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We consider the homogeneous wave equation in the rectangle (0, T )× (0, b), that is, in the one-dimensional space situation. The conductivity depends on the two variables t, x of time and space, and represents an unknown moving inclusion inside the background which has constant conductivity. The waves satisfy the homogeneous Dirichlet condition at x = b and sufficiently smooth but unknown initial conditions at t = 0. We prove that the inclusion is determined by the Dirichlet-to-Neumann mapping defined on the interface x = 0. In fact, we show how the inclusion can be reconstructed from the detection of the singularities of the flux of special waves knowing the singularities of their trace on the interface.

where the conductivity γ = γ(t, x) has the following form : there exist a positive constant k = 1 and a smooth function t → a(t) ∈]0, b[ such that

γ(t, x) = 1 if x < a(t), k 2 if x ∈]a(t), b[= D(t). (1.2)
Moreover we assume:

(H1D) ȧ(t) ∞ < min (1, k),

where ȧ = da dt . The inverse problem we are concern with is to obtain some informations on a(•) and k, by choosing carefully the data f and then measuring ∂ x u(t, x) at x = 0.

Since the velocity of the waves in ]0, a(t)[= Ω \ D(t) is one, it is quite natural to consider the following functions. We set ξ(t) = t -a(t), (1.3) µ(t) = t + a(t).

(1.4) For simplicity, and if it is unambiguous, we write ξ(t) = ξ, µ(t) = µ. If needed, we extend a(t) in R \ [0, T ] by a smooth extention, and so we extend D := {{t} × (a(t), b)), t ∈ [0, T ]}, D C = {{t} × (0, a(t)), t ∈ [0, T ]}, ∂D = {(t, a(t)), t ∈ [0, T ]} too (with the same notation) by replacing [0, T ] by R in their definition, in such a way that

δ := 1 2 d(∂D, R × Ω) > 0, | ȧ| ∞ < min(1, k).
We put

t s := inf{t ≥ s; a(t) = t -s}, t * (s) = 2t s -s, s ∈ [0, T ].
Remark 1.1. Since | ȧ| < 1 and a > 0, it becomes obvious that {t ≥ s; a(t) = t -s} = {t s }, and that s → t s and t * (•) are smooth and increasing.

In fact, t 0 is the necessary time delay to have the first information on D(t), and t s is the same, but with initial time at t = s. We denote µ 0 := µ(t 0 ) = t 0 + a(t 0 ) = 2t 0 . Remark 1.2. We obviously have µ(t s ) = t * (s) and ξ(t s ) = s. Hence µ = t * • ξ and ξ -1 (•) = t (•) .

We also define the coefficients of reflexion and transmition, respectively,

α(t) := 1 -k + (k -1 k ) ȧ(t) 1 + k + (k -1 k ) ȧ(t) = 1 -k 1 + k 1 -(1 + 1 k ) ȧ(t) 1 + (1 -1 k ) ȧ(t)
, (1.5)

β(t) := 2 1 + k + (k -1 k ) ȧ(t)
. (1.6) Thanks to (H1D), the functions α and β are well-defined in [0, T ]. We are going to deal with data and measurements as functions in the usual Sobolev space H s (I), where s ∈ R and I ⊂ R is an non empty open interval. If s ∈ (0, 1) it can be defined by H s (I) = q ∈ L 2 (I); I×I |q(x) -q(y)| [START_REF] Grisvard | Singularities in boundary value problems[END_REF] |x -y| 1+2s dx dy < ∞ , 0 < s < 1. See [2] for details. Our main result is the following one.

Theorem 1.3. Assume that (u 0 , u 1 ) ∈ H r0 (Ω) × H r0-1 (Ω) for some r 0 ∈ (0, [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF] 2 ).

Fix f ∈ L 2 (-∞, T ) such that (1) f | (-∞,0) ∈ H r0 (-∞, 0); (2) f | (0,t) ∈ H r0(1-t /T ) ((0, t)) for 0 < t < t ≤ T ; (3) f | (0,t ) ∈ H r0(1-t/T ) ((0, t )) for 0 ≤ t < t ≤ T .
Then, the following statements hold. 1) There exists a unique solution u of (1.1) in L 2 (Ω T ).

2) The quantity ∂ x u| x=0 is defined in H -1 (0, T ) by continuous extension.

3) The distribution g = ∂ x u| x=0 + f ∈ H -1 (0, T ) has the following form

g = g A + g E ,
where g A , g E satisfy the following properties:

(i) g A (µ) = 2α(t)f (ξ), ∀µ ∈ [0, T ]. (ii) g A | (0,µ) ∈ H r0(1-ξ/T )-1 (0, µ) for all µ 0 < µ ≤ T and all ξ > ξ. (iii) If ȧ(t) = k 1+k then g A | (0,µ) ∈ H r0(1-ξ/T )-1 (0, µ), ∀ ξ < ξ.
(iv) There exists ε > 0 such that

(1.7) g E | (0,µ) ∈ H ε+r0(1-ξ/T )-1 (0, µ), ∀µ ∈ [0, T ].
The main consequence of this is Corollary 1.4. Assume that ȧ(t) = k 1+k for all t, and (u 0 , u 1 ) ∈ H r0 (Ω)×H r0-1 (Ω) for some r 0 > 0. Let T > 0. We claim that:

1) We can know if T ≤ µ 0 or if T > µ 0 . 2) Assume that T > t * (0) = µ 0 . Set s * := t * -1 (T ), t max := t s * .
Then we can recover the functions s → t s , 0 ≤ s ≤ s * , t → a(t), t 0 ≤ t ≤ t max . The constant k is the root of a second degree equation with known coefficients. If ȧ ≤ 0 then this equation has no more than one positive root, and so, we are able to reconstruct k. Remark 1.5. Obviously, from Corollary 1.4 and Remark 1.1, and since t 0 = a(t 0 ) < b, we can ensure the condition T > µ 0 by choosing T ≥ 2b.

In Theorem 1.3, the existence of such a function f is ensured, thanks to the following Lemma.

