has been derived in a Lagrangian point of
view, i.e. by following the trajectories solving the vector field (1) in the so-called
empirical measure

N
1
(3) H(xl,...,xn;vl,...,v]v)(xa U) = N Z 5(:6 - .I'z)5(’l) - Ui)-
i=1
Indeed, defining
(4) H%xl,...,xn;vl,...,w\/) = Hq’*t(ﬂh,~-~,$n;v1,m7UN)7
one shows easily that IT'(xq, ..., 2, v1,...,vy) solves (2) for each N.

This point of view follows directly the Dobrushin way of deriving the Vlasov equation
for the large N limit of Hamiltonian vector fields. The Cucker-Smale model (1) and its
Vlasov type associated equation (2) have been extensively studied in [6] and we quote
the following of their results: the function v is supposed to be positive, bounded,
uniformly Lipschitz continuous and satisfying (¢(r1) — ¥ (r2))(r1 —r2) < 0,711,179 > 0.

(1) the solutions of (1) satisfy for all ¢

sup [|z;(t) — z;(t)|| < C and  sup [jv;(t) — v; ()] < e "
ij<N i,j<N
where C' and D are two positive constants depending only on
sup; j<y [[%:(0) — z;(0)]| and sup; j<y [|vi(0) — v;(0)]].
(2) let Iy zoion,on) — #(0) as N — oo, then
lim sup W, (ITf —u(t) =0

N—00 1eR (T15 5T 301 5ee s, UN )

where W), is the Wasserstein distance of exponent p € N (see definition in Remark
3.5 below).

(3) Let [goap1(0) = 1, [gaavpe(0) =: ¥, [gauv*1(0) < 00. Then, for some E, F > 0
and any p,

1

</ o= 77‘|pdu(t)> "< Ee P

Recently, a more Eulerian way of deriving the Vlasov equation associated to Hamil-
tonian vector fields was introduced ([5], after [4]). It consists in considering the move-
ment of a generic particle solution to the Liouville equation associated to an Hamil-
tonian system, rather than considering the empirical measure associated to the Hamil-
tonian flow. Transposed in the (non Hamiltonian) present situation it reads as follows.

We will consider the pushforward! by the flow ® generated by the system (1) of a
compactly supported, symmetric by permutations of the variables N-body probability
density p% on phase space RV,

1We recall that the pushforward of a measure p by a measurable fonction ® is ®#u defined by [ pd(®#u) := [(po f)du for any measurable
function f.
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In order to describe the movement of a “generic” particle in the limit of diverging
number of particles, we want to perform an average on the N particles but one. This
means that we consider the first marginal of

(5) 'H P = ply
that is
(6) pr;l(‘va ‘g) = AQ(d—l)N p?\/'(£7 57 T2, 527 <5 LN, SN)dedgé s dIngN

Then we will prove that, when p% is factorized as p%t = (p™)*Y, where p™ is a
probability measure on R??, the marginal of ply tends, as N — oo, to the solution of

the effective non-linear Vlasov type equation (2):

(7) O’ (2,0) +v.Vp' + Vo(Gup') =0, p="=p" ¢ LY(R*, dzdv),
with, for any L! function p,
8 G.v) = [ 0l =) = w)o(y. w)dydu,

In fact, we can prove (see Remark 3.5 below) that the marginals at any order n of pf;

as defined by

(9)

pﬁV;n(xla 517 ooy I, fn) = / p?\f(xza 517 L2, 527 «o TN, gN)dxn—den—H <o dedgNa
RQdN(—n)

tends, in Wasserstein topology of any exponent p > 1, to the nth tensorial power of

the solution p' of the Vlasov equation, i.e. ph.. — (p")®". Nevertheless, for sake of

clarity of this short note, we will present in detail only the case n = 1.

