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We report on a “source-sink” algorithm which allows one to calculate time-resolved physical
quantities from a general nanoelectronic quantum system (described by an arbitrary time-dependent
quadratic Hamiltonian) connected to infinite electrodes. Although mathematically equivalent to the
non equilibrium Green’s function formalism, the approach is based on the scattering wave functions
of the system. It amounts to solving a set of generalized Schrödinger equations which include an
additional “source” term (coming from the time dependent perturbation) and an absorbing “sink”
term (the electrodes). The algorithm execution time scales linearly with both system size and
simulation time allowing one to simulate large systems (currently around 106 degrees of freedom)
and/or large times (currently around 105 times the smallest time scale of the system). As an
application we calculate the current-voltage characteristics of a Josephson junction for both short
and long junctions, and recover the multiple Andreev reflexion (MAR) physics. We also discuss two
intrinsically time-dependent situations: the relaxation time of a Josephson junction after a quench
of the voltage bias, and the propagation of voltage pulses through a Josephson junction. In the case
of a ballistic, long Josephson junction, we predict that a fast voltage pulse creates an oscillatory
current whose frequency is controlled by the Thouless energy of the normal part. A similar effect is
found for short junctions; a voltage pulse produces an oscillating current which, in the absence of
electromagnetic environment, does not relax.

As quantum nanoelectronics experiments get faster (in
the GHz range and above) it becomes possible to study
the time dependent dynamics of devices in their quantum
regimes, i.e. at frequencies higher than the system tem-
perature (1K corresponds roughly to 20GHz). Recent
achievements include coherent single electron sources
with well defined release time1 or energy2, pulse prop-
agation along quantum Hall edge states3–5 and terahertz
measurements in carbon nanotubes6. While the mathe-
matical framework for describing quantum transport in
the time domain has been around since the 90s7,8, the
corresponding non-equilibrium Green’s function formal-
ism (NEGF) is rather cumbersome and can only be solved
in rather simple situations, even with the help of numer-
ics. In Ref. 9 we developed an alternative formulation
of the theory which is much easier to solve numerically,
in addition to being more physically transparent. The
approach of Ref. 9 (to which we refer for further refer-
ences) was recently used in a variety of situations includ-
ing electronic interferometers10,11, quantum Hall effect12,
normal-superconducting junctions13, Floquet topological
insulators14 and the calculation of the quantum noise of
voltage pulses15.

The best algorithm introduced in Ref. 9 (nicknamed
WF-C) has a computational execution time that scales
linearly with the system size N , but as the square of the
total simulation time. While for ballistic systems this
t2max limitation was not too stringent, in situations with
large separations of time scales (such as the Josephson
junctions studied below), it makes the numerical calcula-
tion computationally prohibitive. In this manuscript, we
present an extension of the previous approach which re-
duces the computational complexity down to O (Ntmax).

This is achieved with the addition of non-hermitian
terms, referred to as “sink” terms, in the Hamiltonian in
addition to the “source” terms introduced in the WF-C
method of Ref. 9. The new technique remains mathe-
matically equivalent to the NEGF formalism.

This articles is organized as follows. Section I intro-
duces a general class of models and the time dependent
scattering states of the system. In section II we briefly
recall how a simple change of variables leads to the intro-
duction of an additional source term in the Schrödinger
equation, which greatly facilitates the numerical treat-
ment. In section III we develop the new part of the al-
gorithm and show how the introduction of sink terms
solves previous difficulties at long times. Finally, section
IV discusses applications to the physics of out of equilib-
rium Josephson junctions. After recovering well known
effects (Multiple Andreev Reflection in both short and
long junctions, AC Josephson effect, relaxation of An-
dreev bound states), we study the propagation of fast
voltage pulses through Josephson junctions.

I. MODEL

We consider a general class of models describing a
quantum device of finite extent attached to semi-infinite
electrodes. The full system is described by a general
quadratic Hamiltonian of the form

Ĥ(t) =
∑
ij

Hij(t)ĉ
†
i ĉj (1)

where ĉ†i (ĉj) are the Fermionic creation (annihilation)
operators of a one-particle state on site i. A “site” i
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typically labels position as well as other degrees of free-
dom such as spin, orbital angular momentum or elec-
tron/hole (as in the superconducting application below).
The Hij(t) are the matrix elements of the Hamiltonian
matrix H(t). The system consists of a time-dependent
central region 0̄ connected to several leads 1̄, 2̄, ... as de-
picted in Fig. 1. We keep the Hamiltonian of the central
region fully general but restrict the leads to be semi-
infinite, time independent and invariant by translation
(i.e. they have a quasi-one dimensional periodic struc-
ture). Each lead remains in its thermal equilibrium at
all times. We further suppose that the time-dependent
perturbations are only switched on at positive times, so
that H(t < 0) = H0. Note that if one has a uniform
time-varying potential in one or more of the leads then
a gauge transformation can always be performed such
that the time-dependence is brought into the interface
between the lead and the central region, which can then
be included in the definition of the central region. Typ-
ically the time dependent part of the Hamiltonian is re-
stricted to rather small regions as illustrated in Fig. 1.

Before the time-dependent perturbations are switched
on, the system is characterized by its scattering wave-
functions ΨαE that are labeled by their energy E and
incoming channel α,

H0Ψst
αE = EΨst

αE . (2)

The scattering states Ψst
αE are standard object of meso-

scopic physics and can be obtained directly by wave
matching the incoming and outgoing modes at the lead-
system boundary. For complicated geometries these
can be obtained numerically by using e.g. the Kwant

package16. A physical observable Â =
∑
ij Aij ĉ

†
i ĉj , (e.g.

electronic density or local currents) can be directly ob-
tained from the knowledge of these wavefunctions by sim-

1

0

2

3

FIG. 1. Sketch of a typical system considered. It consists of
a central scattering region, 0̄, attached to semi-infinite leads
1̄, 2̄, and 3̄. Some of the on site potentials are time depen-
dent (for instance the bold green sites correspond to the sites
unerneath a pulsed electrostatic gate) as well as some of the
inter site hoppings (for instance the blue connections corre-
spond to a time dependent magnetic field sent through the
central hole).

ply filling up the one-body scattering states according to
Fermi statistics, using

〈Â〉 =
∑
α

∫
dE

2π
fα(E)Ψst †

αEAΨst
αE (3)

where fα(E) is the Fermi function of the electrode asso-
ciated with channel α. The celebrated Landauer formula
for the conductance is a special case of Eq.(3).