Lemma 1.6. For all R > 0, there exists a function

G(t), 0 ≤ t ≤ 1, such that (1) G| (0,t) ∈ H (1-t )/R (0, t) for all 0 < t < t ≤ 1. (2) G| (0,t ) ∈ H (1-t)/R (0, t ) for all 0 < t < t ≤ 1. Remark 1.7. In Theorem 1.3, if (u 0 , u 1 ) ∈ H r0 0 (Ω)×H r0-1 (Ω) for some r 0 ∈ ( 1 2 , 1], and if u 0 (0) is known, then we can fix f ∈ L 2 (0, T ) such that (1) f | [0,t] ∈ H r0(1-t/T ) ([0, t]) for 0 < t ≤ T ; (2) f | [0,t ] ∈ H r0(1-t/T ) ([0, t ]) for 0 < t < t ≤ T ; (3) f (0) = u 0 (0). Then, Theorem 1.3 with r 0 ∈ ( 1 2 , 1] is valid. If (u 0 , u 1 ) ∈ H r0 (Ω) × H r0-1 (Ω) for some r 0 ∈ ( 1 2 , 1]
, but if we don't know the value of u 0 (0), then the information is not sufficient (with our approach) to construct a function f and to make Theorem 1.3 work with r 0 ∈ ( 1 2 , 1]. Hence, we are obliged to come back to the situation (u 0 , u 1 ) ∈ H r1 (Ω) × H r1-1 (Ω), where r 1 < 1 2 . The paper is organized as follows. In Section 2, we analyse the direct problem (1.1). In Section 3 we construct an ansatz u A for (1.1) where f is the function of Theorem 1.3. In Section 4, we first prove Corollary 1.4, then Theorem 1.3. In particular, we analyse the error u E = u -u A .

Study of the direct problem

2.1. Notations. We denote by (|) the usual scalar product in L 2 (Ω; dx), by (|) H the scalar product in a Hilbert space H, by <; > H * ×H the duality product between a Hilbert space H and its dual space H * , by <; > the duality product in D (Ω T ) × D(Ω T ) or in D (0, T ) × D(0, T ). We put

H 1 = L 2 (0, T ; H 1 0 (Ω)), H -1 = L 2 (0, T ; H -1 (Ω)) = H 1 * , W = {v ∈ H -1 ; ∂ t v ∈ H -1 } with obvious norms. We denote E r = H r (Ω) × H r-1 (Ω) × H r (0, T ),
and

E r 0 = {(u 0 , u 1 , f ) ∈ E r ; u 0 (0) = f (0), u 0 (b) = 0}, 1 2 < r ≤ 1, E r , 0 ≤ r < 1 2 . (For r = 1
2 we could set E r 0 as in the case r > 1 2 , but the relations u 0 (0) = f (0) and u 0 (b) = 0 should be modified). We denote Ω t1,t2 = (t 1 , t 2 ) × Ω.

For data v 0 , v 1 , F , let v satisfying in some sense:

       L γ v = F in Ω T , v(t, x) = 0 , x ∈ ∂Ω, t ∈ (0, T ), v| t=0 = v 0 on Ω, ∂ t v| t=0 = v 1 on Ω. (2.1)
We formally define the following operators:

u = P (u 0 , u 1 , f ), ∂ x u| x=0 + f = Z(u 0 , u 1 , f ), (u| t=s , ∂ t u| t=s ) = X(s)(u 0 , u 1 , f ), 0 ≤ s ≤ T, v = P (v 0 , v 1 , F ), ∂ x v| x=0 = Z(v 0 , v 1 , F ), (v| t=s , ∂ t v| t=s ) = X(s)(v 0 , v 1 , F ), 0 ≤ s ≤ T,
where u, v, are respectively solutions of (1.1), (2.1).

Main results.

In this section and the one above, we state that Problems (1.1), (2.1) have a unique solution for adequate spaces.

Lemma 2.1. 1. The operator P is a continuous linear mapping from

H 1 0 (Ω) × L 2 (Ω) × (L 2 (Ω T ) + W ) into C([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)). 2. The operator X(s) is continuous from H 1 0 (Ω) × L 2 (Ω) × (L 2 (Ω T ) + W ) into H 1 0 (Ω) × L 2 (Ω), for all s ∈ [0, T ]. Lemma 2.2. 1. The operator P continuously extends as a continuous operator from L 2 (Ω) × H -1 (Ω) × H -1 into L 2 (Ω T ).
2. The operator X(s) continuously extends as a continuous operator from

L 2 (Ω) × H -1 (Ω) × H -1 into L 2 (Ω) × H -1 (Ω), for all s ∈ [0, T ]. Lemma 2.3. 1. The operator P is a continuous linear mapping from E 1 0 into C([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω))
, and continuously extends as a continuous operator from

E 0 into L 2 (Ω T ). 2. The operator X(s) is continuous from E 1 0 into H 1 (Ω) × L 2 (Ω)
, and continuously extends as a continuous operator from

E 0 into L 2 (Ω) × H -1 (Ω), for all s ∈ [0, T ]. Lemma 2.4. The operator Z (respect., Z) is continuous from H 1 0 (Ω) × L 2 (Ω) × L 2 (Ω T ) (respect., E 1 0 ) into L 2 (0, T ) and continuously extends as a continuous op- erator from L 2 (Ω) × H -1 (Ω) × H -1 (respect., E 0 ) into H -1 (0, T ). Lemma 2.5. Let t 1 ∈ [0, T ]. Assume that F ∈ H -1 has a compact support in O(t 1 ). Let v = P (v 0 , v 1 , F ). Then there exists a neighborhood K of K(t 1 ) in D C such that v| K does not depend on F , that, is, if v 0 = v 1 = 0, then v| K vanishes, and, in particular, supp ∂ x v| x=0 ⊂ (µ(t 1 ), T ].

Proofs. Let us consider the familly of bilinear forms

b(t), t ∈ R, defined by b(t; u, v) = Ω γ(t, x)∇ x u(x) ∇ x v(x) dx, ∀u, v ∈ H 1 (Ω).
Lemma 2.1 is a corollary of the following general theorem (proof in Appendix, see Part 6), which is an extension of [1, XV section 4] in which γ does not depend on the variable t.

