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Abstract. Liquid foams are known to be highly efficient to absorb acoustic waves but the origin of the
sound dissipation remains unknown. In this paper, we present low frequency (0.5-4kHz) experimental
results measured with an impedance tube and we confront the recorded attenuations to a simple model
that considers the foam as a concentrate bubbly liquid. In order to identify the influence of the different
parameters constituting the foams we probe samples with different gases, and various liquid fractions and
bubble size distributions. We demonstrate that the intrinsic acoustic attenuation in liquid foam is due to
both thermal and viscous losses. The physical mechanism of the viscous term is not elucidated but the
microscopic effective viscosity evidenced here can be described by a phenomenological law scaling with
the bubble size and the gas density. In our experimental configuration a third dissipation term occurs. It
comes from viscous friction on the wall of the impedance tube and it is well described by Kirchhoff law
considering the macroscopic effective viscosity classically measured in rheology experiments.

PACS. 47.57.Bc Complex fluids and colloidal systems: Foams and emulsions – 47.35.Rs Sound waves in
fluid dynamics

1 Introduction

Liquid foams are complex materials with a high fraction
of gas bubbles dispersed in a liquid matrix and stabilised
by surfactants. Contrary to fibrous materials and solid
foams, liquid foams have received less attention for their
acoustical properties. Recently, progress has been made on
the understanding of how sound propagates in such media.
For instance, the existence of two regimes of propagation
was evidenced: so-called Wood regime at low frequencies,
and so-called Kann one at higher frequencies [1]. In the
Wood regime [2], the whole structure of the foam moves
under the effect of the pressure wave, and the effective
velocity is given by the usual mixture law, typically of the
order of 30 m/s for a foam with a Φ = 10% liquid volume
fraction. In the regime proposed by Kann [3], only the
films move and the effective velocity is higher, typically of
the order of 200 m/s.

Most of the experimental studies on the acoustics of
liquid foams also report a quite strong level of attenua-
tion, even capable of significantly reducing the amplitude
of blast waves for instance [4] . However, interestingly, the
origin of this attenuation is not clear. There is still a de-
bate on whether dissipation is mainly viscous or thermal.
Some authors claim that thermal losses dominate, and can
explain their observation [5, 6]. Their argument is based
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on a scaling law. If one notes k the complex wavenum-
ber, it can be shown that the reduced thermal attenuation
α̃ = Im(k)/Re(k) is expected to scale like ωR2/Dth, where
ω is the angular frequency, Dth the thermal diffusivity of
the gas, and R the typical radius of the bubbles in the
foam. The problem is that, if the scaling law in ωR2 was in-
deed observed in several experimental studies [5,6], other
authors pointed out that the order of magnitude of the
thermal attenuation was not enough to explain the exper-
imental results [7, 8]. Even more intriguing, experiments
with different types of gas showed that the α̃ ∼ 1/Dth

scaling law was not respected [9].

In this article, we propose to bring fresh experimen-
tal observations to this debate on the origin of acoustic
attenuation in liquid foams. Section 2 presents our exper-
imental setup, which enabled us to measure the acoustic
attenuation between 0.4 and 4 kHz for liquid foams with
various bubble size distributions, liquid fractions and gas
content. In section 3, we expose the acoustic attenuation
predicted by a simple model that considers the foam as
a concentrated bubbly liquid. The limit of this approach,
which does not account for the complex structure of the
foam, will be discussed. In section 4, we present our ex-
perimental results and we analyse the dependence of the
attenuation with the different parameters (frequency, gas
nature, liquid fraction, bubbles size). We show that two
sources of attenuation are well identified: viscous losses
on the walls and thermal losses in the bubbles. A third
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contribution, whose mechanism is not clear yet, is neces-
sary to explain the measurements. In section 5, we finally
conclude by giving a phenomenological law for this con-
tribution.

2 Materials and methods

Liquid foams of well determined structure and composi-
tion were made (section 2.1) and their acoustical proper-
ties were measured with an impedance tube (section 2.2).

2.1 Sample preparation

Foam generation. Liquid foams were generated by using
the “double-syringe technique” [10], which consists in fill-
ing a syringe with the desired amount of foaming solution
and gas, then connecting to another syringe and push-
ing back and forth the pistons to obtain an homogeneous
foam. With this technique, providing that the solution has
a good “foamability”, a large range of liquid volume frac-
tions (Φ) can be obtained, just by adjusting the proportion
of liquid and gas in the syringe. In our case, we typically
explored Φ varying from 3 to 25%.

Foaming solution. We worked with a foaming solution
for which a negligible interfacial elasticity was expected:
SDS (Sodium Dodecyl Sulfate) at 10 g/L in millipore wa-
ter. The density was the same as that of water: ρ` =
103 kg/m3.

