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We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions,
composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean
and disordered regimes. We find that the torque enabling the electrical manipulation of the Néel
antiferromagnetic order parameter is out of plane ∼ n × p, while the torque competing with the
antiferromagnetic exchange is in-plane ∼ n × (p × n). Here, p and n are the Néel order param-
eter direction of the reference and free layers, respectively. Their bias dependence shows similar
behavior as in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias while
the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in
antiferromagnetic tunnel junctions is much more robust against disorder than in antiferromagnetic
metallic spin-valves due to the tunneling nature of spin transport.

I. INTRODUCTION

Intensive research has been achieved in the field of
spin transfer torque1–3 in ferromagnetic materials in the
last two decades. Spin torque consists of the transfer
of spin angular momentum from a spin-polarized flow
of conduction electrons to the local magnetic moments
of a ferromagnet. This spin transfer promotes mag-
netic excitations resulting in magnetization switching4–6

or self-sustained precessional motion7,8. The typical de-
vice on which spin torque switching is commonly achieved
is composed of two ferromagnets separated by a spacer
that can be either metallic or insulating. The for-
mer is henceforth referred to as a metallic spin-valve,
while the latter is called a (ferro)magnetic tunnel junc-
tion (F-MTJ). In both devices, the spin torque is dom-
inated by an antidamping component of the form τ‖ ∼
m × (p × m), where p is the magnetization direction
of the reference layer while m is the magnetization di-
rection of the free layer. In both cases, the torque is
an interfacial process arising from the destructive inter-
ference between incoming electron spins with different
incidences9,10. In the case of F-MTJs, a field-like torque
of the form τ⊥ ∼m×p also emerges that can be as large
as 10 to 30% of the in-plane torque10–14, as confirmed
experimentally15–17. The bias dependence of these two
torque components can be tuned by engineering the junc-
tion structural asymmetry13,18,19 or in the presence of
interfacial electron-magnon scattering20.

A few years ago, the presence of spin transfer torque
in metallic antiferromagnetic spin-valves has been pre-
dicted theoretically21. The authors considered a struc-
ture composed of two antiferromagnetic layers spaced by
a normal metal in analogy with the ferromagnetic spin-
valve. Experimentally, the search for current induced
torque in antiferromagnetic layers has been carried out
by analyzing the alteration that occurs at the level of
the exchange bias between ferromagnetic and antifer-

romagnetic layers in a conventional ferromagnetic spin-
valve22,23. However, not much progress has been realized
experimentally since then due to the significant difficulty
of maintaining sizable torques in these structures, as well
as controlling and detecting independently the Néel or-
der parameter dynamics. As a matter of fact, it was
recently shown24,25 that even a small amount of disorder
dramatically reduces the magnitude of the torque. In-
deed, in order to preserve large current-driven torques
in antiferromagnetic spin-valves, the staggered spin den-
sity built up in the reference antiferromagnetic layer has
to be transported coherently to the free antiferromag-
netic layer. Disorder breaks translational invariance and
prevents the coherent transmission of this staggered spin
density through the spin-valve.

A solution to this issue is to generate local torques,
i.e. spin currents and densities that do not need to be
transmitted from one part of the device to another. Sev-
eral strategies have been proposed to date, such as the
use of antiferromagnetic domain walls26,27, or the ex-
ploitation of spin-orbit torques28. Another approach is
to exploit spin-dependent tunneling transport (see Ref.
29), which is much less sensitive to momentum scatter-
ing. Recently, tunneling anisotropic magnetoresistance
has been reported in IrMn/MgO junctions30,31, demon-
strating the high quality that can be achieved in such
systems. Antiferromagnetic spintronics presents tremen-
dous potential for applications and is now gaining signif-
icant momentum32.

