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Abstract. Acoustic measurements provide convenient non-invasive means for the characterisation of ma-
terials. We show here for the first time how a commercial impedance tube can be used to provide accurate
measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective
“acoustic” density, over the 0.5-6 kHz frequency range. We demonstrate this using two types of liquid
foams: a commercial shaving foam and “home-made” foams with well-controlled physico-chemical and
structural properties. The sound velocity in the latter foams is found to be independant of the bubble size
distribution and is very well described by Wood’s law. This implies that the impedance technique may be a
convenient way to measure in-situ the density of liquid foams. Important questions remain concerning the
acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-
chemical composition and the bubble size distribution of the characterised foams. We confirm differences
in sound velocities in the two types of foams (having the same structural properties) which suggests that
the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.

PACS. 4 7.57.Bc, 43.20.+g

1 Introduction

Liquid foams consist of closely packed gas bubbles, which
are immersed in a liquid carrier matrix and stabilised by
surfactants [1,2]. They are widely used in applications
and as model systems to deepen our understanding of the
physical properties of complex fluids. Due to their com-
plex properties, in-situ characterisation of structural or
dynamic properties of liquid foams remains a great chal-
lenge. This concerns in particular their acoustic proper-
ties. Whilst acoustic characterisation has become a stan-
dard technique in the case of solid foams [3], emulsions or
particulate dispersions [4], the acoustic properties of liq-
uid foams remain to be elucidated. Isolated progress has
been made in the subject [5,6], showing, for example that
Wood’s law [7] may be used reliably to predict the veloc-
ity of sound in most liquid foams, when the bubbles are
much smaller than the acoustic wavelength:

vW =
√

P0/(ρℓΦ(1 − Φ)), (1)

where P0 is the ambient pressure, ρℓ the mass density of
the liquid and Φ the liquid volume fraction. However, for
some foams [8,9], the sound velocity is larger than what
is predicted by Wood’s law. Of particular interest is the
presence of resonance effects [10–12]. This may provide
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an elegant tool for bubble size measurements in liquid
foams, but its precise nature remains to be elucidated.
Furthermore, many questions remain concerning the com-
plex interplay of different dissipation mechanisms and the
influence of the physico-chemical nature of the foam. For
example, it is not clear how the presence of an interfacial
or bulk visco-elasticity influences the acoustic properties
of the foam.

Comparison of acoustic investigations done up to date
remains a challenging exercise due to significant variations
in acoustic techniques applied or types of foams used. To
overcome this problem, we propose here the use of a well-
established, commercially available tool: the impedance
tube [13]. This technique is widely used for the character-
isation of porous media in the kilohertz frequency range. It
is usually not used with liquids, but we show here that the
same device can be employed for the characterisation of
liquid foams without technical adaptation (Section 2.3).
We furthermore propose a procedure for analyzing the
data to obtain precise measurements of the foam density,
and velocity and attenuation of the acoustic waves for a
frequency range of 0.5-6 kHz (Section 3). We demonstrate
the success of this approach (Section 4) using liquid foams
in which we control explicitely the most important pa-
rameters, such as the physico-chemical composition, the
bubble size distribution and the liquid volume fraction
(Section 2.2). We show that care needs to be taken when
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working with physico-chemically less controlled foams like
shaving foams, as has been done in the past.

The interest of the application of this impedance tech-
nique to liquid foams is two-fold. On the one hand it may
provide a convenient tool for the in-situ characterisation
of liquid foams. On the other hand it may help shedding
light on important questions concerning the response of
liquid foams to rapid deformations in complementing more
established foam characterisation techniques (like rheome-
ters), which are limited to excitation frequencies of about
10 Hz.