Gas composition. In order to evidence the influence of
the gas properties on the sound attenuation, we used dif-
ferent types of gas. The easiest gas to use was air. We
also used helium, from an helium balloon cylinder. We
obtained another type of gas by using vapor of perfluoro-
hexane. Perfluorohexane (C6F14) is liquid at normal con-
ditions of temperature and pressure, but its vapor pressure
is high (25 kPa at 20◦C), so a significant amount of va-
por is obtained at atmospheric pressure. We used a closed
bottle with a small amount of liquid perfluorohexane to
obtain air saturated with vapor of perfluorohexane (mo-
lar fraction of 0.2). A fourth type of thermal property was
obtained by using half air from the room and half gas
from the bottle to fill the syringe. Table 1 summarises the
properties of the four types of gas we used. Note, that, for
clarity, specific symbols are used in the whole article for
each gas (see Table 1).

Bubble size measurements. The bubble size distribution
was obtained by the “bubble raft” technique [11], which
consists in spreading a small amount of the sample on the
surface of a foaming solution bath, and then imaging the
2D structure obtained (see inset of figure 1). Size distribu-
tions were found to be well fitted by lognormal laws, with

Table 1. Gas composition and properties: ratio of heat ca-
pacities γ, thermal diffusivity Dth and gas density ρg. For gas
mixtures, molar fractions are given (figures in brackets). See
Appendix A for details on how properties of gas mixture were
estimated.

name composition γ Dth ρg
(mm2/s) (kg/m3)

air pure air 1.4 20 1.2
He helium (0.75), 1.57 128 0.42

air (0.25)
mix C6F14 (0.1), 1.19 11.5 2.5

air (0.9)
PFH C6F14 (0.2), 1.12 7.5 3.8

air (0.8)

a median radius R and a polydispersity index PI1. Small-
est bubble sizes were obtained by using the foam sample
right after their production (R ' 20µm). Larger bubbles
were obtained by letting the foam age in the syringe be-
fore doing the acoustic measurements. The maximum size
we could explore was R ' 80µm because for samples with
larger bubbles, the attenuation was found to be too high
for a proper analysis of the signal. Figure 1 shows typical
examples of cumulative distributions obtained for small,
intermediate and large bubbles.
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Fig. 1. Four examples of cumulative size distributions, as mea-
sured by analysis of 2D rafts, such as the one depicted in the
inset (here for the distribution shown by triangles). Solid lines
show the best-fitted lognormal laws, whose parameters (me-
dian radius R and polydisperse index PI) are summarised in
the inset table.

Summary of the samples. Figure 2 proposes a diagram
to visualise the range of structure parameters we were
able to explore. Note that, as a first approximation, we
will consider that the size distribution is fully described

1 PI=
√

ln(1 + σ2) where σ is the normalised standard de-
viation of the bubble size distribution
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by the median radius R, the polydispersity being simi-
lar for all the samples. The structure of the foam is thus
given by Φ, whose role was investigated over the 4-20%
range, and R, which varied between 15 and 80µm. Fig-
ure 2 also distinguishes the type of gas used for producing
the foam (symbols). It appears that the whole range of R
is not covered by all the types of gas. This is because age-
ing of the foam strongly depends on the gas content. On
one hand, foams with perfluorohexane (PFH and mix) will
age slowly, giving us access to small bubbles: bubbles size
initiates at 15µm and reaches 60µm in 2 hours. On the
other hand, foams with air or helium contain larger bub-
bles: with air the initial bubble size is around 40µm and
grows to 100µm in 5 minutes. As a consequence, investi-
gating the role of the gas for foams of identical structure
can only be done on a limited range of bubble sizes. In
figure 2, we highlight 4 samples whose median radii were
close to 50µm and liquid volume fraction of the order of
10% (see Table 2). These samples will be used to explore
the role of the gas on the acoustic attenuation.

10 20 30 40 50 60 70 80
0

5

10

15

20

25

Fig. 2. Liquid volume fractions (Φ) and bubble median sizes
(R) for the 71 foam samples investigated. Symbols code for
the type of gas (see Table 1), the grey level of the markers
correspond to liquid fraction (the darker the symbols the wetter
the foams) and arrows indicate the four selected samples with
similar structure and different gas content (see Table 2).

Table 2. Type of gas, liquid fraction, median bubble radius
and polydispersity index for the four foam samples highlighted
in Fig. 2. Gas content is different but structure similar.

gas Φ (%) R (µm) PI (%)
air 11 50 36

PFH 9.5 48 23
mix 10 50 30
He 11 57 38

2.2 Acoustic measurements

The acoustical properties of the foams were measured with
an impedance tube (B&K, type 4206), schematised in fig-
ure 3a. The principle is to measure the reflection coeffi-
cient R on a sample of given thickness d. The tube is held
vertically, with the foam sample at the bottom, and the
measurement is performed quickly enough (a few seconds)
to prevent drainage and ageing of the foam. Typical result
of a measurement is shown in Fig. 3b, in which the real
and imaginary parts of (1−R)/(1+R) are plotted as func-
tion of the frequency. A series of peaks appear, which are
related to resonances of the foam layer. Each peak can be
analysed and we showed in a previous article [8] that the
position of a peak depended on the sound velocity in the
foam (v), its width on the attenuation (α), and its height
on the density of the sample (ρ). Thus, by analysing the
different peaks, we were able to determine v, α, and ρ as
functions of frequency, for a frequency range of 0.4-4 kHz.
Details on the analysis of the peaks can be found in Ref [8].
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Fig. 3. Acoustic setup and typical acoustic measurement. (a)
The impedance tube is held vertically and the bottom is filled
with liquid foam on a thickness d. The reflection coefficient
R of the foam sample is then determined by measuring the
pressure field with two wall-mounted microphones. (b) Plotting
(1 − R)/(1 + R) as a function of frequency shows a series of
peaks, whose position, width and height allow us to determine
the velocity, attenuation and density of the foam. Here the
example is for a foam made of air saturated with C6F14, with
Φ ≈ 10 % and R = 48 µm.