Theorem 2.6. Let T > 0 and Ω ⊂ R n , n ≥ 1, such that H 1 0 (Ω) is compact in L 2 (Ω). Let γ(t, x) > 0 be such that γ, γ -1 ∈ C 0 ([0, T ]; L ∞ (Ω)), ∂ t γ ∈ L ∞ (Ω T ). Let F ∈ W ∪ L 2 (Ω T ) and v 0 ∈ H 1 0 (Ω), v 1 ∈ L 2 (Ω).
Then, there exists a unique weak

solution v to (2.1), that is, v ∈ C([0, T ]; H 1 0 (Ω)), ∂ t v ∈ C([0, T ]; L 2 (Ω)), v| t=0 = v 0 , ∂ t v| t=0 = v 1 , and d dt (∂ t v|φ) + b(t; v(t, •), φ) = < F (t, •); φ >, in the sense of D (]0, T [), for all φ ∈ H 1 0 (Ω). Moreover there exists a constant C such that ∂ t v(t, •) L 2 (Ω) + ∂ x v(t, •) L 2 (Ω) ≤ C F L 2 (Ωt)+W + v 0 H 1 0 (Ω) + v 1 L 2 (Ω) , ∀t ∈ [0, T ]. (2.2)
Let us show that Lemma 2.2 is a straightforward consequence of Lemma 2.1 with the operator P replaced by its adjoint

P * . Let (v 0 , v 1 , F ) ∈ L 2 (Ω) × H -1 (Ω) × H -1 .
By the principle of duality, we can write (2.1) as

(v|g) L 2 (Ω T ) = < v 1 , w(0) > H -1 ×H 1 0 -(v 0 |∂ t w(0))+ < F, w > H -1 ×H 1 , for all g ∈ L 2 (Ω T )
, where we put w = P * (0, 0, g). Consequently (thanks to Lax-Milgram theorem), Equation (2.1) admits a unique solution v ∈ L 2 (Ω T ), and this shows Point 1 of Lemma 2.2. Once again, we have

< ∂ t v| t=T , f 0 > H -1 ×H 1 0 -(v| t=T |f 1 ) = < v 1 , w(0) > H -1 ×H 1 0 -(v 0 |∂ t w(0)) + < F, w > H -1 ×H 1 , for all (f 0 , f 1 ) ∈ H 1 0 (Ω) × L 2 (Ω), where we put w = P * (f 0 , f 1 , 0). This shows that (v| t=T , ∂ t v| t=T ) ∈ L 2 (Ω) × H -1 (Ω). This proves Point 2 of Lemma 2.2 in the non-restrictive case s = T . Let us prove Lemma 2.3. Let Φ(x) ∈ C ∞ (R) with Φ(0) = 1 and with support in [0, a m ], where a m ≤ a(t) for all t. Let us consider f ∈ H 1 loc (R) first. Set (2.3) u in (t, x) = f (t -x)Φ(x).
Problem (1.1) with unknown u is (at least formally) equivalent to the following one:

find v = u -u in satisfying (2.1) with v 0 (x) = u 0 (x) -f (-x)Φ(x), v 1 (x) = u 1 (x) -f (-x)Φ(x), (2.4) F (t, x) = -L γ u in (t, x) = -L 1 u in (t, x) = -2f (t -x)Φ(x) + f (t -x)Φ (x). (2.5) Relation (2.5) shows that F ∈ L 2 (Ω T ). In fact, we have F ∈ W also, since ∂ t F (t, x) = -2f (t -x)Φ(x) + f (t -x)Φ (x),
and, for all ϕ ∈ D(Ω T ),

< f (t -x)Φ(x), ϕ(t, x) > = < f (t -x, )Φ(x)ϕ(t, x) > = < f (t -x), ∂ x (Φ(x)ϕ(t, x)) >≤ C ϕ H 1 , which shows that ∂ t F (t, x) ∈ H -1 . Similarly, we have < f (t -x)Φ(x), ϕ(t, x) >=< f (t -x), ∂ x (Φ(x)ϕ(t, x)) ≤ C ϕ L 2 (Ω T ) , which shows that F ∈ H -1 if f ∈ L 2 loc (R) only. We set R : H 1 loc (R) → L 2 (Ω T ) ∩ W f → F defined by (2.5) , S : E 1 0 → H 1 0 (Ω) × L 2 (Ω) (u 0 , u 1 , f ) → (v 0 , v 1 ) defined by (2.4).
The above analysis shows that R continuously extends as a continuous operator from L 2 loc (R) into H -1 . Similarly, S continuously extends as a continuous operator from E 0 into L 2 (Ω) × H -1 (Ω). Consequently, and since a solution to (1.1) can be written

u = v + u in with v = P (S(u 0 , u 1 , f ), R(f )), Point 1 of Lemma 2.3 is proved. Similarly, we prove Point 2 of Lemma 2.3, since we have X(s)(u 0 , u 1 , f ) = X(s)(S(u 0 , u 1 , f ), Rf ) + (u in | t=s , ∂ t u in | t=s ). Let us prove Lemma 2.4. Let (v 0 , v 1 , F ) ∈ H 1 0 (Ω) × L 2 (Ω) × L 2 (Ω T ).
As above, for all ϕ ∈ D(R) such that ϕ(T ) = 0, there exists a unique solution

q = q ϕ ∈ L 2 (Ω T ) to        L γ q = 0 in Ω T , (q(t, 0), q(t, b)) = (ϕ, 0) on (0, T ), q| t=T = 0 on Ω, ∂ t q| t=T = 0 on Ω, (2.6)
since it is a particular case of Lemma 2.3 with reversal time. Moreover, we have q ϕ ∈ C([0, T ];

H 1 0 (Ω)), ∂ t q ϕ ∈ C([0, T ]; L 2 (Ω)) with q ϕ | t=0 L 2 (Ω) + ∂ t q ϕ | t=0 H -1 (Ω) + q ϕ L 2 (Ω T ) ≤ C ϕ L 2 (0,T ) , (2.7) q ϕ | t=0 H 1 (Ω) + ∂ t q ϕ | t=0 L 2 (Ω) + q ϕ H 1 + ∂ t q ϕ L 2 (Ω T ) ≤ C ϕ H 1 (0,T ) . (2.8)
By the duality principle, and thanks to (2.7), we have in the sense of D ([0, T )),

