
HAL Id: hal-02008570
https://hal.science/hal-02008570v1

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random sampling from joint probability distributions
defined in a bayesian framework

Thierry A. Mara, Marwan Fahs, Qian Shao, Anis Younes

To cite this version:
Thierry A. Mara, Marwan Fahs, Qian Shao, Anis Younes. Random sampling from joint probability
distributions defined in a bayesian framework. SIAM Journal on Scientific Computing, 2019, 41 (1),
pp.A316-A338. �10.1137/18M1168467�. �hal-02008570�

https://hal.science/hal-02008570v1
https://hal.archives-ouvertes.fr


RANDOM SAMPLING FROM JOINT PROBABILITY

DISTRIBUTIONS DEFINED IN A BAYESIAN FRAMEWORK∗

THIERRY A. MARA†‡ , MARWAN FAHS§ , QIAN SHAO¶, AND ANIS YOUNES§‖∗∗

Abstract. Random variables characterized by a joint probability distribution function (jpdf)
defined in a Bayesian framework are generally sampled with Markov chain Monte Carlo (MCMC).
The latter can be computationally demanding when the number of variables is high. As an alterna-
tive, the maximal conditional probability distribution (MCPD) sampler was recently introduced by
some of the authors of the present article to readily and efficiently draw values randomly sampled
from the desired jpdf. The MCPD approach provides the probability distribution of a given variable
under the condition that the other variables maximized the conditional jpdf. However, contrarily to
MCMC, MCPD does not provide enough draws to allow posterior uncertainty and sensitivity anal-
yses of the computer model responses. In the present work, we show how to draw random samples
from the MCPD draws under the requirement that the target jpdf possesses a particular dependence
structure. Several numerical tests are carried out to prove the efficiency of the new sampling method.
The new approach is used to perform the predictive uncertainty and sensitivity analyses of numerical
models posterior to their statistical calibration from experimental data.

Key words. Bayesian framework, model statistical calibration, maximal conditional posterior
distribution, posterior uncertainty and sensitivity analyses, numerical drainage experiment

AMS subject classifications. 65C60, 62H20

1. Introduction. Sampling random variables from a given joint probability dis-
tribution function (jpdf) is a challenging issue if the latter is not defined in a closed-
form. This is the case when modellers wish to statistically calibrate the input variables
of their computer model in a Bayesian framework (e.g. [3, 1]). Sampling from the
jpdf is necessary to perform, for instance, the predictive uncertainty and sensitivity
analyses of the computer model responses (e.g. [36, 17, 24]. Many authors privilege
sampling the input values from a given jpdf with Markov chain Monte Carlo (MCMC)
[47, 33, 26, 38, 34, 18].

MCMC relies on a rejection/acceptance sampling to generate random draws sam-
pled from the jpdf [28, 15]. It has been subject to several developments and im-
provements during the last two decades aiming at accelerating its convergence (e.g.
[10, 12, 9, 11, 43, 5] among others). However, MCMC sampling is challenging in
high-dimensions and remains computationally demanding.

Recently, a new approach has been introduced for the statistical calibration of
computer models [22]. The authors named it the maximal conditional probability
distribution sampler. The first step of this approach is to seek all the probable local
optima of the jpdf (assuming the existence of a finite number of local optima). Then,
several maximizations of the conditional jpdf are performed for different prescribed
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values of one selected variable. The values assigned to the selected variable are suc-
cessively drawn around each local optimum while the values of the other variables
are investigated by maximizing the conditional jpdf. This provides what is called the
maximal conditional probability distribution (MCPD) of the selected variable.

The evaluation of the MCPDs is independent of each other. Consequently, they
can be evaluated simultaneously by distributing the calculations over several comput-
ers (or a multi-core computer). This feature drastically decreases the computation
time and makes the inversion of highly parameterized problems feasible. For instance,
in [22], a flow model with d = 104 parameters has been calibrated with the MCPD
approach by distributing the calculations over eight cores (each core assessing 13
MCPDs). An overall of 54 560 model calls was necessary to assess the MCPDs, but
thanks to the parallelization the actual waiting time (also called computational time
unit) was about 6 500 model calls. Several comparisons between MCPD and a MCMC
sampler have been carried out in [21] which demonstrated the efficiency of the MCPD
approach.

However, the MCPD draws represent a few probabilistic set of values sampled
from the jpdf. If stochastic samples distributed over the target jpdf are desired (for
the purpose of uncertainty and sensitivity analyses of computer models for instance),
the MCPD draws are not sufficient. In the present work, we extend the approach
in order to generate Monte Carlo samples from the MCPD draws. This extension is
based on the orthogonalization procedure introduced in [23] which assumes a partic-
ular correlation structure between the variables. The new sampling method is tested
on two numerical target distributions of increasing complexity before application to
the identification of soil hydraulic parameters from a synthetic multi-step outflow ex-
periment and to the calibration of a reactive transport model from field observations.
In these last two applications, the use of Monte Carlo samples for uncertainty and
sensitivity analyses is illustrated.

The paper is organized as follows: First, we briefly discuss the different methods to
generate random samples from a given jpdf in Section 2. Then, we recall the concept
of MCPD sampling and describe succinctly its assessment in Section 3. The approach
for sampling random variables from the desired distribution is explained in Section
4. The new approach is evaluated through several numerical exercises of different
dimensions and complexities in Section 5. In Section 6 we apply the new sampling
approach to the calibration of a drainage model from synthetic multi-step outflow
experiment. Finally, the statistical calibration of a reactive transport model from
field data is undertaken in Section 7 before concluding in Section 8.

2. Sampling from joint distribution: Existing approaches. Let x = (x1,
. . . , xd)

T be a vector of random variables distributed over the joint probability density
function p(x), where the superscript T denotes the transpose operator. We are asked
to generate x, a sample of size N , of the random vector. The most straightforward
approach to perform this task is to use the inverse Rosenblatt transformation [35],
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that is,







































x1 = F−1
1 (u1)

x2 = F−1
2|1 (u2|x1)

x3 = F−1
3|1,2(u3|x1, x2)

...

xd = F−1
d|1,...,d−1(ud|x1, . . . , xd−1)

(2.1)

where u is a random vector uniformly and independently distributed within the unit
hypercube [0, 1]d and F−1

i|1,...,i−1 is the inverse cumulative distribution of xi condi-

tioned onto (x1, . . . , xi−1). By sampling u ∈ [0, 1]d and knowing the set of inverse
conditional cumulative distribution functions (CDF) {F−1

1 , F−1
2|1 , . . . , F

−1
d|1,...,d−1}, the

desired sample of x is obtained by applying Eq. (2.1). Unfortunately, in many sit-
uations and especially in model statistical calibration, the conditional cumulative
distribution functions are unknown.