The generalization of Eq.(3) to the time-dependent
problem is rather straightforward: one first obtains the
scattering states and lets them evolve according to the
Schrödinger equation

i∂tΨαE(t) = H(t)ΨαE(t) (4)

with the initial condition ΨαE(t = 0) = Ψst
αE . The ob-

servables follow from Eq.(3) where the Ψst
αE are replaced

by ΨαE(t):

〈Â(t)〉 =
∑
α

∫
dE

2π
fα(E)Ψ†αE(t)AΨαE(t) (5)

The fact that such a scheme is equivalent to the NEGF
formalism or to the scattering approach was derived in
Ref. 9. In particular, the central objects of the NEGF
formalism, the so-called lesser (<), greater (>) and re-
tarded (R) Green’s functions, have simple expressions in
term of the time dependent scattering states,

G<ij(t, t
′) ≡ i〈ĉ†j(t

′)ĉi(t)〉 (6)

=
∑
α

∫
dE

2π
ifα(E)ΨαE(t, i)Ψ∗αE(t′, j)

G>ij(t, t
′) ≡ −i〈ĉi(t)ĉ†j(t

′)〉 (7)

=
∑
α

∫
dE

2π
i[fα(E)− 1]ΨαE(t, i)Ψ∗αE(t′, j)

GRij(t, t
′) ≡ −iθ(t− t′)〈ĉ†j(t

′)ĉi(t) + ĉi(t)ĉ
†
j(t
′)〉 (8)

= −iθ(t− t′)
∑
α

∫
dE

2π
ΨαE(t, i)Ψ∗αE(t′, j)

Note that in the presence of bound states (such as the
Andreev states in the Josephson junctions described be-
low) the above integral need to be replaced by an integral
over the continuum plus a sum over the bound states, as
explained in Ref. 17.

II. THE SOURCE

In its original form, Eq.(4) is not very useful for nu-
merics because the wave function spreads over the entire
infinite system. A first simple, yet crucial, step consists
in introducing the deviation from the stationary solution,
Ψ̄αE(t),

ΨαE(t) = e−iEt(Ψst
αE + Ψ̄αE(t)). (9)
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Ψ̄αE(t) satisfies,

i∂tΨ̄αE(t) = [H(t)− E]Ψ̄αE(t) + SαE(t), (10)

with

SαE(t) = [H(t)−H0]Ψst
αE (11)

and

Ψ̄αE(t = 0) = 0. (12)

The new “source” term SαE(t) can be computed from
the knowledge of the stationary scattering states and is
localized at the place where the time-dependent pertur-
bation takes place (where H(t) 6= H0, typically the col-
ored regions of Fig. 1). Eq. (10) is already much better
than Eq. (4) for numerics because the initial condition
corresponds to a wavefunction that vanishes everywhere.
One can therefore truncate Eq. (10) and keep a finite sys-
tem around the central time-dependent region where the
source term lies. In practice, one adds N layers of each
electrodes. Note that in order for this procedure to be
correct, the stationary scattering states are calculated for
the infinite system and the truncation is only performed
afterwards. For the truncation to be valid, the size of this
finite region must be larger than N > v tmax/2 where v is
the maximum group velocity at which the wavefunction
can propagate and tmax the duration of the simulation.
Hence, for large values of tmax, the total computational
time to integrate Eq. (4) scales as v t2max. This algorithm
corresponds to the WF-C algorithm of Ref. 9. Here, we
have explicitly removed a factor e−iEt from the defini-
tion of Ψ̄αE(t) compared to Ref. 9. This change, while
small, leads to an improve stability of the numerical in-
tegration: the equation of motion for Ψ̄αE(t) does not
have an (potentially fast) oscillating factor e−iEt in the
source term. This means that the numerical integration
scheme used for solving eq. (10) is now limited by the in-
trinsic timescales of the problem, and not the “artificial”
timescale h̄/E introduced by a bad choice of gauge.

III. THE SINK

The t2max scaling of the algorithm comes from the fact
that for long simulation times, one needs to introduce
large part of the leads (∝ tmax) in order to avoid spu-
rious reflections at the boundaries where the leads have
been truncated. To proceed, one needs to take advan-
tage of the special structure of the leads: they are not
only time-independent, but also invariant by translation.
Hence whatever enters into the lead will propagate to-
ward infinity and never come back to the central region.
Mathematically, the form of Ψ̄αE(t) in the leads is a su-
perposition of outgoing plane waves9

Ψ̄αE(t) =

∫
dE′

2π
Sα′α(E′, E)e−iE

′t+k′nξα′(E′) (13)

where E′ and k′ are related by the dispersion relation of
the lead, n indexes the different unit cells in the lead, ξα′

the transverse wavefunction of the corresponding mode
and Sα′α(E′, E) is the time-dependent part of the inelas-
tic scattering matrix. The crucial point of Eq.(13) is that
it only contains outgoing modes as the incoming one has
been subtracted when removing the stationary scattering
state. Therefore, once the wave function starts to reach
the leads, it propagates toward infinity and never comes
back to the central system.

A natural idea that comes to mind is to replace the
finite fraction of the electrodes by some sort of (non-
hermitian) term in the Hamiltonian that “absorbs” the
wavefunction that enters the leads. This has been studied
in the literature in the context of various partial differ-
ential equations,18–24 and is usually known as a complex
absorbing potential. The difficulty lies in the fact that
this absorbing term must not give rise to reflections. At
a given energy, a perfectly absorbing boundary condition
does exist, it corresponds to adding the self energy of
the lead at the boundary (which is a non-local complex
absorbing potential, see WF-D method of Ref. 9). How-
ever the outgoing waves of Eq.(13) span a finite energy
window so that some energies would get reflected back
to the central region. One solution to obtain a perfectly
absorbing boundary condition is to use a boundary con-
dition that is non local in time18, as in the WF-B method
of Ref. 9; this leads to algorithms that scale as t2max.

We choose instead to design an imaginary potential
that varies spatially. We show that for any desired accu-
racy, we can design an imaginary potential that spreads
over a finite width of N electrode unit cells - where N
depends only of the required accuracy, not on tmax. In
practice, this new algorithm is much more effective than
WF-C when tmax becomes larger than the ballistic time
of flight through the system. The idea behind the al-
gorithm is fairly straightforward: suppose that a plane
wave with a dispersion relation E(k) propagates inside
one electrode. If one adds an imaginary potential −iΣ
to the Schrödinger equation, this plane wave becomes
evanescent which eventually leads to the absorption of
the wave. On the other hand, any abrupt variation of
potential (or in this case of imaginary potential) leads
to unwanted reflection back to the central part of the
system. Hence, the algorithm consists in adiabatically
switching on the imaginary potential Σ(n) inside a fi-
nite fraction of the electrode, see Fig. 2 for a sketch. The
new equation of motion contains both the previous source
term and the additional sink in the electrodes,

i∂tΨ̄αE(t) = [H(t)− E − iΣ] Ψ̄αE(t) + SαE(t), (14)

where the matrix Σ is diagonal and vanished in the cen-
tral region while it reads

Σ = Σ(n) 1cell (15)

in the absorbing layer placed at the beginning of the elec-
trodes. The index n labels the unit cells of the leads



4

1
0

2

3

Σ

n

FIG. 2. Sketch of the truncated approximation to the system
shown in Figure 1, including the absorbing layers. The (red)
color of the sites indicates the intensity of the complex ab-
sorbing potential. The curve next to lead 2’s absorbing layer
shows a typical shape of the complex absorbing potential, Σ.

and 1cell is the identity matrix defined over a unit cell.
What remains to be done is to specify the function Σ(n)
so that it is large enough to absorb all waves entering
into the lead while being smooth enough not to produce
spurious reflections. The error induced by the boundary
conditions must not exceed a tolerance δ. Our aim is to
minimize the number N of layers that must be added in
the simulation to absorb the outgoing waves without the
error exceeding δ.

