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Abstract

This paper presents a solution for the state and unknown
input estimator of linear MIMO systems with a struc-
tural approach. Compared to the classic Input-Output
Decoupling problem, a systematic procedure is initially
proposed for the analysis stage by analysing the finite
and infinite structures of the modelled system from a
structural approach. Afterwards, the observer is directly
implemented from the original model at the synthesis stage
in a graphical approach with some added terms, and can be
represented by a Bond Graph model. The observer is tested
by a particular and illustrative example which considers a
real torsion-bar model.

Keywords: Unknown Input Observer, Bond Graph,
Structural Analysis, MIMO Systems

1 Introduction

The unknown input estimation and state observability prob-
lem (UIO) is a well known problem. Different approaches
give solvability conditions and constructive solutions for
this problem.

At the analysis stage, before design, most of the ap-
proaches require the analysis of the structural invariants of
the model. The knowledge of zeros (finite structure) is an
important issue because these zeros are directly related to
stability conditions of the observer ((Hautus 1983)) and of
the controlled system. The infinite structure of the model is
related to solvability conditions (see Appendix A).

For LTI models, constructive solutions with reduced or-
der observers are first proposed with the geometric ap-
proach, see (Bhattacharyya 1978), (Basile and Marro 1973)
or based on generalized inverse matrices like in (Miller and
Mukunden 1982) and (Hou and Muller 1992). Full order
observers are then proposed in a similar way (based on gen-
eralized inverse matrices), see (Darouach 2009) for some
works related with this issue. Other approaches based on

canonical forms, the algebraic approach or sliding mode
observers are not recalled here.

This paper proposes an extension of some works dedi-
cated to the UIO problem when the model contains some
non strictly stable invariant zeros. The contribution con-
sists on the definition of a new estimation of the distur-
bance variables which takes into account some integrals of
the measured variables in order to augment the number of
assigned poles.

2 Unknown Input Observer

Consider a linear perturbed system described by (1), where
x ∈ Rn is the state vector, y ∈ Rp is the vector of measur-
able variables. Vector u ∈ Rm represents the known input
variables, whereas d(t) ∈Rq is the vector which represents
the unknown input variables. A,B,F,C are known constant
matrices of appropriate dimensions.{

ẋ(t) = Ax(t)+Bu(t)+Fd(t)
y(t) =Cx(t) (1)

Generally, the state vector x(t) cannot be entirely mea-
sured and the system is often subject to unknown inputs
d(t) (disturbance or failure...) which must be estimated.

2.1 MIMO Systems

In this section, the UIO estimation for MIMO systems with-
out null invariant zero is recalled. For some works related
with the design of UIO for linear Bond Graph models, see
(Yang et al. 2013), (Tarasov et al. 2013).

The UIO problem is recalled for the multi-variable case
with two unknown input variables (q = 2) and two mea-
sured outputs variables (p = 2). It can easily be extended
to any square model with p = q. It is supposed that system
Σ(C,A,F) is controllable, observable and invertible. The
equation (1) can be written as (2).
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{
x(t) = A−1ẋ(t)−A−1Bu(t)−A−1Fd(t)
y(t) =CA−1ẋ(t)−CA−1Bu(t)−CA−1Fd(t)

(2)

The matrix Ωd =CA−1F is invertible if model Σ(C,A,F)
has no null invariant zeros. Matrix Ωd is similar to decou-
pling matrix Ω in control theory. In the classical input-
output decoupling problem, the decoupling matrix Ω de-
fined in equation (8) is used with matrix B instead of ma-
trix F (with the control input variables). From (2), the dis-
turbance vector d(t) and its estimation d̂(t) are written in
equation (3), and the disturbance equation error in equation
(4). The estimation of the state vector is written in equation
(5).

 d(t) =−Ω
−1
d [y(t)−CA−1ẋ(t)+CA−1Bu(t)]

d̂(t) =−Ω
−1
d [y(t)−CA−1 ˙̂x(t)+CA−1Bu(t)]

(3)

d(t)− d̂(t) = Ω
−1
d CA−1(ẋ(t)− ˙̂x(t)) (4)

˙̂x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−·· ·

−AK

[
y(n1)

1 (t)− ŷ(n1)
1 (t)

y(n2)
2 (t)− ŷ(n2)

2 (t)

]
(5)

Ωd is defined in case of the Bond Graph representation
with a derivative causality assignment (BGD) and related
to the infinite structure of the BGD.

