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ABSTRACT
The large-scale field of the Sun is well represented by its lowest energy (or potential) state.
Recent observations, by comparison, reveal that many solar-type stars show large-scale surface
magnetic fields that are highly non-potential – that is, they have been stressed above their lowest
energy state. This non-potential component of the surface field is neglected by current stellar
wind models. The aim of this paper is to determine its effect on the coronal structure and
wind. We use Zeeman–Doppler surface magnetograms of two stars – one with an almost
potential, one with a non-potential surface field – to extrapolate a static model of the coronal
structure for each star. We find that the stresses are carried almost exclusively in a band of
unidirectional azimuthal field that is confined to mid-latitudes. Using this static solution as an
initial state for a magnetohydrodynamic (MHD) wind model, we then find that the final state
is determined primarily by the potential component of the surface magnetic field. The band
of azimuthal field must be confined close to the stellar surface, as it is not compatible with a
steady-state wind. By artificially increasing the stellar rotation rate, we demonstrate that the
observed azimuthal fields cannot be produced by the action of the wind but must be due to
processes at or below the stellar surface. We conclude that the background winds of solar-like
stars are largely unaffected by these highly stressed surface fields. Nonetheless, the increased
flare activity and associated coronal mass ejections that may be expected to accompany such
highly stressed fields may have a significant impact on any surrounding planets.
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1 IN T RO D U C T I O N

The magnetic fields of solar-like stars are an important influence not
only on the rotational evolution of the stars themselves, but also on
the atmospheres and exospheres of any planets that might surround
them. This magnetic field not only transfers torques between the
protoplanetary disc and the young star, but it also governs the loss
of angular momentum in a wind. Any orbiting planets are exposed to
the erosive effects of this wind and also the coronal X-ray emission
from the star (Khodachenko et al. 2007).

Both of these effects are likely to weaken as the star ages and
spins down, generating less magnetic flux and hence producing a
weaker wind and reduced X-ray emission (Güdel 2004). Recent
maps of the surface magnetic fields of stars with a range of masses
and rotation rates, however, suggest that it is not only the strength

� E-mail: mmj@st-andrews.ac.uk

of the magnetic field that changes with rotation rate, but also its
geometry (Donati et al. 2008; Morin et al. 2008; Petit et al. 2008;
Morin et al. 2010). In contrast to the Sun which shows spots in
well-defined ‘active latitudes’, solar mass stars that are still in the
rapidly rotating stage typically show very non-solar magnetic fields,
with spots that extend over the whole surface, often resulting in a
dark polar cap (Strassmeier 2009). Mixed polarity magnetic flux is
seen at all latitudes on these stars.

Typically these rapidly rotating stars have X-ray luminosities
that are three orders of magnitude greater than that of the Sun, but
the extent of the corona that produces this emission is currently
unknown. X-ray spectra suggest that their coronae are dense and
compact (Dupree et al. 1993; Schrijver et al. 1995; Brickhouse &
Dupree 1998; Maggio et al. 2000; Güdel et al. 2001; Sanz-Forcada,
Maggio & Micela 2003). In contrast, the presence of multiple large
cool prominences trapped in co-rotation at distances of several stel-
lar radii suggests that their closed magnetic fields, if not their X-ray
bright coronae, must be very extended (Collier Cameron &
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Robinson 1989a,b; Collier Cameron & Woods 1992; Jeffries 1993;
Byrne, Eibe & Rolleston 1996; Eibe 1998; Barnes et al. 2000;
Donati et al. 2000). One possible explanation is that the promi-
nences form not within the X-ray bright corona, but in the cusps of
helmet streamers that extend out into the stellar wind (Jardine & van
Ballegooijen 2005). These prominences typically form in a time-
scale of 1 d and some 1–10 appear in the observable hemisphere
at any time. Their ejection in the stellar equivalent of solar coronal
mass ejections not only contributes to the angular momentum loss
from the star (Aarnio et al. 2011a,b) but it will also temporarily
enhance the ram pressure of the stellar wind and hence, the degree
of compression of any planetary magnetospheres.

The surface fields of these young stars show one other very
non-solar feature and that is the presence of a strong (sometimes
dominant) non-potential component (Petit et al. 2008). Stellar winds
can of course produce azimuthal fields as the escaping wind extracts
angular momentum from the star via magnetic torques, but for
slow rotators it is unlikely that this could generate such strong
fields at the photospheric level. Several other mechanisms have
been proposed to explain the surface azimuthal fields, including
the underlying dynamo (Donati & Collier Cameron 1997), and
the effect of differential rotation in the presence of a unipolar cap
(Pointer et al. 2002).

