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Multi-Resource Allocation for Network Slicing
Francesca Fossati, Stefano Moretti, Patrice Perny, Stefano Secci, Senior, IEEE

Abstract—Among the novelties introduced by 5G networks,
the formalization of the ‘network slice’ as a resource allocation
unit is an important one. In legacy networks, resources such
as link bandwidth, spectrum, computing capacity are allocated
independently of each other. In 5G environments, a network slice
is meant to directly serve end-to-end services, or verticals: behind
a network slice demand, a tenant expresses the need to access a
precise service type, under a fully qualified set of computing
and network requirements. The resource allocation decision
encompasses, therefore, a combination of different resources. In
this paper, we address the problem of fairly sharing multiple
resources between slices, in the critical situation in which the
network does not have enough resources to fully satisfy slice
demands. We model the problem as a multi-resource allocation
problem, proposing a versatile optimization framework based on
the Ordered Weighted Average (OWA) operator, that takes into
account different fairness approaches. We show how, adapting
the OWA utility function, our framework can generalize clas-
sical single-resource allocation methods, existing multi-resource
allocation solutions at the state of the art, and implement novel
multi-resource allocation solutions. We compare analytically and
by extensive simulations the different methods in terms of fairness
and system efficiency.

Index Terms—multi-resource allocation, 5G slicing, OWA.

I. INTRODUCTION

While the fourth generation (4G) of networks was designed
for improving the smartphone experience mostly in terms of
network throughput, the fifth generation (5G) is instead being
designed with a much broader goal. 5G networks need to
provide end-to-end connectivity, directly supporting verticals,
including radio connectivity, wired connectivity and comput-
ing resource delivery and orchestration, exploiting system and
network virtualization technologies [1]. 5G verticals include,
e.g., e-health services, public safety systems, smart office, and
connected vehicles, trains and aircrafts [2].

The provisioning abstraction being formalized by 5G activ-
ities is the so-called ‘network slice’. A slice is meant to be
a heterogeneous set of resources, optimized and concatenated
with each other in such a way to serve a specific service or
vertical (see Fig. 1). This implies that resources are shared
among slices, and a portion of them is allocated to each slice
to meet specific requirements of given vertical applications.

In this context, concepts of fairness integrated in legacy
single-resource allocation algorithms and systems are chal-
lenged. In this paper, we address the following research
questions: are the multiple resources called by a slice to be
allocated one after the other independently of each other, or
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Fig. 1: A representation of network slices and resource sharing.

shall one take the multi-resource allocation as a joint allocation
problem to increase system efficiency? In particular, if the re-
quest for at least one resource is bigger than the available one,
we revisit how fairness in resource usage can be measured, and
ensured by means of resource allocation algorithms. Moreover,
we propose and compare multiple allocation rules and evaluate
them in terms of wasted resource (i.e., resource allocated
but eventually not used) and idle resource (i.e., resource left
available for future allocations).

In this paper, we tackle the multi-resource allocation prob-
lem, running evaluations against the network slicing use-case1.
Our objective is to provide fair multi-resource allocations:
working at the multi-resource dimension allows avoiding the
allocation of unnecessary surplus of resources, while maxi-
mizing the overall system fairness and user satisfaction [3].

We propose a unified mathematical framework able to
generalize some of the classical solutions for single and
multi-resource allocation problems from the literature. This
framework takes into account both user satisfaction and system
efficiency objectives, meeting different degrees of fairness. The
main idea behind the proposed framework is to aggregate the
information about users demands and the available resources
in order to obtain a fairness objective function, depending on
the satisfaction of the users, to maximize.

The paper is organized as follows. Section II summarizes the
state of the art on resource allocation in network slicing, and
on single and multi-resource allocation in networks. Section III
presents a unified framework using the Ordered Weighted
Average (OWA) operators. Properties of the proposed frame-
work are described in Section IV. Section V discusses sim-
ulation results comparing existing and proposed methods. In
Section VI we show how to generalize the framework with

1This work differs substantially from our previous work [24] that deals with
single resource allocation problems.



Ref. Type of resource/s Mathematical model Objective

Caballero et al. [4] radio access network resources optimization framework fair allocation

Leconte et al. [5] network bandwidth and cloud processing optimization framework fair allocation

Guan et al. [6] VNF and link complex network theory maximization of the resource utilization
and service provider revenues

Wang et al. [7] access and network functions optimization framework slice dimensioning with resource pricing policy

Jiang et al. [8] radio, storage and computational resources auctions resource and revenue optimization

Caballero et al. [9] base stations or sectors game theory maximization of the tenants utility

Xiao et al. [10] spectrum game theory and distribute algorithms to avoid reveal of private information

Halabian [11] VNF auction, optimization framework maximize α-fair
and distribute algorithms system utility

our approach any resource optimization framework to provide a system-efficient framework
capturing different fairness objectives

TABLE I: State of the art on resource allocation in network slicing

arbitrary resource dependency and Service Level Agreement
(SLA) management. Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we present the state of the art in resource
allocation in network slicing. We introduce the basic character-
izations of classical resource allocation rules2, and we discuss
the role of resource dependency.

A. Resource allocation in network slicing

Recent works in the literature use different approaches to
model and solve the resource allocation problem in network
slicing. Different perspectives are adopted, considering various
resource types, alternative mathematical tools and different
objectives. Table I summarizes and classifies major works at
the state of the art, described in the following.

A recurrent approach is to integrate multi-resource consider-
ations within the Virtual Network Function (VNF) placement
algorithm. For example, authors in [4] address the slicing
of radio access network proposing a multi-operator resource
allocation rule, able to assign to each user a single base station
and able to quantify a fair portion of the resource to assign
to each user. Similarly, authors in [5] model the infrastructure
with a direct graph and the slice as a simple source-destination
pair, solving both the placement and the resource allocation
as a unique problem. In [6] a model to place VNFs while
selecting links is proposed using a complex network analysis.

Another approach that can be found in the literature is
the one concerning the maximization of the slice costumer’s
profit [7] or the one considering the network revenue [8].

Modeling the problem as a competition between tenants
sharing the same infrastructure, it is also possible to adopt
a game-theoretic approach. In [9], authors propose a network
slicing game in which users react to other tenants allocation
and maximize their utility, converging to a Nash equilibrium.
Distributed approaches are used in [10], where a cooperative
game is introduced that, to avoid revealing mobile operators
private information, uses a distributed algorithm to solve the
allocation problem. Instead, in [11], both collaborative and

2From now on we use interchangeably the word ‘slice’ and ‘tenant’(or
‘user’) because we assume that to each tenant is associated a slice.

non-collaborative approaches are analyzed and solved, using
auctions between slices and datacenter providers for the former
one, and a distributed approach for the latter one.

The approach we propose in this paper differs from the
above mentioned ones in several aspects:
• we focus on the problem of allocating end-to-end re-

sources taking into consideration multi-resource alloca-
tion protocols aimed at distributing amounts of each
resource among the tenants, independently of the infras-
tructure; the actual embedding of each resource into a
final resource allocation taking into account geographi-
cal distributions and a physical networking topology is
considered as a separate, successive, problem;

• in our network model tenants express a demand for each
resource and there is an actual problem when there is at
least one congested resource, i.e., at least one resource
cannot satisfy all the tenants;

• we consider resource dependency between resources, as
done for instance in [5] (and elaborated hereafter);

• the possible allocation rules we propose span different
concepts of fairness, namely, considering or not the
awareness of the tenant with respect to the available
resource and the other tenants demands.

B. Resource dependency and depletion

Virtualized network systems are evolving so that network
functions nodes can be given computing power elastically
and as a function of the load (i.e., virtual link bitrate),
and that the spectrum allocated via medium access protocols
can be flexibly adapted to the requested bitrate. There is
indeed a dependency among different types of resources in
such systems 5G networks leverage on. For example, for
the computing resource to traffic bit-rate dependency, it is
typically a linear [5], [12], [13] or step-linear or piece-wise
linear relationship with few deflection points, as seen in [14],
[15]; for the bitrate to spectrum one, a step-linear relationship
can be inferred from slice specifications such as [16]. Taking
such a behavior into account in network models is challenging.
In the model proposed in this paper, we assume a linear
relationship that can provide a good approximation to such
step and piece-wise linear relationships.