In the present work, we investigate spin transfer
torques in antiferromagnetic tunnel junctions (AF-MTJ).
We study the voltage dependence of the spin torque com-
ponents for a junction composed of symmetric antiferro-
magnetic electrodes. We finally explore the effect of the
disorder on the torque, demonstrating that the torque in
AF-MTJ is much more robust against imperfections that
in antiferromagnetic metallic spin-valves24.
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II. METHODOLOGY

The system we consider consists in two semi-infinite
antiferromagnetic electrodes spaced by an insulating bar-
rier (see Fig. 1). The two-dimensional antiferromagnets
are square lattices in G-type magnetic configuration, i.e.
each magnetic moment is surrounded by nearest neigh-
bor moments of opposite direction. This configuration is
different from the ones reported in previous theoretical
works (Refs. 21 and 29) in which the authors consider L-
type antiferromagnets composed of uncompensated lay-
ers with magnetic moments pointing in opposite direc-
tions. The width of the junction’s layers is 20 atomic
sites while the barrier extends over 3 monolayers. In or-
der to compute the transport properties of this system,
we exploit the non-equilibrium Green’s function formal-
ism implemented on the tight-binding code KWANT34,
a procedure described in detail in Ref. 24. The tight-
binding Hamiltonian reads

Ĥ =
∑
i

εiĉ
+
i ĉi −

∑
i,i′

ti,i′ ĉ
+
i ĉi′ +

∑
i

∆i
exĉ

+
i mi · σ̂ĉi.(1)

The indices i = (xi, yi) refer to the 2-dimensional coordi-
nates of the sites. εi is the on-site energy, ti,i′ = t is the
hopping parameter between the sites i and i′, restricted
to nearest neighbors and ∆i

ex is the exchange energy be-
tween the staggered local magnetic moment mi on site i
and the itinerant electron spin (∆i

ex = ∆ex in the antifer-
romagnets and ∆i

ex = 0 in the barrier). σ̂ is the vector
of spin Pauli matrices where ˆ denotes a 2×2 matrix in
spin space, ĉ+i is the creation operator of an electron on
site i, such that ĉ+i = (c+i↑, c

+
i↓), where ↑, ↓ refers to the

spin projection along the quantization axis. Compared
to the metallic spin-valve studied in Ref. 24, the present
system comprises a tunnel barrier defined by an onsite

energy εI,0i = εMi +6t at zero bias, where εMi is the onsite
energy of the metallic electrodes at zero bias. The non-
equilibrium regime is promoted by applying a voltage V
in the range [-0.9t,0.9t] across the junction. The chemi-
cal potentials of the two antiferromagnetic electrodes are
given by eµL(R) = εf±eV/2 and the tunnel barrier onsite

energy then reads εIi = εI,0i + eV [1/2− xi/(LB − 1)], LB
being the barrier length.

The nonequilibrium properties are computed
from the lesser Green’s function Ĝ<i;i′(ε) =∑
l f(ε, µl)

∑
n iψ

l
n,i(ψ

l
n,i′)

∗ (see Ref. 35), ψln,i be-
ing the scattering wave functions originating from lead l,
with a Fermi-Dirac distribution f(ε, µl). In the present
work, we calculate the spin torque components from the
local spin density Si, which reads

Si =
1

2π

∫
Trσ[σ̂Ĝ<i;i]dε. (2)

The integration runs over the full energy bandwidth up
to the chemical potential of the left and right electrodes.
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FIG. 1. (Color online) (a) Schematics of the AF-MTJ consist-
ing of two semi-infinite antiferromagnets spaced by a tunnel
barrier. The red and blue atoms refer to the two antiferro-
magnetically coupled sublattices. (b) Illustration of the en-
ergy spacial profile and its alteration by the applied voltage.
The red and green dashed lines represent the potential profile
for two specific Fermi energies, εf = 6.6 eV and εf = 1.1 eV,
as explained in the text.

The local torque on a particular lattice site reads τi =
∆exmi × Si.