This result (for n = 1), i.e. Theorem 2.2 below, has to be put in correspondence with
the item 2 of the results of [6] just described, but there several differences. First of all
our results hold true for more general initial data than the empirical measures. On the
other side, our result will not be uniform in time as in item 1, but this inconvenient
will be compensated by the fact that we will get an explicit rate of convergence in the
asymptotism N — oo.

Our methods will also apply to systems of the general form

.lei:UZ‘

(10) : |

o N ZCi,UiERd, 1=1,...,N
Ui = = 2 (@i —xj v —vg).
=1

where v(z,v) : R* — RY is a Lipschitz continuous function, bounded in (z,v), Corol-
lary 2.5 or bounded in x and sublinear in v, Theorem 2.4 and Corollary 2.6.

In the following, we will denote by Lip(7)(,.) the (local) Lipschitz constant of + at
the point (x,v) € R?*! and we will suppose, without loss of generality, that there exists
70 > 0 such that, for all (z,v) € R??,

v(x,v)

70|U|
Yolv]

IAIA
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where | - | denotes the Euclidean norm on R

We will show in Appendix A the gobal existence of the solutions to (10), with an
exponential growth in time with respect to the initial conditions. Of course, uniqueness
is a consequence of (the iteration in time of) the Cauchy-Lipschitz Theorem.

The Cucker-Smale vector fields satisfies this assumptions with vy = ||¢|| ~.

Note that the following Vlasov type kinetic equation on R? is obviously associated
to (10), in a natural way:

(11) Opf'(z,v) +v-Vuf'(z,v)+V, (ft(:c, v) / Y(z —y,v —w)f(y, w)dydw) = 0.
R2d

Let us immediatly notice that our assumptions on ~ contain the two assumptions in
Theorem 2.3 in [9]. The first one because of the Lipschitz and sublinearity properties
of 7, and the second one thanks to the fact, see [10, 11], that

su>\/¢w—VHSWNMW
| Lip(p)|<1

where T, is the Wasserstien distance of exponent 1, as defined in Remark 3.5 in the
present paper. Therefore, thanks to the results of [9], there exist a unique continuous
solution to (11) in Cy(R, P.(R*?), where P.(R*?) is the space of compactly supported
probability measures on R%.

2. THE RESULTS

In this section we will state our main results, but let us start by recalling the definition
of the second order Wasserstein distance distyk 2 (see [1, 10, 11]).

Definition 2.1 (quadratic Wasserstein distance). The Wasserstein distance of order
two between two probability measures pu, v on R™ with finite second moments 1s defined
as
Wau)? = nt [ o yfP(de.dy)
R xR™

el (1)

where U(p, v) is the set of probability measures on R™ x R™ whose marginals on the
two factors are p and v. E
That is to say that elements vy of I'(u,v), called couplings or transportation maps or

transport maps or just maps, depending of the authors, satisfy, for any test functions
a and b in Cy(RY),

/Rzm a(x)y(dz, dy) = /ma(x)ﬂ(dx), /Rzm b(y)vy(dz,dy) = /m b(y)v(dy).

The symmetry property in u,v is obvious and the separability property is easily
proven by taking the optimal coupling between p and itself equal to

(12) v = pi(z —y).
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Conversely, if Wa(p,v)? = 0, then [g., gm |z — y[*v(dz,dy) = 0 for some v so that
x =y v a.e.and, for any Borel function ¢,

/w(x)u(dx) — /w(x)v(dx,dy) - /@(y)v(dx,dy) = /w(y)l/(dy) = =V

The proof of the triangular inequality is much more involved, see again [1, 10, 11]).

We can now state the main result of this note, proven in Section 3.4.

Theorem 2.2 (Cucker-Smale model).
Let p' be the solution to (7) with an initial condition p € L'(R??) compactly sup-
ported and let ply., be the first marginal of ply = ®'H#(p™)®N, as defined in (6).
Then, for all N > 1, t e R,

2 (20 + |supplp™])) (e — 1\
BN [ X
2(pN,17p) = N% L
with
L:=2(1+ 8|\¢||§Oaniw(supp[pm])), U= /vpmdxdv
(by HUHLOO(SUPP(pin)) we mean sup (Jv]).