< ∂ x v| x=0 , ϕ > = -< v 0 , ∂ t q ϕ | t=0 > + < v 1 , q ϕ | t=0 > + < F, q ϕ > (2.9) ≤ C v 0 | t=0 H 1 (Ω) + v 1 L 2 (Ω) + F L 2 (Ω T ) ϕ L 2 (0,T ) , (2.10) which shows that ∂ x v| x=0 ∈ L 2 (0, T ) and that Z is a continuous mapping from H 1 0 (Ω) × L 2 (Ω) × L 2 (Ω T ) into L 2 (0, T ). Now, let (v 0 , v 1 , F ) ∈ L 2 (Ω) × H -1 (Ω) × H -1 .
Then, Relation (2.9) and Estimate (2.8) imply

< ∂ x v| x=0 , ϕ > ≤ C v 0 | t=0 L 2 (Ω) + v 1 H -1 (Ω) + F H -1 ϕ H 1 (0,T ) , (2.11) which shows that ∂ x v| x=0 ∈ (H 1 T ) ⊂ H -1 (0, T ), the dual space of H 1 T = {f ∈ H 1 (0, T ); f (T ) = 0}
, and that Z continuously extends as a continuous operator from L 2 (Ω) × H -1 (Ω) × H -1 into H -1 (0, T ). This ends the proof of the property of Z in Lemma 2.4. Since ∂ x u in | x=0 = -f , we have Z(u 0 , u 1 , f ) = Z(S(u 0 , u 1 , f ), Rf ), and Point 2 of Lemma 2.4 is proved.

By the well-known Sobolev interpolation theory, we have also proved: Proposition 2.7. The operator P (respect., P ) continuously maps

H s (Ω)×H s-1 (Ω)× L 2 (0, T ; H s-1 (Ω)) (respect., E s 0 ) into L 2 (0, T ; H s (Ω)), s ∈ [0, 1] \ { 1 2 }.
The operator Z (respect., Z) continuously maps

H s (Ω)×H s-1 (Ω)×L 2 (0, T ; H s-1 (Ω)) (respect., E s 0 ) into H s-1 (0, T ), s ∈ [0, 1] \ { 1 2 }.
Proof of Lemma 2.5. Denote K = K(t 1 ). Notice that K ∩ D C = {(t 1 , a(t 1 ))}. We assume that v 0 = v 1 = 0. Since suppF ∩ Ω t1 = ∅, then, thanks to Lemma 2.2 with T replaced by t 1 , v vanishes in Ω t1 . Let K = int K be the interior of K. The function v| K ∈ L 2 (K ) satisfies the following equations:

∂ 2 t v -∆ x v = 0 in K , v(t, 0) = 0, t 1 < t < µ(t 1 ), v| t=t1 = ∂ t v| t=t1 = 0 in (0, a(t 1 )).
It is well-known that this implies v| K = 0, and so, supp ∂ x v| x=0 ⊂ [µ(t 1 ), T ]. But since the support of F does not touch ∂K, we similarly have v| Kε(t1) = 0, supp ∂ x v| x=0 ⊂ [µ(t 1 ) + δ, T ], for some ε > 0 sufficiently small. However, let us give a more straightforward and simple proof to the fact that supp

∂ x v| x=0 ⊂ [µ(t 1 ) + δ, T ]. Fix δ, ε > 0 such that µ(t 1 ) + δ > µ(t 1 + ε) and supp F ∩ K ε (t 1 ) = ∅. Let t 2 ∈ [t 1 , t 1 + ε], ϕ ∈ H 1 0 (0, µ(t 2 )
) and set w(t, x) = ϕ(t + x) for t 2 ≤ t ≤ µ(t 2 ). Observe that w = q ϕ of (2.6), but with (0, T ) replaced by (t 2 , µ(t 2 )). In fact, supp w ⊂ K(t 2 ), and so w vanishes in D ∩ Ω t2,µ(t2) . We then have, similarly to (2.9),

< ∂ x v| x=0,t2<t<µ(t2) , ϕ >= -< v| t2 , ∂ t w| t2 > + < ∂ t v| t2 , w| t2 > + < F, w >= 0 since v| t2 = ∂ t v| t2 = 0 and supp F ∩ supp w = ∅. Since ϕ is arbitrarily chosen, this shows that supp ∂ x v| x=0 ∩ (t 2 , µ(t 2 )) = ∅, for all t 2 ∈ [t 1 , t 1 + ε]. Hence, supp ∂ x v| x=0 ⊂ [µ(t 1 + ε), T ].
.

Ansatz

3.1. Notations. For t ∈ [0, T ] we put

K(t) = {(s, x) ∈ [t, µ(t)] × Ω; s + x ≤ µ(t)}, O(t) = {(s, x) ∈ Ω t,T ; s + x > µ(t)}. (Notice that K(t) ⊂ D C and K(t) ∩ D = {(t, a(t)}). For ε > 0, t ∈ [0, T ], we put K ε (t) = ∪ t≤s≤t+ε K(s).
If q(x) is sufficiently smooth in Ω, then [q] t := q(a(t) + 0) -q(a(t) -0). We write g 1 s g 2 if g 1 or g 2 ∈ H s (0, T ) and g 1 -g 2 ∈ H s+ε (0, T ) for some ε > 0.

We put

C j + = {f ∈ C j (R); f | R -= 0}, j ∈ N, which is dense in L 2 (R + ) ≈ {f ∈ L 2 (R); f | (-∞,0) = 0}. We consider for all t ∈ [0, T ] the formal operator A(t) = -∇ x (γ(t, •)∇ x ) defined from H 1 (Ω) into H -1 (Ω) by duality: < A(t)u, w > H -1 (Ω)×H 1 0 (Ω) = (γ(t)∇ x u|∇ x w), ∀u, w ∈ H 1 (Ω) × H 1 0 (Ω).
Let f be a measurable function, we define the ansatz u A = U A (f ) for (1.1) as follows. Recall that ξ(t) and µ(t) are defined by (1.3), (1.4), and we have ξ 0 = t 0 -a(t 0 ) = 0, (3.1)