In our analysis, we consider two aspects to assess an
allocation solution when some resources are not enough to



Fig. 2: Behavior of single and multi-resource allocations in terms of inter-resource dependency and resource depletion. fi,
i = 1, 2, is the relation between the resources for tenant i, whereas dij is the demand of the ith user for the jth resource
and rj , j = 1, 2, is the available amount for the jth resource. aij is the allocation of the ith user for the jth resource. The
horizontal axis represents the resource 1, the vertical one the resource 2.

fully satisfy tenants’ requests. Firstly, each slice demand
expresses an inter-resource linear relationship that has to be
satisfied; e.g., the number of cores for a virtual machine in
a slice can vary as a function of the bitrate and hence the
link bandwidth allocated to the slice – i.e., one core needed
every given amount of traffic: hence if less traffic is granted,
a number or a proportion of core capacity can be saved.
We refer to this aspect as inter-resource dependency, which
can lead to wasted resource, i.e., allocated but not useful
resource3. Secondly, we consider the resource depletion: a
resource is depleted if it is fully distributed to slices. In the
case of a single-resource system one aims at fully allocating
the resource in order to provide an efficient solution, i.e.,
the resource is depleted, there is no idle resource left. In a
multi-resource context, a multi-resource allocation rule taking
into consideration inter-resource dependency can lead to idle
resource, i.e., the resources may not be depleted.

Fig. 2 depicts a basic resource allocation problem example
with 2 users and 2 resources, representing in a bi-dimensional
space (i.e., the resource space) the users demand and the avail-
able resource. A single-resource approach considers a number
of problems equal to the number of resources needed by the
slice, producing allocations that do not take into consideration
resource dependency (linear in the figure). In fact, we can

3Under the hypothesis of linear dependency of resources, if a user decreases
its demand for one resource, automatically it decreases its demand for all the
other resources. The wasted resource can be a problem from both the user
and the provider point of view. In fact the first one pays for a resource that is
not able to use while the second is providing a resource that is not used
and that could be held back for itself to serve someone else. The waste
of resource is automatically nullified when we consider a multi-resource
approach respecting the linear relationship. So the proposed approach is able
to meet two objectives: to avoid resource waste while ensuring fairness.

notice that for both the users a portion of resource is allocated
even if it cannot be used by the tenant. Contrarily, with a
multi-resource approach, resources and demands are multi-
dimensional and take into account the resource dependency. A
multi-resource allocation rule may create idle resource, hence
respecting resource dependency while meeting allocation goals
such as fairness.

We detail in the following how single-resource and multi-
resource allocation rules differ.

C. Single-resource allocation rules

A single-resource allocation problem consists of assigning
part of a given resource to multiple users. Formally the
problem can be characterized by a pair (d, r), where d is the
vector of users’ demands and r is the amount of available
resource that has to be shared among the users. In case of
n users, an allocation a is a n-dimensional vector specifying
how much resource is given to each user i, and satisfying
non-negativity (ai ≥ 0), demand boundedness (ai ≤ di) and

efficiency (
n∑

i=1

ai = r) [17]. Many allocation protocols exist to

fairly share a scarce resource, i.e., a resource not large enough

to fully satisfy all users (
n∑

i=1

di > r). The most common are

the proportional rule and the weighted proportional rule [18],
the Max-Min Fairness (MMF) rule [19], [20] and the α-
fairness allocations [21]. The latter is a trade-off between
MMF and weighted proportional. The weighed proportional
allocation rule is preferred to the proportional one when we
have explicit user demands. We further describe the remaining
rules, and the recently proposed mood value rule [23], [24],
we evaluate in the paper.



Weighted proportional rule [18]: it targets the maximization

of
n∑

i=1

pi log ai. If the weight pi is equal to 1 for each user,

the solution is the proportional rule; if it coincides with di,
we obtain the allocation that assigns the same proportion
of demand to each user. This last one equalizes the users’
satisfaction, measured as the percentage of demand allocated
(ai

di
), and as such equalizes the fairness, as for instance

measured by the Jain’s index [22].
MMF rule [19]: it is an egalitarian solution, privileging the

weak users (with small demands), maximizing the minimum
allocation, then the second lowest allocation, and so on.

Mood value rule [23], [24]: it modifies the way the
user satisfaction is computed, taking into consideration the
awareness of other users’ demands and the amount of available
resources. Classically the measure of satisfaction with respect
to an allocation, for each user, is measured as the ratio
between the allocated resource and the user demand. Under
complete awareness, it is possible to calculate the minimal
and the maximal right (i.e., allocation) for each user in order
to better express the user satisfaction through the so-called
Player Satisfaction (PS) rate:

psi =
ai −mini

maxi −mini
, (1)

where ai is the allocation of user i, mini = max{r −∑
j∈N\{i} dj , 0} is the minimal right of the user i (i.e. what

remains if all the other users are fully satisfied), maxi is
the maximum it can get (i.e. its own demand di or the
available resource r, if the demand overcomes it). The PS
rate scales between 0 and 1 the satisfaction considering the
extreme admissible allocations (i.e. mini and maxi) due to
the presence of other users.

The mood value is the solution that equalizes the PS rate
for each user, assigning to user i a portion of resource equal to
mini+m(maxi−mini) where m in [0,1] is the ratio between

what remains when users get the minimum and
n∑

i=1

(maxi −

mini). The mood value rule derives from both a classical
interpretation of the resource allocation problem such as [18],
and an interpretation of the resource allocation problem as a
game-theoretic problem [23], [24].

More generically, for those situations that can be realisti-
cally modeled as complete information sharing environment
(such as 5G ones), where users can be aware of other users’
demands and of the available resource (e.g., via northbound
and orchestration interfaces), it is possible to model the alloca-
tion problem as a bankruptcy game to take such interactions in
consideration, and to allocate resources using game-theoretic
rules. Examples of such rules are: the Shapley value [25],
that is a weighted mean of the users’ marginal contribution to
each possible coalition [26] and the nucleolus [25], that is the
allocation which lexicographically minimizes the maximum
“complaints” [27]. In this respect, the mood value is an effi-
cient solution between the minimum right and the maximum
right payoff [23], [24].

D. Multi-resource allocation
In the literature, the first work adopting a multi-resource

allocation approach for multi-resource environments, going

beyond single-resource abstraction, concerns cloud optimiza-
tion problems in which a central scheduler has to decide the
number of simultaneous tasks of multiple types to run, while
ensuring fairness [3], [20], [28]. Conceptually, these models
can also be applied to the network slicing context; instead of
the number of tasks to run, we have a portion of the demand
that has to be satisfied for each slice tenant.

A slicing multi-resource allocation problem can be modeled
in the following way. Let N = {1, ..., n} be the set of tenants
and let M = {1, ...,m} be the set of available resources. A
multi-resource allocation problem can be modeled as a pair
(R,D) where R = (r1, ..., rm) is a vector of positive numbers,
rj representing the amount of each available resource j in M ,
and D is the demand matrix with dij ∈ D equal to the quantity
of resource j demanded by tenant i in N . Difficulties in a
multi-resource allocation problem arise if it exists a resource
j ∈ M such that

∑n
i=1 dij > rj , i.e., the resource is not

enough to satisfy the demands.
Let x = (x1, ..., xn), with 0 ≤ xi ≤ 1 ∀i ∈ N , be

the vector of the percentage of resources allocated to each
tenant. The allocation matrix A corresponding to x is given

by
[
a11 ... a1m

... ... ...
an1 ... anm

]
=

[
d11 · x1 ... d1m · x1

... ... ...
dn1 · xn ... dnm · xn

]
. The allocation

has to belong to the admissible region F s.t.
∑

i∈N aij ≤ rj ,
∀j ∈ M . We can notice that each user, receiving the same
percentage of each resource, does not receive a surplus of
resources. It follows that, with a multi-resource approach, the
resource dependency is always respected.

We describe in the following three allocation rules at the
state of the art that are those largely adopted in the literature,
and that we consider in the rest of the paper. Additional multi-
resource allocations can be found in [29].

Dominant Resource Fairness (DRF) [3] rule: is a gener-
alization of the MMF rule. It considers, for each user, the
dominant share (i.e., for a user, the maximum among all its
resource shares) and the dominant resource (i.e., the resource
corresponding to the dominant share), and it applies the MMF
across users’ dominant shares. The allocation produced by the
DRF policy is the solution of the following problem4:

maximize x

subject to dsixi = dsjxj , ∀i, j ∈ N
(2)

and x ∈ F , where dsi = maxj{dij

rj } is the dominant share of
user i.