More often, random variables are defined by their unconditional marginal CDFs
{F1(x1), . . . , Fd(xd)} and a copula density c : [0, 1]d → [0,+∞[. The copula density
contains the dependence/correlation structure of the jpdf. It is convenient to define
random variables in this way because many algorithms are proposed in the literature to
generate random samples [31]. For instance, the inverse Nataf transform is designed to
cope with Gaussian copulas [30]. We note that defining random variables from copula
theory is tantamount to define the jpdf in a closed-form because of the following
equality: p(x) = c(F1(x1), . . . , Fd(xd))p1(x1) . . . pd(xd), where pi(xi) = dFi(xi)/dxi

is the marginal pdf of xi. However, there are many problems for which such an explicit
definition is not possible as when, for model calibration purposes, the target jpdf is
derived in a Bayesian framework. In such a situation, Markov chain Monte Carlo
samplers are preferred.

MCMC samplers are based on acceptance-rejection algorithms. They employed
the Metropolis-Hastings algorithm (or a variant of it) to sample x from p(x) thanks
to a given proposal distribution q(·|·). There are several MCMC variants proposed in
the literature. Amongst them, we can cite the Gibbs sampler [8] which requires the
knowledge of the conditional distributions pi|∼i(xi|x∼i), ∀i = 1, . . . , d (x∼i stands for
all the x-variables except xi). When the conditional distributions are unknown, the
Langevin [10] or Hamiltonian [16] MCMC sampler can be a good choice to generate
x. Notably, the efficiency of these samplers is enhanced if the Jacobian of log (p(x))
is provided. When the latter is not available or not differentiable, the DiffeRential
Evolution Adaptive Metropolis sampler is a good alternative, in particular the version
exploiting the archive of past states called DREAMZS [19, 46]. DREAMZS is partic-
ularly efficient, since instead of drawing new candidates from a prescribed proposal
distribution q, new candidates are drawn thanks to an archive of past states.

Despite of the obvious improvements in MCMC sampling, the use of this method
to generate a sample of x ∼ p(x) can still be computationally demanding. This
is particularly embarrassing when the computational time required to evaluate the
target jpdf is high. In this case, the two stages surrogate-based MCMC approach of
[4] seems a promising alternative.

The aim of the present work is to introduce a new fast approach to generate
random draws from the desired jpdf based on the MCPD sample. This work capitalizes
upon recent works of some of the authors of the present article [23, 22]. The approach,
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described in the next sections, is particularly efficient if the Jacobian of log (p(x))
is provided. It also requires a particular correlation structure between the random
variables. Although these constraints narrow its field of applications, it is believed that
the proposed approach remains a valuable tool in many model calibration problems.

3. The maximal conditional posterior distribution. The maximal condi-
tional posterior distribution of xi writes

Pi(xi) = max
x

−i

(p(x−i|xi))× p(xi). (3.1)

Pi(xi) is interpreted as the posterior probability function that maximizes the condi-
tional posterior distribution p(x−i|xi). The MCPD of xi is assessed in a discrete form
by evaluating Eq. (3.1) at different values of xi. In practice, the sampled values of xi

(denoted xi
∗) are picked around each probable local optimum (estimated beforehand)

within its prior uncertainty range. This gives,

x∗
−i = argmax

x
−i

{p(x−i|xi = xi
∗)} (3.2)

Pi(xi
∗) = p(x∗

−i|xi
∗)× p(xi

∗) = p(x∗) (3.3)

The MCPD approach makes sense provided that the target jpdf p(x) admits a finite
number of modes. Notably, the success of MCPD sampling relies on the ability to
retrieve all the probable local optima of p(x). In the present work, all the local optima
are searched by use of gradient-based methods with multiple starting points. Multiple
tries ensure that the algorithm starts searching the local optima from different regions
of the input space. Of course, the selection of the optimization technique is a matter
of choice.

The algorithm used to compute the MCPDs is thoroughly explained in [22] and
[21]. For convenience, it is succinctly recalled here. The algorithm is divided into
three parts: in part 1, all the probable optima of p(x) are investigated. In part 2,
the posterior range of variation of each parameter around each probable optimum is
roughly estimated by preliminarily evaluating its MCPD. In part 3, the evaluation of
the MCPDs is refined. It is worth reminding that fast computation is possible because
these three parts can take advantage of parallel computing.

Let us denote the MCPD draws in the vicinity of the local optimum xopt,m by
{

xki,m
}d

i=1
, ∀ki = 1, . . . , Ni. We set p(xopt,1) ≥ p(xopt,2) · · · ≥ p(xopt,m) which means

that xopt,1 is the global optimum. The subset
{(

xki,m,Pki,m
i = p(xki,m)/p(xopt,1)

)}Ni

ki=1

∀m = 1, . . . ,M represents the discretized MCPD of variable xi. As defined, the dis-
cretized MCPD representation is scaled within [0, 1]. As explained above, the MCPD
draws of xi are estimated by setting xi

