Joel A Gonzalez 
  
Christophe Sueur 
email: christophe.sueur@centralelille.fr
  
Unknown Input Observer for MIMO Systems with Stability

Keywords: Unknown Input Observer, Bond Graph, Structural Analysis, MIMO Systems

This paper presents a solution for the state and unknown input estimator of linear MIMO systems with a structural approach. Compared to the classic Input-Output Decoupling problem, a systematic procedure is initially proposed for the analysis stage by analysing the finite and infinite structures of the modelled system from a structural approach. Afterwards, the observer is directly implemented from the original model at the synthesis stage in a graphical approach with some added terms, and can be represented by a Bond Graph model. The observer is tested by a particular and illustrative example which considers a real torsion-bar model.

Introduction

The unknown input estimation and state observability problem (UIO) is a well known problem. Different approaches give solvability conditions and constructive solutions for this problem.

At the analysis stage, before design, most of the approaches require the analysis of the structural invariants of the model. The knowledge of zeros (finite structure) is an important issue because these zeros are directly related to stability conditions of the observer ( [START_REF] Hautus | Strong detectability and observers[END_REF]) and of the controlled system. The infinite structure of the model is related to solvability conditions (see Appendix A).

For LTI models, constructive solutions with reduced order observers are first proposed with the geometric approach, see [START_REF] Bhattacharyya | Observer design for linear systems with unknown inputs[END_REF], [START_REF] Basile | A new characterization of some structural properties of linear systems: Unknowninput observability, invertibility and functional controllability[END_REF] or based on generalized inverse matrices like in [START_REF] Miller | On designing reduced-order observers for linear time-invariant systems subject to unknown inputs[END_REF] and [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF]. Full order observers are then proposed in a similar way (based on generalized inverse matrices), see [START_REF] Darouach | Complements to full order observer design for linear systems with unknown inputs[END_REF] for some works related with this issue. Other approaches based on canonical forms, the algebraic approach or sliding mode observers are not recalled here.

This paper proposes an extension of some works dedicated to the UIO problem when the model contains some non strictly stable invariant zeros. The contribution consists on the definition of a new estimation of the disturbance variables which takes into account some integrals of the measured variables in order to augment the number of assigned poles.

Unknown Input Observer

Consider a linear perturbed system described by (1), where x ∈ R n is the state vector, y ∈ R p is the vector of measurable variables. Vector u ∈ R m represents the known input variables, whereas d(t) ∈ R q is the vector which represents the unknown input variables. A, B, F,C are known constant matrices of appropriate dimensions. ẋ(t) = Ax(t) + Bu(t) + Fd(t) y(t) = Cx(t)

(1) Generally, the state vector x(t) cannot be entirely measured and the system is often subject to unknown inputs d(t) (disturbance or failure...) which must be estimated.

MIMO Systems

In this section, the UIO estimation for MIMO systems without null invariant zero is recalled. For some works related with the design of UIO for linear Bond Graph models, see [START_REF] Yang | New Unknown Input Observer for control design: a bond graph approach[END_REF], [START_REF] Tarasov | State and unknown input observer: analysis and design[END_REF].

The UIO problem is recalled for the multi-variable case with two unknown input variables (q = 2) and two measured outputs variables (p = 2). It can easily be extended to any square model with p = q. It is supposed that system Σ(C, A, F) is controllable, observable and invertible. The equation ( 1) can be written as (2).

x(t) = A -1 ẋ(t) -A -1 Bu(t) -A -1 Fd(t) y(t) = CA -1 ẋ(t) -CA -1 Bu(t) -CA -1 Fd(t) (2) 
The matrix

Ω d = CA -1 F is invertible if model Σ(C, A, F) has no null invariant zeros.
Matrix Ω d is similar to decoupling matrix Ω in control theory. In the classical inputoutput decoupling problem, the decoupling matrix Ω defined in equation ( 8) is used with matrix B instead of matrix F (with the control input variables). From (2), the disturbance vector d(t) and its estimation d(t) are written in equation ( 3), and the disturbance equation error in equation ( 4). The estimation of the state vector is written in equation ( 5).

   d(t) = -Ω -1 d [y(t) -CA -1 ẋ(t) +CA -1 Bu(t)] d(t) = -Ω -1 d [y(t) -CA -1 ẋ(t) +CA -1 Bu(t)]
(3)

d(t) -d(t) = Ω -1 d CA -1 ( ẋ(t) -ẋ(t)) (4) ẋ(t) = A x(t) + Bu(t) + F d(t) -• • • -AK y (n 1 ) 1 (t) - ŷ(n 1 ) 1 (t) y (n 2 ) 2 (t) - ŷ(n 2 ) 2 (t) (5) 
Ω d is defined in case of the Bond Graph representation with a derivative causality assignment (BGD) and related to the infinite structure of the BGD.