In antiferromagnets composed of collinear sublattices,
two types of torques can be defined at the level of the di-
atomic unit cell: torques arising from uniform spin den-
sities (i.e. when the spin density is equal on the two
sublattices), and torques arising from staggered spin den-
sities (i.e. when the spin density is opposite on the two
sublattices). In our previous work24, we called these two
types of torque ”rotating” and ”exchange torques”, re-
spectively. In systems without translational invariance,
such as spin-valves, both types of torques exist in prin-
ciple and possess components in and out of the (n,p)
plane, where p and n are the Néel order parmaters of
the polarizer and analyzer, respectively. At this stage,
we want to point out a mistake in the discussion of our
previous work, Ref. 24. We claimed that the rotat-
ing torque (stemming from uniform spin density) is re-
sponsible for the Néel order parameter switching, while
the exchange torque (stemming from staggered spin den-
sity) competes with the antiferromagnetic exchange and
is therefore ineffective. This claim is incorrect since ex-
ternal magnetic fields (and hence, uniform spin densi-
ties) are unable to manipulate the direction of Néel order
parameters and only result in spin-flop of the antiferro-
magnet. This confusion arises from the assumption that
antiferromagnetic dynamics somewhat ressembles ferro-
magnetic one, which is clearly untrue since precession
about the antiferromagnetic exchange field is the driving
force in antiferromagnets (see also discussion in Ref. 28).
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Therefore, only staggered spin densities (producing ”ex-
change” torques) are efficient in controlling Néel order
parameter direction32,33.

III. RESULTS AND DISCUSSIONS

A. Premises

Before discussing the theoretical results, it is instruc-
tive to consider the band structure of a prototypical G-
type antiferromagnet. The tight-binding Hamiltonian,
Eq. (1), can be rewritten in the {|A〉, |B〉} ⊗ {| ↑〉, | ↓〉}
space, where A,B refer to the antiferromagnetically cou-
pled sublattices. One obtains

ĥ = γk τ̂x ⊗ 1̂ + ∆exτ̂z ⊗ σ̂z, (3)

γk = −2t (cos kxa+ cos kya) , (4)

which supports the following eigenstates

εsk = s
√
γ2
k + ∆2

ex, (5)

ψσs =
1√
2

(√
1 + sσβk|A〉+ s

√
1− sσβ|B〉

)
⊗ |σ〉,(6)

and βk = ∆ex√
γ2
k+∆2

ex

. Here, we chose the Néel order pa-

rameter to lie along z and τ̂ , σ̂ are spin Pauli matrices
referring to the {|A〉, |B〉} and {| ↑〉, | ↓〉} subspaces, re-
spectively. The band structure, Eq. (5), is plotted in Fig.
2(a) for different values of the exchange energy ∆ex. One
obtains the usual gapped electronic structure of antifer-
romagnets. By increasing the exchange, the band gap
increases and the band width is slightly compressed.

Although both up and down spin are degenerate, one
can define a local spin polarization on each sublattice. In
the low band filling limit, ka → 0, the density of state
on sublattice η (η = 1 corresponds to sublattice A and
η = −1 corresponds to sublattice B) is indeed

N η
s,σ ≈

1

8π2

(
2m

~2

)3/2

√
4t−

√
ε2 −∆2

ex√
ε2 −∆2

ex

(−ε+ ησ∆ex),

(7)
which produces a polarization

P = (N η
s,↑ −N

η
s,↓)/N

η
s,↑ +N η

s,↓ = −η∆ex/ε, (8)

where ε is measured from the center of the gap. There-
fore, the sublattice-resolved polarization is perfect (P =
±1) at the band edges (ε = ±∆ex) and decreases to a
minimum at the extrema of the bands, as illustrated
in Fig. 2(b). Since ε remains finite, the minimum po-
larization never vanishes. It is also remarkable that
the polarization is essentially flat, i.e. energy indepen-
dent, close to k = 0. This trend is opposite to that of
ferromagnets, whose density of state polarization reads
P = (

√
ε+ ∆ex−

√
ε−∆ex)/(

√
ε+ ∆ex+

√
ε−∆ex) and

decreases when the energy increases away from the bot-
tom of the bands. These features will be essential to un-
derstand the robustness of spin torque against disorder
in the tunnel barrier, as discussed further below.
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FIG. 2. (Color online) (a) band structure and (b) sublattice-
resolved spin polarization of a two dimensional G-type anti-
ferromagnet for ∆ex = 0.5t (black), t (red) and 2t (blue).