µ 0 = t 0 + a(t 0 ) = 2t 0 . (3.2)
In addition, we put, for t ∈ [0, T ],

(3.3) ν = t - a(t) k , ν 0 = t 0 - a(t 0 ) k .
Thanks to Assumption (H1D), t → ν(t) is invertible. Recall also that the coefficient of reflexion/transmition, α and β, are defined by (1.5), (1.6). Note that we have

α(t) dµ dξ -β(t) dν dξ = -1, (3.4) α(t) + kβ(t) = 1. (3.5)
We also define:

f 2 (µ) = α(t) dµ dξ f (ξ), (3.6) f 3 (ν) = β(t) dν dξ f (ξ). (3.7) We put u A (t, x) = f (t -x) + f 2 (t + x) -f 2 (t -x)Φ ε (x), 0 ≤ t ≤ T, 0 < x < a(t), Φ ε (x -b + 2ε)f 3 (t -x k ), 0 ≤ t ≤ T a(t) < x < b, where we fix Φ ε ∈ C ∞ (R) so that Φ ε (r) = 1 if r < 1 2 ε, Φ 1 (r) = 0 if r > ε, 0 < ε ≤ 1 2 d(∂D, ∂Ω T ). It is clear that the linear operator U A : f → u A is bounded from L 2 (R) into L 2 (Ω µ T ). 3.2. Properties of the Ansatz. Lemma 3.1. Let f ∈ C 2 (R). Then we have 1) u A ∈ C 2 ([0, T ]; H 1 (Ω)), u A | D ∈ C 2 (D), u A | D C ∈ C 2 (D C ).
2) There exists a smooth function τ (t) with support in [t 0 , µ 0 ] such that

[γ∂ x u A (t)] t = τ (t)f (ξ(t)). 3) a) u A vanishes near x = b. b) Let g A = ∂ x u A | x=0 + f . Then g A (µ) = 2α(t)f (ξ) for 0 ≤ µ ≤ T ,
where t, ξ, µ are related by (1.3), (1.4), (3.3).

4) Put F

A = L γ u A in the sense that F A (t, •) = d 2 dt 2 u A (t) + A(t)u A (t) ∈ H -1
(Ω) for all t, and F A ∈ C([0, T ]; H -1 (Ω)). Then, F A can be written

F A (t, x) = F 1 (t, x)-τ (t)f (ξ(t))δ a(t) (x)
, where τ is smooth, and

F 1 ∈ C([0, T ]; L 2 (Ω)) is defined for 0 ≤ t ≤ T by F 1 (t, x) = Φ 2 (x)f 2 (t -x) + Φ 3 (x)f 2 (t -x) 0 < x < a(t), Φ 4 (x)f 3 (t -x k ) + Φ 5 (x)f 3 (t -x k ), a(t) < x < b, (3.8) 
where the functions Φ j are smooth and independant of f , with compact support in [ε/2, ε] for j = 2, 3, and in [b -ε, b -ε/2] for j = 4, 5.

Proof. Point 1. is obvious, since we have, thanks to (3.4),

[u A (t, •)] t = f 3 (ν(t)) -f (ξ(t)) -f 2 (µ(t)) = β(t) dν dξ -1 -α(t) dµ dξ f (ξ) = 0.
Let us consider Point 2. For 0 ≤ t ≤ T we have

γ∂ x u A (t, a(t) -0) = -f (ξ) + f 2 (µ) = (-1 + α)f (ξ) + d(α dµ dξ ) dµ f (ξ), γ∂ x u A (t, a(t) + 0) = -kf 3 (ν) = -kβ(t)f (ξ) -k d(β(t) dν dξ ) dν f (ξ).
Thanks to (3.5) we get

[γ∂ x u A (t)] t = -τ (t)f (ξ), with τ (t) = -k d(β(t) dν dξ ) dν - d(α dµ dξ ) dµ .
This ends Point 2.

Let us consider Point 3 b), since 3 a) is obvious. For 0 ≤ µ ≤ T we have

∂ x u A (µ, 0) = -f (µ) + 2f 2 (µ) = -f (µ) + 2α(t)f (ξ).
This ends Point 3. Let us prove Point 4. A short computation yields (3.8). Thanks to Point 2, we obtain

F A = F 1 + τ (t)f (ξ)
in the required sense. This ends the proof of the lemma. We define the bounded operators

U A : C 2 (R) f → u A ∈ C 2 ([0, T ]; H 1 (Ω)), T 0 : C 2 (R) f → T 0 f ∈ C([0, T ]; H -1 (Ω)) such that T 0 f (t) = τ (t)f (ξ)δ a(t) (x), and T 1 : C 2 (R) f → T 1 f = F 1 ∈ C([0, T ]; L 2 (Ω)), T A : C 2 (R) f → T A f = F A ∈ C([0, T ]; H -1 (Ω)). Notice that T 0 f (t) ∈ H -s (Ω) for all s > 1 2 , t ∈ [0, T ].
Obviously we have the following propositions and Lemma.

Proposition 3.2. The operator U A continuously extends as a bounded operator from L 2 (0, T ) into C([0, T ]; H -1 (Ω)).

Proposition 3.3. The operator T 0 continuously extends as a bounded operator from

L 2 (0, T ) into L 2 (0, T ; H -s (Ω)), ∀s > 1 2 . Lemma 3.4. 1) The operator T A is continuous from C 2 (R) into L 2 (0, T ; H -1 (Ω))
and, for all s ∈ [0, [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF] 2 ), it extends as a continuous operator from H s (0, T ) into L 2 (0, T ; H s-1 (Ω)).

2) The operator G

A : f → ∂ x U A (f )| x=0 + f is continuous from C 2 (R) into C 0 ([0, T ]),
and, for all s ∈ [0, [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF] 2 ), it extends as a continuous operator from H s (0, T ) into H s-1 (0, T ).

3) Let f be such as in Theorem 1.3, then g A := G A f satisfies (ii) and (iii) of Theorem 1.3.

Proof of Lemma 3.4. Point 1). Thanks to Lemma 3.3, it is sufficient to prove this with T A replaced by T 1 . Thanks to the interpolation theory, it is sufficient to prove that T 1 is a bounded operator from L 2 (0, T ) into L 2 (0, T ; H -1 (Ω)) and from H 1 0 (0, T ) into L 2 (Ω T ), that is obvious. Hence Point 1) holds. Point 2) is obvious for the same reason. Point 3) is obvious, since α(t) = 0 for all t.