Consider vector e(t) defined as e(t) = x(t)x(t). It has been proved in [START_REF] Tarasov | State and unknown input observer: analysis and design[END_REF] that vector e(t) verifies equation ( 6) with matrix N CL defined in (7). In that case, the state estimation error doesn't depend on the disturbance variable.

e(t) = N CL ė(t) (6)        N OL = A -1 -A -1 FΩ -1 d CA -1 N CL = A -1 -A -1 FΩ -1 d CA -1 -K C 1 A n 1 -1 C 2 A n 2 -1 (7)
If matrix N CL is invertible, a classical pole placement is studied with matrix K used for pole placement. A necessary condition for the existence of the state estimator is proposed in Proposition 1.

Suppose that {n 1 , n 2 } and {n 1 , n 2 } are the set of row infinite zero orders and global infinite zero orders respectively, of system Σ(C, A, F) (see Appendix A). Matrix Ω is necessary in this estimation problem.

Ω = C 1 A n 1 -1 F C 2 A n 2 -1 F (8)
Proposition 1 A necessary condition for matrix N CL to be invertible is that matrix Ω is invertible.

Proof 1 See appendix B

It has been proved in [START_REF] Tarasov | State and unknown input observer: analysis and design[END_REF]) that the eigenvalues of matrix N OL defined in (7) are the inverse of the invariant zeros of system Σ(C, A, F) (n -(n 1 + n 2 )) modes) plus n 1 + n 2 eigenvalues equal to 0. The null eigenvalues can be assigned to new values and the invariant zeros are the fixed poles as recalled in the two following propositions.

Proposition 2 ( [START_REF] Tarasov | State and unknown input observer: analysis and design[END_REF]))In matrix N CL defined in (7), n 1 + n 2 poles can be chosen with matrix K.

Proposition 3 ( [START_REF] Tarasov | State and unknown input observer: analysis and design[END_REF])) The fixed poles of the estimation equation error defined in (6) are the invariant zeros of system Σ(C, A, F).

The proposed approach can then be applied for systems with strictly stable invariant zeros.

If the state equation ( 1) is written from a Bond Graph model, it is possible to design a Bond Graph model for the state estimation defined in (5) because the equation ( 5) is very close to the initial state equation. Some signal bonds must be added for the disturbance equation defined in (3). The structure of the observer is proposed in Fig. (1), where BG sys is Bond Graph model of the system and BG obs is for the observer Bond Graph model. A simplified block diagram in Fig. 1 represents the structure of simulation to estimate unknown variables. As written in equation ( 5), output variables must be derived. Some remarks about this feature are made in the following. 

Simplified Case with Null Invariant Zeros

In this section, an extension of UIO observer is proposed when the model contains null invariant zeros. In this paper, we consider the case with one null invariant zero, it can be easily extended to more general situations.

The equation ( 1) can be written as ( 9)

   x(t) = A -1 ẋ(t) -A -1 Bu(t) -A -1 Fd(t) y 1 (t) = C 1 [A -1 ẋ(t) -A -1 Bu(t) -A -1 Fd(t)] y 2 (t) = C 2 [A -1 ẋ(t) -A -1 Bu(t) -A -1 Fd(t)] (9) 
Consider, without restriction, that C 1 A -1 F = 0. In that case, in the BGD, the causal path length between the output detector and the two disturbance inputs is at least equal to 1 (it is supposed to be equal to 1 in order to simplify the theoretical development). In ( 9), the mathematical expression of y 1 (t) and of its primitive is then

y 1 (t) = C 1 A -1 ẋ(t) -C 1 A -1 Bu(t) y 1 (t)dt = C 1 A -1 x(t) -C 1 A -1 B u(t)dt (10) 
Thus

y 1 (t)dt = C 1 A -2 ẋ(t) -C 1 A -2 Bu(t) -• • • -C 1 A -1 B u(t)dt -C 1 A -2 Fd(t) (11) If model Σ(C, A, F) has only one null invariant zero, ma- trix C 1 A -2 F = 0 and matrix Ω d = [(C 1 A -2 F) t , (C 2 A -1 F) t ] t is invertible.
A new expression of vector d(t) can be written, as well for d(t) from equation ( 11) in the same manner as in the classical case and the error equation is written in (14).