∗ = xi
ki,m and solving Eq. (3.2). The value

xi
ki,m is successively drawn in the vicinity of the current optimal value of xi. Fig-

ure 3.1 depicts an example of the MCPD draws for a unimodal target distribution.
On the diagonal, the discretized MCPDs are plotted in blue crosses. On the lower
off-diagonal, at row #j and column #i, the pairs (xi

ki,m, xj
ki,m) and (xi

kj ,m, xj
kj ,m)

are plotted. The first pair is obtained while Pi is assessed whereas the second one
stems from the assessment of Pj. This scatterplot shows possible correlations between
the xi and xj draws. For instance, x1 and x2 show no correlation (row #2, column
#1) because virtually two orthogonal curves are observed while the MCPD draws of
x2 and x3 are correlated (row #3, column #2).
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In [24], it was demonstrated that the MCPD draws were (by far) faster to sample
than the MCMC draws. Nevertheless, the two samples are not comparable because
the probabilistic MCPD draws are sampled with constraints (maximization of the
conditional jpdf, see Eq. (3.2)) while the stochastic MCMC draws are obtained from
the same jpdf but unconditionally. Therefore, posterior uncertainty and sensitivity
analyses of computer models cannot be performed with the MCPD draws. For this
purpose, a Monte Carlo (MC) sample that covers the posterior input space would be
preferable. Hence, our aim in this work is to propose an approach to generate MC
samples from the MCPD draws. To this end, an approach that can impose a desired
correlation structure amongst independent MC samples is needed. This is described
in the next section.
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Figure 3.1. Example of MCPD draws prior and posterior to the transformation procedure
Eq. (4.2). Subplots on the diagonal display the MCPD draws of the original variable xi and its
transformed one x̄i (blue crosses and red squares resp.). The lower off-diagonal plots show the
pairwise correlations between the original variables. The draws decorrelated with the transformation
Eq. (4.2) are depicted on the upper off-diagonal.

4. The new sampling approach. In this section we describe the algorithm to
generate stochastic Monte Carlo samples from a set of probabilistic MCPD sample.
The success of the method heavily relies on the decorrelation procedure proposed in
[23] . Here we recall the procedure in § 4.1. In the case of multimodal target jpdf,
a balanced sampling scheme is necessary which is described in § 4.2. We discuss the
validity of the approach and a possible alternative in case of failure in § 4.3. The
algorithm of the proposed approach, called MCPD-MC, is given in § 4.4.
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4.1. Decorrelation of the MCPD draws. Assume that the vector of depen-
dent random variables x = (x1, . . . , xd)

T is function of a set of independent latent
random variables x̄ = (x̄1, . . . , x̄d)

T . Let us further assume that the dependence struc-
ture of the x-variables is strictly due to their relationships with the latent variables
which are of the form,



















































xi1 = x̄1

xi2 = x̄2 + fi21(x̄1)

xi3 = x̄3 + fi31(x̄1) + fi32(x̄2)

...

xid = x̄d +

d−1
∑

j=1

fidj(x̄j)

(4.1)

where, in the j-th equation,
∫

R
fijk(x̄k)p(x̄k)dx̄k = 0, ∀k = 1, . . . , j− 1 which ensures

that the set of functions {fij1(x̄1), . . . , fijj−1(x̄j−1)} is orthogonal (according to [41]).
We note that each equation in Eq. (4.1) is related to the generalized additive model
representation [14].

It is worth noticing that Eq. (4.1) may not always be possible for any set {i1, . . . , id}
= {1, . . . , d}, for instance, when the relationship between two variables is non-monotonic
(see an example in § 5.2). However, we assume that it is at least possible for one of
the sets (as for the non-monotonic case).

Proposition 4.1. Under assumption (4.1), the transformation procedure pro-
posed in [23] that writes



























x̄1 = xi1

x̄2 = xi2 − E [(xi2 − E [xi2 ]) |x̄1]

x̄3 = xi3 −
∑2

j=1 E [(xi3 − E [xi3 ]) |x̄j ]
...

x̄d = xid −
∑d−1

j=1 E [(xid − E [xid ]) |x̄j ]

(4.2)

where E [·] is the mathematical expectation and E [·|·] is the conditional expectation,
provides a set of independent variables x̄.

Eq. (4.2) slightly differs from the original set of equations in [23] because in their
paper it was assumed that x was a vector of standardized random variables (i.e.
centered and reduced). The modified version here considers the conditional expecta-
tions,

(

xij − E
[

xij

])

j = 2, . . . , d, which are centered. Indeed, the reduction of the
x-variables (V [xi] = 1) is not mandatory for the independence of the x̄-variables. The
proposed approach to generate random samples w.r.t. the target jpdf, first, requires
to apply transformation (4.2) to the MCPD draws. Numerically this is achieved by
approximating E [(xi − E [xi]) |x̄j ] = fij(x̄j) with a regression method. In the present
work, polynomial regressions are used in conjunction with Schwartz’s criterion for the
automatic selection of polynomial degree [39].

Applying the previous transformation to the set
{

xki,m
}Ni

ki=1
and ∀i = 1, . . . , d,

which is the MCPD sample drawn in the vicinity of the local optimum xopt,m, yields

the independent sample
{

x̄ki,m
}Ni

ki=1
, the pairs

(

x̄ki,m
i , P̄i(x̄

ki,m
i )

)

as well as the overall

set of fij functions around the optimum. An example of such a transformation is
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depicted in Figure 3.1 (red squares). One can note that the distribution of x̄1 is the
same as the one of x1 (row #1, column #1). The one of x̄2 is similar to the one of
x2 except that it is centered (row #2, column #2). P̄3(x̄3) is centered and narrower
as compared to P3(x3) (row #3, column #3). The shrinkage of x̄3’s distribution is
due to the correlation between x3 and x2. Pairwise analysis shows no correlation
amongst the transformed draws (upper off-diagonal plots) contrarily to the MCPD
draws depicted on the lower off-diagonal which shows a strong correlation between x2

and x3 (row #3, column #2).

4.2. Sampling from the target distribution. Given the estimated set of
fij functions and the set of transformed MCPD P̄i, we are now ready to propose a
new approach to generate x from the joint probability distribution without further
evaluating p(x). First, given that x̄ is a vector of independent random variables in
Eq. (4.1), we start by drawing the x̄-variables from the P̄i(x̄i)’s. For this purpose,
we use the latin hypercube sampling [27] that requires the individual cumulative
distribution functions (CDF) around each optimum. The CDF of x̄i around the m-th
optimum is defined as follows,

Am =

∫ upi

loi

P̄i(x̄i)dx̄i

F̄m
i (X̄i) =

1

Am

∫ X̄i

loi

P̄i(x̄i)dx̄i, ∀i = 1, . . . , d

(4.3)

with loi = min{x̄1,mi , . . . , x̄Ni,m
i }, upi = max{x̄1,mi , . . . , x̄Ni,m

i } and X̄i ∈ [loi, upi].
Numerically, F̄m

i (X̄i) is estimated with the Simpson’s quadrature rule for numerical
integration. Let us denote {x̄k,m}nm

k=1 the independent latin hypercube sample of size
nm. Then, the desired sample x of the original random variables are simply obtained
by transforming the previous draws with Eq. (4.1). The fij functions are replaced by
their polynomial approximations already computed in the decorrelation procedure.
By repeating this procedure around all optima, one gets N =

∑M
m=1 nm draws of the

x-variables sampled from the jpdf that was evaluated to get the MCPD draws. In
the sequel, MCPD-MC refers to the MCPD-based Monte Carlo approach described
in this section.