For solar mass stars, the surface differential rotation is similar to
that of the Sun, but for higher-mass stars the differential rotation
can be extreme, with equator to pole lap times as short as 16 d
(Barnes et al. 2005; Marsden et al. 2005, 2006; Jeffers et al. 2011).
The effect that this enhanced shear might have on the coronal and
wind dynamics and the possible rate of coronal mass ejections is
unknown. For low mass stars the differential rotation is typically
weak (Morin et al. 2008). The high flaring rate of these stars however
suggests that some dynamic process is stressing the coronal field –
even although in many cases the large-scale field that is detected
with Zeeman–Doppler imaging (ZDI) is close to its potential or
lowest energy state.

Some insight into these stellar fields can be gained by considering
the changes in the solar magnetic field over the Sun’s magnetic cy-
cle. At minimum, the solar field is closest to an aligned dipole, with
fast wind streams emerging from the open field regions at the pole
and the slow streams emerging from above the low-latitude active
regions. As the cycle progresses, more bipoles emerge, contributing
to the azimuthal field. These are acted on by diffusion and differen-
tial rotation, and their transport towards the poles by the meridional
flow eventually reverses the polar polarity. In addition, their net
contribution to the azimuthal field causes the axis of the large-scale
dipole to move down into the equatorial plane and eventually re-
verse. This growth of active regions (and associated coronal mass
ejections) through the cycle is also accompanied by the extension
of the polar coronal holes down towards the equatorial plane. As a
result, fast wind streams originate at a range of latitudes and may
interact with the slow wind streams to produce ‘corotating interac-
tion regions’ in the solar wind. These shocks provide a local density
enhancement that, combined with the increased number of coronal
mass ejections, can modulate the cosmic ray flux at Earth (Wang,
Sheeley & Rouillard 2006). Recent models of the variation of the
solar wind through its cycle (Pinto et al. 2011) show that the mag-
netic torques exerted on the Sun vary significantly through its cycle,
giving two orders of magnitude variation in the spin-down time.

By analogy with the Sun, the very active young stars that show
predominantly non-axisymmetric and non-potential surface fields
may have winds that show a mixture of fast and slow wind streams
with coronal mass ejections emerging from a range of latitudes. In-

deed, the fact that these stars typically show mixed-polarity flux at
all latitudes may suggest that their winds (while showing some char-
acteristics of the solar wind at maximum) are much more extreme
than the solar wind.

Most stellar wind models are, however, based on the solar anal-
ogy. The simplest early models, such as the traditional Weber–
Davies model (Weber & Davies 1967), assumed a split monopole,
but more recent work usually initiates magnetohydrodynamic
(MHD) simulations from an initial state defined by a ‘potential
field source surface’ model (Altschuler & Newkirk 1969; Schatten,
Wilcox & Ness 1969). This approach assumes that the field is po-
tential (i.e. in its lowest energy state) and that at some height above
the surface the field lines are opened up by the pressure of the hot
coronal gas. This method uses only the radial field component at
the surface, neglecting the azimuthal and meridional components.
Its advantage is that it is computationally cheap and it provides a
unique solution for the magnetic structure. A recent comparison of
the global structure predicted by both the potential field source sur-
face method and the full MHD simulation suggests that the former
captures the large-scale structure of the solar coronal field fairly
reliably (Riley et al. 2006).

This approach would not however capture the non-potential na-
ture of the magnetic fields observed at the surfaces of other stars.
The purpose of this paper is to explore the effect of this non-potential
field on the large-scale structure of the corona and winds of solar-
type stars.

2 TH E S U R FAC E MAG N E TO G R A M S

In order to study the effects of the non-potential field on the coronal
structure and dynamics, we choose to compare two stars (CE Boo
and GJ 49) that are similar in rotation rate but with slightly different
masses. One has a surface field that is close to potential, while
the other has a significant non-potential component. Both stars are
slow rotators, so rotational effects are minimal. In addition, the
inclination of the rotation axes of both stars to the line of sight is
the same, so the magnetic fields of both stars are seen in the same
orientation. The stellar parameters are shown in Table 1.