2 Materials and methods

2.1 Materials

The samples investigated here are liquid foams. We chose
two representative systems. The first one is a commer-
cial shaving foam (Gillette, “Sensitive skin”) which serves
to compare with previous literature [9,11,14]. The bub-
bles of a shaving foam are composed of mixtures of bu-
tane/propane and the foaming solution contains a com-
plex physico-chemical composition designed to optimise
the stability and flow properties of the foam. Since this
exact composition is unknown, we have chosen to work in
parallel with a physico-chemically simpler system whose
composition we can control. For this purpose we use an
aqueous solution (millipore water) containing 10 g/L of
SDS (sodium dodecyl sulfate) and 0.5 g/L of xanthane.
SDS is known to be a good foamer, while xanthane is an
anionic polysaccharide (Sigma Aldrich) with a cellulosic
backbone which is commonly used as foam stabiliser [15].
This is due to its visco-elastic nature even at low con-
centration, which slows down the gravity-driven drainage
of liquid between the bubbles (Appendix A). Moreover,
xanthane solutions are strongly shear thinning at the con-
centrations used here, which is an important prerequisit
for reliable foaming. In order to further reduce any age-
ing effects of the foam, we generate the foams using air
containing C6F14, which is nearly insoluble in water. The
presence of these molecules generates strong partial pres-
sures which conteract the typically encountered exchange
of more soluble gasses (like nitrogen in air) between bub-
bles of different pressures. Combining the effect of the xan-
thane and the C6F14, we can reasonably assume that the
foams remain homogeneous during the acoustic measure-
ment (less than 1 min). Only in the case of foams con-
taining a high liquid content, the effect of the xanthane is
less efficient, hence leading to a gradient in liquid fraction,
which is discussed in more detail in appendix A. Note that
Gillette foams are also known for ageing very slowly [11].

2.2 Foaming and foam characterisation

Gillette foams are generated by simply dispensing them
from their commercial foaming device. In order to gen-
erate SDS foams with similar bubbles sizes and liquid
fractions, we use a double-syringe technique (see Fig. 1a).
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Fig. 1. Scheme of the setups used to produce (a), characterise
(b) and measure the acoustical properties (c) of liquid foams.
(a) With the two-syringe technique, liquid foams with tens of
micrometers bubbles and controlled liquid fraction can be ob-
tained. (b) Typical image of a bubble raft analysed for bub-
ble size determination (here sample SDS 5%A). (c) Impedance
tube: the reflection coefficient U2/U1 of the sample is deter-
mined by measuring the pressure field with two wall-mounted
microphones. Note that for measurements with liquid foams,
the tube is hold vertically.

This technique consists in connecting two syringes which
contain the gas and the liquid to be foamed. By repeat-
edly pushing liquid and gas from one syringe to the other
through the narrow connection (here 10 mm long and 1.6
mm wide), both mix due to the strong shearing action
in the constriction and create a homogenous foam with
bubble sizes of the order of 10-100 micrometers. The liq-
uid fraction of the final foam is fixed by the ratio of the
amount of liquid to the total internal volume of one sy-
ringe. If the liquid phase has a good foamability, liquid
fractions from 3 to 30 % can be obtained, with a typical
accuracy of 1 % with the syringes we used.

In order to measure the bubble size distribution of the
different generated foams, we take a small drop of the liq-
uid foam and pour it on a bath of the foaming liquid,
hence generating a monolayer of bubbles (see figure 1b).
This two-dimensional structure can be easily imaged us-
ing a digital camera and analysed using an image analysis
software (in our case ImageJ). We show two typical size
distributions in Fig. 2, for a Gillette and an SDS foam.
We use these distributions to calculate the mean bubble
radius, the polydisperse index (normalised standard devi-
ation) and the Sauter mean radius (R32 = 〈R3〉/〈R2〉), the
latter of which is commonly the more appropriate quantity
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in the description of dynamic properties of polydisperse
foams.
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Fig. 2. Histograms of two representative bubble size distribu-
tions, for two liquid foam samples.

We generate foams with liquid fractions between 3 and
30%. The Gillette foam has 7% liquid volume fraction. The
average bubble sizes vary between 30 and 140 µm, with
polydispersity index PI of 0.4-0.7. The results of Section 4
will be discussed using eight representative foam samples
whose properties are summarised in Table 1. It is impor-
tant to note that the difference between the A and the B
SDS foams resides in the content of C6F14 in the gas of the
bubbles. While in the A group the air had been saturated
with C6F14, foams of the B group contain only traces of
C6F14.

Table 1. Liquid fraction Φ, mean bubble radius 〈R〉, polydis-
persity index PI and Sauter mean radius R32 for 8 of the inves-
tigated liquid foams. The liquid fractions reported for the SDS
samples correspond to the target value of the 2-syringe tech-
nique; for the Gillette samples, Φ was estimated by weighting.