Asset Fairness (AF) [3] rule: aims at equalizing the re-
source allocated to each users. It is obtained solving:

maximize x

subject to
m∑
j=1

(sjdij)xi =

m∑
j=1

(sjdkj)xk,∀i, k ∈ N

(3)
and x ∈ F , where sj is the worth of the resource j given
by sj = rmax

rj
, ∀j ∈ N , with rmax equal to the value of the

greater resource in absolute value.

4To maximize a vector means to maximize each component of the vector.
Due to the constraints on the available resources and the ones equalizing the
resource allocated for the the dominant resource, the problem can be reduced
to the maximization of one component of the vector. The maximization of
the others then follows.



Single-resource allocation rules Multi-resource allocation rules

Rules W.Prop (pi=di) MMF Shapley Nucleolus Mood value DRF Asset fairness Nash product

Resources Gbps CPU Gbps CPU Gbps CPU Gbps CPU Gbps CPU Gbps CPU Gbps CPU Gbps CPU

User 1 4.57 0.5 8 0.5 4 0.5 4 0.5 4 0.5 4.48 0.56 4.8 0.6 4 0.5

User 2 11.43 0.5 8 0.5 12 0.5 12 0.5 12 0.5 8.8 0.44 8 0.4 10 0.5

Depletion Yes Yes Yes Yes Yes No No No

Dependency No No No No No Yes Yes Yes

TABLE II: Example of single-resource and multi-resource allocations (r1 = 16, r2 = 1, d11 = 8, d12 = 1, d21 = 20, d22 = 1)

Nash product [30] rule: is called also Competitive Equi-
librium from Equal Income (CEEI) [3]. It is obtained solving:

max
∏
i∈N

xi, s.t. x ∈ F (4)

E. Example comparison between allocation rules

Let us consider again an allocation problem with two re-
sources and two users. The first resource is the link bandwidth,
with an available resource r1 = 16 Gbps, the second one is the
CPU, with an available resource r2 = 1 CPU. User 1 needs a
link bit-rate of 8 Gbps and 1 CPU and User 2 needs 20 Gbps
and 1 CPU. Note that CPU resources are fractionable with
current hypervisors. Table II provides the obtained resource
shares applying the allocation rules presented in this section,
highlighting quantitatively the fundamental differences already
described. Moreover, in the bottom of the table we indicate
the two aspects we already discussed: the resource depletion
and the inter-resource dependency. As previously discussed,
single-resource allocations fully use the addressed resource
and, in general, they cannot comply with existing dependency
between the resources. Conversely, multi-resource approaches,
in general, do not completely use all the resources, but they
do take into consideration resource dependency.

III. MURANES
MULTI-RESOURCE ALLOCATION FOR NETWORK SLICING

In order to solve the network slicing resource allocation
problem we propose a framework based on an aggregation
technique we name MURANES (MUlti-Resource Allocation
for NEtwork Slicing). Our objective is to propose a general
framework to allocate multiple distinct resources in a fair
way. In this direction we consider two factors: an individual
satisfaction of the tenants and a system fair utility. The
satisfaction is an individual measure and can be combined
to obtain a measure of the fairness of the system. To reach
our goal we use the aggregation techniques in an original way,
proposing a way to summarise the information about the users
satisfaction on different resources.

Our proposal is to aggregate users and system utilities as
depicted in Figure 3. We consider an utility function F (y)
that summarizes the information about users demands and the
available resources. To obtain this function one can follow two
methodological ‘paths’:
• first aggregate the users, and then the resources;
• first aggregate the resources, and then the users.

Fig. 3: User and resource aggregation paths. The vector yi·
combines m data to provide a single aggregated variable for
each user. The vector y·i combines n data to provide a single
aggregated variable for each resource. F (y) is the aggregated
function to optimize.

In network slicing, an important requirement is to provide a
fair allocation matrix, thus it is necessary that the input vector
of the function to optimize summarizes the information related
to the user satisfaction. For this reason we choose the second
path, depicted with a red arrow in the figure, aggregating first
the information related to the different resources for each user,
i.e., considering the user satisfaction, and secondly aggregating
the users, i.e., considering the system efficiency objective. In
our case, the first aggregation is done choosing the satisfaction
of the user calculated for the most congested resource, and
the second aggregation is made using as aggregation function
W the Ordered Weighted Averaging (OWA) operator [31] -
that we characterize in the following subsection, together with
its fairness properties. The OWA operator is able to capture
a range of fair attitudes, and allows us to define different
allocations following different fairness criteria.

It is worth highlighting that our contribution is the proposal
of an original and context-sensitive way to aggregate informa-
tion related to a multi-resource allocation problem, i.e., such
that multiple criteria have to be considered. We define how to
leverage on the OWA operator on the satisfaction vector, in
order to guarantee fairness in context in which the resources
are scarce, we have to care of multiple distinct resources, and
different notions of fairness can make sense. No alternative
proposals meeting these requirements exist at the current state
of the art, as of our knowledge.

A. Ordered Weighted Averaging (OWA) operators

In the following, after explaining the OWA operator and its
flexibility in covering different objectives, we discuss how to



properly select OWA input vectors, related to different users
satisfaction concepts. The OWA framework we formalize can
so incorporate some of the existing multi-resource allocations
rules, and permits also to transpose some of the existing single-
resource allocation rules to the multi-resource context.

The Ordered Weighted Averagin (OWA) function is intro-
duced in [31] and it is defined as follows.

Definition 1. An OWA is a scalarizing function F : Rn → R
parametrized by a weighting vector w ∈ R+

n of the form
F (v1, ...vn) =

∑n
j=1 wjv(j), where v(j) is the j-th smallest

element of (v1, ..., vn).

Contrary to the case of the weighted sum, in an OWA
function the weights are not used to assign more importance to
a component than to another one, but to weight the importance
attached to good or bad components in the value aggregation.

The F aggregator encompasses many well known aggrega-
tors such as max, min, median and sum, as special cases. It is
well known in the Social Choice area, to model an idea of fair-
ness in the social evaluation function. In this case, F is often
referred to as the Generalized Gini social-evaluation Function
[32], [33]. Such a function used with a decreasing weighting
vector w, i.e., wi ≥ wi+1 for all i < n allows to model a wide
range of ‘fair’ attitudes going from the egalitarianism to the
utilitarianism. An egalitarian solution is based on the notion
of fairness, described in political philosophy by Rawls [34]
aiming to protect weaker users, i.e., the less satisfied ones.
It is obtained when we maximize the minimum component
so when we choose only the first weight w1 different from
zero. An utilitarian solution, under the classical utilitarian
principle, is obtained when the decision maker maximizes the
sum of the utilities of the players. It is obtained choosing the
same value for each weight (wi = wj ,∀i 6= j). Changing
the OWA weights, choosing decreasing value of the weight,
we can obtain trade-off solutions between egalitarianism and
utilitarianism.

More precisely, one common way of formally introducing
a fairness property in the aggregation is to require that the
value of a vector is improved by any mean preserving transfer
reducing inequalities (a.k.a. Pigou-Dalton transfers). Given a
performance vector v = (v1, . . . , vn), any modification of
v leading to a vector of the form (v1, . . . , vi − ε, . . . , vj +
ε, . . . , vn) for some i, j, ε such that vi − vj > ε > 0 should
make decision maker better off. Under the Pareto principle
– requiring monotonicity in every component – and some
other mild requirements such as completeness – requiring this
fairness condition – it is possible to define the social utility as
an OWA function using a weighting vector w with decreasing
components. The described potential of F is illustrated in the
following:

Example 1. Consider a simple case with three users. A
solution with utility vector (1, 0, .3) is less preferable than
(.5, .5, .3) because there exists a transfer (-.5,+.5) between
the two first agents to pass from the former solution to
the latter. Consistently, we have F (1, 0, .3) = .3w2 + w3

and F (.5, .5, .3) = .3w1 + .5w2 + .5w3 and therefore
F (1, 0, .3) − F (.5, .5, .3) = .3(w2 − w1) + .5(w3 − w2) ≤ 0

because w1 ≥ w2 ≥ w3. We obtain the desired preference.
Now if we compare (1, 0, .5) to (.3, .3, 5) the preference
is less clear. In particular, no Pigou-Dalton transfer holds.
Moreover, in such a situation, one may want to relax the
desire of equity to hold average efficiency. Consistently, we
have F (1, 0, .3) − F (.3, .3, .3) = .7w3 − .3w1 which may be
positive or negative depending on w given that w1 ≥ w3. This
illustrates the role of vector w that lead to different choices
depending on the importance attached to the least satisfied
users.