We choose initially to compare the static coronal structures that
are found by assuming either that the field is purely potential, or that
it has both potential and non-potential components. These extrapo-
lations can be used as the initial condition for a full MHD solution.
Since we are particularly interested in the non-potential field, we
also explore the possibility that for the more rapidly rotating stars
it is the rotational stressing of the surface field by the action of the
wind that causes the field to depart from a potential state. We there-
fore perform one simulation of the wind of GJ 49 with an artificially
decreased stellar rotation period of 0.6 d and compare this to the
wind parameters found with the observed rotation period of 18.6 d.

Table 1. Stellar and magnetic parameters for CE Boo and GJ 49, taken from
Donati et al. (2008). The table lists sequentially the stellar name, spectral
type, mass, radius, inclination of the rotation axis and the rotation period,
and then the field properties: the reconstructed magnetic flux density and
the fractional energy in the poloidal (potential) field.

Star Spectral type M� R� i Prot 〈B〉 Poloidal
(M�) (R�) (◦) (d) (G)

CE Boo M2.5 0.43 0.48 45 14.7 103 0.95
GJ 49 M1.5 0.51 0.57 45 18.6 27 0.48
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Figure 1. Surface magnetic field maps of CE Boo derived from spectropolarimetric observations (Donati et al. 2008). The single black line shows the zero-field
contour that separates regions of opposite polarity.

The input for the static extrapolation is taken from Donati et al.
(2008). The surface magnetic field of both stars were modelled with
ZDI from time series of spectropolarimetric observations collected
over approximately two consecutive stellar rotations. For spatially
unresolved sources, due to the mutual cancellation of contributions
from neighbouring regions of opposite polarities to the polarized
signal, spectropolarimetric measurements can only probe the large-
scale component of magnetic fields (see e.g. Morin 2012). The
maximum degree � of modes that can be reconstructed with ZDI
depends on the star’s projected rotational velocity. For slow rotators
such as CE Boo and GJ 49, the reconstruction is limited to modes
with order �≤ 8. As there is no unique solution to the ZDI problem, a
regularization scheme has to be used. A maximum entropy solution
corresponding to the lowest magnetic energy content is used. It is
optimal in the sense that any feature present in the map is actually
required to fit the data. Although this method does not allow us
to derive formal error bars on the reconstructed maps, numerical
experiments have shown that ZDI is a robust method (Donati &
Brown 1997; Morin et al. 2010).

This reconstructed field is expressed as a sum of a poloidal and
toroidal field (Mestel 1999). The poloidal component captures the
potential contribution to the total field, that is the component that
is in its lowest energy state. The toroidal component lies on the
surfaces of concentric spheres and captures the non-potential com-
ponent of the total field. It is this component that is associated with
the electric currents in the corona and which describe the free en-
ergy that is available to power, for example, stellar flares and coronal
mass ejections. These two components of the surface field can be
expressed as linear combinations of spherical harmonics (Donati
et al. 2006). Thus, the radial, meridional and azimuthal field com-
ponents at the stellar surface can be written in spherical coordinates
(r, θ , φ) as1

Br = −
N∑

l=1

l∑
m=−l

αlmclmPlm(θ )eimφ (1)

Bθ =

−
N∑

l=1

l∑
m=−l

[
βlm

clm

(l + 1)

dPlm(θ )

dθ
+ γlm

clm

(l + 1)

Plm(θ )

sin θ
im

]
eimφ

(2)

1 We note that in Donati et al. (2006), the radial field is positive outwards, the
azimuthal field is positive in the direction of stellar rotation (i.e. increasing
longitude or decreasing rotation phase) and the meridional field is positive
when pointing to the visible pole.

Bφ =

−
N∑

l=1

l∑
m=−l

[
βlm

clm

(l + 1)

Plm(θ )

sin θ
im − γlm

clm

(l + 1)

dPlm(θ )

dθ

]
eimφ,

(3)

where l and m are the degree and order, respectively,

clm =
√

(2l + 1)

4π

(l − m)!

(l + m)!
(4)

and Plm(θ ) denotes the associated Legendre functions. The potential
terms are those with coefficients αlm or β lm, while the non-potential
terms are those with coefficients γ lm. Clearly, then, in the limit
γ lm → 0 we recover a purely potential field.