Sample Φ (%) 〈R〉 (µm) PI R32 (µm)
SDS 5 % A 5 27 0.42 38
SDS 5% B 5 54 0.65 120
SDS 10 % A 10 22 0.46 33
SDS 10% B 10 20 0.70 53
SDS 20 % A 20 16 0.49 26
SDS 20% B 20 25 0.57 46

GILLETTE 1 7 26 0.51 44
GILLETTE 2 7 22 0.43 32

2.3 Acoustic measurements

The acoustic measurements were performed with a com-
mercial impedance tube (type 4206, B&K), which employs
the two-microphone technique [13,16]. The principle of the
method is the following: a loudpseaker generates plane

waves in the tube, which are reflected by the sample with
a reflection coefficient U2/U1 (see Fig 1c). By measuring
the pressure field at two points in the tube, one can deter-
mine U2/U1, which is related to the acoustic impedance
of the sample. As shown in Section 3, if the thickness d
of the sample is precisely known, one can determine the
density of the sample, as well as the acoustic velocity and
attenuation.

In practice, the impedance tube was installed vertically
and the liquid foam was poured into the sample holder,
typically on a thickness of the order of 2 cm. Then its sur-
face was flattened and, if necessary, the position of the
backwall was adapted so that the surface of the liquid
foam was at x0 = 0 (see Appendix B). The tube was closed
with the sample in place, and the acoustic measurement
was performed, which took less than one minute. After
the measurement, the holder was opened and the pre-
cise thickness of the sample was measured with a caliper
(±0.5 mm). Bubble sizes were measured before and after
the acoustic measurement to verify that foams did not
change.

Due to gravity, there is a gradient of liquid fraction
within the foam. However, given the bubble sizes and the
thickness investigated here, the samples can be considered
as homogeneous to a first approximation. Indeed, a char-
acteristic length over which the foam may be considered as
homogenous can be estimated by ℓ2

c/(
√

ΦR32) [17], where

ℓc =
√

γ/ρg is the capillary length. This is of the order of
20 cm for most of the foams we consider (see Table 1). A
more detailed discussion of the drainage can be found in
Appendix A.

3 Data Analysis

In the case of a semi-infinite sample, the reflection coeffi-
cient is directly related to the impedance Z of the sample
by U2/U1 = (Z−Z0)/(Z+Z0), where Z0 is the impedance
of air. In the case of a finite sample, one defines an input
impedance Z⋆, which accounts for the multiple reflections
in the sample, defined by

Z0/Z
⋆ =

1 − U2/U1

1 + U2/U1
. (2)

Z0/Z
⋆ is the dimensionless input admittance of the sam-

ple. The backplate behind the sample (at x = d) being de-
signed to be perfectly rigid, the input impedance is given
by

Z⋆ = Z/(i tan(kd)), (3)

where k = k′ + ik′′ is the complex wavenumber in the
sample, and d its thickness. As Z = ρω/k, Z⋆ depends on
k in a complicated way. If the attenuation length is larger
than the sample thickness, i.e. k′′d ≪ 1, Eq. (3) can be
simplified into

Z0

Z⋆
= i

Z0

ωρ
(k′ + ik′′)

tan(k′d) + ik′′d

1 − ik′′d tan(k′d)
. (4)
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An analysis of Eq. (4) shows that the real part of the ad-
mittance reaches a maximum for k′d = π/2 (modulo π).
This is confirmed by our experiments, as shown in Fig. 3
which reports the dimensionless input admittance mea-
sured on a liquid foam sample as a function of frequency.
The real part of the admittance indeed shows many peaks.

As the peaks are quite narrow, it seems reasonable
to assume that k and ρ do not vary significantly with fre-
quency within a peak. Then one can calculate that, as long
as Eq. (4) holds, the velocity v = ω/k′, attenuation α = k′′

and mass density ρ of the sample can be determined by
three features of peak n: frequency fn and amplitude Mn

of its maximum, and width ∆fn. For peak number n, one
then has

v =
4dfn

1 + 2(n − 1)
, (5a)

ρ =
Z0

πd∆fnMn
, (5b)

α = [1 + 2(n − 1)]π
∆fn

4dfn
. (5c)

As an example, for the second peak of Fig. 3, one can
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Fig. 3. Dimensionless input admittance measured as a func-
tion of the frequency; here for sample SDS 10 %A, with thick-
ness d = 1.93 ± 0.05 cm. Insets: close-ups of the second and
sixth peaks, showing result of the local fitting. Eq. (3) is plotted
for two cases: with the parameters given by Eqs. (5) (dashed
lines) and with the ones given by the least square fit (solid
lines).

measure f2 = 1.29 kHz, ∆f2 = 0.10 kHz and M2 = 0.565,
which leads to ρ = 119 kg/m3, v = 33 m/s, α = 9 m−1.