A. Analytical Calculation of the spurious reflection

Before we can design a suitable imaginary potential, we
must understand how the spurious reflection back to the
central part depends on the shape of Σ(n). We will start
from a continuum model in order to develop an analytical
solution for this simple case. The rationale, other than its
tractability, is the fact that spurious reflections happen
when Σ(n) varies on a spatial scale that is short compared
to the wavelength of the solution, hence is dominated by
small momentum k where the tight-binding dispersion
relation reduces to its continuum limit. We will show
that there is an extremely good agreement between the
analytical results derived in this section and numerical
calculations of the discretized model.

Let us consider the stationary 1D Schrödinger equa-
tion,

− h̄2

2m∗
∂2ψ(x)

∂x2
− i

L
Σ
( x
L

)
ψ(x) = Eψ(x) (16)

where m∗ is the electron effective mass and we have in-
troduced a length scale, L, which controls how fast Σ(x)
varies. For negative x, we set Σ(x ≤ 0) = 0 so that the
wave function is in a superposition of plane waves,

ψ(x) = eikx + rΣe
−ikx (17)

where we define E = h̄2k2/2m∗. Our goal is to calculate
the spurious reflection probability RΣ = |rΣ|2 induced by

the presence of the imaginary potential. We first rescale
the equation by E and define x̄ = kx, Σ̄(u) = (k/E)Σ(u)
and ψ(x) = ψ̄(x̄) to obtain the dimensionless equation,[

∂2
x̄ +

i

kL
Σ̄
( x̄

kL

)
+ 1

]
ψ̄(x̄) = 0 (18)

with

ψ̄(x̄) = eix̄ + rΣe
−ix̄ (19)

for x̄ < 0. It is apparent from Eq.(18) that the spurious
reflection is controlled by the dimensionless parameter
kL. Since we want this spurious reflection to be small, we
will work in the limit of large kL� 1 and expand rΣ in
powers of 1/kL. The zeroth order contribution is simply
the extension of the WKB limit to imaginary potential;
the wave function takes the form of an evanescent wave,

ψ̄(x̄) ≈ eS̄(x̄) (20)

with S̄(x̄) satisfying

[S̄′(x̄)]2 + 1 + i
1

kL
Σ̄(

x̄

kL
) = 0 (21)

where primes denote derivatives. We expand S̄(x̄) to first
order in 1/kL, and apply the boundary condition Eq. (19)
at x̄ = 0, as well as ψ̄(kL) = 0 (perfect reflection at a
the end of the simulation domain at x = L) to obtain the
zeroth order contribution to rΣ:

r0
Σ = e2ikLe−Ak/E , (22)

where

A =

∫ L

0

1

L
Σ
( x
L

)
dx (23)

is independent of kL. Physically speaking, the wave func-
tion is exponentially attenuated up to the hard wall at
x = L where it is fully reflected and then again exponen-
tially attenuated until x = 0.

The contribution r0
Σ takes into account the finite ab-

sorption due to the imaginary potential but not the spu-
rious reflections due to wavevector mismatch. It it there-
fore necessary to go beyond the adiabatic WKB approx-
imation and calculate its 1/kL deviation r1

Σ. We can
ignore the hard wall at x = L as it will play no role in
what follows. Generalizing the WKB approximation we
choose the following ansatz for x̄ > 0:

ψ̄(x̄) = φ̄(x̄)eS̄(x̄) (24)

S̄(x̄) contains the fast oscillating and decaying parts,
while φ̄(x̄) contains the remaining (slow) parts. Plug-
ging the ansatz Eq. (24) into Eq. (18) our Schrödinger
equation becomes{
φ̄′′(x̄) +

[
2i− 1

kL
Σ̄
( x̄

kL

)
+ 2O

(
1

(kL)2

)]
φ̄′(x̄)

+

[
−1

2(kL)2
Σ̄′
( x̄

kL

)
+O

(
1

(kL)3

)]
φ̄(x̄)

}
eS̄(x̄) = 0

(25)
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with

S̄(x̄) = ix̄− 1

2

∫ x̄/kL

0

Σ̄(u) du+O
(

1

kL

)
(26)

We write φ̄(x̄) as φ̄(x̄) = φ̄0(x̄) + (1/kL)φ̄1(x̄) and notice
that, in the limit (1/kL)→ 0, Eq. (25) admits a solution
φ̄(x̄) = φ̄0(x̄) = A + Be−2ix̄. In this limit there should
be no backscattering from the imaginary potential, so
B = 0 and φ̄0(x̄) = 1, to match the boundary conditions
Eq. (19). The derivatives of φ̄0(x̄) hence vanish and we
arrive at

φ̄ ′′1(x̄) + 2

[
i− 1

2kL
Σ̄(x̄/kL)

]
φ̄′1(x̄) =

1

2kL
Σ̄′(x̄/kL)

(27)
up to terms of order O

(
(1/kL)2

)
. Eq.(27) can be solved

by the variation of constant method,

φ̄ ′1(x̄) = C̄(x̄) exp

[
−2ix̄+

∫ x̄/kL

0

Σ̄(u) du

]
(28)

with

C̄ ′(x̄) =
1

2kL
Σ̄′(x̄/kL) exp

[
2ix̄−

∫ x̄/kL

0

Σ̄(u) du

]
(29)

Applying the continuity condition on ψ̄(x̄) and ψ̄′(x̄) at
x̄ = 0 we obtain the 1st order contribution to the reflec-
tion amplitude:

r1
Σ =

−1

2ikL
C̄(0) (30)

which we can write explicitly, using Eq. (29) and the
condition C̄(∞) = 0, as

r1
Σ =

1

4ikL

∫ ∞
0

Σ̄′(u) exp

[
2ikLu−

∫ u

0

Σ̄(v) dv

]
du

(31)
One can understand r1

Σ as the Fourier transform at
(large) frequency (kL) of the gradient of the imaginary
potential weighted by the absorption that has already
taken place. Putting together Eq. (22) and Eq. (31), we
finally obtain

rΣ = e2ikLe−Ak/E

+
1

4iEL

∫ ∞
0

Σ′(u) exp

[
2ikLu− k

E

∫ u

0

Σ(v) dv

]
du.