The corresponding surface magnetic maps from Donati et al.
(2008) are reproduced in Figs 1 and 2. In both cases, the radial
and meridional fields look very similar to a dipole, but particularly
in the case of GJ 49, there is a significant azimuthal field that is
unidirectional at low to mid latitudes. This is a clear signature of a
non-potential field.

3 THE STATI C CORO NA L MAG NETI C FIELD

In order to determine the coronal structure that corresponds to these
surface fields, we need to make some assumptions about the nature
of the coronal field. The simplest assumption is that the field is
potential, or in its lowest energy state and is determined simply by
the coefficients αlm and β lm in equations (1–3). This is the starting
point for many extrapolations of the solar magnetic field. If we
wish to determine the distribution of electric currents in the corona,
however, we need to allow for the non-potential components that
are described by the coefficients γ lm.

3.1 Potential field extrapolation

We begin by calculating the contribution to the total field that is
potential. We write Bpot in terms of a flux function 	 such that
Bpot = −∇	 and the condition that the field is potential (∇ ×
Bpot = 0) is then satisfied automatically. The condition that the field
is divergence free then reduces to Laplace’s equation ∇2	 = 0 with
solution in spherical coordinates (r, θ , φ)

	 =
N∑

l=1

l∑
m=−l

[
almrl + blmr−(l+1)

]
Plm(θ )eimφ, (5)

where all radii are scaled to a stellar radius and the associ-
ated Legendre functions are once again denoted by Plm. The two
unknowns are therefore the coefficients alm and blm. One of these
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Influence of surface stressing 531

Figure 2. Surface magnetic field maps of GJ 49 derived from spectropolarimetric observations (Donati et al. 2008). The single black line shows the zero-field
contour that separates regions of opposite polarity.

can be determined by imposing the radial field at the surface from
the Zeeman–Doppler maps. In order to determine the second un-
known, we select a particular form of potential field that has the
useful property that at some radius, all the field lines are open.
This mimics the effect of the outward pressure of the hot coronal
gas pulling open field lines to form the stellar wind. Thus, at some
normalized radius Rs above the surface (known as the source sur-
face) the field becomes radial and hence Bθ (Rs) = Bφ(Rs) = 0. As
a result,

blm = −almR2l+1
s (6)

and we may write

Bpot
r =

N∑
l=1

l∑
m=−l

BlmPlm(θ )fl(r, Rs)r
−(l+2)eimφ (7)

B
pot
θ = −

N∑
l=1

l∑
m=−l

Blm

dPlm(θ )

dθ
gl(r, Rs)r

−(l+2)eimφ (8)

B
pot
φ = −

N∑
l=1

l∑
m=−l

Blm

Plm(θ )

sin θ
imgl(r, Rs)r

−(l+2)eimφ, (9)

where the functions fl(r, Rs) and gl(r, Rs) which describe the in-
fluence of the source surface (and hence the wind) on the magnetic
field structure are given by

fl(r, Rs) =
[

l + 1 + l(r/Rs)2l+1

l + 1 + l(1/Rs)2l+1

]
(10)

gl(r, Rs) =
[

1 − (r/Rs)2l+1

l + 1 + l(1/Rs)2l+1

]
. (11)

In the limit where the source surface is large (i.e. the magnetic field
is completely closed), we recover the familiar multipolar expansions
for a magnetic field. This limit corresponds to Rs → ∞ and

fl(1) → 1 (12)

gl(1) → 1

l + 1
. (13)

The coefficients Blm are determined by the surface radial field that
is derived from the Zeeman–Doppler maps [i.e. by the values of αlm

in (1)]. This is known as the potential field source surface method.
It was originally developed for extrapolating the Sun’s coronal field
from solar magnetograms (Altschuler & Newkirk 1969). We use a
code originally developed by van Ballegooijen, Cartledge & Priest
(1998) (see also Jardine, Collier Cameron & Donati 2002).

Comparing the form of our extrapolated field given in (7–9) with
the general expressions for the observed field at the surface (1–3),

we can see that our extrapolated field cannot match the observed
surface field exactly. The reason is that the form of potential field
we are using for the extrapolation (the potential field source surface
method) is only one type of potential field. The assumption of a
source surface forces a relationship between the field components
that means they are no longer independent. While αlm can be simply
related to Blm, we cannot match the values of β lm that are derived
from the observations. Therefore, this method, which selects only
one type of potential field, will not be guaranteed to reproduce the
potential field contribution to Bθ and Bφ that is fitted to the data.