3.3. Modification of F 1 . The regularity of F 1 is not sufficient for us, we replace it by the following one, F ε,μ , which is equivalent to F 1 in the sense of Lemma 2.5. Let μ ∈ [0, T ], put t = µ -1 (μ), ξ = ξ( t), ν = ν( t), and consider a smooth function φ(

•; ε, μ) defined in R 2 such that φ(t, x; ε, μ) = 1 for (t, x) ∈ Ω t ∪ K ε/2 ( t), φ(t, x; ε, μ) = 0 for t ≥ t + ε and (t, x) ∈ K ε ( t). For s ∈ [0, 1 2 ), f ∈ H s (R) and F 1 = T 1 (f ) we put F ε,μ (t, x) = F 1 (t, x)φ(t, x; ε, μ).
We have the two following properties. Lemma 3.5. For ε < δ, the support of

F 1 -F ε,μ is contained in O( t). Proof. Since F 1 -F ε,μ = (1 -φ(•; ε, μ)F 1 , the support of F 1 -F ε,μ is contained in supp (1 -φ(•; ε, μ))∩ supp F 1 . But supp (1 -φ(•; ε, μ)) ⊂ Ω T \ (Ω t ∪ int(K ε/2 ( t))).
Then the proof is done if we show that ( t, a( t)) ∈ supp (F 1 -F ε,μ ). But, thanks to (3.8), the support of F 1 is localized in {x ≤ ε} ∪ {x ≥ b -ε} that does not touch ∂D.

Lemma 3.6. Let f be as in Theorem 1.3. There exists c > 0 and ε 0 > 0, independent of f , such that, for all ε ∈ (0,

ε 0 ), μ ∈ [0, T ], F ε,μ ∈ C([0, T ]; H r0(1-ξ/T )+cε-1 (Ω)).
To prove it, we use the following well-known property.

Proposition 3.7. Let g ∈ H s (R) for some s ∈ [-1, 0]. Let r ∈ R * and G(t, x) = g(t + rx), (t, x) ∈ Ω T . Then G ∈ C([0, T ]; H s (Ω)).
Let us prove Lemma 3.6. Observe that, by definition of φ(•; ε, μ), and thanks to (3.8), the support of F ε,μ | Ωμ is a subset of the set

E(ε, μ) = K ε ( t) ∪ (Ω t+ε ∩ D C ) ∪ (Ω t+ε ∩ D ∩ {b -ε ≤ x ≤ b}). Firstly, let (t, x) ∈ K ε ( t) ∪ (Ω t+ε ∩ D C
). Then we have t -x ≤ t + ε, and so

ξ(µ -1 (t -x)) < ξ(µ -1 ( t + ε)) < ξ(µ -1 (μ -δ + ε)),
since the functions ξ and µ -1 are smooth and non decreasing, and δ < a( t) = μ -t. So, for ε sufficiently small and some c > 0 (values that are independent of t, x), we have

(3.9) ξ(µ -1 (t -x)) < ξ -cε, (t, x) ∈ K ε ( t) ∪ (Ω t+ε ∩ D C ). Secondly, let (t, x) ∈ Ω t+ε ∩ D ∩ {b -ε ≤ x ≤ b}. Then t -x k ≤ ν(t) -δ-ε
k and so, for ε sufficiently small and some c > 0,

ξ(ν -1 (t - x k )) ≤ ξ(ν -1 (ν(t) - δ -ε k )) < ξ -Cε.
We thus have

(3.10) ξ(ν -1 (t - x k )) < ξ -Cε, (t, x) ∈ Ω t+ε ∩ D ∩ {b -ε ≤ x ≤ b}. Since F 1 is expressed in terms of f 2 (t-x), f 2 (t-x) in D C
, and in terms of f 3 (t-x k ), f 3 (t -x k ) in D, and since the support of F ε,μ is contained in E(ε, μ), then, thanks to (3.9), (3.10), we see that F ε,μ can be expressed in terms of f | (-∞,r) and f | (-∞,r) , r = ξ -cε only. Hence, thanks to Proposition 3.7, the conclusion follows.

Proof of the main results

Proof of Corollary 1.4.

Firstly, notice that α(t) = 0 ⇐⇒ ȧ(t) = k 1+k . 1) If T ≤ µ 0 then g = 0 in (0, T ), and if T > µ 0 then g = 0 since g| (µ0,T ) ∈ H r0(1-s * /T )-1 (µ 0 , T ). Hence, the knowledge of g provides T ≤ µ 0 or T > µ 0 .

2)

• Let µ ∈ [µ 0 , T ]. Thanks to Theorem 1.3, we can construct ξ = inf{r > 0; g| (0,µ) ∈ H r0(1-r/T )-1 (0, µ)}, and so the invertible function µ → ξ from [µ 0 , T ] into [0, s * ]. (This implies that s * is recovered too). Putting t = 1 2 (µ + ξ), we recover t s * which is t for µ = T , and also the functions t → ξ = ξ(t), t → µ(t), t → a(t) = 1 2 (µ(t) -ξ(t)), for t ∈ [t 0 , t s * ]. We then construct the functions

t (•) = (ξ(•)) -1 , t * (•) = 2t (•) -id.
• Thanks to the above point and to (i) of Theorem 1.3, the smooth function α(•) can be recover as the unique one such that µ → g(µ)-α(t)f (ξ) belongs to H ε+r0(1-ξ/T ) (0, µ) for some ε > 0 and all µ ∈ (0, T ). Then, k is root of the following equation:

(4.1) (α + 1 + ȧ(α -1))k 2 + (α -1)k + ȧ(1 -α) = 0.
Denote by k 1 , k 2 the roots, such that k 1 ≤ k 2 . We show that k 1 ≤ 0. A short computation shows that

(α + 1 + ȧ(α -1)) = 2 D (1 -ȧ) 2 1 + ȧ > 0, D = k(1 + ȧ) + 1 -ȧ/k > 0.
We have

(4.2) k 1 k 2 = ȧ(1 -α) α + 1 + ȧ(α -1) = ȧ(k 1 + k 2 ).
If ȧ ≤ 0 then, the second equality in (4.2) implies that it is impossible to have 0 < k 1 ≤ k 2 .