Consider vector e(t) defined as e(t) = x(t)− x̂(t). It has
been proved in (Tarasov et al. 2013) that vector e(t) verifies
equation (6) with matrix NCL defined in (7). In that case,
the state estimation error doesn’t depend on the disturbance
variable.

e(t) = NCLė(t) (6)


NOL = A−1−A−1FΩ

−1
d CA−1

NCL = A−1−A−1FΩ
−1
d CA−1−K

[
C1An1−1

C2An2−1

] (7)

If matrix NCL is invertible, a classical pole placement is
studied with matrix K used for pole placement. A necessary
condition for the existence of the state estimator is proposed
in Proposition 1.

Suppose that {n1,n2} and {n′1,n′2} are the set of row infi-
nite zero orders and global infinite zero orders respectively,
of system Σ(C,A,F) (see Appendix A). Matrix Ω is neces-
sary in this estimation problem.

Ω =

[
C1An1−1F
C2An2−1F

]
(8)

Proposition 1 A necessary condition for matrix NCL to be
invertible is that matrix Ω is invertible.

Proof 1 See appendix B

It has been proved in (Tarasov et al. 2013) that the
eigenvalues of matrix NOL defined in (7) are the inverse
of the invariant zeros of system Σ(C,A,F) (n− (n1 + n2))
modes) plus n1 + n2 eigenvalues equal to 0. The null
eigenvalues can be assigned to new values and the invariant
zeros are the fixed poles as recalled in the two following
propositions.

Proposition 2 ((Tarasov et al. 2013))In matrix NCL defined
in (7), n1 +n2 poles can be chosen with matrix K.

Proposition 3 ((Tarasov et al. 2013)) The fixed poles of the
estimation equation error defined in (6) are the invariant
zeros of system Σ(C,A,F).

The proposed approach can then be applied for systems
with strictly stable invariant zeros.

If the state equation (1) is written from a Bond Graph
model, it is possible to design a Bond Graph model for the
state estimation defined in (5) because the equation (5) is
very close to the initial state equation. Some signal bonds
must be added for the disturbance equation defined in (3).
The structure of the observer is proposed in Fig.(1), where
BGsys is Bond Graph model of the system and BGobs is
for the observer Bond Graph model. A simplified block
diagram in Fig.1 represents the structure of simulation to
estimate unknown variables. As written in equation (5),
output variables must be derived. Some remarks about this
feature are made in the following.

Figure 1: Structure of the simulation to estimate variables.

2.2 Simplified Case with Null Invariant Ze-
ros

In this section, an extension of UIO observer is proposed
when the model contains null invariant zeros. In this paper,
we consider the case with one null invariant zero, it can be
easily extended to more general situations.

The equation (1) can be written as (9)

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017 
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.                                                  

2




x(t) = A−1ẋ(t)−A−1Bu(t)−A−1Fd(t)
y1(t) =C1[A−1ẋ(t)−A−1Bu(t)−A−1Fd(t)]
y2(t) =C2[A−1ẋ(t)−A−1Bu(t)−A−1Fd(t)]

(9)

Consider, without restriction, that C1A−1F = 0. In that
case, in the BGD, the causal path length between the output
detector and the two disturbance inputs is at least equal to 1
(it is supposed to be equal to 1 in order to simplify the the-
oretical development). In (9), the mathematical expression
of y1(t) and of its primitive is then

{
y1(t) =C1A−1ẋ(t)−C1A−1Bu(t)∫

y1(t)dt =C1A−1x(t)−C1A−1B
∫

u(t)dt
(10)

Thus

∫
y1(t)dt =C1A−2ẋ(t)−C1A−2Bu(t)−·· ·

−C1A−1B
∫

u(t)dt−C1A−2Fd(t) (11)

If model Σ(C,A,F) has only one null invariant zero, ma-
trix C1A−2F 6= 0 and matrix Ωd = [(C1A−2F)t ,(C2A−1F)t ]t

is invertible. A new expression of vector d(t) can be writ-
ten, as well for d̂(t) from equation (11) in the same manner
as in the classical case and the error equation is written in
(14).

d(t) =−Ω
−1
d

[ ∫
y1(t)dt−C1A−2ẋ(t)+ γ(u)

y2(t)−C2A−1(ẋ(t)−Bu(t))

]
(12)

d̂(t) =−Ω
−1
d

[ ∫
y1(t)textt−C1A−2 ˙̂x(t)+ γ(u)

y2(t)−C2A−1( ˙̂x(t)−Bu(t))

]
(13)