(x,v)Esupp[p™]
Remark 2.3. There exists an equivalent result for higher orders marginals of p(t) and
other Monge-Kantorovich distances but we prefer in this note to concentrate on the case
of first marginal and quadratic Wasserstein distance. The proof in the more general
situation is very close to the one presented here. See Remark 3.5 for some details.

Theorem 2.2 is actually a corollary of the follwing more general result, proven in
Section 3.2

Theorem 2.4 (General Cucker-Smale model with sublinear force).

Let p' be the solution to (11), v bounded on R??, with an initial condition pi" €
LYR2*?) compactly supported and ®' the flow defined by the system (10). Finally, let
Pl be the first marginal of ply := ®'#(p™)*N, as defined in (6).

Then, forall N > 1,t € R,

N

Wa(ply1, ') < C(ON
with

1
2

¢ t
C(t) = (4/ sup y(z — &', v — )]s L(“)d“cLs) :
0 (z,0),(

a! w')Esupp|pt]

L(t) = 2(1 + 2min ( ) Sup Llp (7)%%—%@—51)7 Sup Llp (7)?30—:5’71)—1)’))))'
zﬁ,lzl ..... N (xw),(2" v")esupp|pt]
(Y.E)esupplply]
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The following result is elementarly derived from Theorem 2.4.

Corollary 2.5 (General Cucker-Smale model with bounded globaly Lipschitz force).
Let p' be the solution to (11), v globaly Lipschitz and bounded on R*?, with an initial
condition p™ € L'(R*") and @' the flow deinfed by the system (10). Finally, let ply.,
be the first marginal of ply = ®'H#(p™)*N, as defined in (6).
Then, for all N > 1,t € R,

N

Wa(plya: p') < C()N™

with

N[

eM ) 9
Ct) = {4l A= 2(1+2Lip(7)7).
Note that no need of compacity of the support of p' is needed any more in Corollary
2.5.
The boundness in space and sublinearity in velocities of v allow to control the in-
creasing of the flow ®(¢), and leads to our next result, whose proof is given in Section
3.3 below.

Corollary 2.6. Under the same hypothesis as in Theorem 2.4 we have that, for all
N >1,teR,

N

Wa(plva: p') < C()N™
with

1
2

O(t) = 270(HUHL‘”(supp[pm])—i_HU”Ll(supp[pi"])) <2ee4wot4%(|U”Loo(supp[pin])-i-|U||L1(Supp[pm]))2€4t(64fyot . 1)) :

Let us finish this section of results by a simple remark. Flocking properties of the
solution of the Vlasov kinetic equation (2) can be derived from the corresponding
properties of the particle system (1), as in [7, 6]. But they can also be derived by a
direct PDE study of (2), as in [9]. This suggest a kind of inverse questioning: suppose
one determines some flocking properties for the solution of a general kinetic Vlasov
equation, e.g. (11). Does this infer on flocking properties for the corresponding particle
system, e.g. (10)? Our Corollary 2.6 gives some insight on this problem, as it tells
us quantitatively how close is the solution of the kinetic equation (and its tensorial
powers) to the marginals of any orders of the pushforward obey the corresponding
particle flow of a general N particle density.

More precisely, suppose that the solution p' to (11) satisfies the following property:

(13) supplp'] C B(z +tv, X) x B(v,Ve )



ON THE MEAN FIELD LIMIT FOR CUCKER-SMALE MODELS 7

for some positive constants z, X, v,V a.