It has to be noted that, if a final sample of size N is sought, the sample size nm

for each optimum must respect the balance area of the modes, that is,

nm

N
=

Am
∑M

k=1 Ak

. (4.4)

This ensures that each optimum is sampled in good proportion. For the sake of
completeness, we show in Figure 4.1 the Monte Carlo draws obtained with the pro-
posed approach applied to the MCPD draws depicted in Figure 3.1. Note that the
MCPD-MC draws are randomly sampled with the desired correlation structure.

4.3. Discussion. Contrarily to MCMC, the MCPD sampler relies on the use
of an optimizer. The computational effort of the algorithm resides in the optimiza-
tion steps. In the numerical exercises below, the optimizations are performed with a
gradient-based algorithm. The convergence of these algorithms is accelerated if the
Jacobian matrix/vector of the target distribution is also provided. In our studies,
the latter is systematically computed, unless the contrary is mentioned. As we un-
derline above, the optimization processes can be distributed over several computers
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(or parallel sessions). This advantage is also systematically exploited in the current
studies.

In practice, it is not known beforehand whether the correlation structure of the
input variables satisfies Eq. (4.1) (the strong assumption of the method). Thereby, it
is recommended to evaluate the target distribution with the generated sample. Our
experience suggests that, if for several candidates {xk}Nk=1 of the MCPD-MC sample,
the target distribution produces the value zero, then it is likely that the assumption
is not valid.

Alternatively, if evidence yields to reject assumption Eq. (4.1), one can adopt a
less restricted assumption by considering the following orthogonalization procedure,



























x̄1 = xi1

x̄2 = xi2 − E [(xi2 − E [xi2 ]) |x̄1]
x̄3 = xi3 − E [(xi3 − E [xi3 ]) |x̄1, x̄2]

...
x̄d = xid − E [(xid − E [xid ]) |x̄∼d]

(4.5)

which relies on a dependence structure of the form,


















































xi1 = x̄1

xi2 = x̄2 + fi21(x̄1)

xi3 = x̄3 + fi31(x̄1) + fi32(x̄2) + fi312(x̄1, x̄2)

...

xid = x̄d +

d−1
∑

j1=1

fidj1(x̄j1 ) +

d−1
∑

j2>j1

fidj1j2(x̄j1 , x̄j2) + · · ·+ fid12...d−1(x̄1, . . . , x̄d−1)

(4.6)
with still the orthogonality constraints on fikj1j2...js(x̄j1 , . . . , x̄js) with {j1, . . . , js} ⊆
{1, . . . , k−1} in each equation to ensure its uniqueness. For the interested readers, the
expansions in Eq. (4.6) are related to the analysis of variance decomposition [41]. The
difficulty in this case is to approximate the multidimensional functions in the different
equations. This can be achieved, for instance, with the non-parametric polynomial
chaos expansion method of [40]. Adopting (4.6) has the drawback to slow down the
MCPD-MC method as one has to build (d− 2) expansions (needless to perform such
a complex expansion for xi1 and xi2 ). This alternative approach is not considered in
the numerical examples treated in § 5, § 6 and § 7 as assumption (4.1) is fulfilled.

4.4. The Algorithm. Given a MCPD sample
{

xki,m
}d

i=1
, ∀ki = 1, . . . , Ni and

m = 1, . . . ,M , Monte Carlo samples of size N are obtained as follows,

1. Get the uncorrelated MCPD draws
{

x̄ki,m
}d

i=1
from Eq. (4.2) (or alterna-

tively Eq. (4.6))
2. Generate independent random draws

{

x̄k,m
}nm

k=1
from Eq. (4.3) by paying

attention to Eq. (4.4) in case M > 1

3. Get the desired Monte Carlo sample
{

xk
}N

k=1
by imposing the desired corre-

lation structure Eq. (4.1) (or Eq. (4.6))
4. Evaluate the jpdf for each draws. If p(xk) = 0 for k = 1, . . . , n such that

n/N < 1%, then it is likely that Eq. (4.1) is not satisfied. In that case, repeat
the algorithm by considering the orthogonalization procedure stemming from

Eq. (4.6). Otherwise
{

xk
}N

k=1
is the desired Monte Carlo sample.
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Figure 4.1. Same as Figure 3.1 with the Monte Carlo draws obtained with the new approach.
The upper off-diagonal plots show no correlation amongst the draws (red dots). The lower diagonal
plots show the desired draws sampled from the target distributions (gray dots).

Note that step 4 requires to evaluate the jpdf, and thus the likelihood function. This
step might be computationally demanding. It is recommended to start with a small
sample size N (sayN = 50) and if the test is successful (i.e. n/N > 1%), then increase
the Monte Carlo sample size (which is computationally cheap). In all the following
exercises, we find n = 0 and therefore this issue is not discussed much.