The F function is also widely used in multi-objective
optimization to generate solutions with well-balanced utility
profiles [35], [36]. F (v) is not linear in v due to the permuta-
tion of components, but smart linearization are available, see,
e.g., [35].

The MURANES framework we propose is based on the
optimization of OWA operators. It is designed for continuous
resources, i.e., resources that can be partitioned indefinitely
but that – with straightforward model variations – can also
be applied to the case of discrete resources, or to the case in
which the allocation must be selected from prefixed templates.

B. The general framework

As above introduced, the framework we propose is consid-
ering two axes: the system and the individual utility. About
the former, subsection III-A shows that the maximization of
an OWA function is a good candidate to obtain fair allocations,
where fairness goes from the pure egalitarianism to the pure
utilitarianism. About the latter, as we anticipated, the input
vector of the OWA must depend on the user satisfaction vector,
i.e., a vector containing the measure of the satisfaction of each
user respect to the m resources. We describe now the four
proposed inputs:
• classical satisfaction: Classically the satisfaction is mea-

sured as the percentage of resource allocated to a user,
i.e., as the ratio between the allocated resource and the
demanded one. In our model, for each user this ratio is
the same for each resource and it is equal to x.

• weighted classical satisfaction: We can consider a
weighted version of the classical satisfaction. Taking
inspiration from the DRF allocation rule the satisfaction
of each user i we choose a weight equal to the dominant
share (i.e., dsi = maxj{dij

rj }) as weight.
• player satisfaction (ps): As already explained in II-C, in

case of complete information, the correct way to measure
the satisfaction is using the ps rate [23], [24]. If in
the case of the classical satisfaction, given a user, the
satisfaction coincides for each resource, here we need
to find which satisfaction summarizes the information
about all the resources. For this purpose, we use the
dominant resource for each tenant, because it is the more
critical one and, realistically, the one that the tenant would
consider to measure its satisfaction.

• weighted player satisfaction: in a dual way to the classical
satisfaction, we can again consider the dominant share to
weight the ps satisfaction.



System

w=(1, 0, · · · , 0) · · · w=(1, 1, · · · , 1)
In

di
vi

du
al

x maxminxi · · · max
∑n

i=1 xi

ds · x maxmin dsixi · · · max
∑n

i=1 dsixi

ps maxmin psi · · · max
∑n

i=1 psi

ds · ps maxmin dsipsi · · · max
∑n

i=1 dsipsi

TABLE III: Objective function of the MURANES framework.

The general problem to solve is:
maximize OWA(v)

subject to x ∈ F 0 ≤ xi ≤ 1,∀i ∈ N
(5)

where v can be equal to: (i) the vector x, (ii) the vector
ds ·x =

[
ds1 · x1 ... dsn · xn

]
, (iii) the vector ps, with the

satisfaction calculated for each user respect to the dominant re-
source or (vi) the vector ds ·ps =

[
ds1 · ps1 ... dsn · psn

]
.

We summarize in Table III the value objective function in
the general framework we propose for two extreme OWA
weights configurations. In the following section we clarify on
the option to choose among extreme weight configurations.

IV. MURANES PROPERTIES

We describe some important properties of the allocations
we obtain using the MURANES framework.

A. Generalization of well known-solutions

The unified framework uses a general class of utility func-
tions that captures different fairness criteria, and between
them we can find some already well-known ones. In fact
for special combinations of OWA inputs and weights, the
allocation coincides with an allocation known in literature.
We can state the following theorems.

Theorem 1. Let (D,R) be a multi-resource allocation prob-
lem with dij 6= 0 ∀(i, j) ∈ N × M . The MURANES
solution with w = (1, 0, · · · , 0) and input x coincides with
the weighted proportional allocation rule generalized to the
multi-resource context.

Proof. The MURANES in case in which w = (1, 0, · · · , 0)
and the input is x coincides with the solution of:

maximize min(x)

subject to x ∈ F
0 ≤ xi ≤ 1,∀i ∈ N

(6)

but (6) coincides with:
maximize x

subject to x ∈ F
xi = xj ,∀i, j ∈ N
0 ≤ xi ≤ 1,∀i ∈ N

(7)

In fact, the constraints of (7) imply that the optimal solution is
the Pareto efficient solution that belongs to the line produced
by the constraints xi = xj , ∀i, j ∈ N . This follows from the
fact that all the other Pareto efficient solutions are such that
the variable with the minimum value can be increased. The

constraint xi = xj implies that the satisfaction of each user is
equal and this property characterizes, in the case of single re-
source allocations, the weighted proportional allocation when
we choose the weights equal to the user demand (see [23],
[24]).

Theorem 2. Let (D,R) be a multi-resource allocation prob-
lem with dij 6= 0 ∀(i, j) ∈ N ×M . The MURANES solution
with w = (1, 0, · · · , 0) and input ds · x coincides with the
DRF allocation rule.

Proof. Similarly to the proof of Theorem 1, the considered
optimization problem can be rewritten as:

maximize x

subject to x ∈ F
dsi · xi = dsj · xj ,∀i, j ∈ N
0 ≤ xi ≤ 1,∀i ∈ N

(8)

that is exactly the DRF allocation rule described in (2).

Theorem 3. Let (D,R) be a multi-resource allocation prob-
lem with dij 6= 0 ∀(i, j) ∈ N ×M . The MURANES solution
with w = (1, 0, · · · , 0) and input ps coincides with the mood
value generalized to the multi-resource context.

Proof. Again, similarly to the proof of Theorem 1, the con-
sidered optimization problem can be rewritten as:

maximize ps

subject to x ∈ F
psi = psj ,∀i, j ∈ N
0 ≤ xi ≤ 1,∀i ∈ N

(9)

So, the single resource allocation that equalizes the user satis-
faction calculated using the PS is the mood value (see [23],
[24]).

To sum up, the previous theorems show that MURANES
allows to capture and generalize classical allocation rules.
For the following, let us assign a name to the corresponding
allocation rules obtained as a function of the OWA input:
• generalized weighted proportional allocation (g-prop)

when the input is x,
• generalized DRF allocation (g-drf) when the input is ds ·
x,

• generalized mood value (g-mood) when the input is ps,
• moodified DRF (gm-drf) when the input is ds · ps5.

B. Game theoretic interpretation

Let us compare the four allocations rules defined in the pre-
vious section using the corresponding individual satisfaction
vectors and the OWA weight vector (1, 0, · · · , 0). Fig. 4 shows
on the tenants’ satisfaction plane the region of the admissible

5The word ‘moodified’ comes from the fusion of the word ‘mood’ and
‘modified’, justified by the fact that the allocation considers the satisfaction
rate typical of the mood value allocation but also the dominant share typical
of the DRF allocation.



(a) Generalized proportional (g-
prop)

(b) Generalized DRF

(c) Generalized mood value (g-
mood)

(d) Moodified DRF (gm-drf)

Fig. 4: Allocations with w = (1, 0, · · · , 0). (x∗1, x∗2) is the
solution of the allocation problem.

solutions and the four allocation rules when we consider an
allocation problem with two resources and two users.

We can notice that the solution is the intersection between
a line and the Pareto efficient frontier. The lines are:
• x1 = x2 for the g-prop allocation,
• ds1x1 = ds2x2 for the g-DRF allocation,
• ps1 = ps2 for the g-mood allocation,
• ds1ps1 = ds2ps2 for the gm-drf allocation,
These can be interpreted as solutions of the bargaining

game between two users. A bargaining game [37], [38] is
a pair (C, n) where C is a bounded closed and convex set
and n the utility when the two users are not able to reach an
agreement. The egalitarian solution can be interpreted as the
Kalai-Smorodinski solution [38], that is on the Pareto frontier
obtained joining the nadir and the utopia point. The nadir
point n is (0, 0) for the first two allocation rules (Fig. 4a,4b),
while with respect to the two solutions obtained changing
the satisfaction measure (Fig. 4c,4d) the nadir point gives the
minimal right for each user. Each component of the utopia (U)
point is obtained maximizing the utility of each user. It follows
that for the two cases, with the classical satisfaction, the utopia
point is U = (1, 1), U = ( 1

ds1
, 1
ds1

) (resp.) while for the two
other cases it is enough to calculate users’ maximal right.