(32)
Eq.(32) is the main result of this section. Now that we
understand how the spurious reflection depends on the
shape of Σ(x), we need to design the imaginary poten-
tial so as to minimize Eq.(32) (for a given L). More
precisely, for a given required precision ε, we wish to
enforce RΣ < ε irrespective of the value of the energy
E. Such a stringent condition is not, strictly speaking,
feasible as RΣ → 1 when E → 0 (all the variations of

the imaginary potential become “abrupt” when the elec-
tronic wave length becomes infinite) but we will see that
the associated error can be kept under control.

A shape that keeps RΣ small must be initially very
flat and later (when a significant fraction of the wave has
been already absorbed) can increase more rapidly. We
leave a full optimization of this shape for future study
and focus on an algebraic one,

Σ(u) = (n+ 1)Aun (33)

from which the reflection amplitude calculated from
Eq. (32) reads,

rΣ = e2ikLe−Ak/E +
An(n+ 1)(n− 1)

2n+2EknLn+1
(34)

As a consistency check of the approach developed above,
we compare this analytical result for the reflection proba-
bility with direct numerical calculation using the kwant
d.c transport package25. To do so we discretize the con-
tinuous Schrödinger equation onto a lattice of lattice
spacing 1. Figure 3 shows how RΣ scales for the case
n = 2 and n = 6, showing an excellent agreement be-
tween the direct numerical simulations and the above an-
alytical result in the limit of validity of the latter (small
reflection). Figure 3c shows that the reflection has a min-
imum as a function of A which corresponds to a compro-
mise between the first and last term of Eq. (34). Once
A has been chosen large enough for the first term of Eq.
(34) to be negligeable, one can always choose L large
enough to control the second term. We can already antic-
ipate that the difficulties will come from vanishing ener-
gies E → 0 for which the spurious reflection goes toward
unity.

B. Numerical precision in the time domain

Now that we understand the d.c. case, let us consider
the previous one dimensional model in the time domain
and send a Gaussian voltage pulse through the wire. This
problem has been studied in detailed in Ref. 9 to which
we refer for more details. We compute the current flow-
ing and measure the error with respect to a reference
calculation IexactE (t),

δ =

∫ tmax

0
|IE(t)− IexE (t)| dt∫ T
0
|IexE (t)| dt

(35)

where IE(t) is the time-dependent probability current for
a particle injected at energy E using the above designed
imaginary potential to absorb the outgoing waves. The
reference calculation is performed without imaginary po-
tential, but with enough added unit cells in the leads such
that the solution does not have time to propagate back
into the central region before the end of the simulation;
this corresponds to the WF-C method of Ref. 9.
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FIG. 3. d.c. reflection probability of a one dimensional chain in presence of an imaginary potential. The three panels show the
scaling with a) energy, b) absorbing region length, and c) area under the imaginary potential curve. Symbols are numerical
simulation of the discrete model and dashed lines are the analytic (continuum) result, Eq. (34), with n = 2 (circles) and n = 6
(triangles).

Figure 4a shows the scaling of the error δ in the time-
dependent calculation with respect to the d.c. reflection
probability of the absorbing region RΣ as L is changed.
The current at an energy at the centre of the spectrum
is calculated. We see from figure 4 that for very short
absorbing regions the error scales proportionally to RΣ,
whereas for longer regions it scales as

√
RΣ. This simply

reflects the fact that the error on Ψ̄αE(t) is proportional
to
√
RΣ = rΣ: since the current (hence δ) is quadratic in

ΨαE(t) ≡ e−iEt(Ψst
αE + Ψ̄αE(t)), the error has the form

δ ∼ 2|Ψst
αE |
√
RΣ + RΣ. More importantly, we see that

we can control the error of the calculation with arbitrary
precision and for extremely long times (we checked this
last point for much longer times than what is shown in
the inset).

More interesting is the behavior of the error δ as a func-
tion of the injection energy E. Indeed, since there are
large spurious reflections when E → 0, we might expect
δ to behave badly as one decreases the energy. Figure 4b
indeed shows that the error increases as the energy is
lowered. However, one finds that δ saturates at small en-
ergy. Furthermore, the saturated valued decreases with
L and can thus be controlled. This behaviour comes from
the structure of the wave function as shown in Eq.(13);
even though one injects an electron at a definite energy
inside the system, the energy of the outgoing wave is ill
defined. The contribution to the wavefunction coming
from spurious reflections takes the form

δΨ̄α,E(n, t)

=

∫ ∞
0

e−i(k
′n+E′t)ξα′(E′)rΣ(E′)Sα′α(E′, E) dE′

(36)

The contribution spreads over an energy window Epulse
which characterizes the inelastic scattering matrix,
Sα′α(E′, E). Sα′α(E′, E) typically decays on an energy
scale of the order of Epulse = h̄/τpulse (see Fig. 10 of
Ref. 9 for an example). For the voltage pulse consid-
ered here (which sends one electron through the system),

τpulse is essentially the duration of the pulse. The conse-
quence is that the reflection rΣ is averaged over an energy
window of width Epulse, which blurs the E = 0 behaviour
of rΣ:

δ ≈ 〈rΣ(E)〉E<Epulse
≈ rΣ(Epulse) (37)

We conclude that the error can always be made arbitrar-
ily small, irrespective of the duration of the simulation.
A slight drawback is that for a given imaginary potential,
the precision of the calculation can depend on the actual
physics taking place inside the central system (which sets
Epulse) if one injects electrons with energies close to the
band edges of the leads.

C. A general algorithm

We now discuss how to turn the above results into a
practical scheme to perform numerical calculations in a
robust way.

Since we cannot guarantee the error for a given shape
of the imaginary potential (we have seen above that it
might depend on the physics of the central region), we
first need to design an algorithm for an on-fly calculation
of an error estimate (without the reference calculation
used above). This can be done as follow for a small ad-
ditional computational cost. In the integration of the
Schrödinger equation, one separates the wave function in
the central region ψ̄0̄ and in the leads ψ̄1̄ (let us suppose
that there is only one lead for simplicity). The equations
to be integrated take the block form,

i∂tψ̄0̄ = H0̄0̄(t)ψ̄0̄ +H0̄1̄ψ̄1̄ + S0̄(t) (38)

i∂tψ̄1̄ = H1̄1̄(Σ)ψ̄1̄ +H1̄0̄ψ̄0̄ (39)

where S0̄(t) is the source term present in the central re-
gion and the imaginary potential is included in H1̄1̄. One
then introduces a second “copy” of the lead wave func-
tion ψ̄′1̄ that uses a different imaginary potential H1̄1̄(Σ′).
The equations of motion for this “copy” are

i∂tψ̄
′
1̄ = H1̄1̄(Σ′)ψ̄′1̄ +H1̄0̄ψ̄0̄ (40)
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a) b)

FIG. 4. Scaling of the error, δ, in the time-dependent simulation with respect to a) the d.c. reflection probability, RΣ, and
b) the particle injection energy, E. A monomial CAP with n = 6 was used. For a) simulations were carried out at a single
energy at the centre of the band and the length of the absorbing region was varied. Dashed lines show fits to δ ∝ RΣ (blue)
and δ ∝

√
RΣ (red). Inset Deviation of the probability current from equilibrium for different lengths of the absorbing region

corresponding to the two points indicated by arrows in the main figure. The black dashed curve shows the exact result.