?????????, 

4.2.

Analysis of the error. Let (u 0 , u 1 , f ), r 0 be as in Theorem 1.3. Put u = P (u 0 , u 1 , f ), g = Z(u 0 , u 1 , f ), u A = U A (f ) and

u E = u -u A , F A = T A f, g A = ∂ x u A | x=0 , g E = g -g A = ∂ x u E | x=0 ,
where u A is defined in Section 3. Let us prove the estimate (1.7) (see (iv) of Theorem 1.3). For the sake of clarity, we replace µ, t, ξ, respectively by μ, t = µ

-1 (μ), ξ = ξ( t). Put u E,0 = u 0 -u A (0), u E,1 = u 1 -∂ t u A t=0 . In view of Subsection 3, the function u E satisfies        L γ u E = -F A in Ω μ, u E | x=0,b = 0 on (0, μ), u E t=0 = u E,1 on Ω, ∂ t u E t=0 = u E,1 on Ω.
(4.3) So we have u E = P (u E,0 , u E,1 , -F A ). Recall that, thanks to Lemma ??, we have T 0 (f ) ∈ L 2 (0, μ; H -s (Ω)), for all s > 1 2 . Thanks to Proposition 2.7, we have (4.4) Z(0, 0, T 0 (f )) (0,μ) ∈ H -s (0, μ), ∀s > 1 2 .

Let us prove that u E,0 ∈ H r0 (Ω), u E,1 ∈ H r0-1 (Ω). Observe that u A (0

)(x) = (f (-x) + f 2 (x) + f 2 (-x)Φ ε (x))χ x<a(0) + f 3 (-x/k)Φ ε (x -b + 2ε))χ x>a(0) . For x < a(0) = t 0 we have ξ(µ -1 (x)) < ξ(µ -1 (t 0 )) < ξ(µ -1 (µ 0 )) = ξ(t 0 ) = 0,
and, similarly, ξ(µ -1 (-x)) ≤ ξ(µ -1 (0)) < 0. For x > a(0) we have

ξ(ν -1 (-x/k)) < ξ(ν -1 (-t 0 /k)) < ξ(ν -1 (ν 0 )) = 0.
Hence, u A (0) can be expressed in terms of f (ξ) for ξ < 0. Since f | (-∞,0] ∈ H r0 (-∞, 0), then u A (0) ∈ H r0 (Ω). Thanks to the asumption on u 0 , we then have u E,0 ∈ H r0 (Ω). Similarly, we have u E,1 ∈ H r0-1 (Ω). Thanks to (3.6), the regularity of f 2 | (0,μ) is given by those of f | (0, ξ) , that is,

f 2 | (0,μ) ∈ H r0(1-ξ /T ) ((0, μ)),
for all ξ > ξ. Thus, thanks to Proposition 2.7, we have

(4.5) Z(u E,0 , u E,1 , 0) (0,μ) ∈ H r0-1 (0, μ).
Thanks to Lemma 2.5 with t 1 replaced by t and T by μ, and to Lemma 3.5, we have

(4.6) Z(0, 0, -F 1 ) (0,μ) = Z(0, 0, -F ε,μ ) (0,μ) .
Thanks to Lemma 3.6, if ε > 0 is sufficiently small, we have

F ε,μ Ωμ ∈ L 2 ([0, μ]; H r0(1-ξ/T )+cε-1 (Ω)),
and so, thanks to (4.6) and by applying Proposition 2.7, we obtain

(4.7) Z(0, 0, -F 1 ) (0,μ) ∈ H r0(1-ξ/T )+ε-1 (0, μ),
for some ε > 0 (independent of μ). Thanks to (4.4), (4.5) (4.7), and since g E = Z(u E,0 , u E,1 , 0) + Z(0, 0, T (0)f ) + Z(0, 0, -F 1 ), the proof of (1.7) is done.

Appendix: the function G

Let I = (0, 1) and let {a n } n∈N * be a dense sequence in I. We set

f n (x) = ((x -a n ) + ) 1/2-an , G(x) = n∈N * 1 2 n f n (x), x ∈ I,
where z + = max(0, z) for z ∈ R. The function G is increasing. For 0 < s < 1 we set the following Sobolev space:

H s (I) = q ∈ L 2 (I); I×I |q(x) -q(y)| 2 |x -y| 1+2s dx dy < ∞ . Lemma 5.1. Let b ∈ (0, 1], r > -1 2 , s ∈ (0, 1), a ∈ [0, b). Set f (x) = ((x -a) + ) r , I b = (0, b). We have f ∈ H s (I b ) if,
and only if, r > s -1/2. In such a case, we have

(5.1) I×I |f (x) -f (y)| 2 |x -y| 1+2s dx dy ≤ C s 1 2r + 1 + r 2 2r -2s + 1 (b -a) 2r-2s+1 , for some C s > 0.
Proof. Firstly, assume b = 1. We then have (y -x) 1+2s dx .

J := I1×I1 |f (x) -f (y)| 2 |x -y| 1+2s dx dy = 2 1 0 dy y 0 |f (x) -f (y)| 2 |x -y| 1+2s dx = 2(K 1 + K 2 ),
We thus have

K 1 = 1 2s 1 a (y -a) 2r 1 (y -x) 2s a 0 dy = 1 2s 1 a (y -a) 2r-2s - (y -a) 2r y 2s
dy.

If a = 0, then K 1 = 0. If a > 0, then K 1 < ∞ if, and only if, 2r > 2s -1. In such a case, we have

(5.2) K 1 ≤ 1 2s(2r -2s + 1) (1 -a) 2r-2s+1 .
Assume 2r > 2s -1. We have

K 2 = 1-a 0 dy y 0 (y r -x r ) 2 (y -x) 1+2s dx = 1-a 0 y 2r-2s dy 1 0 (1 -t r ) 2 (1 -t) 1+2s dt = C(r, s) 2r -2s + 1 (1 -a) 2r-2s+1 , where C(r, s) = 1 0 (1 -t r ) 2 (1 -t) 1+2s dt = 1/2 0 (1 -t r ) 2 (1 -t) 1+2s dt + 1 1/2 (1 -t r ) 2 (1 -t) 1+2s dt ≤ C s ( 1 2r + 1 + r 2 2r -2s + 1
). (5.3) Since C(r, s) > 0, then K 2 = +∞ if 2r ≤ 2s -1. Hence, the sum K 1 + K 2 converges iff 2r > 2s -1. Assume 2r > 2s -1. Thanks to (5.2) and (5.3), we obtain (5.1). Assume b ∈ (0, 1). The proof of this case is easily obtained from that of the previous case by setting a = a b, x = x b, y = y b. 