C. Egalitarian and utilitarian fairness trade-off

Let us elaborate on the potential of the unified framework.
As anticipated in Section III-A, the two extreme behaviors
in terms of fairness are the egalitarian and the utilitarian
ones. The utilitarian approach aims at maximizing the total
utility of the members of a society without paying attention
to social inequality; it is in fact also sometimes referred
as system efficiency [39]. The egalitarian approach aims at

maximizing the individual utility while promoting equitable
distributions of utility; for this reason it is commonly used for
fair optimization [39]. In most cases, the objective of reducing
inequalities comes at a cost that can be measured by the Price
of Fairness (POF) that is defined as follows.

Definition 2. The Price of Fairness (POF) is:

POF =
f(x∗f )− f(x∗min)

f(x∗f )
(10)

where f(x) =
∑n

i=1 xi is the utilitarian criterion, x∗f is the
solution obtained maximizing f and the x∗min is the egalitarian
optimum.

Example 2. Let us consider a resource allocation problem

with D =

[
12 1 5
10 2 15
5 3 10
10 1 15

]
and R = [20, 4, 20].In this case the

utilitarian optimum is x∗f = (0.94, 0, 0.88, 0.44) whereas the
egalitarian optimum is x∗min = (0.44, 0.44, 0.44, 0.44). Hence
we obtain POF = 0.21. This value measures the normalized
gap to optimal efficiency induced by the fairness requirement.

In the above example the POF is moderate, which shows
that perfect equity can be reached at reasonable cost regarding
efficiency. This is not always the case and, in many situations,
it can be interesting to determine solutions achieving a
better compromise between pure utilitarianism and pure
egalitarianism. This is precisely the interest of resorting
to an OWA optimization that enables to generate various
compromise solutions depending on the OWA weights. Let
us come back to Example 2.

Example 2. cont. A third solution of the problem ob-
tained using OWA with the weighting vector w =
(0.34, 0.29, 0.23, 0.14) is x∗w = (0.92, 0.26, 0.77, 0, 26). We
can notice that:
• min(x∗min) ≥ min(x∗w) ≥ min(x∗f ),
•
∑4

i=1 x
∗
fi
≥
∑4

i=1 x
∗
wi
≥
∑4

i=1 x
∗
mini

,

We give now a finer description of how inequalities and POF
may vary when playing with OWA weights. For this purpose,
we introduce the two following measures:

• POF (x∗w) =
f(x∗

f )−f(x
∗
w)

f(x∗
f )

where f(x) =
∑n

i=1 xi, x
∗
f is

the solution obtained in the utilitarian case and x∗w is the
solution maximizing an OWA with weight w.

• IR(x∗w) = 1 − min(x∗
w)

(1/n)f(x∗
w) , where f(x) =

∑n
i=1 xi and

x∗w maximizes an OWA with weight w [40].
The first measure generalizes the one described in [39], that

measures the loss of total utility faced by users in order to
guarantee the fairness associated to weights vector w. The
second index measures the inequality rate between the utility
of the tenants. Both the indices have values in the closed
interval [0, 1], as stated in Theorem 4.

Theorem 4. Given an allocation x∗w, POF (x∗w) and IR(x∗w)
take value in [0, 1].

Proof. Given an allocation x∗w it always hold that x∗w ≤ x∗f ,
because x∗f is the solution that maximizes. It follows that



(a) POF and IR indices (b) Lorenz curve with normalized solution (c) Lorenz curve with non-normalized solution

Fig. 5: Lorentz curves, POF and I indices.

f(x∗f ) − f(x∗w) ≤ f(x∗f ) and consequently POF (x∗w) ≤ 1.
In the case in which x∗w = x∗f the index gets the minimal
value equal to 0. For the IR(x∗w) the maximal possible value
is 1, because the minimal possible allocation for a user is
zero (i.e. the portion of allocated resource is zero), while the
maximal possible value is 1 and it is obtained when there is
an equal distribution of the share ((1/n)f(x∗w) = min(x∗w)).
For any other allocation it holds (1/n)f(x∗w) ≥ min(x∗w) and
consequently IR(x∗w) ≤ 1.

According to the POF measure, the utilitarian solution
gets value 0 and the price increases when we consider other
solutions closer to the egalitarian one.

Differently, the IR index has value 0 for the egalitarian
solution and its value increases for the other solutions. Due
to the opposite behavior of the indices, a good trade-off
between egalitarian and utilitarian criteria can be found in
those solutions providing allocations vectors with indices POS
and IR close to 0. Looking at the example depicted in Fig 5a
we can see that the egalitarian solution has good properties in
terms of equity but the POF has a value of around 0.2. If we
are not willing to pay that price of fairness we can select the
intermediate solution with a negligible price of fairness but
we loose something in terms of fairness.

Another way to compare the various possible solutions is
based on Lorenz curves [41]. A Lorenz curve is obtained
plotting the cumulative x when we order the users from
the less satisfied one to the most satisfied one. We plot
in Fig. 5b and 5c the Lorenz curves for the resource
allocation problem of Example 2 when we consider the
normalized and non-normalized vector x, selecting three so-
lutions of a resource allocation problem obtained using an
egalitarian approach (w = (1, 0, 0, 0)), an utilitarian ap-
proach (w = (0.25, 0.25, 0.25, 0.25))6 and an intermediate
one (w = (0.34, 0.29, 0.23, 0.14)). In Fig. 5b the straight
line represents the perfect equality in the distribution of the
satisfaction between tenants and the most distant the curves
are, the greater the inequality is. It is clear that the egalitarian
solution, that aims to equalize the satisfaction of the users,
provides a straight line, while the utilitarian solution provides
a more unfair allocation. Contrarily, checking figure 5c we can

6w = (0.25, 0.25, 0.25, 0.25) is the weight w = (1, 1, 1, 1) normalized.

notice that the sum of the users satisfaction are maximized
with the utilitarian solution (

∑4
i=1 xi = 2.2500) and it has

the lower value for the egalitarian solution (
∑4

i=1 xi = 1.78).
Looking both the criteria (max-min and max-sum), the third
considered solution shows an intermediate behavior represent-
ing the trade-off between utilitarian and egalitarian solutions.

Finally, it is worth to mention further properties that can
be considered from a fairness point of view and can be
used by the decision-maker to select the weights to use. For
example one can be interested to (i) strategy-proof allocation
where users should not be able to benefit by lying about their
resource demands or to (i) envy-freeness allocation where a
user should not prefer the allocation of another user. The DRF
allocation, for example, satisfies these properties [3]. On the
other side one can be interested into allocations equalizing
the users satisfaction rate. In this case the DRF allocation
is no more suitable and the g-prop and g-mood with weight
w = (1, 0, · · · , 0) can be preferable.

Each allocation obtained with the MURANES framework,
varying the weights vector, does not satisfy all the fairness
properties we can consider at once. This gives more value to
a general framework that can be better adapted to a specific
context. The only properties satisfied by all MURANES allo-
cation rules are the Pareto efficiency that state that it is not
possible to increase the allocation of a user without decreasing
the allocation of at least another user, and the Pigou-Dalton
transfer already described in Section III [42].

V. NUMERICAL EVALUATION

We test both the single-resource and the presented multi-
resource allocation rules, in a realistic scenario. We simulate
100 resource allocation problems with 3 resources (Memory,
vCPU and link capacity) and 10 slices. We randomly generate
the slice demands from the 23 templates described in Table IV,
a subset of Amazon EC2 instances [15] we could extract (by
simply copying the rows having a complete information about
the three considered resources). In practice, in 5G slicing we
can expect quite similar resource quantities and relations, with
the link bit-rate at a lower scale as of preliminary specifications
of some slices (e.g., the eMBB one) and related scenarios
found in [16]. Different scales do not matter, the important
aspect being the relation between resources.



(a) Memory congested (b) vCPU congested (c) Link congested

Fig. 6: Wasted resource ratios (1 congested resource). Multi-resource rules are referred as ‘OWA’.

(a) Congestion level (0.9, 0.9, 0.9) (b) Congestion level (0.9, 0.1, 0.1) (c) Congestion level (0.1, 0.1, 0.1) (d) Congestion level (0.9, 0.5, 0.1)

Fig. 7: Wasted resource ratios (3 congested resources). Congestion level: (Memory, vCPU, Link).