1
2

¢ t
C(t) = (4/ sup y(z — ' v —v)|?e)s LW)d“ds) :
0 (z,0),(

x' ') Esupp[pt]

L(t) == 2(1+2min( sup  Lip wﬁyi—yzy&—&)’ sup Lip (v)iﬂ_m,m_w))).
Z_,lzl ,,,,, N (z,v),(x' ") Esupplp']
(Y,E)esupplply]

This implies that L(¢) in Theorem 2.4 can be easily estimated by
L(1) < 21+ 83 (0" + V7)) < 2(1 + 895(0° + V7))

and, therefore, in the same Theorem,
2(148(0*+V2)t _ 4
2(1+8(v2+V?)
Note that in (14), C'(¢) has an exponential growth, and not a douible exponential one
as in Corollary 2.6.

Of course the first marginal ply.; of the pushforward of (p™)*" by the flows induced
by the system (10) has no reason for being compactly supported, as we did not impose

anything on the particle flow. Nevertheless, the following result provides a weak version
of the property (13).

(14) C(t) < 4y (v° +V?)

Proposition 2.7. For all t,e > 0 let us define

N, (C(t))i

where C(t) is the function defined by (14).
Then, for any N > N;. and any Lipschitz function ¢ on R?? of Lipschitz constant
smaller than 1,

/ o(x,v)pna(t)dxdo < e,
R24\ B(Z+t0,X ) x B(v,Vet)

Proof. 1t is an immediate consequence of Theorem 2.4 or Theorem 2.6, and the fact
that the Waaserstein distance induces a metric for the weak topology in the sense that

sup /(,u — v)p(z,v)drdy < Wa(u.v)
Lip (p)<1

for any probability measures p and v ]

3. PROOFS

3.1. Preliminaries. Let us first recall the general situation we are dealing with, in
order also to fix the notations.
We consider on R? the following Cucker-Smale type vector field
v = Gy(X,V),i=1,...,N
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where
(16) Z’}/ — X, —U ])

Here the function v(x,v) : R?*? — RY is a Lipschitz, bounded in = and sublinear in v,
continuous function., such that y(z, v), Lip(7) () < 7o-

We used the notation X = (z1,...,25),V = (v1,...,0n).

In fact, we are rather interested in the Liouville equation associated to (15) [8],
namely

N
(17) Ouply +v - Vaply + > Vi (Giply) =0, p°* = ol
=1

with pit € P(R?).

Although the argument is standard, let us recall why the solution of (17) is equal to
the pushforward of p% by the flow ®; generated by (15): integrating p% against a test
¢ function composed by ®; gives

(18) at/@(q)t(Xa V))P%(X» V)dXdV:/SO(Xa V)at(q)t#P%(Xa V))dXdV
On the other side

) / o(D(X, V)X, V)dXdV = / (D1 - Vixwy0)(®(X, V))rholp (X, V)dX dV
— (.6 Vaw@) @ X V)X V)axay
— [(V.6): Vixwy ) (X V) @it (X, V)X aV
(19) = — / e(X, V) (Vixv) - (V,G)@u#tpi (X, V)dXdV

So that (18) and (19) implies that ®;#p% solves (17).

We want to prove that the marginals of pl; tend, as N — oo, to the solution of a
Vlasov type equation.

Such Vlasov-type equation associated to (17) has (introduced in [8] for the Cucker-
Smale model) reads

(20)  Op!(z,v) + 0.V, p' (2, 0) + Vo (Gpp'(z,v) =0, p=° = pi" € L} R, dzdv),
with
1) Gylaro) = [ ol = 1.0 = wlply. widyd.

We can now sprove the main results of this paper.
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3.2. Proof of Theorem 2.4. The proof will be articulated around the following four

lemmas.
Let 7& € TI((p™)®N, (p'™) ) satisfy
(22) T, 4w = 7l for each 0 € Gy,
where Gy is the group of permutations of N elements and
To(x1,v1, ., TN, NS YL, &Ly - - - UNS EN)
= (To(1), V(1) - - - » To(N) Vo (N)> Yo (1) §(1)s - - » Yo (V) Ea (V) -

We will denote X = (z1,...,2n),V = (v1,...,0n),Y = (yl,...,yN),_ = (&, ..., ¢&N).
The following first Lemma will be one of the keys of the proof of Theorem 2.2.