5. Numerical exercises.

5.1. Eleven-dimensional multimodal target distribution. We start with
the following multimodal target distribution,

p(x|µ1,µ2,µ3,C) =
1

6
N (µ1, 5C) +

2

6
N (µ2, 5Id) +

3

6
N (µ3, 5Id) (5.1)

where N (µi, 5Id) is the multiGaussian distribution of mean vector µi and covari-
ance 5Id. Id is the d-dimensional identity matrix which indicates that the param-
eters (x1, . . . , xd) are independent in the second and third Gaussian distributions
in Eq. (5.1). In the present work, we consider the case d = 11 with the correla-
tion matrix C having null off-diagonal elements except for C1,2 = C2,1 = −0.5 and
C1,3 = C3,1 = 0.8. These non-null terms impose, for the first Gaussian distribution in
Eq. (5.1), a negative correlation between x1 and x2 and a strong positive correlation
between x1 and x3. The three modes of each variable are grouped in the vectors of
means µ1 = (−5,−4, . . . , 4, 5)T , µ2 = (1, 2, . . . , 11)T and µ3 = (11, 10, . . . , 1)T .
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The case d = 11 was studied in [21] in which the authors demonstrated that the
MCPD draws were faster to generate than the MCMC draws (the case d = 25 was
considered in [22]). Indeed, the MCPD sampler only required around one thousand
evaluations of p(x|µ1,µ2, µ3,C) to obtain an accurate estimate of the variables’ dis-
tributions. Thanks to the parallel computation, the computational time units (CTU)
were about 190. This means that actually the waiting time corresponded to 190 model
calls. This is very short compared to the CTU of the DREAMZS sampler which was
10 000 (with 11 chains in parallel). The obtained MCPD sample is considered here-
after for generating the MCPD-MC sample.

Eq. (5.1) has been assessed with the MCPD-MC draws. The results are depicted
in Figure 5.1 for a sample of size N = 4 096. On the diagonal, the MCPD estimate of
xi (row #i, column # i) and the Monte Carlo draws (xi

k,m, p(xk,m)) , ∀k = 1, . . . , N
and m = 1, 2, 3 are reported. Note that the MCPD-MC draws are located below the
MCPD curves. This is because the MCPD-MC approach samples probable solutions
while the MCPD sampler draws the most probable variable set for prescribed values
of one of them.

The lower off-diagonal scatterplots show the pairwise correlations of MCPD-MC
draws. The estimated Pearson correlation coefficients for the first mode are also
reported. They are close to the analytical correlation coefficients, r

(1)
12 ≈ C1,2 = −0.5

and r
(1)
13 ≈ C1,3 = 0.8. The upper off-diagonal plots compare the empirical densities

with the analytical marginal densities. It can be inferred that each mode has been
sampled in good proportion.

5.2. Ten-dimensional twisted Gaussian target distribution. Let us now
consider another challenging problem which was also analyzed in [21]. We target the
twisted Gaussian density proposed in [13] and defined as follows,

p(x) = p(x1)p(x2|x1)

10
∏

i=3

p(xi)

with p(x1) = N (0, 100), p(x2|x1) = N (−0.1x2
1 + 10, 1) and p(xi) = N (0, 1), ∀i =

3, . . . , 10. This jpdf is very challenging because it exhibits a non-monotonic rela-
tionship between x2 and x1. Indeed, the conditional expectation of x2 on x1 is
E [x2|x1] = −0.1x2

1 + 10.
Generating the MCPD draws required approximately 1 900 evaluations of p(x)

while DREAMZS required at least 20 000 evaluations to converge (see the aforemen-
tioned paper for more details). We can notice that the relationship between E [x1|x2]
cannot be written in the form of f12(x2) since for one value of x2 two values of x1 are
possible. Hence, Eq. (4.1) is not valid for the variable set (x2, x1, . . . , x10) so ordered,
but it is for the set (x1, x2, x3, . . . , x10). Indeed, it is possible to write E [x2|x1] =
f21(x1) with f21 the non-monotonic function mentioned above. Consequently, the
transformation in Eq. (4.2) starts with x̄1 = x1, then x̄2 = x2 − E [(x2 − E [x2]) |x̄1],
x̄3 = x3 − E [(x3 − E [x3]) |x̄1]− E [(x3 − E [x3]) |x̄2] and so on.

The results are depicted in Figure 5.2 for the first three variables. Note that, on
the first diagonal plot (row #1, column #1) the MCPD and MCPD-MC draws of x1

are depicted, while on row #2 and column #2 the draws of x2 are represented. The
MCPD-MC draws are located beneath the MCPD curves. We note that the uncer-
tainty ranges of x1 and x2 are very large which is not an issue for the MCPD sampler.
The upper off-diagonal plots prove that the MCPD draws have been successfully or-
thogonalized (they are actually independent). The lower off-diagonal scatterplot of
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Figure 5.1. Sampling from the multimodal target distribution. Results of first three variables for
a sample of size N = 4 096 are depicted. The on-diagonal plots represent the MCPDs estimate (blue
line) as well as the MCPD-MC draws. The lower off-diagonal scatterplots represent the pairwise

correlation of the MCPD draws (blue crosses) and the MCPD-MC draws (gray dots). r
(1)
ij

is the
estimated pairwise correlation coefficient of xi and xj in the vicinity of the first mode. The upper
off-diagonal confirms that the MCPD-MC sample of each variable fits its analytical marginal density
(red curve).

x2 versus x1 (row #2, column # 1) shows that, because of their strong dependence,
the MCPD-MC draws (gray dots) are located close to the MCPD draws (blue dots).

6. Calibration of a drainage model.

6.1. The model and the dataset. The MCPD-MC approach proposed in the
present work has been specifically developed to address the issue of model calibration
in a Bayesian framework. In this section, we consider the calibration of a soil drainage
model at the laboratory scale. Once again, this problem was also studied in [21] to
compare the performance of the MCPD approach with the one of the MCMC sampler.
Here, we repeat the same numerical experiment in order to illustrate the MCPD-MC
approach.

We model a laboratory multistep outflow drainage experiment in which a column
of length L = 6 cm and diameter D = 8.5 cm is filled with sand and initially saturated
with water. The column is drained by imposing at the lower boundary of the column
multistep prescribed negative pressure heads. Flow in the column is modelled by the
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Figure 5.2. Sampling from the banana-shaped distribution. Results of first three variables for
a sample of size N = 4 096 are depicted.

non-linear one-dimensional Richard’s equation,

∂θ

∂t
=

∂

∂z

[

K(h)

(

∂h

∂z
− 1

)]

, (6.1)

in conjunction with the Mualem-van Genuchten (MvG) retention curve [29, 45],

K(Se) = ks · S
λ
e

(

1−
(

1− S1/m
e

)m)2

, (6.2)

where t (min) is time, z (cm) is the vertical coordinate (positive downward) and
m = 1 − 1/n. The water content θ (cm3.cm−3) and the pressure head h (cm−1) are
the state variables. The effective saturation Se is defined as follows,

Se =
θ − θr
θs − θr

=







1

|αh|n
h < −1/α

1 h ≥ −1/α
. (6.3)

and K (cm3.min−1) is the unsaturated hydraulic conductivity.
The soil hydraulic parameters to be estimated are: ks (cm3.min−1) the saturated

hydraulic conductivity, θs (cm3.cm−3) the saturated water content, θr (cm3.cm−3)
the residual water content and the MvG fitting coefficients α (cm−1), n (−) and λ
(−).