When Eq. (3) is plotted with these values (see top left
inset in Fig. 3, dashed lines), a good agreement is found
with the experimental data. However, as the attenuation
increases with frequency, the k′′d ≪ 1 approximation be-
comes less accurate at higher frequencies. For example,
for the sixth peak, when Eq. (3) is plotted with the val-
ues given by Eqs. (5), the agreement is not satisfactory.
A better agreement is obtained when a least square fit
is performed, using the values of Eqs. (5) as first guesses
(see solid lines in the insets of Fig. 3). Note that the fitting
is done only on the real part of the admittance, because
the imaginary part is sensitive to the exact position of the
surface of the sample (see Appendix B).

From the Z0/Z
⋆ vs f curve, the peaks were fitted to

determine ρ, v and α as functions of frequency. The num-
ber of frequency points accessible depended on the num-
ber of peaks one could analyze. For sample SDS 10 %A
(Fig. 3), seven peaks could be analyzed, given access to
measurements from 0.5 to 5.5 kHz.

4 Results

4.1 Velocity and density

It is important to note that, throughout this article, we
call density (noted ρ) the effective density of the foam,
i.e. the one measured acoustically which we then compare
to the effective density measured by non-acoustic means,
refered to as the “liquid fraction” in order to make the
difference. Figures 4a and b show the density and veloc-
ity found for the eight different liquid foam samples pre-
sented in Table 1. For each liquid fraction, very similar
results are found for samples A and B, indicating that Φ
is the main parameter governing v and ρ. As expected for
liquid foams, very low sound velocities are found. Further-
more, the measured densities are very close to the average
densities of the sample (see inset of Fig. 4d).

For the six SDS foams, the velocity is found to be
constant with frequency. On the other hand, the densities
seem to decrease with frequency, the slope being more
pronounced for humid foams. It is hard to believe this ef-
fect to be physical, especially because this should also give
a frequency dependence for the velocity. An explanation
based on the effect of the density gradient in the foam
is investigated in appendix A. Another plausible explana-
tion invokes the existence of guided modes in the tube.
Indeed, the condition for only plane waves to propagate
in the tube is λ ≥ 2D, where λ is the acoustic wavelength
and D the diameter of the tube. The impedance tube is
specifically designed for this condition to be fullfilled in
air. But in the sample, given the very low velocities in
liquid foams, the wavelength can become smaller that the
diameter (for v = 25 m/s, λ = 2.5 cm at 1 kHz, to be com-
pared to D = 2.9 cm for the tube we used). It is therefore
possible that other modes than plane waves are excited in
the foam sample, which would lead to a lower reflection
coefficient. According to Eqs. (2) and (5b), the amplitude
of the admittance peak is larger when the reflection is
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Fig. 4. Measured density (a), velocity (b) and attenuation (c) as functions of the frequency for the 8 selected foams (see Table 1).
(d) Sound velocity as a function of density for all the samples. Note that the values of ρ reported here correspond to the acoustical
measurements. The inset shows that ρ depends on Φ with the expected law (continuous line is Φρℓ).

smaller, thus leading to a lower measured density. This ex-
planation is consistent with the experimental observation
because one then expects the decrease of the estimated
density to be more pronounced for high frequencies and
low velocities. Note that, within this scenario, the velocity
and attenuation measurements are expected to be insen-
sitive to this effect, because they depend on the positions
and widths of the peaks, not on their amplitudes.

For the two Gillette samples, the situation is different
because as the measured density is found to decrease by
about 20 % when going from 1 to 4 kHz, the measured
velocity increases by 10 %. Thus a frequency dependent
effective density might be physical for these samples.

As shown in Fig. 4d, an excellent agreement is found
between Wood’s prediction and the measured velocity as a

function of the measured density1 in SDS samples with liq-
uid fractions ranging from 3 to 30%. The inset of Fig. 4d
shows the measured density as a function of the liquid
fraction of the foam, which we know from the preparation
protocol. As one can see, both values are in good agree-
ment.