Where γ(u) =C1A−2Bu(t)+C1A−1B
∫

u(t)dt, and then

d(t)− d̂(t) = Ω
−1
d

[
C1A−2

C2A−1

]
(ẋ(t)− ˙̂x(t)) (14)

The estimation of the state vector x(t) is the same as in
equation (17) as well as for the state estimation error equa-
tion defined in (6). Nevertheless, expressions of matrices
NOL and NCL have changed since the model has one null
invariant zero and thus matrix NOL contains (n1 + n2 + 1)
null eigenvalues. New expressions are written in (15)



NOL = A−1−A−1FΩ
−1
d

[
C1A−2

C2A−1

]

NCL = A−1−A−1FΩ
−1
d

[
C1A−2

C2A−1

]
· · ·

−K
[
C1An1−1

C2An2−1

] (15)

A new proposition can be written.

Proposition 4 The fixed poles of the estimation equation
error defined in (15) are the strictly stable invariant zeros
of system Σ(C,A,F). (n− (n1 +n2 +1)) fixed poles.

Proof 2 See appendix C

As said before, this approach can be easily extended to
MIMO models with several null invariant zeros. The idea
consists in applying integration on the output variables. It
is applied to the torsion-bar system.

2.3 Output Differentiation and noise

Numerical differentiation of measurable signals is a classi-
cal problem in signal processing and automation, and many
problems have been solved by creating algorithms for ap-
proximation of derivatives. The numerical methods for ap-
proximation of derivatives of measurable signals can be
used to obtain signals which are not known through mea-
surements and reconstruct the missing system data.

There exist many ways in the literature to derivate sig-
nals. Some common features are the precision between
derivative estimation and noise sensibility and perturba-
tions. These noises or perturbations are the principal trou-
ble for developing derivation algorithms. Most of them as-
sume some features of signal derived and noise (perturba-
tion) of this derivation.

Different approaches are used for different situations
such as Linear Systems in (Luenberger 1971), (Carlsson,
Ahlen, and Sternad 1991), (Diop et al. 1994), (Al-Alaoui
1993), (Dabroom and Khalil 1997), (Levant 1998), (Levant
2003), (Mehdi 2010). These approaches can be classified
by two principal classes: a) Model Approach or b) Sig-
nal Approach. In this case of study, the simulations are
performed using the Matlab and 20-SIM softwares. There-
fore, for a numerical differentiation of the output signal in
simulations, will be used some own blocks of these soft-
wares which are called direct derivative with a noise-filter
inside. In future works will be used others approaches im-
plemented over the real bar system.
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3 Torsion-bar System

3.1 Experimental System description
The experimental setup in the Fig. 2 is the real torsion bar
system with its main parts.

Figure 2: Real torsion bar system.

A functional schematic model of the torsion bar system
is presented in Fig.3. According to Fig.3, the system
consists of the following components: a DC Power Source,
a classical DC Motor which is modelled by an electrical
part (Inductance La and Resistance Ra) and a mechanical
part (Inertia Jm is supposed negligible), a transmission
element which transfer the rotation from the motor to
the motor disk with a transmission ratio (kbelt ), a first
rotational disk (Motor Disk) with an inertial parameter J1
and a friction coefficient R1, a flexible shaft modelled as
a spring-damper element (Spring c and Damper Rsha f t ),
and a second rotational disk (Load Disk) with an inertial
parameter J2 and a friction coefficient R2.

Figure 3: Schematic model of the real torsion bar system.

The simplified Bond Graph model of the system is
shown in the Fig.4.

Figure 4: Simplified Bond Graph of the torsion bar system.

For the experimental system in Fig.4, the controlled in-
put voltage is represented by a modulated effort source
MSe : u. Moreover, y1 and y2 are speed rotational vari-
ables represented in the bond graph model by flow output

detectors D f : y1 and D f : y2 respectively. These sensors
are used to estimate the state variables and the unknown in-
puts d(t) modeled by the source Se : dpert and demi modeled
by the source Se : demi, which represents a torque applied to
the first rotational disk(J1) and a electromagnetic interfer-
ence respectively. The numerical values for each element
of the system are given in Table 1.