With this caveat in mind, we use the observed Br at the stellar sur-
face to determine Blm and hence to obtain the potential contribution
to the azimuthal and meridional fields B

pot
φ and B

pot
θ . We show these

in the bottom rows of Figs 3 and 5. We note in passing that these
are very similar to Figs 4 and 6 which are produced by the wind
solution (see section 4). It is clear by comparison with the observed
surface maps shown in Figs 1 and 2, that this potential field does
not reproduce all the observed field components. In particular, the
unidirectional band of azimuthal field is absent from these potential
field maps. In order to extrapolate the non-potential part of the field,
however, we need to make an assumption about the nature of the
coronal currents. We base our extrapolation on the method devel-
oped by Hussain et al. (2002). This is not a force-free solution, but
it allows us to incorporate fully the non-potential contribution of
the surface field and to extrapolate it into the corona.

3.2 Non-potential field extrapolation

In general, the magnetic field will be a sum of potential and non-
potential terms such that B = Bpot + Bnp. We assume that the non-
potential magnetic field is perpendicular to the radial direction (i.e.
it lies on spherical shells and so Bnp

r = 0). Furthermore, the electric
currents are assumed to be derived from a potential Q:

∇ × Bnp = −∇Q. (14)

It follows that ∇2Q = 0, so Q(r) has a solution in terms of spherical
harmonics. As shown in the Appendix, we find solutions for this
non-potential magnetic field that vanish at the source surface and
have the form

Bnp
r = 0 (15)

B
np
θ = −

N∑
l=1

l∑
m=−l

l(l + 1)Clm

Plm(θ )

sin θ
imhl(r, Rs)r

−(l+1)eimφ (16)

B
np
φ =

N∑
l=1

l∑
m=−l

l(l + 1)Clm

dPlm(θ )

dθ
hl(r, Rs)r

−(l+1)eimφ, (17)
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Figure 3. The static solution for the surface magnetic field of CE Boo, divided into its different components. The meridional component is shown in the left
column and the azimuthal component in the right column. The top row shows the non-potential contribution and the bottom row the potential contribution to
the total field. The single black line shows the zero-field contour which therefore separates regions of opposite polarity.

Figure 4. The wind solution for the surface magnetic field of CE Boo, divided into its meridional (left-hand column) and azimuthal (right-hand column)
components. The single black line shows the zero-field contour which therefore separates regions of opposite polarity.

where

hl(r, Rs) =
[

1 − (r/Rs)2l+1

l + (l + 1)(1/Rs)2l+1

]
(18)

and as Rs → ∞ we recover hl(1) → 1/l.

While this is not the most general form of non-potential field,
it has the useful property that the equations for Bpot and Bnp are
now structurally very similar to the forms used in (1–3) to describe
the surface field. The coefficients γ lm and Clm that govern the non-
potential field components can be simply related. This allows us
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Figure 5. The static solution for the surface magnetic field of GJ 49, divided into its different components. The meridional component is shown in the left-hand
column and the azimuthal component in the right-hand column. The top row shows the non-potential contribution and the bottom row the potential contribution
to the total field. The single black line shows the zero-field contour which therefore separates regions of opposite polarity.

to match the observed non-potential component of the field exactly
to our model and to extrapolate it into the corona. Thus, while
the potential part of our extrapolated field will not reproduce an
exact match to the potential part of the observed surface field, the
non-potential part matches exactly.

We therefore show the non-potential (top row) and potential (bot-
tom row) parts of the field separately in Figs 3 and 5. The total field
is the sum of both of these. Fig. 7 shows the extrapolation of this to-
tal field with a source surface chosen to be at 4R�. The largest closed
field lines have been selected in order to highlight the structure of
the large-scale field. The tilt of the dipole axis can be clearly seen
in both cases, although it should be noted that the rotation axes of
both stars have the same inclination to the observer’s line of sight.
While the extrapolation of the potential contribution to the total
field is fairly similar in both stars, the inclusion of the non-potential
contribution highlights the differences between the magnetic field
structures of the two stars. The non-potential component introduces
an azimuthal shear into the field that is most apparent in GJ 49 (for
which 52 per cent of the total magnetic energy in the surface field
is non-potential).