To illustrate the kind of measurements we obtained, we
show in figure 4 the measured density, sound velocity, and
sound attenuation as functions of frequency, for the four
foams selected in Table 2. Error bars come from the uncer-
tainty on the foam thickness d (d = 2.5±0.1 cm). Density
and velocity are found to be almost independent on both
frequency and gas content. On the other hand, the at-
tenuation has a large frequency and gas dependence. The
helium foam is the most attenuating, and PFH sample the
least attenuating. In order to highlight the role played by
the foam structure and the gas composition in the acous-
tic dissipation process, we now focus on the attenuation,
first theoretically, and then experimentally, studying the
samples presented in Fig. 2.
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Fig. 4. From top to bottom, density ρ, velocity v and atten-
uation α as functions of frequency for the four selected foams
of Table 2, which have similar structures but different gas con-
tents (color online).

3 Theory

In this section, we present theoretical results for the veloc-
ity and attenuation of sound in a liquid foam. We will con-
sider propagation at the long wavelength limit, i.e. when
the frequency is low enough for the wavelength to be much
larger than the typical size of the heterogeneities in the
medium. In this article, the largest bubble median radius
we consider is of the order of 0.1 mm, while the highest
frequency is 4 kHz. At this frequency, the wavelength of
sound is of 85 and 375 mm in air and water, respectively.
Hence, we are in the proper conditions for modeling the
foam as an effective medium.

We propose to first consider the liquid foam as a bub-
bly liquid (subsection 3.1), because the theory for acoustic
propagation in those media, based on the physics of a sin-
gle bubble oscillating in an infinite extent of liquid, is well
developed. Note that this is also the approach chosen in
most of the previous theoretical studies on the acoustics
of liquid foams [5,6,12]. We will then discuss how this ap-
proach could be modified to account for the fact that, in
foams, bubbles are beyond the close-packing configuration
(subsection 3.2). This discussion will give us guidelines for
the analysis of the experimental results.

3.1 Acoustic propagation in a bubbly liquid

We consider that the bubbly liquid has an effective den-
sity ρeff and an effective compressibility χeff, leading to an

effective acoustic wavenumber k:

(k/ω)2 = ρeffχeff, (1)

where ω is the angular frequency.
Let us assume that the effective density is given by a

simple mixture law:

ρeff = ρ`Φ+ ρg(1− Φ), (2a)

' ρ`Φ, for Φ� 0.1%, (2b)

where ρ` and ρg are respectively the mass density of the
liquid and the gas. Given the high density contrast be-
tween the gas and liquid, (2b) is a very good approxima-
tion for most liquid foams. Experimental evidence of large
deviation from this mixture law was observed [3,5,12,13]
and recently explained [1], showing the existence of a res-
onance that depends on the size of the bubbles. However,
given the typical bubble sizes and frequency range we con-
sider here, resonant effects are not expected to be signif-
icant: for a median radius of 0.1 mm, the resonance fre-
quency is expected at 25 kHz, above our 4 kHz maximal
frequency.

As for the effective compressibility, it is defined by
χeff = −(1/V )∂V/∂P , where P is the pressure applied
to volume V . If we consider that this volume contains
bubbles of radius R and a volume of liquid V` = ΦV , we
obtain

χeff = −3(1− Φ)
1

R

∂R

∂P
+ Φχ`, (3)

where χ` = −(1/V`)∂V`/∂P is the liquid compressibility.
We see that the effective compressibility thus depends on
the bubble dynamics at the considered frequency. Follow-
ing Rayleigh-Plesset theory [14], we can consider three
pressure terms that affect the oscillations of the bubble:
a thermal term, an inertial one, and a viscous one.2 We
then obtain, neglecting the compressibility of the liquid,
the following expression for the effective wavenumber:(

k

ω

)2

=
ρ`φ(1− φ)

κP0 − ω2ρ`R2
0

3 − 4iηω
3

, (4)

where κ is the complex polytropic exponent of the gas,
P0 the static pressure in the bubbles, and η the viscos-
ity of the liquid. Note that k is now a complex number:
the bubble’s response is not necessarily in phase with the
sound wave, which induces attenuation. This expression
can be further simplified by noting that, for the range of
sizes and frequencies investigated here, the inertial term
is negligible. At the limit of low attenuation (Im(k) �
Re(k)), we thus obtain the following expressions for the
effective velocity (v = ω/Re(k)) and reduced attenuation
(α̃ = Im(k)/Re(k)):

v =

√
Re(κ)P0

ρ`Φ(1− Φ)
, (5)

α̃ = α̃th + α̃vi

=
−Im(κ)

2Re(κ)
+

2ηω

3Re(κ)P0
. (6)

2 Note that we neglect surface tension and radiative effects
here.
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Equation (5) is usually known as Wood’s law. It was checked
to properly predict phase velocity in liquid foams [8], pro-
vided that the resonance could be neglected.