E(t)(v) = 1 2 Ω |∂ t v| 2 + 1 2 Ω γ(t, •)|∂ x v| 2 , v ∈ M 1 .
We claim that, for all v ∈ M 1 such that L γ v =: f ∈ L 2 (Ω T ) + W , the following (standart) estimate, which implies (2.2), holds:

(6.1) E(t)(v) ≤ C f 2 L 2 (0,t;Ω) + E(0)(v) , ∀t ∈ [0, T ],

for some constant C. Proof. It is sufficient to show (6.1) for t = T . Assume that f ∈ L 2 (Ω T ). Put ρ = Passing to the limit N → +∞, we can conclude by standard arguments that (v N ) N converges to a function v ∈ C([0, T ]; H 1 0 (Ω)) satisfying (2.1). The proof of Theorem 2.6 in done in the case F ∈ L 2 (Ω T ). The case F ∈ W is similar.

1 . Introduction 1 . 1 .

 111 The Wave Equation. Let Ω =]0, b[⊂ R be a bounded open interval (b > 0), and consider the following initial boundary value problem  u -∇ x • (γ∇ x u) = 0 in (0, T ) × Ω, u| x=0 = f (t) on (0, T ), u| x=b = 0 on (0, T ), u t=0 = u 0 on Ω, ∂ t u t=0 = u 1 on Ω, (1.1)

Remark 4. 1 .

 1 Theorem 1.3 allows us to recover t * (•) = µ • ξ -1 as:t * (s) := sup{t > s; g| [s,t] ∈ H r0(1-t/T )-1 ([0, t])},and shows that t * (s) = sup{t > s; g A | [s,t] ∈ H r0(1-t/T )-1 ([0, t])}.

  -a) r -(x -a) r ) 2

Lemma 5. 2 . 1 -6. 1 .

 211 For 0 < s < 1 and b ∈ (0, 1], we haveG ∈ H s (0, b) if s < 1 -b and G ∈ H s (0, b) if s > 1 -b.Proof. For x, y ∈ I, we have, thanks to the Schwarz inequality, (5.4)|G(x) -G(y)| 2 ≤ |f n (x) -f n (y)| 2 |f n (x) -f n (y)| 2 . Let I b = (0, b), A b = {n ∈ N * ; a n ≥ b}, B b = N * \ A r = {n; a n < b}. For all n ∈ B b , thanks to Lemma 5.1, we have f n ∈ H 1-b (0, 1), since 1/2 -a n > (1 -b) -1/2. For all n ∈ A b , we have f n ∈ H 1-b (I b ), since f n | I b = 0. Let 0 < s < 1 -b.By using (5.4), and (5.1), we haveJ b,s := I b ×I b |G(x) -G(y)| 2 |x -y| 1+2s dx dy ≤ b |f n (x) -f n (y)| 2 |x -y| 1+2s dx dy a n -s )(b -a n ) 2(1-s-an) -s )(b -a n ) 2(1-s-an) < ∞ since (b -a n ) 2(1-s-an) ≤ 1 for all n ∈ B b , 0 < s < 1 -b.Let s ∈ (1 -b, 1). For all n ∈ N * and x > y we haveG(x) -G(y) ≥ f n (x) -f n (y). Fix n ∈ A 1-s ∩ B b , that is, 1 -s ≤ a n < b. Thanks to Lemma 5.1, we have f n ∈ H s (I b ), and then J b,s ≥ 1 2 n I b ×I b |f n (x) -f n (y)| 2 |x -y| 1+2s dx dy = ∞.This ends the proof.6. Appendix: proof of Theorem 2.6Let F ∈ L 2 (Ω T ), v 0 ∈ H 1 0 (Ω), v 1 ∈ L 2 (Ω). Denote M 1 := {v ∈ C([0, T ]; H 1 0 (Ω)), ∂ t v ∈ C([0, T ]; L 2 (Ω))}, M10 := {v ∈ M 1 ; v| t=0 = 0, ∂ t v| t=0 = 0}. Energy estimate. Put

sup Q | γ| γ and Π 0 ∈ C 1 ([0, T ]; (0, +∞)) such that δ -1 Π 0 ≤ -Π 0 for some δ ∈ (0, 1 ρ ). (For example, Π 0 = e -t δ .) Put

We formally have, thanks te the Schwarz inequality,

Hence, we obtain

and so, (6.2)

Then (6.2) follows.

6.2. Uniqueness. Consequently, if v ∈ M 1 0 satisfies (2.1) with F = 0, then E(t)(v) = 0 for all t, and so v = 0. This shows that Problem (2.1) admits at most one solution in M 1 . 6.3. Existence. Let (λ j , e j ) 1≤j be the familly of spectral values of the positive operator -∆ x in H 1 0 (Ω), i.e such that (e i , e j ) L 2 (Ω) = δ ij , -∆e j = λ j e j , and λ j +∞. The data v 0 , v 1 , F are then written

Let N ∈ N * , and put

and consider the following vectorial differential equation: find

is continuous, the theorem of Cauchy-Lipschitz implies existence and uniqueness for V N (t). Note that B N (t) is positive since, for all U = (u 1 , . . . , u N ), setting u(x) = N j=1 u j e j (x), we have

where C is a constant such that 0 < C ≤ γ in Q. Let v N (t) = N j=1 v j (t)e j (x). Then, a standart energy estimate for E N (t)(v N ) = 1 2 ( V 2 N (t) + V N (t)B N (t)V N (t)), as above, implies that there exists a positive constant C such that vN (t) L 2 (Ω) + ∂ x v N (t) L 2 (Ω) ≤ C( v 0 H 1 (Ω) + v 1 L 2 (Ω) + F L 2 (Ω) ), 0 ≤ t ≤ T.