4 TH E S T E L L A R W I N D MO D E L

To perform the stellar wind simulations, we use the three-
dimensional MHD numerical code BATS-R-US developed at Univer-
sity of Michigan (Powell et al. 1999). BATS-R-US has been widely

used to simulate, e.g., the Earth’s magnetosphere (Ridley et al.
2006), the heliosphere (Roussev et al. 2003), the outer heliosphere
(Linde et al. 1998; Opher et al. 2003, 2004), coronal mass ejections
(Manchester et al. 2004; Lugaz, Manchester & Gombosi 2005), the
magnetosphere of planets (Tóth et al. 2004; Hansen et al. 2005) and
stellar winds of cool stars (Vidotto et al. 2009, 2012). It solves the
ideal MHD equations, that in the conservative form are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (19)

∂ (ρu)

∂t
+ ∇ ·

[
ρu u +

(
p + B2

8π

)
I − B B

4π

]
= ρg, (20)

∂B
∂t

+ ∇ · (u B − B u) = 0, (21)

∂ε

∂t
+ ∇ ·

[
u

(
ε + p + B2

8π

)
− (u · B) B

4π

]
= ρg · u, (22)

where the eight primary variables are the mass density ρ, the plasma
velocity u = {ur, uθ , uϕ}, the magnetic field B = {Br, Bθ , Bϕ} and
the gas pressure p. The gravitational acceleration due to the star
with mass M� and radius R� is given by g, and ε is the total energy
density given by

ε = ρu2

2
+ p

γ − 1
+ B2

8π
. (23)
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534 M. Jardine et al.

Figure 6. The wind solution for the surface magnetic field of GJ49, divided into its meridional (left-hand column) and azimuthal (right-hand column)
components. The top row shows the result of assuming the observed stellar rotation period of 18.6 d, while the bottom row shows the result of assuming a
stellar rotation period artificially decreased to 0.6 d. The single black line shows the zero-field contour which therefore separates regions of opposite polarity.

We consider an ideal gas, so p = nkBT , where kB is the Boltzmann
constant, T is the temperature, n = ρ/(μmp) is the particle number
density of the stellar wind, μmp is the mean mass of the particle and
γ is the polytropic index (such that p ∝ ργ ).

As the initial state of the simulations, we assume that the wind is
thermally driven (Parker 1958). At the base of the corona (r = R�),
we adopt a wind coronal temperature T0 = 2 × 106 K and wind
number density n0 = 1011cm−3. The stellar rotation period Prot, M�

and R� are given in Table 1. With this numerical setting, the initial
solution for the density, pressure (or temperature) and wind velocity
profiles are fully specified.

To complete our initial numerical set up, we assume that the
magnetic field is either potential everywhere (i.e., ∇ × B = 0) or
the sum of potential plus non-potential components, as described in
Sections (3.1) and (3.2). The initial solution for B is found once the
distance to the source surface is assumed (set at 4R� in the initial
state of our runs) and the surface magnetic field is specified: either
simply the radial component (in the case of a potential field) or all
three components (in the case of a total potential plus non-potential
field).

Once set at the initial state of the simulation, the distribution of
Br is held fixed at the surface of the star throughout the simulation
run, as are the coronal base density and thermal pressure. A zero
radial gradient is set to the remaining components of B and u = 0
in the frame corotating with the star. The outer boundaries at the
edges of the grid have outflow conditions, i.e., a zero gradient is set

to all the primary variables. The rotation axis of the star is aligned
with the z-axis, and the star is assumed to rotate as a solid body.

Our grid is Cartesian and extends in x, y and z from −20 to 20R�,
with the star placed at the origin of the grid. BATS-R-US uses block
adaptive mesh refinement, which allows for variation in numerical
resolution within the computational domain. The finest resolved
cells are located close to the star (for r � 2R�), where the linear size
of the cubic cell is 0.02R�. The coarsest cell is about one order of
magnitude larger (linear size of 0.31R�) and is located at the outer
edges of the grid. The total number of cells in our simulations is
about 15 million.

As the simulations evolve in time, both the wind and magnetic
field lines are allowed to interact with each other. The resultant so-
lution, obtained self-consistently, is found when the system reaches
a steady state (in the reference frame corotating with the star).