Equation (6) shows that the reduced attenuation is
the sum of a thermal and a viscous term. For bubbly
water (η = 1 mPa.s), the latter term is of the order of
7 × 10−7ω. Thermal loss, on the other hand, depends on
the imaginary part of the complex polytropic exponent,
which depends on the ratio between the thermal length
`th =

√
2Dth/ω and bubbles radius R [14]:

κ =
γ

1 + 3(γ − 1) 1−Xcotan(X)
X2

, (7)

where X = (1 + i)R/`th and γ is the ratio of the specific
heats. Eq. (7) predicts isothermal transformations of the
gas (Re(κ) ' 1) at low frequencies (`th > R), and adia-
batic ones (Re(κ) ' γ) at high frequencies (`th < R). For
the low frequency regime, imaginary part of equation (7)
can be approximated by

Im(κ) ' 1− γ
15γ

× R2ω

Dth
, (8)

which gives the ωR2/Dth scaling law discussed in the in-
troduction. For R = 50µm air bubbles eq. (8) predicts a
reduced attenuation of the order of α̃th ' 10−6ω.
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Fig. 5. Theoretical prediction of equation (7) for the real (a)
and imaginary (b) part of the polytropic exponent as function
of frequency, for the four types of gas considered in Table 1.
The bubble size is taken at R = 50µm. Symbols code for the
type of gas reported in Table 1. Continuous lines show the low
frequency approximation given by Eq. (8), for air and helium.

Fig. 5 shows predictions of Eq. (7) for the four gases
considered in Table 1, for a radius R = 50µm. We see that
thermal behaviour is expected to be almost isothermal in

our experiments, with an imaginary part of κ close to law
(8) for the lowest frequencies, but with deviation at higher
frequencies. We will see that this deviation is even more
pronounced when polydispersity is taken into account (see
Fig. 8).

3.2 From bubbly liquid to liquid foam

The structure of a liquid foam is different from that of
the dilute bubbly liquid considered for obtaining equa-
tion (6): bubbles are not isolated, but in contact with each
other. As a consequence, instead of being uniformly dis-
tributed around the bubbles, the liquid phase takes two
forms: thin films and thicker liquid channels (see Fig. 6).
Hence the question arises whether the thermal and viscous
behaviours can be described by the same equations as for
the dilute case.

gas

liquid

film

liquid
channel

gas

bubbly liquid liquid foam

Fig. 6. In a bubbly liquid (left), gas bubbles are far from each
other. In a foam (right), the structure is more complex because
bubbles are in close contact: the liquid phase is distributed
in channels and films. Note that bubbles are spherical in this
scheme for simplicity. In reality, beyond the close packing limit
(Φ < 36%) sphericity is lost.

Thermal losses. To obtain equation (7), it is assumed
that the liquid around the bubble remains at the same
temperature during the oscillations. In a foam, the liquid
content is much less than in a dilute bubbly liquid, and this
assumption is questionable. Goldbfarb et al [7] considered
a bubble surrounded by a liquid shell of finite size, adapted
to the liquid volume fraction of the foam, and calculated
the thermal behaviour of this system. With this descrip-
tion, it appears that there is enough liquid to maintain the
condition of constant temperature. One can argue, how-
ever, that, in a foam, bubbles are not covered by an homo-
geneous layer of liquid: the liquid is distributed between
thick liquid channels and thin films. As films are expected
to be only a few tens of nanometers thick [15], thermal ex-
changes between two neighbouring bubbles might be sig-
nificant. We show, in appendix B, that the presence of
thin films may indeed affect the validity of equation (7).
However, as deviations are expected to be small for the
wet foams we consider here, we shall assume in the fol-
lowing that thermal attenuation in a foam is the same as
in a bubbly liquid.
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Viscous losses. The viscosity one needs to consider in
equation (6) is not clear when the oscillating bubbles is
surrounded by other bubbles. Let us denote by ηbub this
viscosity:

α̃vi '
2ηbubω

3P0
(9)

(considering that Re(κ) ' 1). We examine three possible
choices for ηbub and give the resulting expected scaling
law in ω, R and Φ for α̃vi:

– ηbub = ηwater. If we assume that the viscous losses
are the same as in the dilute bubbly liquid case, the
viscosity is that of the foaming solution, i.e. close to
the viscosity of water. In this case, we expect α̃vi ∼
ω1Φ0R0 (no dependence in Φ and R)

– ηbub = ηfoam. We can consider the effective viscosity
of the foam itself. Rheology of liquid foams has been
studied extensively. The following expression for the
viscosity was shown to be in good agreement with mea-
surements [16]:

ηfoam = A
√

1 + (B/R)2ω−1/2, (10)

with A = 10.3 Pa.s1/2 and B = 52µm. The scaling law
for the reduced viscous attenuation is then expected
to be α̃vi ∼ ω1/2Φ0R−1 for R � 52µm and α̃vi ∼
ω1/2Φ0R0 for R� 52µm.