It consists in considering in evolving a coupling 7% of two initial conditions of the

Liouville (17) and Vlasov (20) equations by the two dynamics of each factor of 7.

Lemma 3.1. Let wn(t) be the (measure) solution to

(23) Oy + V.Vxry + = VYWN-FZ V& Gi(Y,Z)mn) + V,, (G (xi,v:))7N)) =0
1=1
with mx(0) = w4,
Then, for allt € R, wn(t) is a coupling between p'y and (p")*Y. Moreover my(t) is
nvariant by permutations T .

Proof. By taking the two marginals of the two sides of the equality, one get that
they satisfy the two Liouville and Vlasov equations. The result is then obtained by
uniqueness of the solutions of both equations. [

Lemma 3.2. Let

Dn(t) NZ(M — yl” + Jvj — &*)dmn (t)
j=1
_ i . 2 _m™\2
= & [((X Y2+ (v = 2P)dna(0).
Then
dD 1 —
N ®N
TN < By + N;/mpt(xi,vz) Gi(X, V) ()N dxaV |
with
(24) L(t) =
2(1 + 2min su Li su Li )
( ( z‘lzl,.I.).,N p( )(95 —,0;—;)" il:I,P.,N p( )(yz —y,i— fz)) )
X, V)Y, Ee€supplmn (t)] X, V)Y, Z€supp[ry(t)]

Proof. We first notice that

dZN N/( —5).(X-Y)+ ;(vi&).(Gpt(xi,vi)Gi(Y,E))> dmy
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Using 2uv < u? 4 v? we get

N
dDN 1 2 —\ 2 — 2
— < = - —— i\r,=) — t\Lig, Uj
S N/((X Y) 42V ))+ZE_1 |Gi(Y,E) — Gp(zg,v)|” | dry

(25) < DN(t)Jr% / (Zai(y,

Let us add to G;(Y,E) — G (x;,v;) the null term (G;(X,V) — G;(X,V)) so that
Gi(Y,E) = Gp(zi,v)|* < 2(|Gi(Y,E) = Gi(X, V)]* + |Gi(X, V) = G (i, vi)[P)
Let us first estimate
|Gi(Y,Z) — Gi(X, V) < min (Lip(Gi){y v, Lin(Gi){yz) (IX =Y + [V - E[).
By (16), we have
min (Lip(Gi)%Xy), Lip(Gi)%KE))

< min( sup Lip (y(z; — 21, v; — v)?, sup Lip (v(yi — wi, & — &)°)
I=1.. N I=1,...N

(1]

) — Gpt(xi,vi)|2> dmy.

.....

N

2 - -

v | L 16:0:2) - G Pratax. av.av i)
< 4min ( S Lip (y(@; — 21,0 — ), Sup Lip (Y(yi — ui, & — &)%)

il=1,..., il=1,...,
X, V.Y, E€supp[rn (t)] X, V.Y, Z€supp[ry(t)]

XDN (t)

And the lemma follows by (25). O

It remains to estimate in (25) the term

N
1
[ SIGHXV) = Gl vy (X, V.Y, )
j=1

N
1
- N / D 1GHX, V) = Gyl vi) ()N dX dV
j=1
The following result is a straightforward extension of Lemma 3.3. in [5] with the

special value p = 2 and d replaced by 2d.

Lemma 3.3. Let p be a compactly supported probability density on R*! and let F be a
vector field on R*.
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For each j =1,...,N, one has

(26) )

N
1 4
/ Fxp(xjvj) —— ZF(JTJ —ap, v — )| pPPNAXdV < —  sup  |F(zj—x,v,—0)[%
N N
k=1 (z,v)€supplp]
Proof. Let us denote
(27) V(ZC,’U) ::F*p<xj7vj)_F(xj_$7Uj_v)
One has
1« :
Fxp(xj,vj) — N ZF(JJ] T, v; —vg)| pPNdXdV
k=1
2
p*NdXdV
k=1
= > /V(xk, vR)v (i, o) p?N dX dV

v(zy, vk)Q,o(xk, vy )dxpduy,

2

[
2= Z- 3= F- T T
=] -
E
A
C)
S

1
v(xg, vr)’p(ag, vp)degdog, < —  sup  v(z,v)
N (w,v)Esupplp]

.....

since [ p(z,v)dzdv =1 and, by (27),
/V(a:, v)p(z,v)dzdv = 0.