In Gillette samples, the velocity is significantly higher
than Wood prediction. This anormally high sound veloc-
ity in Gillette was already reported [9,14,11]. The nov-
elty of our result is that we have access to the structure
of the foam since we know the bubble size distribution.
We hence know that SDS 5 %A and Gillette 2 samples

1 Eq. (1) was taken for Wood’s law, with Φ = ρ/ρℓ. Effective
densities ρ were taken as measured on the first peak because
both interpretations for the frequency dependence of ρ give
more credit to the low frequency value.
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are very similar in terms of bubble sizes (see Fig. 2) and
liquid fractions. It therefore confirms Mujica and Fauve’s
hypothesis [9] that the origin of the high sound velocity
in Gillette is to be looked for in its physico-chemical com-
position.

4.2 Attenuation

In contrast to velocity and density measurements, atten-
uation is found to be very dispersive and with no clear
dependence on the liquid fraction (see Fig. 4c). The atten-
uation is of the same order of magnitude in all the samples,
including Gillette samples. However, SDS B-samples seem
to attenuate more than A-samples, suggesting that either
the gas content or the bubble size distribution have an
effect on the acoustic attenuation.

The measured attenuations can be compared to predic-
tions of two models: Wood and Goldfarb-Shreiber-Vafina
(GSV) model. A more detailed discussion of these mod-
els is given in Appendix C. It turns out that Wood’s
model, for which only thermal losses are significant, under-
estimates the attenuation, whereas GSV over-estimates it
(see Fig. 6 in Appendix C).

5 Conclusions

Using foam samples with known physico-chemical proper-
ties and bubble size distributions, we have shown here that
a vertically mounted, commercial impedance tube can be
used to measure the velocity v and absorption α of acous-
tic waves in a 0.5-6 kHz range in liquid foams. Moreover
from the low-frequency measurements of the effective den-
sity ρ, one can estimate the liquid volume fraction Φ of the
foam, which gives an alternative method to weighting or
to conductivity measurement. Acoustic velocity in SDS
foams was found to be independent of the bubbles size
and in excellent agreement with Wood’s predicition. On
the other hand, in foams with the same structure but dif-
ferent composition (Gillette) sound propagates at a sig-
nificantly higher velocity, suggesting that either bulk or
surface elasticity may play a role in the acoustic proper-
ties of the foam. More systematic investigations are needed
to elucidate this point, as well as the exact mechanisms
involved in the attenuation.

In principle, the technique is fast enough to provide
time resolved measurements, hence giving acces to the
time evolution of the acoustic properties, which could be
related to the evolution of the structure of the foams
(drainage, coarsening, film rupture). Impedance tube thus
appears as a promissing new tool for investigating acoustic
properties of liquid foams, which may help to shed light
on high frequency mechanics of interfaces.

Support for the French Agence Nationale de la Recherche (pro-
ject SAMOUSSE, ANR-11-BS09-001) is gratefully acknowl-
edged. The authors thank Imane Boucenna and Cyprien Gay
for fruitful discussions.

A Liquid fraction gradient and its effect on

the acoustic measurements

Due to gravity, a gradient of liquid fraction is expected to
be present within the foam. At equilibrium, it has been
shown that the liquid fraction profile can be accuratley
predicted if the capilary length, the total liquid fraction
in the foam, and the Sauter mean radius of the bubbles can
be determined [17]. Figure 5 reports the calculated profiles
(see inset) for two of our SDS foams: SDS 10%A (Φ = 11%,
R32 = 36 µm and d = 1.9 cm) and SDS 20%B (Φ = 23%,
R32 = 46 µm and d = 1.8 cm). For the dryier foam, the
liquid fraction is found to be almost homogeneous (from
12% to 10%, from bottom to top). However, for the wetter
sample, a significant gradient exists (28 to 19%).