– ηbub = ηchannel. Goldfarb and coworkers [7] proposed
that when the bubble was oscillating, it displaced liq-
uid in the channel network. Using a Darcy law for de-
scribing the flow, they obtained the following effective
viscosity:

ηchannel ' ηwater

(
1 +

71

Φ

)
(11)

which would lead to scaling law α̃vi ∼ ω1Φ−1R0.

In the next part, we will present our experimental re-
sults and compare them to Eq. (6) prediction.

4 Experimental results

In this section, we first present measurements of the sound
velocity in our foam samples, which are found to be in
agreement with Wood’s law (section 4.1). We then focus
on the reduced attenuation α̃ as a function of frequency for
four selected foam samples and show that thermal attenu-
ation alone cannot explain the measurements (section 4.2).
We also identify a third mechanism of dissipation, due to
the friction losses on the wall of the tube (section 4.3).
We then present our fitting procedure for determining the
values of two parameters that pilot the attenuation: ηbub

and ηwall (section 4.4). “Wall viscosity” ηwall is found to
be well described by the macroscopic viscosity of the foam
(ηfoam). We finally discuss the dependence of “bubble vis-
cosity” ηbub on the structure and composition of the foam
(section 4.5).

4.1 Wood’s law

In figure 7 we plot, for each sample, the measured sound
velocity as a function of the (acoustically measured) den-
sity. As already observed in previous studies [8], we see
that the measurements are well described by the isother-
mal Wood’s law. Note that, as the bubbly liquid approach
predicts such an isothermal behaviour (see Fig. 5a), this
observation supports our hypothesis that thermal losses
are also well described by this approach.
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Fig. 7. Sound velocity as a function of the acoustic density
at 1 kHz for the 71 samples investigated. Symbols code for the
type of gas of Table 1. The grey level of the symbols correspond
to liquid fraction: the darker the symbols the wetter the foams
(same as fig. 2). Continuous line shows the isothermal Wood’s
law (Re(κ) = 1), while the dashed one represents the adiabatic
law for air (Re(κ) = 1.4).

4.2 Examples of measured reduced attenuation

To illustrate the typical reduced attenuations measured in
our experiments, we show the raw measurements obtained
for the four samples selected in Table 2 (see symbols in top
part of Fig. 8a). Based on the discussion in the theoretical
section (see 3.2), we will assume that the thermal atten-
uation is well-described by the bubbly liquid approach.
As a consequence, because the structure of the foams and
their gas composition are known, we can fully calculate
the expected behaviour of α̃th as a function of frequency.
We can even take the polydispersity into account, by in-
tegrating on the whole bubble size distribution. Figure 8a
shows, in solid lines, the predicted thermal reduced at-
tenuation. In line with the simplified monodisperse cases
presented in Fig. 5, we see that thermal attenuation is
expected to be higher for air foams, then for “mix” and
“PFH” samples, and finally for helium foams. The maxi-
mum expected reduced attenuation is of the order of 0.04,
which is clearly insufficient to explain the measurements
(symbols in Fig. 8a). Let us stress here that, even if devi-
ation from the bubbly liquid approach appeared, because
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of the presence of thin films, one would expect a lower
thermal attenuation (see Appendix B). Moreover, the at-
tenuation is found to be maximal in the helium samples,
in contradiction with what is expected for thermal losses.
We thus conclude from figure 8a that thermal losses alone
cannot explain acoustic attenuation in liquid foams.

Another clear feature of figure 8a is the non-monotonic
behaviour of α̃, which is first decreasing with frequency,
and then increasing. This behaviour is even clearer when
one subtracts the theoretical thermal contribution from
the measured reduced attenuation, as shown in Fig. 8b.
We show in the next section that the low frequency part
of the measured attenuation is due to viscous losses on the
wall of the impedance tube.
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Fig. 8. (Color online) Reduced attenuation as a function of
frequency for the four selected samples of Table 2. (a) Raw
measurements (symbols) and thermal contributions predicted
by the bubbly liquid approach (solid lines), taking account of
the polydispersity of the foams. (b) When the thermal con-
tribution is subtracted from the measurements (symbols), one
can fit the data (solid lines) with Eq. (14), using two parame-
ters: η∗wall and ηbub.

4.3 Viscous friction on the wall

When a plane wave propagates in a tube, the displacement
field needs to satisfy the boundary condition on the wall
of the tube, which is done on a viscous layer, over which
dissipation occurs. The attenuation associated with this

phenomenon is given by Kirchhoff’s law [17,18]

α̃wall =
`v
D

=

√
2η

Φρ`D2
ω−1/2, (12)

where D is the diameter of the tube, `v the viscous length
and η the viscosity of the fluid in the tube. Note that we
neglect the thermal contribution in Kirchhoff’s law here.
As the viscous layer thickness scales like 1/

√
ω, the at-

tenuation associated with this effect is larger at low fre-
quencies, which makes it a good candidate for explaining
our observations of Fig. 8. In usual conditions, this source
of attenuation is negligible in impedance tubes, because
they are designed with a diameter that is large enough
compared to the viscous length in air (`v ' 70µm for
air at 1 kHz). For liquid foams, however, it appears that
friction on the wall can become significant because the
viscosity of the foam is high. Note that the existence of
such a sheared layer close to a wall when a liquid foam is
insonified was observed by Erpelding et al. [19].