Eqs.(6.1-6.3) are solved with a standard Galerkin finite element method in con-
junction with the Newton linearization method. Synthetic data were obtained by
running the numerical model for a given input parameter set and noising the model
responses with independent Gaussian random noises. The responses of interest are
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the pressure head h and the soil water content θ at the center of the column. The
inverse modelling is performed from the observed pressure head and water content
denoted by yh and yθ respectively.

Setting the calibration problem in a Bayesian framework yields the following
posterior jpdf,

p(x, σh, σθ|yh,yθ) ∝
1

σNh

h σNθ

θ

exp

{

−
1

2

(

SSh(x)

σ2
h

+
SSθ(x)

σ2
θ

)}

, (6.4)

where Nh and Nθ are the number of observed data of pressure and water content
respectively and SSh and SSθ are the sum of square errors of pressure head and water
content respectively. This posterior jpdf was derived by assuming normal errors for
h and θ and independent uniform priors for the hydraulic parameters within large
plausible ranges (see [21] for more details).

Eight unknowns were sought in the inverse problem, including the vector of hy-
draulic parameters x = (ks, θr, θs, α, n, λ) as well as the error variances σ2

h (cm2), σ2
θ

(cm6.cm−6). The different maximization processes were performed with the Levenberg-
Marquardt algorithm [20, 25] as the partial derivatives of the model responses w.r.t.
the hydraulic parameters were computed by the numerical model.

The performance of the MCPD sampler was discussed in [21] and a comparison
with the DREAMZS MCMC sampler of [18] was also carried out. We recall that
the MCPD sampler required an overall of 7 500 model calls. But thanks to the
parallelization, the computational time unit (related to the real waiting time) was
about 2 000 model calls which corresponded to the assessment of θs’s MCPD. An
MCPD sample of size 185 was obtained. DREAMZS required 64 000 model calls
but with eight chains in parallel the computational time unit was 8 000. In the next
subsections, we discuss the MCPD-MC sampling of the calibrated model parameters
and the posterior predictive uncertainty of the model responses. Of particular interest
is the posterior uncertainty of the predicted cumulative outflow at the end of the
simulated experiment. In effect, the cumulative outflow was not considered as a
measurement in the calibration problem.

6.2. Parameter uncertainty quantification. The MCPDs of the hydraulic
parameters as well as those of the likelihood hyperparameters are depicted in Fig-
ure 6.1 (the on-diagonal plots). They show bell-shaped parameters’ posterior marginal
pdf with a clear optimal value. The support of the MCPDs are quite narrow except
for the MvG parameter λ. This might be explained by a lack of sensitivity of h(t)
and θ(t) to this parameter. From the 185 MCPD draws, a MCPD-MC sample of size
512 was generated. They are plotted in Figure 6.1 (the scatterplots).

The MCPD-MC draws were then propagated through the model (Eq. (6.1)) in
order to estimate the probability assigned to each draw (Eq. (6.4)). They are plotted
with the MCPD curves (the on-diagonal scatterplots in Figure 6.1). Note that after
evaluating Eq. (6.4), the probability value of each draw was scaled between [0,1] by
dividing by the probability value of the MAP. The MCPD-MC draws are assigned
high probability values, proving that they stem from the region of high probability of
the posterior parameter space. Actually, none of the MCPD-MC draw was assigned
a probability zero which is an indication of the reliability of the generated draws as
explained in Step 4 of the algorithm defined in § 4.4.

Pairwise scatterplots of the MCPD-MC draws are depicted on the lower off-
diagonal. They show either strong linear or strong non-linear correlations between
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the hydraulic parameters, which is a sign of the overparameterization of the calibra-
tion problem. This was already noted in [21]. Indeed, ks is positively correlated to
(θs, α, λ) and negatively correlated to (θr, n). This means that, for instance, an in-
crease of ks-value would cause a deviation of the predicted state variables from the
observations that could be compensated by increasing (θs, α, λ) and simultaneously
decreasing (θr, n). The error variances are not correlated with the hydraulic parame-
ters. Given that for this problem, Eq. (6.4) admits one single optimum, in the sequel
the reference to the superscript m in the MCPD draws is dropped (see Section 3).
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Figure 6.1. The generated MCPD-MC draws of the numerical drainage experiment. On the diagonal, the red curves are the MCPDs, the black dots
represent the MCPD-MC draws.
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6.3. Predictive uncertainty of the observed variables. Except the fact
that the MCPD-MC draws are assigned high probabilities, so far, there is no clue
that they are really sampled from the target posterior jpdf. One way to check this as-
sumption is to assess the 95% credible intervals assigned to the observed state variables
with the MCPD sample. In this way, one can compare the predictive uncertainty ob-
tained with the 95% credible intervals evaluated with the few MCPD draws. Indeed,
as explained in [21], it is possible to assess the posterior uncertainty of the observed
model responses because, for the latter, the likelihood functions have been defined
before calibration. Let us denote by y∗out a new observation of either the pressure
head (out = h) or the water content (out = θ), then the posterior pdf of y∗out reads,

p̂(y∗out|yh,yθ) =

∑d
i=1

∑Ni

ki=1 Pi(x
ki)p(y∗out|yh,yθ,x

ki , σki

h , σki

θ )
∑d

i=1

∑Ni

ki=1 Pi(xki )
(6.5)

where one recognizes Pi(x
ki) the probability assigned to the MCPD draw xki (i.e. the

posterior jpdf Eq. (6.4) evaluated at xki). The likelihood function at y∗out evaluated at
the ki-th MCPD draw is denoted by p(y∗out|yh,yθ,x

ki , σki

h , σki

θ ). These two quantities
are obtained by evaluating the model responses of interest at each MCPD draw xki ,
ki = 1, . . . , Ni, i = 1, . . . , d.