API Name Memory (GB) vCPUs Gbps Instance Type
m4.10xlarge 160.00 40.00 10.00 General purpose
m4.16xlarge 256.00 64.00 25.00 General purpose
c5.9xlarge 72.00 36.00 10.00 Compute optimized

c5.18xlarge 144.00 72.00 25.00 Compute optimized
c4.8xlarge 60.00 36.00 10.00 Compute optimized
r4.8xlarge 244.00 32.00 10.00 Memory optimized

r4.16xlarge 488.00 64.00 25.00 Memory optimized
x1.16xlarge 976.00 64.00 10.00 Memory optimized
x1.32xlarge 1952.00 128.00 25.00 Memory optimized
x1e.16xlarge 1952.00 64.00 10.00 Memory optimized
x1e.32xlarge 3904.00 128.00 25.00 Memory optimized
p3.8xlarge 244.00 32.00 10.00 Accelerated comput.
p3.16xlarge 488.00 64.00 25.00 Accelerated comput.
p2.8xlarge 488.00 32.00 10.00 Accelerated comput.
p2.16xlarge 732.00 64.00 25.00 Accelerated comput.
g3.8xlarge 244.00 32.00 10.00 Accelerated comput.
g3.16xlarge 488.00 64.00 25.00 Accelerated comput.
f1.16xlarge 976.00 64.00 25.00 Accelerated comput.
h1.8xlarge 128.00 32.00 10.00 Storage optimized
h1.16xlarge 256.00 64.00 25.00 Storage optimized
d2.8xlarge 244.00 36.00 10.00 Storage optimized
i3.8xlarge 244.00 32.00 10.00 Storage optimized
i3.16xlarge 488.00 64.00 25.00 Storage optimized

TABLE IV: Amazon EC2 instances

In the first scenario we analyze, only 1 resource at time is
congested. We randomly generate the amounts in this way:
• for the congested resource, the available amount has a

value bigger than the minimum demand and lower than
the sum of the demands;

• for the non-congested resource, it is between the sum of
the demands and two times the sum of the demands.

In the second scenario, all the resources are congested but not
always at the same level of congestion. The level of congestion
considered is the fraction of the global demand (sum of all
demands) that cannot be allocated due to resource scarcity;

e.g., if the level is 0.9, 90% of the sum of the demands is
not satisfied, thus we are in a strong congestion situation.
In the simulations, we consider the following four cases of
congestion level combinations:
• 0.9, 0.9, 0.9: 3 resources have the same high congestion;
• 0.1, 0.1, 0.1: 3 resources have the same low congestion;
• 0.9, 0.1, 0.1: 1 resource has high and 2 have low

congestion;
• 0.9, 0.5, 0.1: the 1st resource has a high congestion, the

2nd one a medium level and the 3rd one a low level.
The first two cases show a homogeneous congestion distri-
bution, while the latter two have a heterogeneous distribution
that likely corresponds to a more realistic setting.

We test the presented single-resource allocations (weighted
proportional with pi = di, MMF, Shapley value, Mood
value)7, and the proposed MURANES rules with OWA
weights w = (1, 0, · · · , 0) because we are interested in
evaluating the performance of the already known solution (i.e.
DRF) compared to the new proposed one, that generalizes
single resource allocation (g-prop, g-mood), or that are not
known (gm-drf).

A. Results in terms of wasted and idle resource

Fig. 6 shows the average ratio of wasted resource in the
case in which only one resource is congested. Fig. 7 shows
the same, but when all the resources are congested. We can no-
tice, as we already discussed, that single-resource allocations
produce resource wasting, i.e., even if a resource is allocated,
it may not be fully needed due to the assumed relation between

7except the Nucleolus, whose computation has a high time complexity



(a) Memory congested (b) vCPU congested (c) Link congested

Fig. 8: Idle resource ratios (1 congested resource).

(a) Congestion level (0.9, 0.9, 0.9) (b) Congestion level (0.9, 0.1, 0.1) (c) Congestion level (0.1, 0.1, 0.1) (d) Congestion level (0.9, 0.5, 0.1)

Fig. 9: Idle resource ratios (3 congested resources). Congestion level: (Memory, vCPU, Link)

resources. For single-resource allocations, the trend in terms
of wasted resource depends on the congestion level: if the
resource is congested it is fully allocated, and consequently
the wasted resource is zero; in case of equal congestion level
between the resources (Fig. 7a, 7c), there is a similar ratio of
wasted resource between the three resources; in the case in
which the level of congestion is heterogeneous, the ratio of
waste resource is zero for the most congested resource, and it
increases decreasing the congestion level. Multi-resource rules,
respecting inter-resource dependency, do not produce wasted
resource, in each congestion level configuration. This means
that there are no resources allocated and unused by the users
because multi-resource rules allocate for each user the same
percentage of demand for each resource.

In a dual way, Fig. 8 and Fig. 9 show respectively the
average ratio of idle resource in the cases in which only
one resource is congested, and when all the resources are
congested. We can notice that single resource allocation rules
produce idle resource only if the resource is non-congested; for
this resource, tenants receive exactly what they ask and conse-
quently, being the resource non-congested, an idle resource is
produced. For multi-resource allocations, there is a similarity
between the two allocations that consider the satisfaction rate
(g-prop and g-mood), and between the two allocations that
weight the satisfaction rate with the dominant share (g-drf,
gm-drf). The first couple of allocation rules produce less idle
resource when (i) only one resource is congested or (ii) the
congestion level is homogeneous. The second one, adapting
the satisfaction to the the resources available in the network
in which the slice is situated, produces less idle resource when
the congestion level is heterogeneous.

(a) 1 resource congested

(b) 3 congested resources

Fig. 10: Fairness index with different allocation rules.

B. Results in terms of fairness

In order to analyze the fairness of the allocation rules, we
analyze the Jain’s index of fairness [22] and its modification
considering the PS rate instead of the classical Demand
Fraction Satisfaction (DFS) rate [23], [24]. Fig. 10 shows the
boxplot results of the fairness index for the dominant resource,
and for the two congestion cases. We can notice that the two
solutions with better performances in terms of fairness are g-
prop and g-mood, i.e., the ones considering as OWA input the
DFS and PS rates. This follows from the fact that the two
allocations equalize the tenant satisfaction and consequently



maximize the respective index of fairness. Considering the
dominant resource for each tenant, the satisfaction is no more
the same for each tenant thus the fairness decreases, but on
average not excessively.

Fig. 11 and 12 show, for the two satisfaction rate definitions
(classical and PS) and for both single- and multi-resource
allocation rules, the cumulative distribution function (CDF) of
the minimum satisfaction rate, i.e., among the three resource-
specific satisfaction rates, the least one. In this way we
can focus on the minimum satisfaction rate as a desirable
fitness metric to increase. Fig. 11 refers to the 3-congested
resources case, while Fig. 12 to only the heterogeneous cases,
i.e., (0.9, 0.1, 0.1) and (0.9, 0.5, 0.1). Again we can notice a
similarity between g-prop and g-mood (with OWA input equal
to x and ps) from the one hand, and g-drf and gm-drf (with
ds·x and ds·ps) from the other hand. We see that the minimum
satisfaction is clearly linked to the congestion level. In Fig. 11
we have 3 cases over 4 with a level of congestion equal to 0.9
for at least one resource; it follows that the least satisfaction
is the one related to the most congested resource, getting a
value (with the classical DFS rate) exactly equal to 0.1 for the
proportional and the generalized weighted proportional rules.
About 50% of the tenants suffer from a very low satisfaction
(between 0 and 0.15).

Therefore, we compare the global (i.e., with both heteroge-
neous and homogeneous congestion cases – Fig. 11) results
to the one with only heterogenous congestion cases (Fig.12).
In the former the satisfaction rate CDFs for single and multi-
resource allocations are similar: MMF, gm-drf and g-drf assign
the highest satisfaction rate to about 10% of tenants, and
are hence preferable. This follows from the the fact that g-
drf and gm-drf can be considered as generalizations of the
MMF allocation. With the heterogeneous cases apart (Fig.12),
instead, gm-drf is superior to all the other allocation rules
(single- and multi-resource ones), except for MMF with the
classical satisfaction rate (Fig.12a) which however is known
to offer low fairness [23], [24].

These results show that in realistic settings with heteroge-
neous resource congestion, the MURANES rules we propose,
and in particular the m-drf, g-prop and g-mood rules, clearly
outperform the application of single-resource allocation rules.