We also confirmed the existence of this Kirchhoff at-
tenuation in our samples by testing the role of tube di-
ameter D. As shown in Appendix C, the same intrinsic
attenuation was recovered for similar samples measured
in two different tubes, provided that the wall attenuation
was properly subtracted.

4.4 Fitting

We have identified three possible dissipation mechanisms
involved in our experiment: two are intrinsic, with thermal
and viscous origins, and one is caused by the experimental
setup, the viscous friction on the wall. If we assume that
thermal attenuation is known and given by the bubbly
liquid approach, we are left with two viscous dissipation
terms involving two unknown viscosities:

– viscosity ηbub at the bubble level (appearing in Eq. 9),
i.e. the viscosity experienced by one bubble of the foam
during its oscillations,

– viscosity ηwall on the wall (appearing in Eq. 12), which
is the viscosity involved in the viscous layer to satisfy
the boundary conditions on the tube.

Assuming that the reduced attenuation terms add up, as
in Eq. (6), we thus have the following equation as a can-
didate for describing the experimental data of Fig. 8b:

α̃− α̃th = α̃wall + α̃vi

=

√
2ηwall(ω)

Φρ`D2
ω−1/2 +

2ηbub(ω)

3P0
ω. (13)

Note that the two unknown viscosities are a priori fre-
quency dependent: ηwall(ω) and ηbub(ω). The next step
is to determine this frequency dependence in order to
have a fitting law for our α̃ − α̃th vs f plots. Among the
choices already discussed in section 3.2, two viscosities
are frequency independent (ηwater and ηchannel) and one
scales like ω−1/2 (ηfoam). The high frequency behaviour
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of the plots shown in Fig. 8b suggest a linear law in fre-
quency, hence a ηbub that is frequency independent. On
the other hand, trying to fit with a frequency-independent
ηwall leads to a ω−1/2 law for α̃wall, which we found not
to decrease fast enough with frequency to capture the
behaviour depicted in Fig. 8b. With ηwall ∼ ω−1/2, the
low frequency part of the reduced attenuation scales like
ω−3/4, which gave much better results for the fitting. It
therefore suggests that ηwall might correspond to ηfoam.
Assuming that ηwall(ω) = η∗wall

√
ω∗/ω, where ω∗ = 2π ×

1 kHz, we thus obtain the following fitting law

α̃− α̃th =

√
2η∗wall

√
ω∗

Φρ`D2
ω−3/4 +

2ηbub

3P0
ω, (14)

with the two fitting parameters η∗wall and ηbub. Solid lines
in Fig. 8b show that satisfactory fittings are obtained with
this law. The best fitting parameters we obtained for all
the samples are displayed in Fig. 9. Error bars come from
the 95% confidence bounds on the fit parameters.
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Fig. 9. Viscosities η∗wall (a) and ηbub (b) as functions of R.
Symbols code for the type of gas (see Table 1). The grey level
of the symbols correspond to liquid fraction: the darker the
symbols the wetter the foams (same as fig. 2). In (a) the con-
tinuous line indicates the ηfoam viscosity expected at 1 kHz, as
given by phenomenological law (10), with no fitting parameter.

Both viscosities were found to mostly depend on the
median radius R. Interestingly, values of η∗wall are close to

prediction of Eq. (10), suggesting that the phenomenolog-
ical law found by Costa et al. [16] with rheology measure-
ments is still valid in the kHz frequency range, as already
observed by Wintzenrieth et al for shaving foams [20].

As for ηbub, its values are two to three orders of magni-
tude higher than for pure water, and it increases with R.
We shall explore its dependence on R, Φ and gas nature
in further details in the next section.

4.5 Gas and structure dependence of ηbub

In addition to the clear dependence in R, a Φ-dependence
seems visible in Fig. 9b: darker symbols tend to corre-
spond to higher values of viscosity than lighter ones, which
would indicate that the viscosity is larger for wetter foam.
To better appreciate this effect, we isolate two groups of
samples of same gas composition (PFH) and with median
radius of the order of 20 (blue dashed rectangle) and 30µm
(red dashed rectangle). The corresponding data points are
displayed in Fig. 10, as function of liquid volume fraction
Φ. The values are scattered and no clear tendency can
be extracted; ηbub may be independent of or slightly in-
creasing with Φ. In any case, these measurements are not
compatible with the Darcy model proposed by Goldfarb
et al, which predicts a 1/Φ behaviour (see Eq. (11)). At
this stage, it appears that none of the three candidates
presented in section 3.2 (ηwater, ηchannel and ηfoam) are
compatible with our measurements of ηbub.
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Fig. 10. Results of the fitting for ηbub as a function of liquid
volume fraction Φ for PFH foams with median radius of the
order of 20µm (in blue) and 30µm (in red). The two sets of
data points correspond to the blue and red dashed rectangles
shown in Fig. 9. Solid line shows ηchannel, the viscosity proposed
by Goldfarb et al (see Eq. (11)).