One then keeps track of both ψ̄1̄ and ψ̄′1̄ simultaneously,

although only ψ̄1̄ will affect the dynamics of ψ̄0̄. The
trick is to design Σ′(n) = Σ(n −M), i.e. to insert M
extra lead layers before the imaginary potential, and to
monitor the difference between ψ̄′1̄ and ψ̄1̄ in the lead cell

adjacent to the central region, δψ̄1̄ = ψ̄1̄ − ψ̄′1̄. Spuri-
ous reflections from the presence of Σ will arrive at the
boundary of the central region for ψ̄1̄ before ψ̄′1̄, as the
latter has M extra lead layers. This delay in the arrival
of the spurious reflections will give rise to a finite δψ̄1̄.
Note that δψ̄1̄ will remain 0 in the case that there are
no spurious reflections. δψ̄1̄ can thus be used as an error
estimate for the wavefunction in the lead.

In the worst case scenario this scheme will increase the
computational cost by a factor of 2 (when the absorbing
region represents the largest part of the system). It is
worth noting, however, that without an error estimate
for the spurious reflections one would have to check for
convergence of results by performing several simulations
with different values of L, the absorbing region length.

The remaining task is to choose the parameters A and
L for a given shape of the imaginary potential. Ideally
we would choose L as small as possible so as to mini-
mize the extra computational effort while requiring that
|δψ̄1̄| remain smaller than a fixed maximum error, δmax.
Given δmax it is easy to choose A such that the first
term in Eq. (34) is not a limitation. By noting that
e−Ak/E < e−A/(aB) (B is the lead bandwidth and a is the
discretization step) we see that it is sufficient to choose
A such that e−A/(aB) < δmax for the absorption process
not to be the limiting factor of the precision. Next, one
needs to choose L large enough to enforce |δψ̄1̄|< δmax.
In practice, we found that a few hundred (up to a thou-
sand) lead cells is almost always sufficient for the physics
we have studied so far, for typical δmax ∼ 10−5.

Let us end with a last point of practical importance.

We have seen that the major contribution to spurious re-
flection comes from a narrow region around the band edge
of the lead. The wavefunctions associated with these en-
ergies propagate extremely slowly into the absorbing re-
gion due to the vanishing velocity at the band edge. Un-
less one is interested in extremely long simulation times,
we can take advantage of this by placing a small num-
ber of lead layers before the imaginary potential. The
slow-moving waves will induce spurious reflections, but
will take a long time to traverse this buffer layer due to
their small group velocity. Meanwhile the absorbing re-
gion does not have to be made as long, as it does not
have to absorb waves of vanishingly small energy.

IV. VOLTAGE PULSES IN LONG JOSEPHSON
JUNCTIONS

We are now in possession of a robust algorithm to
simulate time-dependent open systems. Compared with
our own previous approach, the computing time is now
O (Ntmax). This new algorithm allows us to treat cases
where very small energies (hence large times) come into
play. We now turn to a specific application concerning
superconducting - normal - superconducting Josephson
junctions where the large separation of scales Eth �
∆0 � EF (Eth: Thouless energy, ∆: superconducting
gap, EF : Fermi energy) makes a linear scaling algorithm
very welcome. An interesting aspect of superconductivity
is that the problem is intrinsically time dependent even
in d.c. as soon as there are voltage differences across the
superconductors (as evidenced by the a.c. Josephson ef-
fect which transforms a d.c. voltage into an a.c. current).
We emphasize that the algorithm is in no way limited to
superconductivity and refer to the introduction for other
applications (such as quantum Hall effect, graphene...)
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In the following, we will focus on 3 physical effects.
First we will recover known physics of Josephson junc-
tions: the Multiple Andreev Reflection (MAR) phenom-
ena and the a.c. Josephson effect. Second, we will discuss
the relaxation of a SNS junction after an abrupt raise of
the applied potential, showing how MAR comes into play
in the relaxation rate. Third, we will study a novel phe-
nomenon, the propagation of a voltage pulse through a
Josephson junction.

A. Minimum microscopic model for a SNS junction

We consider voltage-biased Josephson junctions. In
this setup we have two infinite superconducting reser-
voirs coupled by a normal region of length L. We shall
treat the problem using a 1D Bogoliubov-De-Gennes
Hamiltonian26:

Ĥ =

∫ ∞
−∞

Ψ̂†(x)

(
p2

2m − µ(x, t) ∆(x, t)

∆(x, t)∗ µ(x, t)− p2

2m

)
Ψ̂(x) dx

(41)

where p = −ih̄ ∂
∂x , Ψ̂(x) = (ψ̂↑(x), ψ̂†↓(x))T and ψ̂↑(x) is

an operator which annihilates an electron at position x
in a spin up state. ∆(x, t) is the superconducting order
parameter, which reads,

∆(x, t) =

 ∆0 for x > L
0 for 0 ≤ x ≤ L
∆0 exp[−2iφ(t)] for x < 0

(42)

with φ(t) = (e/h̄)
∫ t

0
Vb(τ) dτ and Vb(t) is the voltage

bias applied to the left superconductor (which is 0 before
t = 0). Likewise, the electrical-chemical potential µ(x, t)
reads,

µ(x, t) =

 EF + Vb(t) for x ≤ 0
EF + U(x) for 0 ≤ x ≤ L
EF for x > L

(43)

where EF is the Fermi energy and U(x) a potential bar-
rier. We only consider a single spin sector as our model
is spin independent; the two spin sectors give degenerate
solutions.

In order to put eq. (41) into a form where we can apply
the algorithm developed above we first apply a gauge
transformation

Ψ̂′(x) = (Θ(x) + Θ(−x) exp[iφ(t)τ z])Ψ̂(x) (44)

where τ {x,y,z} are Pauli matrices and Θ(x) is the Heav-
iside function. This transformation brings all the time-
dependence for x < 0 into a time-dependence in the mo-
mentum term at x = 0, the boundary between the left
superconductor and the normal region. In this gauge
both superconductors are at equilibrium. We next dis-
cretize onto a lattice with spacing a, using a central dif-
ference approximation for the second spatial derivative,

0

0

0

0

0

FIG. 5. The a.c. Josephson effect. The different curves show
the calculated current as a function of time for different bias
voltages across a short junction with a transmission of 0.7.
The full curves and symbols show the theoretical and numeri-
cal results respectively. The curves have been vertically offset
for clarity.