From these profiles, we can calculate the input admit-
tance of the sample by modelling it as a multiple layer
medium [18], with air on top (x = 0) and an infinitely
rigid backplate at the bottom (x = d). Following the same
analysis procedure as for the experimental data, we can
then extract the velocity and density one would measure
from this calculated admittance. Figure 5 shows the com-
parison between these simulated results and the actual
experimental measurements. It appears that the existence
of a liquid fraction gradient does lead to an acoustically
measured density that decreases with frequency. However,
the dependence is not as strong as in the experiments.
Furthermore, the calculated density gradient is probably
over-estimated because it corresponds to an equilibrium
state, whereas the measurement is done quickly after the
filling of the tube. Density gradient might play a role in
the acoustic measurements of ρ but further experimental
studies will be necessary to investigate this point.
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B Effect of the position of the air-sample

interface

If the air-sample interface is not at x = 0 but at x = x0

(see Fig. 1c), the new relationship between the measured
reflection and the impedance is

Z0

Z
=

1

i tan k(d − x0)
× 1 − e−2ik0x0U2/U1

1 + e−2ik0x0U2/U1
. (6)

It has two consequences on the analysis described in Sec-
tion 3:

– The sample thickness should be taken as d−x0 rather
than d. This is actually the main source of uncertainty
when we measure v, α and ρ; errorbars in Fig. 4 were
calculated from the ±0.5 mm accuracy of our thickness
measurement.

– There is an additional 2k0x0 phase shift in the reflec-
tion coefficient, because the length of propagation in
air is larger (or shorter, if x0 < 0). As x0 is usually
small compared to the wavelength, the phase shift is
small and only affects the imaginary part Z0/Z

⋆. This
is why the analysis procedure we propose relies on the
real part of the admittance.

This sensitivity to the air-sample interface position is
a limitation of the technique for time resolved measure-
ments. Indeed, as the liquid foam is ageing, d generally
increases (due to gas diffusion), which has a strong effect
on the acoustic measurements, thus masking effects that
could be due to finer structure changes. An improvement
would be to add a membrane at x = 0 that would be stiff
enough to block the foam, but thin enough to be acousti-
cally transparent.

C Models

We briefly present two theoretical models whose predic-
tions can be compared to our experimental results. The
first one is a generic model for acoustics in two-phase sys-
tems (Wood), whereas the other one was specifically devel-
opped for liquid foams by Goldfarb, Shreiber and Vafina
(GSV).

C.1 Wood model

Wood’s law [7] (also known as the mixture law) is based
on the effective density ρeff and effective compressibility
χeff of the medium, from which the effective wavenumber k
can be calculated: (k/ω)2 = ρeffχeff, where ω is the angular
frequency. The effective density is given by

ρeff = Φρℓ + (1 − Φ)ρg ≃ Φρℓ, (7)

where ρℓ and ρg are the mass density of the liquid and the
gas, respectively. For the compressibility, one can consider
a large volume V that contains N bubbles of radius R :

V = N
4

3
πR3 + Vℓ, (8)

where Vℓ is the volume of the liquid. Then, by definition
of the effective compressilbity (χeff = −(1/V )∂V/∂P ), one
obtains:

χeff = −3(1 − Φ)
1

R

∂R

∂P
+ Φχℓ. (9)

One then needs to determine how the bubbles react when
they are submitted to a pressure change. To a first ap-
proximation only the compressibility of the gas matters,
which leads to an equation similar to equation (7). As
bubble dynamics have been extensively studied, a better
solution can be easily obtained, for instance by taking the
linearized Rayleigh-Plesset equation [19]. It leads to

(

k

ω

)2

=
ρℓΦ(1 − Φ)

κP0 + 2σ
R0

(κ − 1/3)− ω2ρℓR2
0/3 − 4iηω/3

,

(10)
where the density of the gas and the compressiblity of
the liquid have been neglected. In equation (10), σ is the
surface tension, P0 the ambient pressure, η the viscosity
of the liquid, R0 the equilibrium radius of the bubbles,
and κ the complex polytropic exponent for the thermal
transformations of the gas, given by [20]

κ =
γ

1 − 3(γ − 1)1−[(1+i)R0/ℓth]coth[(1+i)R0/ℓth]
[(1+i)R0/ℓth]2

, (11)

with γ the ratio of the specific heat for the gas, and
ℓth =

√

2Dth/ω the thermal length (Dth is the gas ther-
mal diffusion coefficient).

For the range of bubble radii and frequencies investi-
gated in our experiment, surface tension and inertia terms
can be neglected in equation (10).2 Thus, the real part of
κ being very close to 1, equation (1) is recovered.

Equation (10) accounts for two sources of dissipation
of the acoustic energy: thermal losses (imaginary part of
κ) and viscous losses (term with viscosity η). As pointed
out by Mujica and Fauve [9], thermal losses dominate over
the viscous ones if η is close to the viscosity of water. Note
that this extended version of Wood law gives the same
dispersion relation as Waterman and Truell [21].