B. Spin density profile

Let us now compute the spin torque components in
antiferromagnetic tunnel junctions. In the following, we
fix Néel order parameter direction of the left antiferro-
magnet along p = x direction, while the one of the right
antiferromagnet points along the n = z direction, as illus-
trated in Fig. 1. To get better insight about the physics
at stake, we will consider two band filling situations: (i)
εf = 1.1t, when Fermi energy is located in the middle of
the bottom band and (ii) εf = 6.6t, when Fermi energy
is located in the middle of the top band (see Fig. 1). In
the following, we take t = 1 eV and the Fermi energy is
defined from the bottom of the valence band.

Upon finite bias voltage, electrons originating from the
left antiferromagnetic electrode acquire a staggered spin
density along x that is injected into the right electrode,
as represented by the blue symbols in Fig. 3(a). In the
right, downstream antiferromagnet the itinerant electron
spins reorient along the local Néel order parameter, i.e.
along z direction [see green symbols in Fig. 3(a)]. During
this reorientation, the spin density component transverse
to the local Néel vector is transferred to the local mag-
netic moments of the right antiferromagnet. The two spin
components transverse to the local Néel order parameter
of the right layer are reported in Fig. 3(b,d) and (c,e)
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FIG. 3. (Color online) (a) Spacial profile of the three compo-
nents of the spin density Sx (blue), Sy (red) and Sz (green)
throughout the junction. The tunnel barrier is located be-
tween positions 100 and 103. (b,c) Spatial profile of Sx and
(d,e) Sy in the right antiferromagnet, normalized to their
magnitude at the right interface, at different exchange en-
ergies ∆ex and for (b,d) εf = 1.1 eV, and (c,e) εf = 6.6 eV.
The bias voltage is 0.6 eV.

at different exchange energies ∆ex and for εf = 1.1 eV
and εf = 6.6 eV, respectively. For the sake of readability,
we report the value of the spin densities normalized to
their magnitude at the right interface (actual values of
the torque are reported on Fig. 4).

The spin density Sx displays a clear oscillatory decay
[Fig. 3(b)], which resembles the behavior observed in
F-MTJs (see e.g. Ref. 10) but is in sharp contrast
though with our previous calculations in metallic spin-
valves24 where no such decay is observed. The decay
increases when increasing the Fermi energy to εf = 6.6
eV [Fig. 3(c)], and when decreasing the exchange energy
∆ex. We attribute this decay to spin dephasing arising
from destructive interference between incoming electrons.
Indeed, tunneling involves interference between different
bands below the Fermi level. Increasing the Fermi level
from 1.1 eV [Fig. 3(b)] to 6.6 eV [Fig. 3(c)] increases
the number of bands involved in the tunneling process
and thereby enhances the spin dephasing. Furthermore,
reducing the exchange ∆ex widens the bandwidth (see
Fig. 2), which also participates to the enhancement of
the destructive interference by allowing more states to
tunnel.

The Sy component presents a markedly different be-
havior [Fig. 3(d)]. It also decays away from the in-
terface, but does not present oscillations. As a matter

of fact, while Sx arises from the direct injection of the
staggered spin density from the left to the right antifer-
romagnet, Sy stems from the precession of Sx about the
local staggered field. This staggered precession results in
a uniform Sy component that presents the same decay-
ing characteristics as Sx. Moreover, in the case εf = 1.1
eV Sy reaches a constant value away from the interface,
while for εf = 6.6 eV, it completely vanishes within a
few atomic planes [Fig. 3(e)]. The latter is also a conse-
quence of strong spin dephasing.

C. Voltage dependence
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FIG. 4. (Color online) Bias dependence of (a) in-plane and
(b) out-of-plane torques in AF-MTJ, calculated in the right
antiferromagnet for different exchange energy ∆ex and εf =
1.1 eV.