∂2Ψ/∂y2 ≈ [Ψ(y + a) + Ψ(y − a)− 2Ψ(y)]/a2, to obtain
a tight-binding model:

Ĥtb =

∞∑
i,j=−∞

ĉ†iHi,j(t)ĉj (45)

with the matrices Hi,j(t) being non-zero only for diagonal
and nearest-neighbour matrix elements,

Hj,j(t) =

[
h̄2

ma2
− EF + Uj

]
τ z+∆0(θ0,j+θj,L)τx (46)

Hj,j+1(t) =
−h̄2

2ma2
τ z exp [iφ(t)δj,0τ z] (47)

Hj,j−1(t) = [Hj,j+1(t)]† (48)

where ĉj ≡ Ψ̂(ja) = (ψ̂↑(ja), ψ̂†↓(ja))T (and ĉ†j , its

Hermitian conjugate) are vectors of creation (annihila-
tion) operators at site j. δi,j is the Kronecker delta
and θi,j is a discrete Heaviside function, defined as 1
if i > j and 0 otherwise. Ui is the potential barrier.
This model can be readily solved numerically using the
above-developed technique.

B. Multiple Andreev Reflection and a.c. Josephson
Effect

Let us now apply our numerical technique and dis-
cuss the physics of a voltage biased Josephson junction.
There are two very different regimes to discuss: at low
voltage one observes the a.c. Josephson effect, while at
higher voltage one observes multiple Andreev reflections
(MAR). Both effects are closely related, as the Joseph-
son effect corresponds to the limit of an infinite number
of Andreev reflections, yet they are usually calculated
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with different techniques. Indeed, one of the challenges
of such a simulation is that to access small bias voltages
Vb one needs to go to very long times ∝ h̄/Vb. For this
problem the source-sink algorithm thus has a distinct ad-
vantage over previous methods due to its linear scaling
with simulation time.

In this subsection, we concentrate on a short junction
and add a potential barrier U(x) that allows us to tune
the transmission probability D of the normal part of the
junction from insulating D � 1 to ballistic D = 1. To
obtain a current-voltage characteristic for the junction we
perform a separate simulation for each value of voltage
required. For a given simulation (voltage value) we use
the following protocol. At t = 0 the voltage of the left
superconductor is raised smoothly, Vb(t) = (V0/2)(1 −
cos(πt/T )), until t = T , when Vb is held at a value V0

(we used T = 50 h̄/∆). The system relaxes to a steady
state and we can obtain the current using eq. (5). The
d.c. current can then be obtained by taking an average
over one period of the fully time-dependent current after
the system has reached a steady state.

Let us start with the a.c. Josephson effect. At equi-
librium, the ground state energy E(φ) of the junction
depends on the phase difference φ between the order pa-
rameters of the two superconductors. The corresponding
supercurrent is given by

I = (2e/h̄)∂E/∂φ ∝ cosφ. (49)

When a small bias is applied to the junction, φ increases
linearly in time φ(t) = 2eVbt/h̄ and one observes the a.c.
Josephson effect at frequency 2eVb/h. This is perhaps
the most striking manifestation of superconductivity; a
d.c. bias leads to an a.c. effect. Figure 5 shows a numer-
ical calculation of the current as a function of time to-
gether with the adiabatic prediction discussed above (the
dispersion relation E(φ) was calculated from the equilib-
rium junction and differentiated numerically). We see a
perfect agreement at low bias, indicating that our tech-
nique can reach the adiabatic limit. Upon increasing the
bias, one leaves the adiabatic limit and the corresponding
prediction becomes less accurate.

Indeed, as one increases the bias, a d.c. component
starts to appear in the current. This is best understood
starting from large bias. For Vb > 2∆0/e, the charges
can flow directly from the left “valence” band of the su-
perconductor to the right “conduction” band (using the
semiconductor terminology). As one lowers the bias, this
direct process is no longer possible and at least one An-
dreev reflection takes place on the right superconductor.
As one further lowers the bias, more and more Andreev
reflections are needed and one observes kink in the I-V
characteristics at values Vb > 2∆0/Ne with N = 1, 2, 3...
The Fourier components of the MAR current have been
previously calculated using a Floquet approach27,28 and
are routinely observed experimentally (see for instance
Ref. 29). Here we recover those results using a micro-
scopic model for the junction. Figure 6 compares the
current-voltage characteristics of such a junction calcu-

0

0

0

0

FIG. 6. d.c. current-voltage curve showing the analytical re-
sults from Ref. 27 (dashed line) and the source-sink numeri-
cal calculation (points) for different values of the transmission
(D) of the insulating link. Inset: time series corresponding
to the enlarged points in the main figure, showing a typical
averaging window over which the d.c. current was calculated.

FIG. 7. Comparison of the current-voltage characteristics
for a short junction (one site in the normal region) and a long
junction (120 sites in the normal region). Both the junctions
have a transmission of 0.7.

lated in Ref. 27 with a simulation using the source-sink
algorithm for different values of the transmission (D) of
the junction. We see a very good agreement with these
previous results.

Using the source-sink algorithm we can go beyond the
limitations of an analytical approach for little extra over-
head. We can, for example, explore the behaviour of a
long Josephson junction under voltage bias. Figure 7
compares the current-voltage characteristics of a long
junction with the short junction studied previously. We
clearly see that the long junction has more sub-gap fea-
tures, which can be attributed to the larger number of
Andreev states below the gap. We see that numerics has
an advantage over analytical approaches in this regard,
in that it is relatively cheap to explore new regions of pa-
rameter space or in crossover regions between tractable
limits (e.g. short junction vs. long junction).
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C. Relaxation of Andreev bound states

An important difference of Josephson junctions with
respect to other nanoelectronics systems is the presence
of (so called Andreev) bound states. Since Andreev
states have their energies inside the superconducting gap,
there is no continuum band with which they can hy-
bridize so that they have infinite lifetime. These states
must be added explicitly in Eq. (5) and the definitions
of the Green’s function (see section IV of Ref. 17 for
a discussion). As the Andreev states carry the Joseph-
son current, their role is particularly important and they
cannot be ignored. This is in contrast to many non-
superconducting systems where the bound states do not
contribute to transport.