Table 1: Parameters for the experimental system
Element Symbol Value

Inductance La 0.34 ·10−3 H
Inertia of motor disk J1 9.07 ·10−4 kg ·m2

Inertia of load disk J2 1.37 ·10−3 kg ·m2

Spring compliance C 0.543 N ·m/rad
Resistance Ra 1.23 Ω

Motor disk friction R1 0.005 N ·m · s/rad
Load disk friction R2 25 ·10−6 N ·m · s/rad
Damping spring Rsha f t 5 ·10−4 N · s/rad
Motor constant k 38.9 ·10−3 N ·m/A

Transmission ratio kbelt 3.75

According to the Bond Graph model, a state space repre-
sentation is performed as described in the form (1). The
state vector x = [x1, x2, x3, x4]

t , is energy storage vari-
ables: x1 = qc = qcsha f t (angular displacement), x2 = pJ2 ,
x3 = pJ1 (angular momentums), and x4 = pLa (flux link-
age). The output matrix C can be written as C = [C1

t ,C2
t ]t .

The state equations are written as (16). The poles of the
model (eigenvalues of matrix A) are equal to −3617.5,
−2.15±58 j, −2.2523.



ẋ1 =− 1
J2

x2 +
1
J1

x3

ẋ2 =
1
C x1 +a2,2 x2 +

RSha f t
J1

x3 +dpert

ẋ3 =− 1
C x1 +

RSha f t
J2

x2 +a3,3 x3 +
k

La.kbelt
x4

ẋ4 =− k
J1·kbelt

x3− Ra
La

x4 +u+demi

a2,2 = (−R2
J2
− RSha f t

J2
) ; a3,3 = (−R1

J1
− RSha f t

J1
)

y1 =
1
J2

x2 ; y2 =
1
J1

x3

(16)

3.2 Structural Analysis
From the Bond Graph model of Fig.4 the causal path be-
tween the output variable y1 and the disturbance input dpert
is D f : y1→ I : J2→ Se : dpert . the length of the causal path
is equal to 1, then n1 = 1. The causal path between the out-
put y2 and the disturbance input demi is D f : y2→ I : J1→
T F : kbelt → GY : km → I : La → Se : demi. The length of
the causal path is equal to 2. Another causal path between
the second output detector and the set of unknown inputs
is D f : y2 → I : J1 → R : Rsha f t → I : J2 → Se : dpert . The
length of the causal path is equal to 2, then n2 = 2 and ma-
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trix Ω defined in equation (8) is invertible. With the infinite
structure, the state estimation is written as equation (17).

˙̂x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−·· ·

−AK
(

y1
(1)(t)− ŷ1

(1)(t)
y2

(2)(t)− ŷ2
(2)(t)

)
(17)

Null invariant zeros are studied with the bond graph
model with a derivative causality assignment, drawn in
Fig.5.

Figure 5: Bond Graph model with derivative causality.

In the BGD, the causal path between the output variable
y1 and the disturbance input dpert is D f : y1 → R : R1 →
Se : dpert . The length of the causal path is equal to 0, then
nd1 = 0. The causal path between the output variable y2
and the disturbance input demi is D f : y2→ R : R1→ T F :
kbelt → GY : km → R : Ra → Se : demi. The length of the
causal path is equal to 0, then nd2 = 0. These two paths
are however not disjoint. Thus this model is not invertible
for the BGD (infinite structure defined for the BGD) and
matrix Ωd is not invertible. There is a null invariant zero
and the previous UIO cannot be used for this example. A
solution to construct the UIO is presented below.

4 Unknown Input Observer:
Torsion-Bar Application

4.1 Analysis
The torsion bar model has one null invariant zero because
matrix CA−1F is not invertible. In that case neither ma-
trix C1A−1F nor C2A−1F is equal to zero. The previ-
ous methodology cannot be directly applied. Nevertheless,
it is quite similar because matrices C1A−1F and C2A−1F
are proportional and linear combination between variables
y1(t) and y2(t) can be applied in order to obtain a null row
in matrix CA−1F before applying an integration. The pro-
cedure is now applied.

From the causal paths gains of the BGD model, or di-
rectly from matrix CA−1F , it can be shown that the two
rows are equal and then y1(t)− y2(t) is written as in (18).

y1(t)− y2(t) = y1,2(t) = (C1−2)A−1ẋ(t)−·· ·
− (C1−2)A−1Bu(t) (18)

Where C1−2 = (C1−C2).
The primitive of variable y1,2(t) is thus (19)

∫
y1,2(t)dt = y∗(t) = (C1−2)A−2ẋ(t)−·· ·

− (C1−2)A−2Bu(t)− (C1−2)A−2Fd(t)−·· ·

− (C1−2)A−1B
∫

u(t)dt (19)