We now turn our attention towards the bias-
dependence of the spin transfer torque. From Fig. 3,
one can anticipate that Sx (which produces the out-of-
plane torque, ∼ n × p) provides a dominant staggered
density (corresponding to an ”exchange” torque in our
denomination of Ref. 24), while Sy (which produces the
in-plane torque, ∼ n× (p×n)) provides a dominant uni-
form density (corresponding to a ”coherent” torque in
our denomination of Ref. 24). As discussed above, only
the former enables electrical manipulation of the Néel or-
der parameter. To compute the effective torque acting on
the layer, we define

TOP = ∆ex

∑
xi,yi∈ΩR

(Sx,xi,yi − Sx,xi+1,yi), (9)

TIP = ∆ex

∑
xi,yi∈ΩR

(Sy,xi,yi + Sy,xi+1,yi), (10)

where the subscript OP (IP) stands for out-of-plane (in-
plane) torque component, and ΩR is the volume of the
right antiferromagnet layer. The unit is given in t/a2,
where t is the hopping parameter in eV and a is the
lattice parameter (typically 0.4 nm). These torques are
reported in Fig. 4(a,b), respectively, for εf = 1.1 eV as
a function of the bias voltage.
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The bias dependence of these two torques is very sim-
ilar to what is usually observed in F-MTJs10–13: the
in-plane torque displays a bias dependence of the form
TIP = a1V +a2V

2, while the out-of-plane torque is mostly
quadratic, TOP = b0 + b2V

2. Of course, if one intro-
duces asymmetries in the junction, additional linear de-
pendence should appear13,18,19. Remarkably, the magni-
tude of the torques reported in Fig. 4 is comparable to
the one reported for F-MTJs (see, e.g. Ref. 11). We con-
clude that in a clean AF-MTJ, the current-driven torque
efficient to manipulate the Néel order parameter direction
is an out-of-plane torque that depends on the bias volt-
age in a quadratic manner. Hence, if one does not break
the symmetry of the system, the torque always acts in
the same direction, insensitive to the bias polarity.

D. Effect of the disorder

The impact of spin-independent disorder on spin trans-
port in antiferromagnets is a crucial issue. In general,
depending on the growth conditions and techniques, the
mean free path is limited by the grain size (i.e. from
5 to 15 nm), which has dramatic impact on spin trans-
port in antiferromagnets24. To implement disorder in
our system, we follow the same procedure as in Ref. 24
and introduce a random onsite potential γi such that
γi ∈ [−Γ

2 ,
Γ
2 ], where Γ is the disorder strength. At this

stage, the computation becomes extremely demanding as
both large disorder configurational average together with
accurate energy integration are required. In order to en-
sure the good convergence of our calculation, the Fermi
energy is taken at εf = 6.6 eV such that a large number
of modes are present in the system, thereby increasing
spin dephasing and improving numerical accuracy.

1. Disorder in the metallic leads

Let us first introduce disorder in the antiferromagnetic
leads. Figs. 5 and 6 display the spatial profile of Sx and
Sy, respectively, for different disorder strengths and ex-
change energies. The clean regime is also reported for
comparison (solid lines in Figs. 5 and 6). Symbols repre-
sent the disordered regime with Γ ranging from 0.1 to 0.4
eV. Since the spin density decreases dramatically within
two monolayers from the interface (see Fig. 3), we focus
on the impact of disorder on the oscillatory decay of the
spin density in the bulk of the antiferromagnet. For weak
disorder (red symbols) in Fig. 5(a) and (b), the oscilla-
tion of Sx remains weakly affected, while increasing the
disorder results in enhanced deviations (blue symbols).
However, Fig. 5(a) and (b) show that disorder mostly af-
fect the spin density in the bulk of the antiferromagnet,
away from the interface. As a result, since the torque
mostly occurs at the interface where the spatial decay
is stronger, the overall torque magnitude remains only
weakly affected by disorder. A similar conclusion can be