By (27) again, |v(z,v)| <2 sup |F(z; —x,v; —v)| and the lemma is proved. [
(x,v)€supp[p]

Lemma 3.3 with F(z,v) = v(z,v) together with Lemma 3.2 gives immediatly that

dDy 4
——= < L(t)Dy + — sup y(z — 2,0 =)
dt N (x,0),(z' ") Esupplpt]
and, by Gronwall’s inequality,
t 4 ¢ t
(28) Dp(t) < Dy (0)eh He)ds 4 — / sup Iy(z — 2, v — ') els Ldugg
N Jo @) (e 0r)esupplo’]

Let us denote by (7x(t))1 the measure on R?! x R?? defined, for every test function
p(z1,v1391,&1), by

/ ey (dX,dV;dY d=Z) = / o(x1, 01591, &) (T (1) )1 (dxy, dvy; dyq, dEy)
R24N  R2dN R24%x R24

2
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We now notice the following obvious fact.
Lemma 3.4. (7y(t))1 is a coupling between ply., and p.

Since 7y (t) is symmetric by permutations, one has easily that

29 Dx(t) = [(lar =l + o1 = &P )0
and Lemma 3.4 immediately implies that
(30) Dy (t) = Wap(t), (p(t))?,
so that, by Lemma 3.3,
(31)
16 [

Wolpr(0), (o)1) < Dy(@)eh MO0 75 | sup =i G — Gl X0 ds.
0  k,il,dots,N
(Y.E)esupplply]

Remember that (31) is valid for D(0) as defined in Lemma 3.2 for any my coupling
(pi)®N with itself. Since W5 is a distance, one has, for any of these 7,

Wal(pl)™, (o)) = [((X = ¥)? 4 (V = 2)dr = NDy(0) =0

so that
o _ 4 [
Wa(p1(t), (p(1))1)” < &
0
Finally, choosing fo 7% the optimal coupling (see (12))

(Y, 2, X, V) = (pi")*M(X,V)§(X = Y)§(V — E),

]

sup v(x — 2’ v — v’)|2efst Llwdu gy
(x,0),(2' V") Esupp|pt]

one get immediatly that

(Y,E; X, V) € supplrn(t)] = (Y.E) € supp|ply] and
S (X,V) € suppl(s))™] & (zi,vi) € supplyf], i = 1,..., N.
Therefore, after (24)
(32) L(t) :=
20+ 2min( sup LD gegr S L)) )
il=1,..., (z,),(z' ') Esupp|p]

(Y.E)esupplpiy]
Theorem 2.4 is proven.

Remark 3.5 (Higher order Wasserstein and marginals). As we wanted to leap this
note as short as possible, we expressed our results only for the first marginal py. in
the 2-Wasserstein topology, but the method developed in [5] allows as well, with the
same kind of modification than the ones used before in this section, to the higher cases.
Let us remind, for p > 1, the definition of W,(u,v) for two positive measures i, v (cf.
Definition 2.1

Wy(p,v)P = inf / |z — y|Py(dx, dy),
’YEF(#,V) RmxR™
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and, for any probability measure p on R*™ andn =1,..., N, the definition of the nth
marginal pn., defined on R2dn

pN;n(xla ceey Ly Uy e e ;Un) =

/ PU(T1, o Ty Tt 1y e ooy TN ULy ooy Uy Upt 1y« - - s UN ) AT -+ - dTNdUp 1 - . . dUy.
R2d(N—n)
One gets, for eachp>1, N>1andn=1,...,N,
1 ¢ N — min (p/2,1)
EWP(pN;m (p) )p S Dpan(t)N brs
with

t t
D, (t) = 22 max (1,p — 1)([p/2]+1) / sup [ (yr—y, E—&) P2 oD [L L{w)dug
0 k,)l=1,dots,N
(Y,E)esupp|ply]
where