d(t) = -Ω -1 d y 1 (t)dt -C 1 A -2 ẋ(t) + γ(u) y 2 (t) -C 2 A -1 ( ẋ(t) -Bu(t)) (12) d(t) = -Ω -1 d y 1 (t)textt -C 1 A -2 ẋ(t) + γ(u) y 2 (t) -C 2 A -1 ( ẋ(t) -Bu(t)) (13) 
Where

γ(u) = C 1 A -2 Bu(t) +C 1 A -1 B u(t)dt, and then d(t) -d(t) = Ω -1 d C 1 A -2 C 2 A -1 ( ẋ(t) -ẋ(t)) (14)
The estimation of the state vector x(t) is the same as in equation ( 17) as well as for the state estimation error equation defined in (6). Nevertheless, expressions of matrices N OL and N CL have changed since the model has one null invariant zero and thus matrix N OL contains (n 1 + n 2 + 1) null eigenvalues. New expressions are written in (15)

                   N OL = A -1 -A -1 FΩ -1 d C 1 A -2 C 2 A -1 N CL = A -1 -A -1 FΩ -1 d C 1 A -2 C 2 A -1 • • • -K C 1 A n 1 -1 C 2 A n 2 -1 (15) 
A new proposition can be written.

Proposition 4 The fixed poles of the estimation equation error defined in ( 15) are the strictly stable invariant zeros of system Σ(C, A, F). (n -(n 1 + n 2 + 1)) fixed poles.

Proof 2 See appendix C

As said before, this approach can be easily extended to MIMO models with several null invariant zeros. The idea consists in applying integration on the output variables. It is applied to the torsion-bar system.

Output Differentiation and noise

Numerical differentiation of measurable signals is a classical problem in signal processing and automation, and many problems have been solved by creating algorithms for approximation of derivatives. The numerical methods for approximation of derivatives of measurable signals can be used to obtain signals which are not known through measurements and reconstruct the missing system data.

There exist many ways in the literature to derivate signals. Some common features are the precision between derivative estimation and noise sensibility and perturbations. These noises or perturbations are the principal trouble for developing derivation algorithms. Most of them assume some features of signal derived and noise (perturbation) of this derivation.

Different approaches are used for different situations such as Linear Systems in [START_REF] Luenberger | An introduction to observers[END_REF], [START_REF] Carlsson | Optimal differentaition based on stochastic signal models[END_REF], [START_REF] Diop | Interpolation and numerical differentiation for observer design[END_REF]), (Al-Alaoui 1993), [START_REF] Dabroom | Numerical differentiation using high-gain observers[END_REF], [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF], (Levant 2003), [START_REF] Mehdi | Derivation numerique : synthese , application et integration[END_REF]. These approaches can be classified by two principal classes: a) Model Approach or b) Signal Approach. In this case of study, the simulations are performed using the Matlab and 20-SIM softwares. Therefore, for a numerical differentiation of the output signal in simulations, will be used some own blocks of these softwares which are called direct derivative with a noise-filter inside. In future works will be used others approaches implemented over the real bar system.

3 Torsion-bar System

Experimental System description

The experimental setup in the Fig. 2 is the real torsion bar system with its main parts. A functional schematic model of the torsion bar system is presented in Fig. 3. According to Fig. 3, the system consists of the following components: a DC Power Source, a classical DC Motor which is modelled by an electrical part (Inductance L a and Resistance R a ) and a mechanical part (Inertia J m is supposed negligible), a transmission element which transfer the rotation from the motor to the motor disk with a transmission ratio (k belt ), a first rotational disk (Motor Disk) with an inertial parameter J 1 and a friction coefficient R 1 , a flexible shaft modelled as a spring-damper element (Spring c and Damper R sha f t ), and a second rotational disk (Load Disk) with an inertial parameter J 2 and a friction coefficient R 2 . For the experimental system in Fig. 4, the controlled input voltage is represented by a modulated effort source MSe : u. Moreover, y 1 and y 2 are speed rotational variables represented in the bond graph model by flow output detectors D f : y 1 and D f : y 2 respectively. These sensors are used to estimate the state variables and the unknown inputs d(t) modeled by the source Se : d pert and d emi modeled by the source Se : d emi , which represents a torque applied to the first rotational disk(J 1 ) and a electromagnetic interference respectively. The numerical values for each element of the system are given in Table 1. 