We consider now two equations with y1(t) and y∗(t)
in (20). Note that it is possible to choose y2(t) and
y∗(t) as well. In that case, matrix Ω∗d defined as
[(C1A−1F)t ,((C1−2)A−2F)t ]t is invertible.


y1(t) =C1[A−1ẋ(t)−A−1Bu(t) −A−1Fd(t)]
y∗(t) = (C1−2)[A−2ẋ(t)−A−2 Bu(t) · · ·

−A−2Fd(t)−A−1 B
∫

u(t)dt]
(20)

According to (19), the disturbance equation error (4) can
be rewritten as (21).

d(t)− d̂(t) = [Ω∗d ]
−1
[

C1A−1

(C1−2)A−2

]
(ẋ(t)− ˙̂x(t)) (21)

Therefore, NLC for this system is rewritten as (22), and
n1 + n2 + 1 = 4 which indicates that the four poles can be
assigned.

NCL = A−1−A−1F [Ω∗d ]
−1
[

C1A−1

(C1−2)A−2

]
−K

[
C1

C2A

]
(22)

4.2 Simulation
The estimation of the unknown input variables is defined in
(23). For pole placement the matrix K is obtained (24). The
four poles are chosen as−1/2000,−1/2100,−1/2200 and
−1/2200 for the matrix NCL, but they are the inverse of the
classical estimation error equation.

d̂(t) =−[Ω∗d ]−1
[[

y1
y∗

] [
C1A−1

(C1−2)A−2

]
˙̂x(t)+ · · ·

+

[
C1A−1B

(C1−2)A−2B

]
u(t)

]
(23)

K =


−5.96 ·10−11 1.08 ·10−10

6.227 ·10−7 8.8 ·10−24

−3.41 ·10−10 6.18 ·10−10

−2.352 ·10−8 4.266 ·10−8

 (24)

Different variables are simulated in 20-sim. The input
is chosen as u(t) = 1v(step response), unknown inputs are
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demi = 0.1A with action between 1 to 2sec. and dpert =
0.01N.m with time action between 3 to 4 sec.

First, the signal dpert and its estimation d̂pert are dis-
played in Fig.6. In Fig.7 is possible to see a zoom that
shows more closely the behavior of the signals dpert and
d̂pert .

Figure 6: Unknown input dpert and its estimation.

Figure 7: Zoom of unknown input dpert and its estimation.

The signal demi and its estimation are shown in Fig.8, and
a zoom of the signals is displayed in the Fig.9. It is possible
to see the estimator reaction in this zoom.

The Fig.10a shows the output signal y1 and its estimation
ŷ1 is displayed in Fig.10b.

Finally, the Fig.11 represents the output signal y1 in (a)
and the estimation ŷ2 in (b).

These results show that the outputs estimations are
well obtained and the estimations for disturbances have a
quickly and very close responses at the disturbances.

5 Conclusion
An effective performance estimation system is essential in
any controlled system subject to unknown inputs, failures

Figure 8: Perturbation signal demi and its estimation d̂emi.

Figure 9: Zoom of perturbation signal demi and its estima-
tion d̂emi.

Figure 10: Output signal y1 and the estimation ŷ1.

or no well known parameters. In the literature, many solu-
tions are based on the infinite structure of the model for the
solvability conditions of the UIO and on the finite structure
for the solutions with stability.

In this paper, a structural approach is proposed for the
study of MIMO models which contains null invariant ze-
ros. The innovative point is that estimation of the unknown
input variables is also based on the integrals of measured
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Figure 11: Output signal y2 and the estimation ŷ2.

variables, which allow to assign more modes in the state
equation error estimation.

The simulations on an experimental bar system proved
the effectiveness of the proposed UIO.

APPENDIX

A Structural Properties

A.1 Finite and infinite structures
Consider an invertible square model Σ(C,A,B). The in-
finite structure of the multivariable linear model is char-
acterized by different integer sets: {n′i} is the set of infi-
nite zero orders of the global model Σ(C,A,B) and {ni} is
the set of row infinite zero orders of the row sub-systems
Σ(Ci,A,B). The row infinite zero order ni verifies condition
ni = min

{
k|CiA(k−1)B 6= 0

}
. ni is equal to the number

of derivations of the output variable yi(t) necessary for at
least one of the input variables to appear explicitly. The
global infinite zero orders are equal to the minimal number
of derivations of each output variable necessary so that the
input variables appear explicitly and independently in the
equations. The infinite structure is also pointed out with
the Smith-McMillan form at infinity of the transfer matrix.
The finite structure of a linear model Σ(C,A,B) is charac-
terized by different polynomial matrices. Invariant zeros
are pointed out with the Smith form of the System matrix
associated to the state space representation.