5 R ESULTS AND DI SCUSSI ON

We have separated the magnetic fields of CE Boo and GJ 49 into their
lowest energy (potential) and stressed (non-potential) components.
This has allowed us to isolate both the locations where the field
is stressed above its lowest energy state and also the nature of the
structures that carry these stresses. We find that the departures from
a lowest energy state are apparent mainly in the azimuthal field
(the meridional field contributes a negligibly small non-potential
component). This appears as a clearly defined mid-latitude band of
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Influence of surface stressing 535

Figure 7. Static field line extrapolations for CE Boo (top) and GJ 49 (bottom) for fields that are purely potential (left) and those that are the sum of potential
plus non-potential (right). Closed field lines which would contain coronal gas are shown white, open field lines which would contribute to the stellar wind are
shown blue.

unidirectional azimuthal field (see Figs 3 and 5). This is similar to
the non-potential field of the young rapid rotator AB Dor (Hussain
et al. 2002) except that it appears at lower latitudes.

By extrapolating these surface fields into the corona, we can see
that the presence of the non-potential field does not change the
overall topology of the coronal field, but it provides an azimuthal
shear (see Fig. 7). We have also explored the nature of the winds
that might be associated with these surface fields by using these
extrapolated fields as an initial state for an MHD wind model. As the
solution evolves towards a steady state, only the radial component

of the surface field is kept fixed – the azimuthal and meridional field
components are allowed to vary in response to the available forces.

The top and middle rows of Fig. 8 show the final structure of
the magnetic fields of CE Boo and GJ 49. This final state was
the same, regardless of whether the initial state was the total field
(i.e. the potential plus non-potential field), or simply the potential
field. This happens because it is the boundary conditions that will
control the final state and the initial conditions of the system will
be ‘flushed out’ by the wind. Therefore, we find that the mass-
loss rates, angular momentum loss rates, and the fluxes of surface

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/431/1/528/1047036 by guest on 08 D
ecem

ber 2023



536 M. Jardine et al.

Figure 8. Final magnetic field structures for CE Boo (top row) and GJ 49
(middle row). The final state is the same, regardless of whether the initial
state is the total field (i.e. the potential plus non-potential field), or simply
the potential field. The bottom row shows the effect on GJ 49 of artificially
decreasing the rotation period from 18.6 to 0.6 d.

magnetic field and open magnetic field are the same in both cases.
Since there are no forces in the wind model capable of providing the
stresses necessary to sustain the strong azimuthal field at the stellar
surface, the solution relaxes back to something close to a potential
field at the surface. As a result, the steady-state wind solution has
meridional and azimuthal field components at the stellar surface that
are close to the potential component of the field that we calculate
and that do not reproduce the observed non-potential component of
the surface field. This can be seen by comparing Figs 3 and 5 with
4 and 6.

At larger heights of course, the action of the wind stresses the
field and generates an azimuthal field component, but this is fairly
small at the stellar surface, particularly for such slowly rotating
stars. In order to confirm the role of rotation in influencing the field
structure, we also artificially increase the rotation rate of GJ 49,
while keeping the initial magnetic field structure unchanged. The
resulting field structure is shown in Fig. 8. While an azimuthal field
develops with height in the corona, it is small at the surface and
cannot explain the observations. This suggests that this azimuthal
field is produced not by the wind, but by the sub-surface dynamo.

These simulations therefore suggest that the ambient winds of
these slowly rotating stars are well described by the potential com-
ponents of their surface fields. The strong azimuthal fields seen at
the surface should not survive to the heights in the corona at which
the wind is launched. They may of course be important in determin-
ing flare locations and energies. For GJ 49, for example, 52 per cent
of the total magnetic energy close to the surface is contained in the
non-potential part of the field and is therefore available for release.
It is mainly contained in a well-defined band that is centred around
latitudes 30◦–40◦. This is the maximum latitude at which solar ac-
tive regions are seen and from which solar coronal mass ejections
are launched. This might suggest that this is the region from which
flares and coronal mass ejections could be expected. On the young
rapid rotator AB Dor, by comparison, (Prot = 0.514 d) the band
of non-potential field is strongest around 70◦–80◦ (Hussain et al.
2002) which may suggest a different pattern of coronal mass ejec-
tion. Such coronal mass ejections would temporarily increase the
mass loading of the stellar wind and also its ram pressure, which
is responsible for compressing the magnetospheres of any orbit-
ing planets. Whether coronal mass ejections provide a significant
contribution to either angular momentum loss or the impact of the
wind on orbiting planets depends on their size and frequency. The
background stellar wind that we find however is independent of the
strong non-potential component of the surface fields and is primarily
governed by their radial component.
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Morin J., 2012, in Reylé C., Charbonnel C., Schultheis M., eds, EAS