L(u) =14 271 sup Lip(V)(yo e
(,v),(y,€) Esupplp]

The main changes in the proof are the use of the Young inequality
pur? ™t <P 4 (p — 1)v? < max(1,p — 1)(u? + o)

instead of 2uv < u? + v? before (25), the converity of | - |P for p > 1 and a variant of
the contents of Lemma 3.3 which reads

/

2[p/2] +2 ,
—  Nmin(p/2,1 k,llsjclll;Et)S,N |F(y/€ — Y, gk - £Z)| .

(Y,2)esupp|ply]

p

1
Fxp(xj,vj) — N ZF(.CU] — a0 —v;)| p*NdXadV

1

N
k:

Finally, the statement of Lemma 3.4 becomes now easily that wn(t), is a coupling
between ply.,, and (p")*", where wy(t), is defined through by

/ o (dX, AV dY dZ) — / o (O, v, 1 - (s v39,€)0)
R24N « R2dN R24x R24

for every test function o((x,v;y,&)1, ..., (2, 0;y,&)n),

3.3. Proof of Corollary 2.6. We get to estimates L(t) and C'(¢) as given in Theorem
2.4 out of the estimates established in Appendices A and B.
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Let us recall that

I—J(t) = 2(1 + 2 Hlln( ) Sup Llp (7)%%—%@—&)7 Sup Llp (7)%95—33’,@—1/))))'
zﬁ,lzl,...,N (z,0),(2' W' Esupp|pt]
(Y.E)esupp|py]
< 2(1+42 sup Lip (7)%55—1«/,@—@/))-
(z,0),(2" v')€supplp’]
<ot s o)

(z,0),(z' v") Esupp[p']
2(1+8y;  sup  |vf’)
(2,v)Esupp|p']
W+82  sup (D) 0)P)

(z,v)esupp[p™]

IA

IA

Thanks to (37), we get
L(t) < 2(1 + 1673647@(”@“Loo(supp[pi"]) + ”vHLl(supp[pm]))Q)

By the same argument, we get

¢ t
C(t)? = 4/0( y sup y(z — 2!, v — ') 2els Ldugg,

' ') esupp|pt]
< 3295 (10l o (suppton)) + 191 L1 supplpin))?

t
2 ) . 2( 470t _ 47ps
X / e1(054t=8) 1670 (101 Loo (supplping) HIVI L1 (suppping))* (€707 =€770°) A0 4
0

< 873(“UHL°°(SUPP[PM]) + HUHLl(supp[Pi"]))266470%70(”UHL°°(Supp[pm])+||U‘|L1(supp[pi"]))2€4t(64%?5 — 1)

Corollary 2.6 is proven.

3.4. Proof of Theorem 2.2. In order to prove Theorem 2.2, we need to estimate, in
the Cucker-Smale particular case, that is when

(@, v) = P(@)v,
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the two quantities

2

t t
C(t) = (4/ sup y(z — 2, v — ') [Pels L(“)d“ds) :
0 (z,v),(

x' ') Esupplpt]

1
2

¢ t
< 2||Y||0o / sup v — o [els HWdugg |
0 (z,0),(z'v')esupplp’]

L(t) := 2(1+2min( sup  Lip w)%yﬁyzér&)’ sup Lip (’}/)?xfx’,va’))))'
iﬁ,l:l ..... N (z,0),(x' ") Esupplp!]
(Y,Z)esupp|ply]
. 2
< 2(1+2  sup - Lip (7)(y—y.g-e)

il=1,...N
(YV,E)esupp[ply]