9.07 • 10 -4 kg • m 2 Inertia of load disk J 2 1.37 • 10 -3 kg • m 2 Spring compliance C 0.543 N • m/rad Resistance R a 1.23 Ω Motor disk friction R 1 0.005 N • m • s/rad Load disk friction R 2 25 • 10 -6 N • m • s/rad Damping spring R sha f t 5 • 10 -4 N • s/rad Motor constant k 38.9 • 10 -3 N • m/A Transmission ratio k belt 3.75
According to the Bond Graph model, a state space representation is performed as described in the form (1). The state vector x = [x 1 , x 2 , x 3 , x 4 ] t , is energy storage variables: x 1 = q c = q c sha f t (angular displacement), x 2 = p J 2 , x 3 = p J 1 (angular momentums), and x 4 = p L a (flux linkage). The output matrix C can be written as C = [C 1 t ,C 2 t ] t . The state equations are written as ( 16). The poles of the model (eigenvalues of matrix A) are equal to -3617.5, -2.15 ± 58 j, -2.2523.

                   ẋ1 = -1 J 2 x 2 + 1 J 1 x 3 ẋ2 = 1 C x 1 + a 2,2 x 2 + R Sha f t J 1 x 3 + d pert ẋ3 = -1 C x 1 + R Sha f t J 2 x 2 + a 3,3 x 3 + k L a .k belt x 4 ẋ4 = -k J 1 •k belt x 3 -R a L a x 4 + u + d emi a 2,2 = (-R 2 J 2 - R Sha f t J 2 ) ; a 3,3 = (-R 1 J 1 - R Sha f t J 1 ) y 1 = 1 J 2 x 2 ; y 2 = 1 J 1 x 3 (16)

Structural Analysis

From the Bond Graph model of trix Ω defined in equation ( 8) is invertible. With the infinite structure, the state estimation is written as equation ( 17).

ẋ(t) = A x(t) + Bu(t) + F d(t) -• • • -AK y 1 (1) (t) -ŷ1 (1) (t) y 2 (2) (t) -ŷ2 (2) (t) (17) 
Null invariant zeros are studied with the bond graph model with a derivative causality assignment, drawn in Fig. 5. In the BGD, the causal path between the output variable y 1 and the disturbance input d pert is D f : y 1 → R : R 1 → Se : d pert . The length of the causal path is equal to 0, then n d 1 = 0. The causal path between the output variable y 2 and the disturbance input

d emi is D f : y 2 → R : R 1 → T F : k belt → GY : k m → R : R a → Se : d emi .
The length of the causal path is equal to 0, then n d 2 = 0. These two paths are however not disjoint. Thus this model is not invertible for the BGD (infinite structure defined for the BGD) and matrix Ω d is not invertible. There is a null invariant zero and the previous UIO cannot be used for this example. A solution to construct the UIO is presented below.

Unknown

Input Observer: Torsion-Bar Application

Analysis

The torsion bar model has one null invariant zero because matrix CA -1 F is not invertible. In that case neither matrix C 1 A -1 F nor C 2 A -1 F is equal to zero. The previous methodology cannot be directly applied. Nevertheless, it is quite similar because matrices C 1 A -1 F and C 2 A -1 F are proportional and linear combination between variables y 1 (t) and y 2 (t) can be applied in order to obtain a null row in matrix CA -1 F before applying an integration. The procedure is now applied.

From the causal paths gains of the BGD model, or directly from matrix CA -1 F, it can be shown that two rows are equal and then y 1 (t)y (t) is written as in (18).

y 1 (t) -y 2 (t) = y 1,2 (t) = (C 1-2 )A -1 ẋ(t) -• • • -(C 1-2 )A -1 Bu(t) (18) Where C 1-2 = (C 1 -C 2 ). The primitive of variable y 1,2 (t) is thus (19) y 1,2 (t)dt = y * (t) = (C 1-2 )A -2 ẋ(t) -• • • -(C 1-2 )A -2 Bu(t) -(C 1-2 )A -2 Fd(t) -• • • -(C 1-2 )A -1 B u(t)dt (19)
We consider now two equations with y 1 (t) and y * (t) in ( 20). Note that it is possible to choose y 2 (t) and y * (t) as well.