Andreev states give us another opportunity to study
MAR physics. Suppose that we abruptly raise the volt-
age bias at t = 0, thereby placing the system in a non
equilibrium state. Just after the voltage raise, a given
wavefunction can be decomposed on the eigenbasis of the
equilibrium SNS junction,

Ψ =

∫
dE c(E) Ψst

αE +
∑
n

cnΨst
n (50)

where c(E) and cn are respectively the projection of the
wave function on the scattering states and the bound
states (Ψst

n ). It is important to realize that in the ab-
sence of bias voltage, the bound state part of the wave
function will never relax (within the above model) as the
Andreev states are true bound states with energy En:
the second part of the wave function will simply oscillate
as
∑
n cne

−iEntΨst
n for ever. However, the presence of the

bias voltage allows the energy to change by eV in between
two Andreev reflections so that after N ≈ ∆0/(eVb) re-
flections, one can reach energies outside the gap and
the wavefunction can relax. Denoting τP = L/vF the
time of flight between two Andreev reflections, we ex-
pect the relaxation time τR of the system to behave as
τR ∝ NτF = L∆0/(vF eVb).

Figure 8 shows the contribution of the Andreev bound
states to the current as a function of time for three values
of the bias voltage. We indeed see that the current carried
by the bound states dies away with time in presence of a
finite bias. Although we did not try to define τR precisely,
we clearly see that dividing Vb by a factor 10 leads to
a 10 time increase of the relaxation time, establishing
the relation τR ∝ 1/Vb which originates from the MAR
assisted relaxation process.

From a numerical perspective, we note that these sim-
ulations are taken to extremely long times, 105 in units of
the inverse hopping parameter, γ (= h̄2/2m∗a2), of the
model (we chose ∆ = 0.1γ for the above calculations).
This calculation clearly necessitates the source-sink algo-
rithm; we used an imaginary absorbing potential of order
n = 6 with 1000 lead cells forming the absorbing layer.

0
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0

0

0

0

FIG. 8. Current contribution from the (Andreev) bound
states at different bias voltages. The curves have been offset
for clarity. The inset shows a zoom of the curve for Vb = ∆/e.

D. Propagation of a voltage pulse through a
Josephson junction

A natural consequence of the above discussion is that
if one sends a fast voltage pulse through the system (i.e.
the final bias voltage vanishes instead of having a finite
value), then the corresponding bound state contribution
will not relax and will oscillate for ever (within the as-
sumptions of our model).

Let us study the corresponding protocol. We consider
a perfectly transparent junction with a finite width, and
apply a Gaussian voltage pulse of duration τP on the
left superconducting contact. The junction has a length
L such that the time of flight is τF = L/vF . We con-
sider a “long” junction, such that ∆0τF /h̄ � 1. We
further consider fast pulses with τF /τP � 1 (τF /τP ∼ 5
in our case). The case of slow pulses is trivial as the
physics is essentially given by the adiabatic limit. The
physics of fast pulses is simple yet rather interesting. The
pulse generates an electron-like excitation that propa-
gates through the system until it reaches the right super-
conductor. There, it is Andreev reflected as a hole-like
excitation and a Cooper pair is generated in the right
electrode. The excitation now propagates backward to-
wards the left superconducting electrode where it is An-
dreev reflected a second time (and a Cooper pair is ab-
sorbed from the electrode). The excitation then con-
tinues its propagation again to the right. Within the
above model, nothing stops this process and the excita-
tion continues to oscillate back and forth for ever. This
is rather appealing: one sends a short voltage pulse and
gets an oscillating current at frequency 1/(2τF ). Beyond
the current model, the relaxation time of the system will
be given by the fluctuations of the voltage due to the
electromagnetic environment and we anticipate a relax-
ation of the current on a scale given by the corresponding
RC time.

Figure 9 shows a numerical simulation of the propa-
gation of a voltage pulse as discussed above. Despite
the fact that there is only a single voltage pulse at the
start, we see pulses of current every 2τF . We do not
observe any quasiparticle current in the superconducting



11

S SN

t1 t2

t3t4

t1 t2 t3
t4

V(t)

τ = 2L/vF
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FIG. 9. Current (blue full line) and voltage (red dashed line,
offset for clarity) at the left superconducting-normal contact
as a function of time. Inset: propagation of the charge pulse
through the junction at different times (t1, t2, t3, t4) and the
corresponding times indicated on the main plot.

lead; this (super)current is purely associated with the
Andreev reflection process described above.

We can go a little bit further and look at the structure
of the bound states that carry the supercurrent. They
are given by the stationary condition13,30,31,

r2
Ae

2iEτF /h̄eiφ = 1 (51)

where left-hand superconductor is at a phase bias φ
compared to the right-hand one and rA = E/∆0 −
i
√

1− (E/∆0)2 is the Andreev reflection amplitude for
a particle incident on the superconductor at energy E.
The paths contributing to this amplitude are sketched
in Fig. 10a. A similar expression exists for the reversed
paths where the sign of φ is flipped; this is sketched in
Fig. 10b. For E < ∆0 we have rA = e−i arccos(E/∆0), and
we can re-write this condition as

− 2 arccos(E/∆0) +
2EτF
h̄
± φ = 2πm , m ∈ Z. (52)

In the long junction limit (∆0 � h̄/τF ) close to zero
energy this simplifies to:

E =
h

2τF

[
m+

1

2
∓ φ

2π

]
(53)

which corresponds to two set of equidistant energies sep-
arated by h̄/(2τF ), one set that has energy increasing
with φ, and the other decreasing with φ. Each of these
sets corresponds to a ballistic propagation in the contin-
uum limit τP � τF . The numerical spectrum, which is
shown in Fig. 11, adheres to the above-derived result ex-
cept near the degeneracy points. The degeneracies are
lifted due to the finite ratio ∆0/EF used in the numeri-
cal calculation, which induces a finite normal reflection at
the normal-superconducting interfaces. The two insets of
Fig. 11 show two time dependent simulation at two differ-
ent values of the superconducting phase difference after
the pulse, φ = φ(t =∞). We see that when the two sets
of bound states are very close in energy the output cur-
rent beats with a frequency which is given by the level

rA

L

S SN
φ

rAe
iφ rA

eiEτF/ћ

eiEτF/ћ

S SN

φ

rArAe
-iφ

eiEτF/ћ

eiEτF/ћ

b)

a)

FIG. 10. Sketches of the two classes of paths that can result
in bound states. The full lines corresponds to an electron-like
excitation, and the dashed line to a hole-like one. Andreev
reflection at the normal-superconductor interface converts an
electron-like excitation to a hole-like one. Each sketch actu-
ally represents a set of paths with 1, 2, 3, . . . pairs of Andreev
reflections.
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FIG. 11. A section around E = 0 of the bound state spec-
trum after the passage of a pulse as a function of the phase φ
picked up from the pulse. The vertical dashed lines highlight
the bound state energies for two values of φ. The current flow-
ing through the junction as a function of time is shown in the
traces above the main figure. The spectrum was calculated
numerically by diagonalizing the Hamiltonian of the system
projected onto a large, finite region around the junction

spacing. For well-spaced bound states this frequency is
so high that it has no visible effect on the current trace.