FIG. 5. (Color online) (a) Spatial profile of Sx in the right
antiferromagnet for Γ=0 (solid line), 0.2 eV (red symbols)
and 0.4 eV (blue symbols) for ∆ex = 1 eV. (b) Spatial profile
of Sx in the right antiferromagnet for Γ=0 (solid line), 0.1
eV (red symbols) and 0.3 eV (blue symbols) for ∆ex = 2
eV. The calculated quantities are averaged over 2000 disorder
configurations.

drawn for Sy, displayed in Fig. 6. Again the magnitude
of Sy is mostly affected by bulk disorder, while its value
close to the interface remains robust. As a conclusion,
the overall impact of disorder on spin torque is much less
dramatic than in metallic spin-valve since in AF-MTJ
the torque is mainly an interfacial effect.

FIG. 6. (Color online) (a) Spatial profile of Sy in the right
antiferromagnet for Γ=0 (solid line), 0.2 eV (red symbols)
and 0.4 eV (blue symbols) for ∆ex = 1 eV. (b) Spatial profile
of Sy in the right antiferromagnet for Γ=0 (solid line), 0.1
eV (red symbols) and 0.3 eV (blue symbols) for ∆ex = 2
eV. The calculated quantities are averaged over 2000 disorder
configurations.

2. Disorder in the tunnel barrier

The impact of disorder in the tunnel barrier on spin
transport has been reported in the case of tunneling
magnetoresistance in F-MTJs36. In these structures, the
disorder inside the tunnel spacer is detrimental to spin
transport properties since a local reduction of the bar-
rier heigh or thickness enhances the tunneling current
while reducing its spin polarization. In other words, the
presence of disorder in the tunnel barrier introduces hot
spots of weakly polarized current that dominate the mag-
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netoresistance signal. Let us now consider the impact of
disorder in the barrier on spin torque in F-MTJs. Fig.
7(a) shows the torkance - or torque efficiency -, defined
as the torque normalized to the conductance, exerted on
the right ferromagnetic layer. The torkance (propor-
tional to the interfacial polarization) dramatically de-
creases in the presence of disorder, which is consistent
with the behavior previously observed for the tunneling
magnetoresistance36.

FIG. 7. (Color online) Impact of disorder on the torkance
components in (a) F-MTJs and (b) AF-MTJs. The black and
red symbols refers to the in-plane and out-of-plane compo-
nents, respectively. The exchange splitting is set to ∆ex = 2.
eV, the width of the junctions is 10 monolayers, the bias volt-
age is 0.6 eV.

We now turn our attention towards the effect of disor-
der on the spin transfer torque in AF-MTJs, reported in
Fig. 7(b) [the parameters are the same as in Fig. 7(a)].
Surprisingly, the torkance remains mostly unaffected by

the disorder, in sharp contrast with F-MTJs. This il-
lustrates the major difference between AF-MTJs and F-
MTJs: since up and down spins are degenerate [see Fig.
2 and related discussion], the hot spots introduced by the
disorder only results in an enhancement of the tunneling
current without altering the sublattice polarization. As
a consequence, the spin torque efficiency in AF-MTJs is
much more robust against disorder than in F-MTJs.

IV. CONCLUSION

In the present work we studied the spin transfer torque
in AF-MTJs using a real-space tight-binding model.
We have shown that, similarly to the case of F-MTJs,
the antiferromagnetic torque is interfacial and possesses
both in-plane and out-of-plane torques, the former being
mostly linear in bias voltage while the latter is quadratic
for a symmetric system. However, two main differences
have been identified. First of all, since only staggered
spin densities are efficient in manipulating Néel order
parameter, the efficient torque is out-of-plane. Second,
because up and down spins are degenerated in antiferro-
magnets, the torque efficiency in AF-MTJs is much more
robust against disorder than in F-MTJs. This shows that
AF-MTJs are solid candidates for the realization of spin
transfer torque in antiferromagnets.
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