The two predicted 95% credible intervals are represented on Figure 6.2. We can
note that they match very well. Furthermore, they encompass most of the observa-
tions. In our viewpoint, this is a clear indication that the MCPD-MC sample was
generated with respect to the posterior jpdf. We recall that in [21], MCPD and
MCMC yielded similar predicted uncertainties for this calibration problem.

6.4. Posterior uncertainty analysis of the cumulative outflow. In sub-
surface hydrology, the cumulative outflow prediction is of high importance to predict
water recharge of aquifers. While it is an issue to measure in-situ, this quantity is
easily measured in laboratory experiment. In the present study, it corresponds to
the amount of water exiting the column per unit surface in the end of the drainage
experiment. The cumulative outflow is computed as follows,

Cs =

∫ L

0

(θ(z, 0)− θ(z, tf )) dz,

where tf = 240 min is the duration of the drainage experiment. Predicting the
uncertainty of this model response directly with the 185 MCPD draws is not possible
because it requires the knowledge of the likelihood of this variable. The uncertainty of
cumulative outflow a posteriori (i.e. after calibration) can be assessed by propagating
the MCPD-MC sample through this model response variable.

The predicted posterior density of the final cumulative outflow is depicted in
Figure 6.3. It shows a very narrow support with Cs ∈ [0.69, 0.75] cm with a mode
around 0.71 cm. This indicates that, as far as the prediction of the cumulative outflow
is concerned, the hydraulic parameters have been satisfactorily calibrated. On the
opposite, a larger support of the predicted posterior density would indicate a poorly
calibrated model. In that case, a sensitivity analysis would help identifying which
input variables were responsible for the lack of accuracy [37]. It is worth mentioning
that sensitivity analysis can be easily carried out with the MCPD-MC draws at hand.
For this purpose, one can use the method developed in [23] which is valid under the
assumption represented by Eq. (4.1). Although in the present case such an analysis is
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Figure 6.2. The dots represent the data used for soil hydraulic parameter identification. The
predictive uncertainty ranges (95% credible interval) estimated with the MCPD and MCPD-MC
samples match satisfactorily well, confirming that the MCPD-MC draws are reliable.

not necessary as the cumulative outflow is predicted accurately, we have undertaken
a sensitivity analysis exercise for the sake of completeness.

The sensitivity analysis setting addressed in this exercise is the following: What
is the smallest subset of hydraulic parameters x1 ⊂ x = (ks, θr, θs, α, n, λ) that mostly
explained the predicted variance of Cs? To answer this question, we consider the
following Sobol’ index [41]:

Sclosed
x1

=
Vx1

[

Ex2|x1
[Cs|x1]

]

Vx [Cs]
(6.6)

where V is the variance operator and x = (x1,x2). We investigate the smallest subset
x1 with the highest Sobol’ index and such that Sclosed

x1
> 0.99 which means that x1

explains more than 99% of the variance of Cs. From the MCPD-MC sample of size 512
already generated, the Sobol’ indices of different subsets of various cardinality were
computed with the method introduced in [23]. Obviously several subsets of equal
cardinality that satisfied Sclosed

x1
> 0.99 were found. But the one with the highest

Sobol’ index was attributed to x1 = (ks, θr, n). This result indicate if narrower
predictive uncertainty is required for the cumulative outflow, one should devote further
effort to reduce the uncertainty in the input set x1 = (ks, θr, n).
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Figure 6.3. Predictive uncertainty of the cumulative outflow in the end of the experiment.

7. Calibration of a reactive transport model.

7.1. Problem setting. We consider the field observations of Valocchi et al.
[44] that was used as a simulation benchmark by several authors ([48, 49, 6, 7]). The
problem is a field experiment involving nonlinear ion exchange reactions in Palo Alto
Baylands, California, where a multi-ion solution was injected into a well. For aqueous
components, namely Mg2+, Ca2+, Na+ and Cl−, were monitored at an observation
well (named S23) located 16 m from the injection well. In this work, we only focus
on the reactive species Mg2+ and Ca2+. The experiment is modelled by a set of
one-dimensional advective, dispersive and reactive transport equations,

∂Csp

∂t
= −U

∂Csp

∂x
+D

∂2Csp

∂x2
+Rsp(x, t) (7.1)

where Csp (mmol.l−1) is the concentration of cation sp ∈ (Mg2+,Ca2+,Na+), U
(m.h−1) is the groundwater velocity, D (m2.h−1) is the dispersion coefficient of the
homogeneous medium and Rsp (mmol.l−1.h−1) is a sink/source rate of cation due to
chemical reactions. The different chemical reactions and associated log-constants of
reactions are,
Na+ + S− ⇋ NaS, log(KNa)
Ca2+ + 2S− ⇋ CaS2, log(KCa)
Mg2+ + 2S− ⇋ MgS2, log(KMg)

The chemical reactions are parameterized by two selectivity coefficients as follows,
log(KCN ) = log(KCa)− 2 log(KNa)
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log(KMN ) = log(KMg)− 2 log(KNa)
with log(KNa) = 4. and S− the surface charge of the soil. This set of equations
is completed by initial conditions and is solved numerically with the sequential non-
iterative approach [6]. The domain of length 16 m is discretized with a uniform mesh
of 400 elements. The simulated time T = 2000 h is discretized with a uniform time
step ∆t = 0.2 h.

The model is parameterized by the vector of input parameters x = (log(KCN ),
log(KMN ), Tf , U,D), where Tf (-) is the total fixed concentration. The observed data
are the concentrations of Ca2+ and Mg2+ (mmol/l). We assume log-normal likelihood
for each concentration data and independent uniform prior uncertainty ranges for x.
This leads to the following target jpdf,

p(x, σCa, σMg |yCa,yMg) ∝
1

σNCa

Ca σ
NMg

CMg

exp

{

−
1

2

(

SSCa(x)

σ2
Ca

+
SSMg(x)

σ2
Mg

)}

, (7.2)

which has the same form as Eq. (6.4) except that yCa and yMg are the vectors of
observed log-concentrations while SSCa and SSMg are the sum of squares of the
differences between predicted and observed log-concentration of cations.