We then turn to the effect of the nature of the gas on
the acoustic attenuation. As Fig. 9a gives us confidence
in identifying ηwall with ηfoam, we go a step further in our
subtracting process and plot, in Fig. 11, α̃−α̃th−α̃wall (i.e.
what we expect to correspond to α̃vi), for the four samples
that have similar structures and different gas contents (see
Tab. 1). The linear behaviour, already visible in Fig. 8, is
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even clearer. Fitting linear laws through the data points
then gives access to the values of ηbub for the different
gases. As shown in the inset of Fig. 11, the found values
are compatible with a 1/

√
ρg scaling law, suggesting that

the lighter the gas of the foam, the larger the attenuation.
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Fig. 11. Measured reduced attenuation without the thermal
and the viscous friction on the wall contributions (markers)
fitted by a linear law (continuous lines). Inset: ηbub (extracted
from the linear fit and using Eq.9) as a function of 1/ρg (see
Table 1).

To summarise the dependence of ηbub on gas and bub-
ble size, we plot in Fig. 12 the measured viscosities rescaled
by
√
ρg as a function of median radius R. As the effect of

Φ has not been clearly identified, we limit ourselves to in-
termediate liquid volume fractions: 7 < Φ < 15% in this
figure. A reasonable collapse of the data points for dif-
ferent gas content is obtained, on a master curve that is
compatible with a R2 scaling.
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Fig. 12. Effective viscosity ηbub as a function of R for sam-
ples with liquid fraction between 7 and 15 %. Symbols code
for the type of gas (see Table 1). Solid line corresponds to
(R/50µm)2 × 0.6 Pa.s.

5 Conclusion

In this article, we presented experimental results on the
attenuation of acoustic waves in liquid foams of well con-
trolled structure and composition.

By systematically analysing the influence of the fre-
quency (0.4 < f < 4 kHz), the median radius of the bub-
bles (R), the liquid volume fraction (Φ) and the nature of
the gas, we managed to identify three contributions to the
attenuation.

An attenuation α̃wall that is due to our setup (an impe-
dance tube) and is found to be well accounted by viscous
friction on the wall with the macroscopic viscosity of the
foam, which depends on the bubble size and follows the
law established by rheology measurements at lower fre-
quencies.

An intrinsic attenuation α̃th that is due to thermal
losses during the oscillation of the bubbles when the acous-
tic waves propagates. We assumed that this attenuation
was the same as in bubbly liquids, which is supported by
(1) our measurements of sound velocities compatible with
an isothermal Wood’s law, (2) our calculations of the ef-
fect of thin films on the thermal behaviour of the bubbles
(Appendix B).

An other intrinsic attenuation α̃vi that is due, in our
modelling, to the flow the bubbles generate during their
oscillation. This last term is intriguing and, contrary to the
two previous ones, we cannot associate it with any clear
dissipation mechanism. According to our measurements,
a phenomenological law for this attenuation would be

α̃vi ' 0.025
ω

ω∗

(
R

R∗

)2(
Φ

Φ∗

)a√
ρair

ρg
, (15)

with reference radius R∗ = 50µm, frequency ω∗ = 2π ×
1 kHz, and volume fraction Φ∗ = 10%, and with an expo-
nent a ≥ 0. Interestingly, we recover the ωR2 scaling law
that had been associated with thermal losses in previous
studies. However, we insist, thermal attenuation cannot
alone explain our observations: (1) it predicts too small
values of attenuation (see Fig. 8a) and (2) modifications
of the current model would tend to lead to even lower val-
ues, not larger, (3) helium foams would be expected to
attenuate the least, while we found the opposite.

As a final remark, we note that the observed depen-
dence of α̃vi to the density of the gas suggests that its
origin might actually be quite different from the mecha-
nism we invoke for establishing it. Further experimental
and theoretical works will be necessary for elucidating the
origin of this acoustic attenuation.

Support for French Agence National de la Recherche (project
SAMOUSSE, ANR-11-BS09-001) is gratefully acknowledged.
The authors thank Wiebke Drenckhan for fruitful discussions.

A Thermal properties of gas mixtures

Thermal properties of a gas mixture were estimated by
calculating averaged values of the thermal conductivity
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(λ) and the heat capacity (Cp):

λ = xλ1 + (1− x)λ2, (16a)

Cp = xCp,1 + (1− x)Cp,2, (16b)

where x is the molar fraction of gas 1 in the mixture.
These linear laws are only approximations [21], but they
provide good orders of magnitudes, and we checked that
the final results in terms of thermal attenuation were not
too sensitive to the exact values of the parameters. With
equations (16), we then estimated γ and Dth with the
following formulas:

γ =
Cp

Cp −R
, (17)

Dth =
λRT

P0Cp
, (18)

where R ' 8.31 J/K/mol and T is the temperature.

B Thermal exchanges through thin films

In this appendix, we propose to investigate the role of thin
films in the thermal exchanges between gas bubbles. In-
deed, the bubbly liquid approximation assumes that the
temperature of the liquid around each bubble remain con-
stant during the oscillations. This assumption is question-
able when only a thin layer of liquid separates the bubbles.