In that case, matrix Ω * d defined as

[(C 1 A -1 F) t , ((C 1-2 )A -2 F) t ] t is invertible.    y 1 (t) = C 1 [A -1 ẋ(t) -A -1 Bu(t) -A -1 Fd(t)] y * (t) = (C 1-2 )[A -2 ẋ(t) -A -2 Bu(t) • • • -A -2 Fd(t) -A -1 B u(t)dt] (20) 
According to ( 19), the disturbance equation error ( 4) can be rewritten as (21).

d(t) -d(t) = [Ω * d ] -1 C 1 A -1 (C 1-2 )A -2 ( ẋ(t) -ẋ(t)) (21) 
Therefore, N LC for this system is rewritten as ( 22), and n 1 + n 2 + 1 = 4 which indicates that the four poles can be assigned.

N CL = A -1 -A -1 F[Ω * d ] -1 C 1 A -1 (C 1-2 )A -2 -K C 1 C 2 A (22)

Simulation

The estimation of the unknown input variables is defined in (23). For pole placement the matrix K is obtained (24). The four poles are chosen as -1/2000, -1/2100, -1/2200 and -1/2200 for the matrix N CL , but they are the inverse of the classical estimation error equation.

d(t) = -[Ω * d ] -1 y 1 y * C 1 A -1 (C 1-2 )A -2 ẋ(t) + • • • + C 1 A -1 B (C 1-2 )A -2 B u(t) (23) 
K =     -5.96 • 10 -11 1.08 • 10 -10 6.227 • 10 -7
8.8 • 10 -24 -3.41 • 10 -10 6.18 • 10 -10 -2.352 • 10 -8 4.266

• 10 -8     (24) 
Different variables are simulated in 20-sim. The input is chosen as u(t) = 1v(step response), unknown inputs are d emi = 0.1A with action between to 2sec. and d pert = 0.01N.m with time action between 3 to 4 sec.

First, the signal d pert and its estimation dpert are displayed in Fig. 6. In Fig. 7 is possible to see a zoom that shows more closely the behavior of the signals d pert and dpert .

Figure 6: Unknown input d pert and its estimation. The Fig. 10a shows the output signal y 1 and its estimation ŷ1 is displayed in Fig. 10b.

Finally, the Fig. 11 represents the output signal y 1 in (a) and the estimation ŷ2 in (b).

These results show that the outputs estimations are well obtained and the estimations for disturbances have a quickly and very close responses at the disturbances.

Conclusion

An effective performance estimation system is essential in any controlled system subject to unknown inputs, failures or no well known parameters. In the literature, many solutions are based on the infinite structure of the model for the solvability conditions of the UIO and on the finite structure for the solutions with stability.

In this paper, a structural approach is proposed for the study of MIMO models which contains null invariant zeros. The innovative point is that estimation of the unknown input variables is also based on the integrals of measured The simulations on an experimental bar system proved the effectiveness of the proposed UIO.

APPENDIX A Structural Properties

A.1 Finite and infinite structures

Consider an invertible square model Σ(C, A, B). The infinite structure of the multivariable linear model is characterized by different integer sets: {n i } is the set of infinite zero orders of the global model Σ(C, A, B) and {n i } is the set of row infinite zero orders of the row sub-systems Σ(C i , A, B). The row infinite zero order n i verifies condition n i = min k|C i A (k-1) B = 0 . n i is equal to the number of derivations of the output variable y i (t) necessary for at least one of the input variables to appear explicitly. The global infinite zero orders are equal to the minimal number of derivations of each output variable necessary so that the input variables appear explicitly and independently in the equations. The infinite structure is also pointed out with the Smith-McMillan form at infinity of the transfer matrix. The finite structure of a linear model Σ(C, A, B) is characterized by different polynomial matrices. Invariant zeros are pointed out with the Smith form of the System matrix associated to the state space representation.

A.2 Finite and infinite structures of bond graph models

Causality and causal paths are useful for the study of properties, such as controllability, observability and systems poles/zeros. Bond graph models with integral causality assignment (BGI) can be used to determine reachability con-ditions and the number of invariant zeros by studying the infinite structure. The rank of the controllability matrix is derived from bond graph models with derivative causality (BGD).

A LTI bond graph model is controllable iff the two following conditions are verified [START_REF] Sueur | Bond-graph approach for structural analysis of MIMO linear systems[END_REF]: first there is a causal path between each dynamical element and one of the input sources and secondly each dynamical element can have a derivative causality assignment in the bond graph model with a preferential derivative causality assignment (with a possible duality of input sources). The observability property can be studied in a similar way, but with output detectors. Systems invariant zeros are poles of inverse systems. Inverse systems can be constructed by bond graph models with bicausality (BGB) which are thus useful for the determination of invariant zeros.