A.2 Finite and infinite structures of bond
graph models

Causality and causal paths are useful for the study of prop-
erties, such as controllability, observability and systems
poles/zeros. Bond graph models with integral causality as-
signment (BGI) can be used to determine reachability con-

ditions and the number of invariant zeros by studying the
infinite structure. The rank of the controllability matrix is
derived from bond graph models with derivative causality
(BGD).

A LTI bond graph model is controllable iff the two fol-
lowing conditions are verified (Sueur and Dauphin-Tanguy
1991): first there is a causal path between each dynami-
cal element and one of the input sources and secondly each
dynamical element can have a derivative causality assign-
ment in the bond graph model with a preferential deriva-
tive causality assignment (with a possible duality of input
sources). The observability property can be studied in a
similar way, but with output detectors. Systems invariant
zeros are poles of inverse systems. Inverse systems can be
constructed by bond graph models with bicausality (BGB)
which are thus useful for the determination of invariant ze-
ros.

The concept of causal path is used for the study of the
infinite structure of the model. The causal path length be-
tween an input source and an output detector in the bond
graph model is equal to the number of dynamical elements
met in the path. Two paths are different if they have no dy-
namical element in common. The order of the infinite zero
ni for the row sub-system Σ(Ci,A,B) is equal to the length
of the shortest causal path between the ith output detector
zi and the set of input sources. The global infinite struc-
ture is defined with the concepts of different causal paths.
The orders of the infinite zeros of a global invertible lin-
ear bond graph model are calculated according to equation
(25), where lk is the smallest sum of the lengths of the k
different input-output causal paths.

{
n′1 = l1
n′k = lk− lk−1

(25)

The number of invariant zeros is determined by the in-
finite structure of the BGI model. The number of invari-
ant zeros associated to a controllable, observable, invertible
and square bond graph model is equal to n−∑n′i.

B Proof proposition 1

Consider the matrix product NCLF = A−1F −
A−1FΩ

−1
d Ωd − K[(C1An1−1)t(C2An2−1)t ]tF = −KΩ.

Suppose that matrix Ω is not invertible. In this case,
{n1,n2} 6= {n′1,n′2}, i.e. the row infinite structure of system
Σ(C,A,F) is different of its global infinite structure. The
rank of matrix NCL.F is equal to 1, thus matrix NCL is not
invertible and the observer cannot be synthesized.

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017 
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.                                                  

7



C Fixed Poles for the MIMO case,
with a null invariant zero

Matrix NCL in this MIMO problem is in equation (15). Pole
placement is studied with the observability property of sys-
tem Σ([(C1An1−1)t ,(C2An2−1)t ]t ,NOL). Because the num-
ber of modes which can be assigned is equal to the rank of
this observability matrix. The rows of the observability ma-
trix of this system are calculated, firstly with the row matrix
C1An1−1 associated with the null invariant zero, then with
matrix matrix C2An2−1.



C1An1−1

C1An1−1NOL =C1An1−1
(
A−1−A−1F ·

·
[
C1A−2F
C2A−1F

]−1 [C1A−2

C2A−1

])
=C1An1−2

C1An1−1(NOL)
2 =C1A(n1−3)

...
C1An1−1(NOL)

n1−2 =C1A

C1An1−1(NOL)
n1−1 =C1

C1An1−1(NOL)
n1 =C1A−1

C1An1−1(NOL)
n1+1 = 0

...
C1An1−1(NOL)

n−1 = 0

(26)

A similar result is obtained for the row matrix C2An2−1,
but C2An2−1(NOL)

n2 = 0.
Therefore, the non null rows of the observability ma-

trix of system Σ([(C1An1−1)t ,(C2An2−1)t ]t ,NOL) are thus:
[(C1A−1)t ,Ct

1,(C1A)t , ...,(C1An1−1)t ,Ct
2,(C2A)t , ...

,(C2An2−1)t ]t . The rank of this matrix is equal to n1+n2+1
because model Σ(C,A,F) is observable and for each output
variable, the observability index is greater or equal to the
row infinite zero order. The non null rows of the observ-
ability matrix of system Σ([(C1An1−1)t ,(C2An2−1)t ]t ,NOL)
are thus one part of the independent rows of the observabil-
ity matrix of system Σ(C,A). This rank can also be studied
with the invariant subspaces defined in the geometric ap-
proach.
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