< 202l sw o l6-aP)
(Y, E)esupplphy]

We will need just a very little part of the stability results expressed by Ha, Kim and
Zhuang, namely the following lemma, taken from formula (8) in Lemma 2.1 in [6]:

d
— sup |ur(t) —w(t)] <0, Vi,
dt p1=1..N
which leads naturaly to
2 2
i,l:SE.I.).,N ‘gz - €l| < 4||U‘|L°°(supp[pi"])'

(Y,E)esupp|ply]
This implies
(

We will estimate sup v — &7 < 2 sup
(,0),(y,€) Esupplp'] (,0),(y,§) Esupplp']
Lemma 3.2 in [9] which stipulates that

supp,[p'] C B(v,V(t))
with o = [vp™dzdv and LV (t) < 0.
Therefore ||v||re(suppl)) < 0| + V(0) so that, since one can take V(0) = |v| +
|supplp™]],

[v]? + |€]*) wthanks to

sup o =o' < 2[[9)1%] (2l0] + |supp[p™]])*.
(x,0),(z'v")Esupp|p’]
and

=

2

t
ol < mwwé(2[}m@r%mmeMb%”“%k)

et 1\
= 2l (200l + sl )

Theorem 2.2 is proved.
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APPENDIX A. DYNAMICAL ESTIMATES FOR GENERAL CUCKER-SMALE PARTICLE
SYSTEMS

In this section,we give global estimates on the flow ®(¢) generated by (10).
We have, for each e =1,..., N,

d )
%\%‘\ < |04
1 < 1 &
< NZ U]aUZ_Uj>|§N21’YO|Uz’_U]
1 P j
(33) < NZ (Jvj] + |vil),

d N N
=3 il <20 il
=1 =1

and, by Gronwall inequality,

(34) Z lv; (1)] < Z |v;(0) €270,

Turning back to (33), we get by (34), for ea(:h i=1,...,N,

d
L) < ol + 23 oyl < ol + 06 3 0

j—l 7=1
< olvil +70e™" max |v;(0)].
j=1,...,.N

—4L,...

Therefore, again by Gronwall Lemma and uniformly in NV,

; et — 1
i) < € (|vi(0) +0 max [v;(0)] - )
(35) <  max |v,(0 )‘6270t, i=1,...,N.
j=1,..N
Finally, (10) gives immediatly that
2ot 1
— < = ., V.
fea()] = [0 £ max fosO)1 )= i =1, N

APPENDIX B. DYNAMICAL ESTIMATES FOR GENERAL CUCKER-SMALE KINETIC
SYSTEMS

Let us recall that, according to Theorem 2.3 in [9], there exist a diffeomorphism ®(¢)
on R?® such that the solution p’ of (11) is given by

p(t) = 2(t)#p™.
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Moreover, ®(t) solves the system

(I)(t) o <(I)I(t)) . ( (I)v(t) >
- \2,(1) (v ') (@) = [~+(® Y, Do(t) — &)p!(y, &) dds
Therefore,
d : t t
30 L0180 < 0 120+ [ 16160 )y,
Obviously |||l = |7l = 1
Lemma B.1.
/|v|ptdxdv < eQVOt/\v\pmdajdv.
Proof.
d
£/|v|ptda:dv < |/|v|ptdxdv\
< | [ W19l [ 2t = 0 = 0/ 0.0 (2,0)dndedyi]
< b/“wgywxcv++\gbpﬁghaJp%aav>dxdvdyd§

< 27 / |v|p dwdv
The result follows by Gronwall inequality. ]
Thanks to Lemma B.1, (36) becomes

d .
C10u(0)] < BlBu0)] + 206" / ol dedo,

and,by Gronwall Lemma, we have
D, (t)(z,v)] < P (|v| + (e — /|v|pmdxdv

(37) < 62%t(|‘UHL°C (supplp)) T 1V]| 2t (supplon) )
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