The above effect is intriguing, but unfortunately long
ballistic Josephson junctions are difficult to realize ex-
perimentally (with the exception perhaps of carbon nan-
otubes). In diffusive junctions there will be a distribution
of times of flight which will wash out the above effect.
An alternative is to consider the limit of short junctions,
which have been studied extensively experimentally with
atomic contacts (break junctions)29. We shall, therefore,
now explore the effect of a voltage pulse applied to a short
Josephson junction. We do not expect to be able to see
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a train of well-resolved peaks of current, as in the long
junction case, because the time of flight of the short junc-
tion is much shorter than the typical pulse duration. We
do, however, expect to see the effect that gives rise to the
“beating” in Fig. 11, as this is governed only by the en-
ergy difference between the Andreev bound states in the
junction. Figure 12 shows the current passing through a
short junction when voltage pulses of varying heights are
applied. We see an initial transient part followed by an
oscillatory part that continues indefinitely. Initially, all
the states up to E = 0 are filled (Pauli principle). The
pulse excites some quasiparticles into states at E > 0
and also shifts the phase bias across the junction so that
we are at a different place in the phase-energy plot than
we were before the pulse (indicated by dashed lines in
the inset to Fig. 12). Any quasiparticles in continuum
states escape into the leads after some time (∼ 20h̄/∆ in
Fig. 12), however the contribution in the Andreev bound
states cannot escape. After we have reached steady state
we are essentially in a superposition of Andreev bound
states at energy E and −E. These two contributions in-
terfere with one another to give a current that oscillates
in time at an angular frequency 2E/h̄. This effect is most
strongly seen for φ = π, as the Andreev levels have the
smallest energy gap here. For φ = 2π the oscillations
die away with time, as the Andreev levels hybridize with
the continuum at this point. By tuning the energy gap
between the Andreev levels after the pulse we are able
to control the frequency of the current. We can tune the
energy gap by placing ourselves at different points in the
phase-energy diagram (by sending in pulses of different
heights), or by tuning the transparency of the junction
to modify the phase-energy diagram itself.

The above calculations have been performed in absence
of electromagnetic environment. The closest experimen-
tal situation that would correspond to these calculations
is a Josephson junction embedded in a superconducting
ring where the voltage pulse is applied through a pulse of
magnetic field through the ring and the signal detected
through the magnetization generated by the oscillating
circulating current. A simpler configuration would in-
volve a SQUID where one of the two junction is an atomic
one and the other a regular large tunnel junction. In a
SQUID setup, however, the effect of the electromagnetic
environment would have to be properly included.

V. CONCLUSION

We have developed an algorithm for simulating time-
resolved quantum transport, which we dub “source-sink”
due to the characteristic addition of both “source” and
“sink” terms to the Schrödinger-like equations used. We

demonstrated that the accuracy of the method can be
tuned at the cost of increasing the runtime, and that for a
given accuracy the algorithm scales linearly with the sys-
tem size and the maximum time required. We confirmed
the accuracy of the method by comparing our results for

ε0 ε1

ħ/ε1

ħ/ε0

FIG. 12. Current traces as a function of time for three differ-
ent voltage pulses applied to a short Josephson junction with
a transparency of 0.9. The curves have been offset for clarity.
Each pulse has a full-width half maximum of 0.4 h̄/∆0, and
the pulses are of different heights. This gives a different phase
bias, φ, across the junction after the pulse has completed. In-
set: The bound state spectrum for the junction as a function
of the phase bias, the phases accumulated by the three pulses
are indicated by coloured lines.

a Josephson junction at finite bias with analytical results
from the literature.

We then studied the effect of a single voltage pulse on a
(long or short) Josephson junction. We found that a sin-
gle voltage pulse results in a periodic resultant supercur-
rent. The (rightly) controversial yet appealing concept of
time crystal was recently put forward.32 In analogy with
a regular crystal where translational spatial symmetry
is spontaneously broken, a time crystal would sponta-
neously break translational time symmetry. While the
above effect is not a time crystal (the system in the nor-
mal part is not in its ground state), it might be as close
as one can get; the superconducting ring remains in its
ground state, yet a time dependent current flows through
it.

In contrast to other universal effects associated to
Josephson physics, the period is given here by the nor-
mal part of the device. In the absence of electromagnetic
environment, the periodic current continue for ever. A
precise calculation of the effect of the dissipative electro-
magnetic environment to damp the oscillating current is
left for future work.
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A. Schädle, Commun. Comput. Phys. 4, 729 (2008).

19 J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Physics
Reports 395, 357 (2004).

20 O. Shemer, D. Brisker, and N. Moiseyev, Phys. Rev. A 71,
032716 (2005).

21 U. V. Riss and H.-D. Meyer, J. Phys. B: At. Mol. Opt.
Phys. 31, 2279 (1998).

22 U. V. Riss and H.-D. Meyer, J. Phys. B: At. Mol. Opt.
Phys. 28, 1475 (1995).

23 D. J. Kalita and A. K. Gupta, The Journal of Chemical
Physics 134, 094301 (2011).

24 J.-Y. Ge and J. Z. H. Zhang, The Journal of Chemical
Physics 108, 1429 (1998).

25 C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Wain-
tal, New J. Phys. 16, 063065 (2014).

26 P. G. de Gennes, Superconductivity of Metals and Alloys
(Benjamin, New York, 1966).

27 D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).
28 J. C. Cuevas, A. Mart́ın-Rodero, and A. L. Yeyati, Phys.

Rev. B 54, 7366 (1996).
29 E. Scheer, P. Joyez, D. Esteve, C. Urbina, and M. H. De-

voret, Phys. Rev. Lett. 78, 3535 (1997).
30 S. Mi, D. I. Pikulin, M. Wimmer, and C. W. J. Beenakker,

Phys. Rev. B 87, 241405 (2013).
31 C. Beenakker, in Transport Phenomena in Mesoscopic Sys-

tems, edited by H. Fukuyama and T. Ando (Springer Berlin
Heidelberg, 1992), vol. 109 of Springer Series in Solid-State
Sciences, pp. 235–253.

32 F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012).


	A linear-scaling source-sink algorithm for simulating time-resolved quantum transport and superconductivity
	Abstract
	I Model
	II The source
	III The sink
	A Analytical Calculation of the spurious reflection
	B Numerical precision in the time domain
	C A general algorithm

	IV Voltage pulses in long Josephson Junctions
	A Minimum microscopic model for a SNS junction
	B Multiple Andreev Reflection and a.c. Josephson Effect
	C Relaxation of Andreev bound states
	D Propagation of a voltage pulse through a Josephson junction

	V Conclusion
	 References