VI. REFINEMENT OF THE MODEL

In this section we provide possible generalizations of the
MURANES framework to deal with practical aspects rising
when applying it to specific environments. First, we show how
to go beyond the hypothesis of linear dependency between
resources; if for most of the resource pairs we can realistically
model the relationship between resources (as elaborated in
Section II-B), for other resources (such as those depending on
particular radio schedulers) such an assumption may be too
strong. Second, we describe how Service Level Agreements
(SLA) constraints can be added to the problem to deal with
priorities among slices and among users.

A. Generic resource dependency
In practice, the analytical relationship between the resource

can be known a priori, for example as a results of preliminary

(a) Classical satisfaction rate (single) (b) PS satisfaction rate (single)

(c) Classical satisfaction rate (multi) (d) PS satisfaction rate (multi)

Fig. 11: Minimum satisfaction rates CDF (3 congested re-
sources).

(a) Classical satisfaction rate (single) (b) PS satisfaction rate (single)

(c) Classical satisfaction rate (multi) (d) PS satisfaction rate (multi)

Fig. 12: Minimum satisfaction rates CDF (3 resources con-
gested - heterogeneous congestion levels)

analysis of the mutual interference or dependency among
pairs of resources. If the relationship between the resources
is expressed by a strictly increasing monotonic function and
the objective is to provide fair allocations, the allocation
problem can still be solusing an OWA approach, but the
resource allocation problem would have to be refined for
such a case. More precisely, theelationship can no longer
be included in the multi-resource allocation settings, but has
to be added as a constraint. In particular x is no more a
vector but a matrix n × m, whose components xij , with
0 ≤ xij ≤ 1 ∀i ∈ N , is the percentage of resources j allocated
to tenant i. The allocation matrix A corresponding to x is

given by D =

[
a11 ... a1m

... ... ...
an1 ... anm

]
=

[
d11 · x11 ... d1m · x1m

... ... ...
dn1 · xn1 ... dnm · xnm

]
.

The constraints to add to classical problem (5) are of type



xik = fk(xis), ∀i ∈ N , ∀k 6= s.
The following example illustrates the relaxation of the linear

dependency hypothesis.

Example 3. Let us consider two resources, A (j = 1) and
B (j = 2), such that the dependence between A and B is
quadratic for each user i ∈ N . Let the matrix demand D =[
6 4
9 3

]
and the resource vector R =

[
10 5

]
. The problem to

solve is: maximize OWA(v)

subject to 6x11 + 9x21 ≤ 10,

4x12 + 3x22 ≤ 5,

xi1 = x2i2, i = 1, 2

0 ≤ xij ≤ 1,∀i ∈ N

(11)

where v is one of the OWA input described in section III.

It is worth noting that the addition of the non-linear con-
straints are expected to increase the computational complexity
of the optimization problem, which in fact can no longer be
solved by using conventional linear-programming algorithms
such as the simplex and the interior point algorithm, because
the solution space can no longer be explored using real cuts.

More generally we can suppose there is no relationship
between resources. In this case one way can be to considerate
each resource separately but to guarantee a global fairness we
need to introduce a multidimensional inequality measure. Our
indication in this other possible direction is to resort to the
Multidimensional Generalized Gini Index [43] that is a sum
over the resources of inequality indices defined as instances
of OWA for every resources.

B. Guaranteeing a minimum resource amount
The forthcoming services to be delivered by the 5G are

categorized in three macro classes, depending on the latency,
frequency, bandwidth and reliability requirements: enhanced
Mobile BroadBand (eMBB), Ultra Reliable Low Latency
Communications (URLLC) and massive Machine Type Com-
munications (mMTC). Therefore the resource allocation has
to take into account related Service Level Agreements (SLA),
i.e., contracts between the tenants and the service provider.
An SLA can specify (i) the minimum capacity guaranteed and
a nominal one for a given resource, (ii) the amount of time
the service is guaranteed, (iii) penalties in case the service
requirements are not met, (iv) the service assistance, etc. [44].
In addition, an SLA can also indicate guarantees on metrics
that are not the result of a resource allocation, such as latency
or jitter.

The common SLAs appearing in network slicing specifica-
tions include a minimum resource amount or capacity and
to meet this requirement we need to enrich the classical
centralized multi-resource model. In order to guarantee a
minimum resource amount to clients for a given resource, we
can associate to each tenant i, at each instant of time, two
types of demand vector:
• dmi , that is the minimum demand, for each resource, i.e.,

a fixed value offered by the service provider to tenants;
• di, that is the demand of the tenant at a given time (i.e.,

the scheduling time slot).

Consequently, at each time slot, our slicing multi-resource
allocation problem is set as a 3-tuple (R,D,Dm) where R is
the vector of the available resources, D is the demand matrix
and Dm is the minimum demand matrix.

To satisfy the minimal requirements established by an SLA,
at each time slot, we modify the capacity constraints in the
MURANES setting, in such a way that the minimum demand
is allocated to each tenant. It follows that the problem to solve
becomes:

maximize OWA(v)

subject to x ∈ F ,
xmi ≤ xi ≤ 1,∀i ∈ N

(12)

where v is one of the OWA input described in section III and
xmi = maxj(x

m
ij ) = maxj

(dm
ij

dij

)
.

If the problem has no solution, i.e., there are no enough
resources to satisfy the minimum request of the tenants, a
policy to delay users in the scheduling queue has to be
designed. It can depend for example on the type of service,
eliminating firstly tenants with lower priority then the others,
and on the availability rate, by looking at the allocation history
of each tenants to guarantee a time fairness in the decision.
We provide further details on SLA modeling in [45].

VII. SUMMARY

In this paper we explored in depth the problem of resource
allocation in network slicing where multiple resources have
to be allocated to verticals and shared concurrently. Our
contribution is the formalization of the problem, under the
important assumptions that not the entire amount of requested
resources can be assigned to tenants, and that guaranteeing a
relationship between allocated slice resources is important for
an efficient operation of related services.

We propose a multi-resource allocation framework, called
MURANES, based on the Ordered Weighed Average (OWA)
operator to generalize the most known single-resource and
multi-resource allocation rules and define new ones. We pro-
vide a complete analysis of the proposed framework and we
show how it lets to the decision-making the freedom to select
the most appropriate allocation, based on the type of fairness
goal it is meant to follow. Through extensive simulations we
characterize the behavior of the allocation rules in terms of
fairness and in terms of wasted resource. As opposed to single-
resource allocation rules, multi-resource allocation rules (i)
have the key advantage of not allocating unneeded surplus
of resources, (ii) can allow for idle capacity to support traffic
peaks, and (iii) are superior in terms of satisfaction rate in
case of heterogeneous congestion (i.e., not all resources are
equally congested) – which happens for the generalized DRF
and moodified DRF. Among multi-resource allocation rules,
we could highlight that the fairest ones are the proposed OWA
generalization of the weighted proportional allocation and of
the mood value.

We conclude the paper with possible extensions of the
MURANES framework to deal with the case in which the
relationship between resources is not linear, and with the
case considering Service Level Agreement (SLA) constraints.
Further work could also investigate how profit maximization



can coexist with the classical requirement of fair allocations,
particular important with shared infrastructures such as those
envisioned with the 5G.

ACKNOWLEDGEMENTS

This work was partially funded by the MAESTRO-5G
(Management of Slices in the Radio Access of 5G Networks)
funded by ANR (Agence Nationale de la Recherche), contract
nb. ANR-18-CE25-0012 (https://maestro5g.roc.cnam.fr). The
authors would like to thank the anonymous reviewers for their
extremely useful feedback.

REFERENCES

[1] 5G Americas, “Network Slicing for 5G and Beyond.” White Paper, 2016.
[2] NGMN, “5G white paper.” Next generation mobile networks, 2014.
[3] A. Ghodsi, et al., “Dominant resource fairness: fair allocation of multiple

resource types.” Proc. of USENIX NSDI 2011.
[4] P. Caballero, et al.,“Multi-tenant radio access network slicing: Statistical

multiplexing of spatial loads.” IEEE/ACM Transactions on Networking
(TON), 25.5: 3044-3058, 2017.

[5] M. Leconte, et al, “A resource allocation framework for network slicing.”
IEEE INFOCOM 2018, 2018.

[6] W. Guan, et al., “A service-oriented deployment policy of end-to-end
network slicing based on complex network theory.” IEEE Access 6,
2018: 19691-19701.

[7] G. Wang, et al., “Resource Allocation for Network Slices in 5G with
Network Resource.” IEEE GLOBECOM 2017, 2017

[8] M. Jiang, M. Condoluci, T. Mahmoodi, “Network slicing in 5G: An
auction-based model.” IEEE ICC 2017, 2017.