The concept of causal path is used for the study of the infinite structure of the model. The causal path length between an input source and an output detector in the bond graph model is equal to the number of dynamical elements met in the path. Two paths are different if they have no dynamical element in common. The order of the infinite zero n i for the row sub-system Σ(C i , A, B) is equal to the length of the shortest causal path between the i th output detector z i and the set of input sources. The global infinite structure is defined with the concepts of different causal paths. The orders of the infinite zeros of a global invertible linear bond graph model are calculated according to equation (25), where l k is the smallest sum of the lengths of the k different input-output causal paths.

n 1 = l 1 n k = l k -l k-1 (25) 
The number of invariant zeros is determined by the infinite structure of the BGI model. The number of invariant zeros associated to a controllable, observable, invertible and square bond graph model is equal to n -∑ n i .

B Proof proposition 1

Consider the matrix product

N CL F = A -1 F - A -1 FΩ -1 d Ω d -K[(C 1 A n 1 -1 ) t (C 2 A n 2 -1
) t ] t F = -KΩ. Suppose that matrix Ω is not invertible. In this case, {n 1 , n 2 } = {n 1 , n 2 }, i.e. the row infinite structure of system Σ(C, A, F) is different of its global infinite structure. The rank of matrix N CL .F is equal to 1, thus matrix N CL is not invertible and the observer cannot be synthesized.
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 1 Figure 1: Structure of the simulation to estimate variables.
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 2 Figure 2: Real torsion bar system.
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 3 Figure 3: Schematic model of the real torsion bar system.
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 4 Figure 4: Simplified Bond Graph of the torsion bar system.

  Fig.4 the causal path between the output variable y 1 and the disturbance input d pert is D f : y 1 → I : J 2 → Se : d pert . the length of the causal path is equal to 1, then n 1 = 1. The causal path between the output y 2 and the disturbance input d emi is D f : y 2 → I : J 1 → T F : k belt → GY : k m → I : L a → Se : d emi . The length of the causal path is equal to 2. Another causal path between the second output detector and the set of unknown inputs is D f : y 2 → I : J 1 → R : R sha f t → I : J 2 → Se : d pert . The length of the causal path is equal to 2, then n 2 = 2 and ma-

Figure 5 :

 5 Figure 5: Bond Graph model with derivative causality.

Figure 7 :

 7 Figure 7: Zoom of unknown input d pert and its estimation. The signal d emi and its estimation are shown in Fig.8, and a zoom of the signals is displayed in the Fig.9. It is possible to see the estimator reaction in this zoom.The Fig.10ashows the output signal y 1 and its estimation ŷ1 is displayed in Fig.10b.Finally, the Fig.11represents the output signal y 1 in (a) and the estimation ŷ2 in (b).These results show that the outputs estimations are well obtained and the estimations for disturbances have a quickly and very close responses at the disturbances.
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 8 Figure 8: Perturbation signal d emi and its estimation demi .
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 9 Figure 9: Zoom of perturbation signal d emi and its estimation demi .

Figure 10 :

 10 Figure 10: Output signal y 1 and the estimation ŷ1 .

Figure 11 :

 11 Figure 11: Output signal y 2 and estimation ŷ2 .

  variables, which allow to assign more modes in the state equation error estimation.

Table 1 :

 1 Parameters for the experimental system

	Element	Symbol	Value
	Inductance	L a	0.34 • 10 -3 H
	Inertia of motor disk	J 1	
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C Fixed Poles for the MIMO case, a null invariant zero

Matrix in this MIMO problem is in equation ( 15). Pole placement is studied with the observability property of system

Because the number of modes which can be assigned is equal to the rank of this observability matrix. The rows of the observability matrix of this system are calculated, firstly with the row matrix C 1 A n 1 -1 associated with the null invariant zero, then with matrix matrix

A similar result is obtained for the row matrix

Therefore, the non null rows of the observability ma-

The rank of this matrix is equal to n 1 +n 2 +1 because model Σ(C, A, F) is observable and for each output variable, the observability index is greater or equal to the row infinite zero order. The non null rows of the observability matrix of system Σ([(C 1 A n 1 -1 ) t , (C 2 A n 2 -1 ) t ] t , N OL ) are thus one part of the independent rows of the observability matrix of system Σ(C, A). This rank can also be studied with the invariant subspaces defined in the geometric approach.