Note that Goldfarb and coworkers calculated the ef-
fect of a finite amount of liquid on the thermal behavior
of a bubble [12]. However, they disregarded the role of the
films, because they considered a uniform layer of liquid
around each bubble, which is not realistic for foams. Fur-
thermore, their condition of zero heat flux for the outer
part of the liquid layer is questionable, as it implies that
no thermal exchange can exist between neighbouring bub-
bles. For simplicity, we consider a one-dimension problem,

x0 e-2R

gas liquidliquid gas

Fig. 13. One-dimension study of thermal exchange between air
bubbles separated by thin films. We calculate the temperature
profile and the volume variation of the gas layer when an extra
pressure pexp[−iωt] is applied.

as schematized in figure 13: gas layers of length 2R are sep-
arated by liquid walls of thickness e. We want to calculate
the volume variation of the gas layer when a pressure vari-
ation pexp[−iωt] is applied. The main question is to de-
termine whether this volume variation will be isothermal

or adiabatic, depending on the heat exchange between the
gas and the liquid. Heat equation applies in each layer:

∂

∂t
T (x, t)−Dth∆T (x, t) =

1

ρCp

∂P

∂t
. (19)

We look for solutions of the form

T (x, t) = T0 + T1(x)exp[−iωt]

(T0 being the temperature at equilibrium), with temper-
ature profiles

T1(x) =
p

ρCp
[1 +A cos(kthx) +B sin(kthx)] , (20)

for −2R < x < 0 and

T1(x) =
p

ρ′C ′p
[1 +A′ cos(k′thx) +B′ sin(k′thx)] (21)

for 0 < x < e, where kth = (iω/Dth)1/2. Constants A, B,
A′, and B′ are determined by imposing the continuity of
temperature and heat flux both in x = 0 and between x =
−2R and x = +e (periodic conditions). Then, knowing
the profile of temperature in the gas, one can determine
the small volume variation (dV ) in between x and x +
dx, and integrate to calculate the total volume variation,
which in turn leads to the compressibility χ = 1/(κP0) =
−(1/V )∂V/∂P .
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Fig. 14. Real (top) and imaginary (bottom) part of the
polytropic exponent κ as functions of frequency, for the one-
dimension case depicted in Fig. 13. We consider air layers of
2R = 100µm, and water walls of different thicknesses e. Thick
lines show the results for an infinite amount of water (e→∞).
Circles are for the case of two walls in parallel: 20% of the
surface being a 10 nm film, and 80% an “infinite” wall.
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Figure 14 shows results of this calculation for air lay-
ers of 2R = 100µm separated by water films of differ-
ent thicknesses e. As expected, for large thicknesses, κ
tends toward the “bubbly liquid” behaviour (slightly dif-
ferent here because we consider a 1D problem). In par-
ticular, Re(κ) remains close to 1. On the other hand, for
films as thin as 1 nm, the adiabatic behaviour is recov-
ered (Re(κ) ' 1.4) and the thermal attenuation is signifi-
cantly reduced. We thus obtain the intuitive result that if
films are too thin, they do not thermally separate the air
layers. From our simple model, “too thin” here roughly
means less than 1µm. In liquid foams, typical films thick-
ness is of the order of tens of nanometers, which means
that clear deviation from the bubbly liquid case could
be expected. However, not the whole surface of bubbles
is covered by films; there are also liquid channels whose
thermal inertia is much higher. We propose to account
for the presence of both films and channels by considering
two walls in parallel, as depicted in the inset of Fig. 14,
and calculate an average polytropic exponent given by
1/κ = x/κfilm + (1 − x)/κchannel, where x is the surface
ratio covered by the films around a bubble. For foams of
liquid volume fraction 10%, this ratio is of the order of
x = 0.2 [22]. As shown by the circles in Fig. 14, with this
model even 10 nm films bring a negligible deviation from
the pure bubbly liquid case.

C Viscous friction on the wall

The analysis of our measurements suggests that part of
the losses for the acoustic waves is due to friction on the
wall of the tube, with the following reduced attenuation
(see section 4.3):

α̃wall =
ω−3/4

D

√
2A
√

1 + (B/R)2

Φρ`
, (22)

with A = 10.3 Pa.s1/2 and B = 52µm. This relation-
ship can be further tested by comparing measurements
on similar foams in tubes of different diameters. Table 3
shows the results of two tests, comparing measurements
for D = 100 mm and D = 29 mm. One can observe that
measured reduced attenuations α̃ are larger in the nar-
rower tube. By subtracting the α̃wall predicted by Eq. (22)
from the measured α̃, we recover the same intrinsic atten-
uations. (Appendix A reports how the thermal )

Table 3. Acoustic attenuation at 0.5 kHz for PFH liquid foams
measured in two impedance tubes of different diameters.

D R PI Φ α̃ α̃− α̃wall

(mm) (µm) (%) (%)
100 32 40 10 0.22 0.13
29 33 24 10.5 0.51 0.13
100 20 35 16 0.19 0.09
29 22 35 19 0.48 0.09
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