[9] P. Caballero, et al., “Network slicing games: Enabling customization in
multi-tenant networks.” IEEE/ACM Transactions on Networking, 2019.

[10] Y. Xiao, et al., “Distributed Resource Allocation for Network Slicing
Over Licensed and Unlicensed Bands.” IEEE Journal on Selected Areas
in Communications 36.10 , 2018: 2260-2274.

[11] H. Halabian, “Distributed Resource Allocation Optimization in 5G Vir-
tualized Networks.” IEEE Journal on Selected Areas in Communications
37.3, 2019: 627-642.

[12] S. Lee, et al., “ Resource Management in Service Chaining.” IETF
Secretariat, Intert-Draft, 2016.

[13] Y.Etsion, D. Tsafrir, and D. G. Feitelson, “Process prioritization using
output production: scheduling for multimedia.” ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM)
2.4, 2006: 318-342.

[14] Intel, “Impact of the Intel Data Plane Development Kit (Intel DPDK) on
packet throughput in virtualized network element.” White Paper, 2013.

[15] Amazon EC2 instances comparison: https://www.ec2instances.info.
[16] Alliance NGMN, “Recommendations for NGMN KPIs and Require-

ments for 5G.” Technical Report, 2016.
[17] W. Thomson. “Axiomatic and game-theoretic analysis of bankruptcy and

taxation problems: an update.” Math. Soc. Sciences 74:41-59, 2015.
[18] FP. Kelly, AK. Maulloo, DKH Tan. “Rate control for communication

networks: shadow prices, proportional fairness and stability.” J. of the
Operational Research society 49.3, 1998.

[19] DP. Bertsekas, RG. Gallager, P. Humblet. Data networks. Vol. 2. New
Jersey: Prentice-Hall International, 1992.

[20] O. Wlodzimierz, et al., “Fair optimization and networks: A survey.” J.
of Applied Mathematics 2014, 2014.

[21] J. Mo, J. Walrand. “Fair end-to-end window-based congestion control.”
IEEE/ACM Trans. on Networking (ToN), 2000.

[22] R. Jain, DM. Chiu, WR. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer system. Vol.
38. Hudson, MA: East. Res. Lab., Digital Equipment Corporation, 1984.

[23] F. Fossati, S. Moretti, S. Secci. “A Mood Value for Fair Resource
Allocations.” IFIP Networking 2017, 2017.

[24] F. Fossati, S. Hoteit, S. Moretti, S. Secci. “Fair Resource Allocation in
Systems with Complete Information Sharing.” IEEE/ACM Transactions
on Networking, 2018.

[25] S. Hoteit et al., “On fair network cache allocation to content providers.”
Computer Networks 103: 129-142, 2016.

[26] LS. Shapley. “A value for n-person games”, H Kuhn and A Tucker, eds,
Contributions to the Theory of Games, Vol. 2 of Annals of Mathematics
Studies, Princeton U Press., 1953.

[27] D. Schmeidler, “The nucleolus of a characteristic function game.” SIAM
J. on applied mathematics, 17(6), 1163-1170 1969.

[28] T. Bonald, J. Roberts, “Multi-resource fairness: Objectives, algorithms
and performance.” ACM SIGMETRICS Performance Evaluation Review.
Vol. 43. No. 1. ACM, 2015.

[29] P. Poullie, T. Bocek, B. Stiller, “A survey of the state-of-the-art in
fair multi-resource allocations for data centers.” IEEE Transactions on
Network and Service Management, 15.1: 169-183, 2018.

[30] H. Varian, “Equity, envy, and efficiency.” J. of Eco. Th., 9(1):6391, 1974.
[31] R.R. Yager, “On ordered weighted averaging aggregation operators in

multi-criteria decision making.” IEEE Transactions on Systems, Man
and Cybernetics 18, 1988.

[32] A.F. Shorrocks, “ Ranking income distributions.” Economica 50.197,
1983: 3-17.

[33] J.A. Weymark, “ Generalized Gini inequality indices.” Mathematical
Social Sciences 1.4, 1981: 409-430.

[34] J. Rawls, “ A theory of justice.” Harvard university press, 2009.
[35] W. Ogryczak, T. liwiski, “On solving linear programs with the ordered

weighted averaging objective.” European J. of Op. Research 148.1, 2003.
[36] J. Lesca, and P. Perny, “LP Solvable Models for Multiagent Fair

Allocation Problems.” ECAI 2010.
[37] J.F. Nash Jr, “The bargaining problem.” Econometrica, 18, 155-162,

1950.
[38] E. Kalai, and M. Smorodinsky, “Other solutions to Nashs bargaining

problem.” Econometrica, 43(3), 513-518, 1975.
[39] D. Bertsimas, V. F. Farias and N. Trichakis, “The price of fairness.”

Operations research, 59(1), 17-31, 2011.
[40] C. Gini, “Measurement of inequality of incomes.” The Economic Journal

31.121: 124-126, 1921.
[41] A.F. Shorrocks, “Ranking income distributions.” Economica, 50(197),

3-17, 1983.
[42] H.Dalton, “The measurement of the inequality of incomes.” The Eco-

nomic Journal 30.119: 348-361, 1920.
[43] T. Gajdos and J. A. Weymark, “Multidimensional generalized Gini

indices.” Economic Theory 26.3: 471-496 , 2005.
[44] D. Verma, “Service level agreements on IP networks.” Proc. IEEE

(Special Issue on Evolution of Internet Technologies), vol. 92, 1382-
1388, 2004.

[45] F. Fossati, S. Moretti, S. Secci, “Multi-Resource Allocation for Network
Slicing under Service Level Agreements”, Proc. of 2019 Int. Conference
on the Network of the Future (NoF 2019), Oct. 1-3, Rome, Italy.

Francesca Fossati is currently a postdoc researcher at Cnam, Paris, France.
She received her Ph.D. from Sorbonne University, France, in 2019, and a
M.Sc. in mathematical engineering from Politecnico di Milano, Milan, Italy
in 2015. Her current research interests are about optimization and game theory,
with applications to network resource allocation problems.

Stefano Moretti is researcher at the CNRS since 2009. He is a member
of LAMSADE, a laboratory of Paris Dauphine University. He graduated in
Environmental Science in 1999 from the University of Genoa, in Italy, and he
was awarded from the same university with a Ph.D. in Applied Mathematics
in 2006. In 2008, he was also awarded with a Ph.D. in Game Theory at
Tilburg University, The Netherlands. His main research interests deal with
cooperative game theory, and with the application of game theoretic models
to the analysis of the interaction on networks.

Patrice Perny received the Ph.D. degree in Computer Science and Operations
Research in 1992 from University Paris Dauphine. He became associate
professor in 1992 at University Pierre et Marie Curie (UPMC), Paris, France,
and full professor in 2002. His activities concern preference modeling,
multiobjective optimization, decision and optimisation under uncertainty and
risk, computational social choice and algorithmic game theory.

Stefano Secci is full professor of networking at Cnam (Conservatoire
national des arts et métiers), Paris, France. He received the M.Sc. Degree
in telecommunications engineering from Politecnico di Milano, Milan, Italy,
in 2005, and a dual Ph.D. Degree in computer science and networks from
Politecnico di Milano and Telecom ParisTech, France, in 2009. He was
associate professor at LIP6, UPMC from 2010 to 2018. His current interests
cover novel routing and switching architectures and network virtualization.
Webpage: https://cedric.cnam.fr/∼seccis.

https://maestro5g.roc.cnam.fr
https://www.ec2instances.info
https://cedric.cnam.fr/~seccis

	Introduction
	Background
	Resource allocation in network slicing
	Resource dependency and depletion
	Single-resource allocation rules
	Multi-resource allocation
	Example comparison between allocation rules

	MURANESMUlti-Resource Allocation for NEtwork Slicing
	Ordered Weighted Averaging (OWA) operators
	The general framework

	MURANES properties
	Generalization of well known-solutions
	Game theoretic interpretation
	Egalitarian and utilitarian fairness trade-off

	Numerical evaluation
	Results in terms of wasted and idle resource
	Results in terms of fairness

	Refinement of the model 
	Generic resource dependency
	Guaranteeing a minimum resource amount

	Summary
	References
	Biographies
	Francesca Fossati
	Stefano Moretti
	Patrice Perny
	Stefano Secci