C.2 GSV model

In the model proposed by Golfarb and coworkers [22,23]
the particular structure of the foam is taken into account.
From the thermal point of view, it consists in acknowledg-
ing the smallness of the volumes of water between the air
bubbles, which makes arguable the status of infinite ther-
mal source given to the liquid phase in Wood’s model. In
practice, this effect brings only small changes to the dis-
persion relation. On the other hand, the structure of the
foam modifies significantly the predicted viscous losses. In-
deed, instead of the bulk viscosity of the liquid, one needs
to consider the resistance to liquid flows that exists in the
network of liquid channels. In analogy to flows in porous

2 For the following typical values: σ = 40 mN/m, R0 =
20µm, and ω/2π = 1kHz, 2σ/R0 ≃ 3×103 Pa and ω2ρℓR

2

0/3 ≃
5Pa, both negligible compared to Re(κ)P0 ≃ 105 Pa.
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media, one can use the Darcy law and introduce a perme-
ability K. A good approximation to GSV prediction can
be recovered by changing η into η(1 + ΦR2

0/4K) in equa-
tion (10). GSV model takes K = 3.5×10−3R2

0Φ
2 to relate

the permeability to the structure of the foam, a relation
very close to the channel-dominated law which is known
to give a good order of magnitude for liquid foams [24].3

The effective viscosity experienced by a bubble oscillat-
ing in a liquid foam would thus be much higher than the
simple viscosity of the liquid phase considered in Wood’s
model (η is multiplied be a factor of about 70/Φ).

C.3 Comparison with experiments

For comparison with experimental data (Fig. 6), one needs
to take the polydispersity into account, and determine
the thermal and mechanical parameters of the media. For
Wood’s model, polydispersity is taken into account by let-
ting N depend on R in Eq. (8): N(R) being given by the
measured histogram. In the case of GSV model, the mean
radius was considered (see Table 1). For both models, the
following thermal parameters were estimated [25]: γ = 1.1,
Dth = 8 × 10−6 m2/s for air saturated with C6F14 (SDS
A-samples), γ = 1.2, Dth = 12 × 10−6 m2/s for air par-
tially saturated with C6F14 (SDS B-samples), and γ = 1.2,
Dth = 5×10−6 m2/s for Gillette samples. The viscosity of
water was taken (η = 10−3 Pa.s) for both SDS and Gillette
samples. This is a good approximation for Gillette [26].
On the other hand, since it contains xanthane, the SDS
foaming solution we used is probably more viscous. Mea-
surements in a rheometer showed that its viscosity was de-
creasing with frequency (as expected for a shear-thinning
fluid), with a value of 10−2 Pa.s at 10 Hz, for a strain rang-
ing from 0.1 to 10%. As the acoustic frequencies we used
are two order of magnitude higher, taking the viscosity of
water seems a reasonable order of magnitude.

For the sake of clarity, we show comparison for three
samples only, in Fig. 6: the two SDS at Φ = 5% and one of
the Gillette samples. Wood’s model, for which only ther-
mal losses are significant, predicts attenuation that are
lower than what is measured, but the relative attenuation
from one sample to the other is well predicted: SDS B
attenuates more than the other two. The same observa-
tions can be made for the five other samples. Contrary to
Wood’s model, GSV model estimates that viscous losses
are significant, due to the liquid flowing through a net-
work of narrow channels. As shown in Fig. 6, it seems to
over-estimate the attenuation. Our experimental results
thus indicate that a precise model for the attenuation of
sound in liquid foams is still to be found.

Note that in the impedance tube, an additionnal source
of attenuation can arise, due to dissipation on the wall of
the tube. This attenuation is given by Kirchhoff law [13]
and it is proportional to the diffusive length for thermal

3 We corrected what we believe to be an error in eq. (16) of
reference [23], in which an extra Φ appears in factor of η, and
the permeability law scales as Φ3.

and/or viscous exchanges. As this length is inversely pro-
portionnal to the square root of the frequency, Kirchhoff
attenuation is stronger at low frequency. It could explain
the fact that the experimental attenuation does not seem
to reach zero at zero frequency (see Fig. 6).
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Fig. 6. Comparison between the measured and predicted atten-
uation for three samples.
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