7.2. Uncertainty quantification. The statistical calibration of the transport
model involves seven variables, namely the model parameters x = (log(KCN), log(KMN ),
Tf , U,D), and the hyperparameters (σ2

Ca, σ
2
Mg) of the likelihood function. Their

MCPD estimates are depicted in Figure 7.1. The optimization algorithm found
a single set of optimum values which is, log(Kopt,1

CN ) ≃ 8.69, log(Kopt,1
MN ) ≃ 8.43,

T opt,1
f ≃ 735.64, Uopt,1 ≃ 0.74, Dopt,1 ≃ 4.35, σopt,1

Ca ≃ 0.09 and σopt,1
Mg ≃ 0.14.

Indeed, the MCPD curves are unimodal (Figure 7.1, on the diagonal), rather Gaus-
sian for the parameters in vector (log(KCN ), log(KMN ), Tf) and skewed for those in
(U,D, σ2

Ca, σ
2
Mg). The parameters in the former subset are well identified despite of

the strong collinearity between (log(KCN), log(KMN )) (row #2, column #1). Those
in the second subset have large posterior uncertainty ranges with a negative strong
correlation between (U,D) (row #5, column #4). The hyperparameters are not cor-
related to the parameters (see the last two rows).

From the MCPD sample, a MCPD-MC sample of size N = 512 was generated.
To check the validity of Eq. (4.1), for each MCPD-MC draw the predicted log-
concentrations of Ca2+ and Mg2+ were collected after running the transport model.
Then, with the collection of model responses the jpdf in Eq. (7.2) was evaluated.
Therefore, each MCPD-MC draw is assigned a probability value which has been scaled
properly within [0, 1] and plotted on Figure 7.1 (dot plots). On the diagonal plots, we
notice that the MCPD-MC draws are assigned high probability values. The dot plots
filled the space between the MCPD curves and the x-axis. None of the MCPD-MC
draw was assigned a probability zero. This is an indication that the MCPD-MC is
successfully sampled from the desired jpdf. This is confirmed by the comparison of
the predictive uncertainties obtained with the MCPD draws (by using Eq. (6.5)) and
the Monte Carlo sample respectively (see Figure 7.2). Notably, the predictive uncer-
tainties are narrow and encompass the observations. This indicates that the choice of
the log-normal likelihood is reasonable.

In our study, cations Na+ were not involved in the calibration process, only Ca2+

and Mg2+ were. Hence, it can be questioned whether the calibration of the model
from the concentration measurements of Ca2+ and Mg2+ are sufficient to estimate the
total mass of Na+ (denoted MNa) accurately. A Monte Carlo sample of size N = 512
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was obtained by propagating the MCPD-MC draws through the model responseMNa.
The estimated pdf is depicted in Figure 7.3. The support of the latter is large, ranging
from 10 to 19 mol.m−2 with a mode around 16 mol.m−2.

Identifying those uncertain input variables responsible for the large uncertainty
in the model response is the role of sensitivity analysis. In the present analysis,
we quantify the amount of the variance of MNa explained by each individual input
parameter. This statistic is called the Pearson correlation ratio or the first-order
Sobol’ index and is defined as follows [32, 42],

Sxi
=

Vxi

[

Ex
∼i|xi

[MNa|xi]
]

Vx [MNa]
(7.3)

which is the same as Eq. (6.6) but for individual variable xi such that (xi,x∼i) = x.
Using the sensitivity analysis method of Mara & Tarantola [23] as previously, we find:
SKCN

≃ 0.74, SKMN
≃ 0.73, STf

≃ 0.18, SU ≃ 1 and SD ≃ 0.99. These results
simply claim that the large uncertainty in MNa prediction is due to the inaccurate
assessment of the groundwater velocity U . The high sensitivity index of D is merely
due to its strong correlation with U (see row #5, column #4 in Figure 7.1) which was
poorly estimated from the measurements of Ca2+ and Mg2+ concentrations. Including
measurements of chloride concentrations in the calibration dataset did not improve
much the flow velocity estimate even though Cl− is a tracer (not shown).
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Figure 7.1. The generated MCPD-MC draws of the reactive transport experiment. On the diagonal, the red curves are the MCPDs, the black dots represent
the MCPD-MC draws.
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Figure 7.2. Breakthrough curves of cations in the reactive transport experiment. The predictive
uncertainty ranges (95% credible interval) estimated with the MCPD and MCPD-MC samples are
comparable, confirming that the MCPD-MC draws are reliable.

8. Conclusion. In this paper, we have extended the maximal conditional pos-
terior distribution sampling to generate Monte Carlo draws from a joint probability
distribution function. The proposed approach requires that the correlation structure
amongst the random variables be such that Eq. (4.1) is valid at least for one possible
ordering of the random variables in the set (x1, . . . , xd). Generating Monte Carlo
samples is essential, for instance, to perform uncertainty and sensitivity analyses of
model responses. This is illustrated in our work.

The numerical exercises have shown that the proposed approach, named MCPD-
MC sampler, was able to sample from distribution functions with possibly multi-
modality and complex correlation structure. The MCPD-MC approach relies on the
orthogonalization procedure introduced in [23] that produces independent samples
under assumption (4.1). Fast generation of random samples from the MCPD draws is
performed without evaluating the jpdf further. However, evaluation of the jpdf with
each generated draw is necessary to verify that the latter is located in the region of
high probability. This verification step is required to check the validity of Eq. (4.1).

Applications to model calibration have demonstrated the interest of the proposed
approach. With the MCPD-MC sample, uncertainty and sensitivity analyses of the
model responses that were not used in the calibration step could be performed. Fur-
thermore, sensitivity analysis can be easily carried out with the method developed
in [23] since the latter relies on the same assumption as the MCPD-MC sampler.
However, it has to be underlined that Eq. (4.1) may not be satisfied in some situa-
tions. Therefore, great care must be taken when applying the MCPD-MC approach.
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Figure 7.3. Predictive uncertainty of the total mass of Na+involved in the chemical reactions
during the flow transport experiment.

Otherwise, another alternative (more expensive) relying on Eq. (4.6) can be employed.
It has to be underlined that the current version of the MCPD-MC sampler for

statistical model calibration only handles Gaussian likelihood functions. Current de-
velopment of the sampler aims at including a less restricted likelihood function by
accounting for the Generalized Error Distribution (also called Exponential Power dis-
tribution [2]).
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