Publications Series. Vol. 57, Magnetic Fields from Low-Mass Stars to
Brown Dwarfs. EDP Sciences, France, p. 165

Morin J. et al., 2008, MNRAS, 390, 567
Morin J., Donati J.-F., Petit P., Delfosse X., Forveille T., Jardine M. M.,

2010, MNRAS, 407, 2269
Opher M., Liewer P. C., Gombosi T. I., Manchester W., DeZeeuw D. L.,

Sokolov I., Toth G., 2003, ApJ, 591, L61
Opher M. et al., 2004, ApJ, 611, 575
Parker E. N., 1958, ApJ, 128, 664
Petit P. et al., 2008, MNRAS, 388, 80
Pinto R. F., Brun A. S., Jouve L., Grappin R., 2011, ApJ, 737, 72
Pointer G. R., Jardine M., Collier Cameron A., Donati J.-F., 2002, MNRAS,

330, 160
Powell K. G., Roe P. L., Linde T. J., Gombosi T. I., de Zeeuw D. L., 1999,

J. Comput. Phys., 154, 284
Ridley A. J., de Zeeuw D. L., Manchester W. B., Hansen K. C., 2006, Adv.

Space Res., 38, 263
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APPENDI X A : THE NON-POTENTI AL FIELD

We look for solutions for the non-potential field that are of the form

Bnp,r = 0, Bnp,θ = 1

r sin θ

∂F

∂φ
, Bnp,φ = −1

r

∂F

∂θ
, (A1)

where F (r) is a scalar function. These automatically satisfy ∇ · B =
0. Furthermore, the electric currents are assumed to be derived from
a potential Q:

∇ × Bnp = −∇Q. (A2)

It follows that ∇2Q = 0, so Q(r) has a solution in terms of spherical
harmonics. Inserting equation (A1) into (A2), we find from the
radial component:

− 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+ 1

sin2 θ

∂2F

∂φ2

]
= −∂Q

∂r
, (A3)

and from the θ and φ components:

1

r

∂

∂r

(
∂F

∂θ

)
= −1

r

∂Q

∂θ
and

1

r

∂

∂r

(
1

sin θ

∂F

∂φ

)
= − 1

r sin θ

∂Q

∂φ
,

(A4)

which can be integrated with respect to θ and φ:

∂F

∂r
= −Q. (A5)

We now introduce a third scalar C(r) such that

F = r2 ∂C

∂r
, (A6)

then equation (A5) yields

Q = − ∂

∂r

(
r2 ∂C

∂r

)
. (A7)

Inserting these expressions for F and Q into equation (A3) we
obtain

∂

∂r
(r2∇2C) = 0. (A8)

Assuming ∇2C = 0 at the stellar surface, it follows that this condi-
tion is true at all heights, so C(r) is also a harmonic function. We
now write C as a sum over spherical harmonics:

C(r, θ, φ) =
∑
lm

Clmql(r)Plm(θ )eimφ, (A9)

where l is the harmonic degree (l = 1, 2, . . . ), m is the azimuthal
mode number (−l ≤ m ≤ +l), Plm(θ ) is the associate Legendre
function, and ql(r) describes the radial dependence of the various
modes. Note that the function ql(r) defined here is different from
the function fl(r) for the potential field (see Hussain et al. 2002).
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Then the non-potential components of the magnetic field follow
from equations (A6) and (A1):

Bnp,θ = +
∑
lm

Clmr
dql

d
rPlm(θ )

im

sin θ
eimφ, (A10)

Bnp,φ = −
∑
lm

Clmr
dql

d
r

dPlm

dθ
eimφ. (A11)

The function ql(r) must satisfy the following constraints. First, we
assume that ql(1) = 1, so that Clm are the mode amplitudes at
the stellar surface (r = 1). Secondly, since C(r) is a harmonic

function, ql(r) must be a sum of a radially decreasing term ∝ r−l − 1

and an increasing term ∝rl. Thirdly, we require that the horizontal
components of the non-potential field vanish at the source surface;
this implies dql/dr = 0 at r = Rs. From these conditions it follows
that:

r
dql

d
r = −l(l + 1)r−(l+1)hl(r, Rs) (A12)

and hence, we recover expressions (16) and (17) for B
np
θ and B

np
φ .
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